Properties

Label 539.2.q.g.410.2
Level $539$
Weight $2$
Character 539.410
Analytic conductor $4.304$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [539,2,Mod(214,539)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(539, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("539.214");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.q (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 77)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 410.2
Character \(\chi\) \(=\) 539.410
Dual form 539.2.q.g.422.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.206654 + 0.0920084i) q^{2} +(0.214341 + 0.0455596i) q^{3} +(-1.30402 - 1.44826i) q^{4} +(0.260853 - 2.48185i) q^{5} +(0.0401026 + 0.0291363i) q^{6} +(-0.276036 - 0.849550i) q^{8} +(-2.69677 - 1.20068i) q^{9} +(0.282258 - 0.488885i) q^{10} +(3.04162 - 1.32232i) q^{11} +(-0.213523 - 0.369833i) q^{12} +(-4.15429 + 3.01827i) q^{13} +(0.168984 - 0.520079i) q^{15} +(-0.386294 + 3.67534i) q^{16} +(-1.31324 + 0.584694i) q^{17} +(-0.446827 - 0.496251i) q^{18} +(-4.06060 + 4.50976i) q^{19} +(-3.93453 + 2.85860i) q^{20} +(0.750229 + 0.00659095i) q^{22} +(-3.54146 - 6.13399i) q^{23} +(-0.0204606 - 0.194669i) q^{24} +(-1.20081 - 0.255240i) q^{25} +(-1.13621 + 0.241509i) q^{26} +(-1.05516 - 0.766622i) q^{27} +(2.01408 - 6.19869i) q^{29} +(0.0827728 - 0.0919286i) q^{30} +(-0.803714 - 7.64683i) q^{31} +(-1.31126 + 2.27117i) q^{32} +(0.712189 - 0.144853i) q^{33} -0.325184 q^{34} +(1.77775 + 5.47134i) q^{36} +(3.89726 - 0.828388i) q^{37} +(-1.25408 + 0.558351i) q^{38} +(-1.02795 + 0.457671i) q^{39} +(-2.18046 + 0.463472i) q^{40} +(2.08556 + 6.41868i) q^{41} -0.802299 q^{43} +(-5.88141 - 2.68073i) q^{44} +(-3.68337 + 6.37979i) q^{45} +(-0.167479 - 1.59346i) q^{46} +(4.51812 - 5.01788i) q^{47} +(-0.250246 + 0.770178i) q^{48} +(-0.224669 - 0.163231i) q^{50} +(-0.308121 + 0.0654930i) q^{51} +(9.78853 + 2.08062i) q^{52} +(-0.687972 - 6.54562i) q^{53} +(-0.147519 - 0.255510i) q^{54} +(-2.48840 - 7.89379i) q^{55} +(-1.07582 + 0.781627i) q^{57} +(0.986549 - 1.09567i) q^{58} +(1.92459 + 2.13747i) q^{59} +(-0.973568 + 0.433460i) q^{60} +(0.0894075 - 0.850656i) q^{61} +(0.537482 - 1.65420i) q^{62} +(5.49964 - 3.99573i) q^{64} +(6.40724 + 11.0977i) q^{65} +(0.160505 + 0.0355928i) q^{66} +(0.823340 - 1.42607i) q^{67} +(2.55929 + 1.13947i) q^{68} +(-0.479618 - 1.47611i) q^{69} +(-3.65738 - 2.65724i) q^{71} +(-0.275633 + 2.62247i) q^{72} +(-9.93521 - 11.0342i) q^{73} +(0.881604 + 0.187391i) q^{74} +(-0.245755 - 0.109417i) q^{75} +11.8264 q^{76} -0.254539 q^{78} +(2.24084 + 0.997687i) q^{79} +(9.02090 + 1.91745i) q^{80} +(5.73455 + 6.36886i) q^{81} +(-0.159584 + 1.51834i) q^{82} +(-1.81851 - 1.32122i) q^{83} +(1.10856 + 3.41180i) q^{85} +(-0.165799 - 0.0738183i) q^{86} +(0.714109 - 1.23687i) q^{87} +(-1.96298 - 2.21900i) q^{88} +(-0.867830 - 1.50313i) q^{89} +(-1.34818 + 0.979509i) q^{90} +(-4.26549 + 13.1278i) q^{92} +(0.176118 - 1.67565i) q^{93} +(1.39538 - 0.621261i) q^{94} +(10.1333 + 11.2542i) q^{95} +(-0.384531 + 0.427065i) q^{96} +(9.77095 - 7.09901i) q^{97} +(-9.79024 - 0.0860098i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 3 q^{2} + 2 q^{3} + 11 q^{4} + 5 q^{5} + 6 q^{6} - 10 q^{8} + 12 q^{9} - 12 q^{10} + 3 q^{11} - 18 q^{12} - 14 q^{13} - 36 q^{15} - 17 q^{16} + 5 q^{17} - 11 q^{18} - 19 q^{19} + 2 q^{20} - 66 q^{22}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.206654 + 0.0920084i 0.146127 + 0.0650598i 0.478497 0.878089i \(-0.341182\pi\)
−0.332370 + 0.943149i \(0.607848\pi\)
\(3\) 0.214341 + 0.0455596i 0.123750 + 0.0263038i 0.269370 0.963037i \(-0.413184\pi\)
−0.145620 + 0.989341i \(0.546518\pi\)
\(4\) −1.30402 1.44826i −0.652010 0.724131i
\(5\) 0.260853 2.48185i 0.116657 1.10992i −0.766956 0.641700i \(-0.778229\pi\)
0.883613 0.468218i \(-0.155104\pi\)
\(6\) 0.0401026 + 0.0291363i 0.0163718 + 0.0118948i
\(7\) 0 0
\(8\) −0.276036 0.849550i −0.0975933 0.300361i
\(9\) −2.69677 1.20068i −0.898923 0.400226i
\(10\) 0.282258 0.488885i 0.0892578 0.154599i
\(11\) 3.04162 1.32232i 0.917083 0.398696i
\(12\) −0.213523 0.369833i −0.0616388 0.106761i
\(13\) −4.15429 + 3.01827i −1.15219 + 0.837117i −0.988771 0.149439i \(-0.952253\pi\)
−0.163422 + 0.986556i \(0.552253\pi\)
\(14\) 0 0
\(15\) 0.168984 0.520079i 0.0436314 0.134284i
\(16\) −0.386294 + 3.67534i −0.0965736 + 0.918836i
\(17\) −1.31324 + 0.584694i −0.318508 + 0.141809i −0.559763 0.828653i \(-0.689108\pi\)
0.241254 + 0.970462i \(0.422441\pi\)
\(18\) −0.446827 0.496251i −0.105318 0.116968i
\(19\) −4.06060 + 4.50976i −0.931567 + 1.03461i 0.0677522 + 0.997702i \(0.478417\pi\)
−0.999319 + 0.0369072i \(0.988249\pi\)
\(20\) −3.93453 + 2.85860i −0.879788 + 0.639203i
\(21\) 0 0
\(22\) 0.750229 + 0.00659095i 0.159949 + 0.00140520i
\(23\) −3.54146 6.13399i −0.738446 1.27903i −0.953195 0.302356i \(-0.902227\pi\)
0.214749 0.976669i \(-0.431107\pi\)
\(24\) −0.0204606 0.194669i −0.00417650 0.0397367i
\(25\) −1.20081 0.255240i −0.240162 0.0510481i
\(26\) −1.13621 + 0.241509i −0.222829 + 0.0473637i
\(27\) −1.05516 0.766622i −0.203067 0.147536i
\(28\) 0 0
\(29\) 2.01408 6.19869i 0.374004 1.15107i −0.570143 0.821545i \(-0.693112\pi\)
0.944148 0.329522i \(-0.106888\pi\)
\(30\) 0.0827728 0.0919286i 0.0151122 0.0167838i
\(31\) −0.803714 7.64683i −0.144351 1.37341i −0.791557 0.611096i \(-0.790729\pi\)
0.647205 0.762316i \(-0.275938\pi\)
\(32\) −1.31126 + 2.27117i −0.231801 + 0.401490i
\(33\) 0.712189 0.144853i 0.123976 0.0252157i
\(34\) −0.325184 −0.0557687
\(35\) 0 0
\(36\) 1.77775 + 5.47134i 0.296291 + 0.911890i
\(37\) 3.89726 0.828388i 0.640705 0.136186i 0.123908 0.992294i \(-0.460457\pi\)
0.516797 + 0.856108i \(0.327124\pi\)
\(38\) −1.25408 + 0.558351i −0.203438 + 0.0905765i
\(39\) −1.02795 + 0.457671i −0.164603 + 0.0732860i
\(40\) −2.18046 + 0.463472i −0.344761 + 0.0732813i
\(41\) 2.08556 + 6.41868i 0.325709 + 1.00243i 0.971120 + 0.238594i \(0.0766864\pi\)
−0.645410 + 0.763836i \(0.723314\pi\)
\(42\) 0 0
\(43\) −0.802299 −0.122349 −0.0611747 0.998127i \(-0.519485\pi\)
−0.0611747 + 0.998127i \(0.519485\pi\)
\(44\) −5.88141 2.68073i −0.886656 0.404135i
\(45\) −3.68337 + 6.37979i −0.549085 + 0.951042i
\(46\) −0.167479 1.59346i −0.0246935 0.234943i
\(47\) 4.51812 5.01788i 0.659035 0.731933i −0.317269 0.948336i \(-0.602766\pi\)
0.976304 + 0.216403i \(0.0694325\pi\)
\(48\) −0.250246 + 0.770178i −0.0361199 + 0.111166i
\(49\) 0 0
\(50\) −0.224669 0.163231i −0.0317729 0.0230844i
\(51\) −0.308121 + 0.0654930i −0.0431455 + 0.00917086i
\(52\) 9.78853 + 2.08062i 1.35742 + 0.288529i
\(53\) −0.687972 6.54562i −0.0945002 0.899110i −0.934366 0.356315i \(-0.884033\pi\)
0.839866 0.542795i \(-0.182634\pi\)
\(54\) −0.147519 0.255510i −0.0200747 0.0347705i
\(55\) −2.48840 7.89379i −0.335535 1.06440i
\(56\) 0 0
\(57\) −1.07582 + 0.781627i −0.142495 + 0.103529i
\(58\) 0.986549 1.09567i 0.129540 0.143869i
\(59\) 1.92459 + 2.13747i 0.250560 + 0.278275i 0.855283 0.518161i \(-0.173383\pi\)
−0.604723 + 0.796436i \(0.706716\pi\)
\(60\) −0.973568 + 0.433460i −0.125687 + 0.0559595i
\(61\) 0.0894075 0.850656i 0.0114475 0.108915i −0.987306 0.158829i \(-0.949228\pi\)
0.998754 + 0.0499140i \(0.0158947\pi\)
\(62\) 0.537482 1.65420i 0.0682603 0.210084i
\(63\) 0 0
\(64\) 5.49964 3.99573i 0.687455 0.499466i
\(65\) 6.40724 + 11.0977i 0.794720 + 1.37650i
\(66\) 0.160505 + 0.0355928i 0.0197568 + 0.00438118i
\(67\) 0.823340 1.42607i 0.100587 0.174222i −0.811340 0.584575i \(-0.801261\pi\)
0.911927 + 0.410353i \(0.134595\pi\)
\(68\) 2.55929 + 1.13947i 0.310359 + 0.138181i
\(69\) −0.479618 1.47611i −0.0577393 0.177703i
\(70\) 0 0
\(71\) −3.65738 2.65724i −0.434051 0.315357i 0.349216 0.937042i \(-0.386448\pi\)
−0.783267 + 0.621686i \(0.786448\pi\)
\(72\) −0.275633 + 2.62247i −0.0324836 + 0.309061i
\(73\) −9.93521 11.0342i −1.16283 1.29145i −0.949249 0.314527i \(-0.898154\pi\)
−0.213580 0.976925i \(-0.568513\pi\)
\(74\) 0.881604 + 0.187391i 0.102484 + 0.0217837i
\(75\) −0.245755 0.109417i −0.0283773 0.0126344i
\(76\) 11.8264 1.35658
\(77\) 0 0
\(78\) −0.254539 −0.0288209
\(79\) 2.24084 + 0.997687i 0.252114 + 0.112249i 0.528903 0.848682i \(-0.322604\pi\)
−0.276789 + 0.960931i \(0.589270\pi\)
\(80\) 9.02090 + 1.91745i 1.00857 + 0.214378i
\(81\) 5.73455 + 6.36886i 0.637172 + 0.707651i
\(82\) −0.159584 + 1.51834i −0.0176231 + 0.167672i
\(83\) −1.81851 1.32122i −0.199607 0.145023i 0.483492 0.875349i \(-0.339368\pi\)
−0.683099 + 0.730326i \(0.739368\pi\)
\(84\) 0 0
\(85\) 1.10856 + 3.41180i 0.120240 + 0.370061i
\(86\) −0.165799 0.0738183i −0.0178785 0.00796003i
\(87\) 0.714109 1.23687i 0.0765605 0.132607i
\(88\) −1.96298 2.21900i −0.209254 0.236546i
\(89\) −0.867830 1.50313i −0.0919898 0.159331i 0.816358 0.577546i \(-0.195989\pi\)
−0.908348 + 0.418214i \(0.862656\pi\)
\(90\) −1.34818 + 0.979509i −0.142111 + 0.103249i
\(91\) 0 0
\(92\) −4.26549 + 13.1278i −0.444708 + 1.36867i
\(93\) 0.176118 1.67565i 0.0182625 0.173756i
\(94\) 1.39538 0.621261i 0.143922 0.0640782i
\(95\) 10.1333 + 11.2542i 1.03966 + 1.15466i
\(96\) −0.384531 + 0.427065i −0.0392460 + 0.0435871i
\(97\) 9.77095 7.09901i 0.992089 0.720795i 0.0317117 0.999497i \(-0.489904\pi\)
0.960378 + 0.278702i \(0.0899042\pi\)
\(98\) 0 0
\(99\) −9.79024 0.0860098i −0.983956 0.00864431i
\(100\) 1.19623 + 2.07193i 0.119623 + 0.207193i
\(101\) 0.386063 + 3.67315i 0.0384147 + 0.365492i 0.996795 + 0.0799973i \(0.0254912\pi\)
−0.958380 + 0.285495i \(0.907842\pi\)
\(102\) −0.0697004 0.0148153i −0.00690136 0.00146693i
\(103\) 1.12640 0.239423i 0.110987 0.0235911i −0.152083 0.988368i \(-0.548598\pi\)
0.263070 + 0.964777i \(0.415265\pi\)
\(104\) 3.71090 + 2.69613i 0.363884 + 0.264377i
\(105\) 0 0
\(106\) 0.460080 1.41598i 0.0446869 0.137532i
\(107\) 0.780967 0.867351i 0.0754989 0.0838500i −0.704212 0.709990i \(-0.748699\pi\)
0.779711 + 0.626140i \(0.215366\pi\)
\(108\) 0.265687 + 2.52785i 0.0255658 + 0.243242i
\(109\) −4.65117 + 8.05606i −0.445501 + 0.771631i −0.998087 0.0618251i \(-0.980308\pi\)
0.552586 + 0.833456i \(0.313641\pi\)
\(110\) 0.212058 1.86024i 0.0202189 0.177367i
\(111\) 0.873083 0.0828694
\(112\) 0 0
\(113\) 1.01893 + 3.13595i 0.0958529 + 0.295005i 0.987475 0.157775i \(-0.0504322\pi\)
−0.891622 + 0.452780i \(0.850432\pi\)
\(114\) −0.294238 + 0.0625423i −0.0275580 + 0.00585762i
\(115\) −16.1475 + 7.18931i −1.50576 + 0.670407i
\(116\) −11.6037 + 5.16631i −1.07738 + 0.479680i
\(117\) 14.8271 3.15161i 1.37077 0.291366i
\(118\) 0.201059 + 0.618796i 0.0185090 + 0.0569648i
\(119\) 0 0
\(120\) −0.488478 −0.0445918
\(121\) 7.50292 8.04401i 0.682084 0.731274i
\(122\) 0.0967440 0.167565i 0.00875879 0.0151707i
\(123\) 0.154588 + 1.47080i 0.0139387 + 0.132618i
\(124\) −10.0266 + 11.1356i −0.900411 + 1.00001i
\(125\) 2.90909 8.95326i 0.260197 0.800804i
\(126\) 0 0
\(127\) 0.233972 + 0.169990i 0.0207616 + 0.0150842i 0.598118 0.801408i \(-0.295916\pi\)
−0.577356 + 0.816492i \(0.695916\pi\)
\(128\) 6.63460 1.41023i 0.586421 0.124648i
\(129\) −0.171966 0.0365524i −0.0151407 0.00321826i
\(130\) 0.303005 + 2.88290i 0.0265753 + 0.252847i
\(131\) 8.25293 + 14.2945i 0.721062 + 1.24892i 0.960575 + 0.278023i \(0.0896790\pi\)
−0.239513 + 0.970893i \(0.576988\pi\)
\(132\) −1.13849 0.842544i −0.0990932 0.0733341i
\(133\) 0 0
\(134\) 0.301357 0.218949i 0.0260333 0.0189143i
\(135\) −2.17789 + 2.41879i −0.187443 + 0.208176i
\(136\) 0.859229 + 0.954270i 0.0736783 + 0.0818280i
\(137\) 8.51961 3.79318i 0.727880 0.324073i −0.00912708 0.999958i \(-0.502905\pi\)
0.737007 + 0.675885i \(0.236239\pi\)
\(138\) 0.0366997 0.349174i 0.00312408 0.0297237i
\(139\) 1.49147 4.59026i 0.126505 0.389341i −0.867668 0.497145i \(-0.834382\pi\)
0.994172 + 0.107804i \(0.0343818\pi\)
\(140\) 0 0
\(141\) 1.19703 0.869693i 0.100808 0.0732414i
\(142\) −0.511325 0.885641i −0.0429094 0.0743213i
\(143\) −8.64465 + 14.6737i −0.722902 + 1.22708i
\(144\) 5.45466 9.44774i 0.454555 0.787312i
\(145\) −14.8589 6.61559i −1.23396 0.549395i
\(146\) −1.03792 3.19438i −0.0858987 0.264369i
\(147\) 0 0
\(148\) −6.28183 4.56401i −0.516363 0.375160i
\(149\) −0.0963663 + 0.916864i −0.00789464 + 0.0751125i −0.997760 0.0668977i \(-0.978690\pi\)
0.989865 + 0.142010i \(0.0453566\pi\)
\(150\) −0.0407190 0.0452230i −0.00332469 0.00369244i
\(151\) −17.7010 3.76246i −1.44048 0.306184i −0.579565 0.814926i \(-0.696777\pi\)
−0.860919 + 0.508742i \(0.830111\pi\)
\(152\) 4.95214 + 2.20483i 0.401671 + 0.178836i
\(153\) 4.24355 0.343070
\(154\) 0 0
\(155\) −19.1880 −1.54121
\(156\) 2.00329 + 0.891922i 0.160392 + 0.0714109i
\(157\) 12.0051 + 2.55177i 0.958113 + 0.203653i 0.660326 0.750979i \(-0.270418\pi\)
0.297787 + 0.954632i \(0.403751\pi\)
\(158\) 0.371284 + 0.412353i 0.0295378 + 0.0328050i
\(159\) 0.150755 1.43434i 0.0119557 0.113750i
\(160\) 5.29467 + 3.84680i 0.418580 + 0.304116i
\(161\) 0 0
\(162\) 0.599080 + 1.84378i 0.0470682 + 0.144861i
\(163\) 7.39892 + 3.29421i 0.579528 + 0.258023i 0.675498 0.737362i \(-0.263929\pi\)
−0.0959699 + 0.995384i \(0.530595\pi\)
\(164\) 6.57632 11.3905i 0.513524 0.889450i
\(165\) −0.173727 1.80533i −0.0135247 0.140545i
\(166\) −0.254239 0.440355i −0.0197328 0.0341781i
\(167\) 10.5590 7.67154i 0.817077 0.593641i −0.0987965 0.995108i \(-0.531499\pi\)
0.915874 + 0.401466i \(0.131499\pi\)
\(168\) 0 0
\(169\) 4.13096 12.7138i 0.317766 0.977985i
\(170\) −0.0848254 + 0.807060i −0.00650581 + 0.0618987i
\(171\) 16.3653 7.28630i 1.25148 0.557197i
\(172\) 1.04621 + 1.16194i 0.0797731 + 0.0885970i
\(173\) 3.95603 4.39361i 0.300771 0.334040i −0.573747 0.819032i \(-0.694511\pi\)
0.874519 + 0.484992i \(0.161178\pi\)
\(174\) 0.261376 0.189901i 0.0198149 0.0143964i
\(175\) 0 0
\(176\) 3.68503 + 11.6898i 0.277770 + 0.881153i
\(177\) 0.315136 + 0.545831i 0.0236870 + 0.0410272i
\(178\) −0.0410406 0.390475i −0.00307612 0.0292674i
\(179\) −4.24035 0.901313i −0.316938 0.0673673i 0.0466958 0.998909i \(-0.485131\pi\)
−0.363634 + 0.931542i \(0.618464\pi\)
\(180\) 14.0428 2.98489i 1.04669 0.222480i
\(181\) −8.76223 6.36613i −0.651291 0.473191i 0.212420 0.977179i \(-0.431866\pi\)
−0.863711 + 0.503988i \(0.831866\pi\)
\(182\) 0 0
\(183\) 0.0579192 0.178257i 0.00428151 0.0131771i
\(184\) −4.23356 + 4.70185i −0.312102 + 0.346625i
\(185\) −1.03932 9.88851i −0.0764126 0.727017i
\(186\) 0.190569 0.330075i 0.0139732 0.0242023i
\(187\) −3.22124 + 3.51495i −0.235560 + 0.257039i
\(188\) −13.1589 −0.959713
\(189\) 0 0
\(190\) 1.05862 + 3.25808i 0.0768000 + 0.236366i
\(191\) −11.4009 + 2.42334i −0.824941 + 0.175347i −0.600993 0.799255i \(-0.705228\pi\)
−0.223948 + 0.974601i \(0.571895\pi\)
\(192\) 1.36084 0.605886i 0.0982104 0.0437261i
\(193\) 20.5049 9.12938i 1.47598 0.657147i 0.498250 0.867033i \(-0.333976\pi\)
0.977726 + 0.209886i \(0.0673094\pi\)
\(194\) 2.67238 0.568031i 0.191866 0.0407823i
\(195\) 0.867729 + 2.67060i 0.0621394 + 0.191245i
\(196\) 0 0
\(197\) 24.1022 1.71721 0.858604 0.512639i \(-0.171332\pi\)
0.858604 + 0.512639i \(0.171332\pi\)
\(198\) −2.01528 0.918559i −0.143220 0.0652791i
\(199\) −9.36026 + 16.2125i −0.663531 + 1.14927i 0.316150 + 0.948709i \(0.397610\pi\)
−0.979681 + 0.200561i \(0.935724\pi\)
\(200\) 0.114627 + 1.09061i 0.00810537 + 0.0771174i
\(201\) 0.241447 0.268154i 0.0170303 0.0189141i
\(202\) −0.258179 + 0.794593i −0.0181654 + 0.0559074i
\(203\) 0 0
\(204\) 0.496647 + 0.360835i 0.0347722 + 0.0252635i
\(205\) 16.4742 3.50171i 1.15061 0.244570i
\(206\) 0.254804 + 0.0541603i 0.0177530 + 0.00377353i
\(207\) 2.18555 + 20.7941i 0.151906 + 1.44529i
\(208\) −9.48840 16.4344i −0.657902 1.13952i
\(209\) −6.38746 + 19.0864i −0.441830 + 1.32023i
\(210\) 0 0
\(211\) 6.12131 4.44739i 0.421408 0.306171i −0.356796 0.934182i \(-0.616131\pi\)
0.778204 + 0.628011i \(0.216131\pi\)
\(212\) −8.58264 + 9.53199i −0.589458 + 0.654659i
\(213\) −0.662864 0.736185i −0.0454187 0.0504426i
\(214\) 0.241194 0.107386i 0.0164877 0.00734078i
\(215\) −0.209282 + 1.99119i −0.0142729 + 0.135798i
\(216\) −0.360021 + 1.10803i −0.0244963 + 0.0753919i
\(217\) 0 0
\(218\) −1.70241 + 1.23687i −0.115302 + 0.0837717i
\(219\) −1.62681 2.81772i −0.109930 0.190404i
\(220\) −8.18735 + 13.8975i −0.551991 + 0.936970i
\(221\) 3.69083 6.39271i 0.248272 0.430020i
\(222\) 0.180426 + 0.0803310i 0.0121094 + 0.00539146i
\(223\) 5.41533 + 16.6667i 0.362637 + 1.11608i 0.951447 + 0.307811i \(0.0995966\pi\)
−0.588810 + 0.808271i \(0.700403\pi\)
\(224\) 0 0
\(225\) 2.93185 + 2.13011i 0.195457 + 0.142008i
\(226\) −0.0779671 + 0.741807i −0.00518629 + 0.0493443i
\(227\) −17.1814 19.0819i −1.14037 1.26651i −0.959096 0.283079i \(-0.908644\pi\)
−0.181276 0.983432i \(-0.558023\pi\)
\(228\) 2.53489 + 0.538807i 0.167877 + 0.0356834i
\(229\) −18.1219 8.06839i −1.19753 0.533174i −0.291574 0.956548i \(-0.594179\pi\)
−0.905955 + 0.423374i \(0.860846\pi\)
\(230\) −3.99842 −0.263648
\(231\) 0 0
\(232\) −5.82205 −0.382236
\(233\) −18.4669 8.22201i −1.20981 0.538642i −0.300108 0.953905i \(-0.597023\pi\)
−0.909701 + 0.415263i \(0.863689\pi\)
\(234\) 3.35407 + 0.712929i 0.219262 + 0.0466056i
\(235\) −11.2751 12.5222i −0.735504 0.816860i
\(236\) 0.585915 5.57461i 0.0381398 0.362876i
\(237\) 0.434850 + 0.315937i 0.0282465 + 0.0205223i
\(238\) 0 0
\(239\) 5.28431 + 16.2634i 0.341814 + 1.05199i 0.963267 + 0.268544i \(0.0865424\pi\)
−0.621454 + 0.783451i \(0.713458\pi\)
\(240\) 1.84619 + 0.821977i 0.119171 + 0.0530584i
\(241\) 12.0764 20.9170i 0.777912 1.34738i −0.155231 0.987878i \(-0.549612\pi\)
0.933143 0.359505i \(-0.117055\pi\)
\(242\) 2.29063 0.971998i 0.147247 0.0624824i
\(243\) 2.89537 + 5.01493i 0.185738 + 0.321708i
\(244\) −1.34856 + 0.979787i −0.0863328 + 0.0627245i
\(245\) 0 0
\(246\) −0.103380 + 0.318171i −0.00659128 + 0.0202859i
\(247\) 3.25727 30.9908i 0.207255 1.97190i
\(248\) −6.27451 + 2.79359i −0.398432 + 0.177393i
\(249\) −0.329586 0.366043i −0.0208867 0.0231970i
\(250\) 1.42495 1.58257i 0.0901219 0.100090i
\(251\) −9.62305 + 6.99156i −0.607402 + 0.441303i −0.848498 0.529198i \(-0.822493\pi\)
0.241097 + 0.970501i \(0.422493\pi\)
\(252\) 0 0
\(253\) −18.8829 13.9743i −1.18716 0.878558i
\(254\) 0.0327107 + 0.0566567i 0.00205245 + 0.00355495i
\(255\) 0.0821698 + 0.781794i 0.00514568 + 0.0489578i
\(256\) −11.7979 2.50773i −0.737371 0.156733i
\(257\) −22.4591 + 4.77384i −1.40096 + 0.297784i −0.845597 0.533822i \(-0.820755\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(258\) −0.0321743 0.0233760i −0.00200308 0.00145533i
\(259\) 0 0
\(260\) 7.71715 23.7509i 0.478597 1.47297i
\(261\) −12.8741 + 14.2982i −0.796889 + 0.885035i
\(262\) 0.390290 + 3.71336i 0.0241122 + 0.229412i
\(263\) −0.968871 + 1.67813i −0.0597432 + 0.103478i −0.894350 0.447368i \(-0.852362\pi\)
0.834607 + 0.550846i \(0.185695\pi\)
\(264\) −0.319649 0.565055i −0.0196731 0.0347768i
\(265\) −16.4247 −1.00896
\(266\) 0 0
\(267\) −0.117530 0.361720i −0.00719271 0.0221369i
\(268\) −3.13897 + 0.667209i −0.191743 + 0.0407563i
\(269\) 6.56543 2.92312i 0.400301 0.178226i −0.196704 0.980463i \(-0.563024\pi\)
0.597005 + 0.802237i \(0.296357\pi\)
\(270\) −0.672618 + 0.299469i −0.0409343 + 0.0182251i
\(271\) −1.16507 + 0.247644i −0.0707732 + 0.0150433i −0.243162 0.969986i \(-0.578185\pi\)
0.172389 + 0.985029i \(0.444851\pi\)
\(272\) −1.64165 5.05249i −0.0995398 0.306352i
\(273\) 0 0
\(274\) 2.10962 0.127447
\(275\) −3.98992 + 0.811517i −0.240602 + 0.0489363i
\(276\) −1.51237 + 2.61950i −0.0910337 + 0.157675i
\(277\) −1.08085 10.2836i −0.0649420 0.617881i −0.977791 0.209584i \(-0.932789\pi\)
0.912849 0.408298i \(-0.133878\pi\)
\(278\) 0.730561 0.811370i 0.0438161 0.0486627i
\(279\) −7.01396 + 21.5867i −0.419915 + 1.29236i
\(280\) 0 0
\(281\) 10.6396 + 7.73015i 0.634707 + 0.461142i 0.858028 0.513603i \(-0.171690\pi\)
−0.223321 + 0.974745i \(0.571690\pi\)
\(282\) 0.327391 0.0695890i 0.0194958 0.00414397i
\(283\) −0.293474 0.0623799i −0.0174452 0.00370810i 0.199181 0.979963i \(-0.436172\pi\)
−0.216626 + 0.976255i \(0.569505\pi\)
\(284\) 0.920917 + 8.76194i 0.0546464 + 0.519926i
\(285\) 1.65925 + 2.87391i 0.0982856 + 0.170236i
\(286\) −3.13656 + 2.23701i −0.185469 + 0.132277i
\(287\) 0 0
\(288\) 6.26312 4.55042i 0.369058 0.268136i
\(289\) −9.99248 + 11.0978i −0.587793 + 0.652810i
\(290\) −2.46196 2.73428i −0.144571 0.160562i
\(291\) 2.41774 1.07645i 0.141731 0.0631025i
\(292\) −3.02465 + 28.7776i −0.177004 + 1.68408i
\(293\) 4.98880 15.3539i 0.291449 0.896987i −0.692942 0.720993i \(-0.743686\pi\)
0.984391 0.175994i \(-0.0563140\pi\)
\(294\) 0 0
\(295\) 5.80692 4.21898i 0.338092 0.245638i
\(296\) −1.77954 3.08225i −0.103434 0.179152i
\(297\) −4.22313 0.936505i −0.245051 0.0543415i
\(298\) −0.104274 + 0.180607i −0.00604042 + 0.0104623i
\(299\) 33.2263 + 14.7933i 1.92153 + 0.855519i
\(300\) 0.162005 + 0.498599i 0.00935334 + 0.0287866i
\(301\) 0 0
\(302\) −3.31180 2.40617i −0.190573 0.138459i
\(303\) −0.0845979 + 0.804895i −0.00486002 + 0.0462400i
\(304\) −15.0063 16.6662i −0.860672 0.955873i
\(305\) −2.08788 0.443793i −0.119552 0.0254115i
\(306\) 0.876947 + 0.390442i 0.0501318 + 0.0223201i
\(307\) −28.6376 −1.63443 −0.817217 0.576330i \(-0.804484\pi\)
−0.817217 + 0.576330i \(0.804484\pi\)
\(308\) 0 0
\(309\) 0.252341 0.0143552
\(310\) −3.96528 1.76545i −0.225213 0.100271i
\(311\) 31.1274 + 6.61632i 1.76507 + 0.375177i 0.972189 0.234199i \(-0.0752466\pi\)
0.792882 + 0.609376i \(0.208580\pi\)
\(312\) 0.672564 + 0.746958i 0.0380764 + 0.0422882i
\(313\) −0.00357730 + 0.0340358i −0.000202201 + 0.00192382i −0.994623 0.103567i \(-0.966975\pi\)
0.994420 + 0.105490i \(0.0336412\pi\)
\(314\) 2.24613 + 1.63191i 0.126756 + 0.0920938i
\(315\) 0 0
\(316\) −1.47719 4.54633i −0.0830985 0.255751i
\(317\) 20.4538 + 9.10660i 1.14880 + 0.511478i 0.890678 0.454635i \(-0.150230\pi\)
0.258120 + 0.966113i \(0.416897\pi\)
\(318\) 0.163125 0.282541i 0.00914762 0.0158441i
\(319\) −2.07061 21.5173i −0.115932 1.20474i
\(320\) −8.48220 14.6916i −0.474170 0.821286i
\(321\) 0.206909 0.150328i 0.0115486 0.00839052i
\(322\) 0 0
\(323\) 2.69574 8.29662i 0.149995 0.461636i
\(324\) 1.74581 16.6103i 0.0969893 0.922792i
\(325\) 5.75891 2.56403i 0.319447 0.142227i
\(326\) 1.22592 + 1.36153i 0.0678977 + 0.0754080i
\(327\) −1.36397 + 1.51484i −0.0754276 + 0.0837708i
\(328\) 4.87730 3.54357i 0.269304 0.195661i
\(329\) 0 0
\(330\) 0.130204 0.389064i 0.00716751 0.0214173i
\(331\) −5.37885 9.31644i −0.295648 0.512078i 0.679487 0.733687i \(-0.262202\pi\)
−0.975136 + 0.221609i \(0.928869\pi\)
\(332\) 0.457895 + 4.35658i 0.0251302 + 0.239098i
\(333\) −11.5046 2.44539i −0.630450 0.134006i
\(334\) 2.88790 0.613843i 0.158019 0.0335880i
\(335\) −3.32452 2.41540i −0.181638 0.131968i
\(336\) 0 0
\(337\) 2.31915 7.13761i 0.126332 0.388810i −0.867809 0.496897i \(-0.834473\pi\)
0.994141 + 0.108087i \(0.0344726\pi\)
\(338\) 2.02346 2.24728i 0.110062 0.122236i
\(339\) 0.0755262 + 0.718584i 0.00410202 + 0.0390281i
\(340\) 3.49559 6.05454i 0.189575 0.328354i
\(341\) −12.5562 22.1960i −0.679955 1.20198i
\(342\) 4.05236 0.219126
\(343\) 0 0
\(344\) 0.221463 + 0.681593i 0.0119405 + 0.0367490i
\(345\) −3.78861 + 0.805293i −0.203972 + 0.0433555i
\(346\) 1.22178 0.543971i 0.0656833 0.0292441i
\(347\) −25.2886 + 11.2592i −1.35756 + 0.604426i −0.950998 0.309197i \(-0.899940\pi\)
−0.406564 + 0.913622i \(0.633273\pi\)
\(348\) −2.72253 + 0.578691i −0.145943 + 0.0310211i
\(349\) −3.41788 10.5192i −0.182955 0.563078i 0.816952 0.576706i \(-0.195662\pi\)
−0.999907 + 0.0136278i \(0.995662\pi\)
\(350\) 0 0
\(351\) 6.69733 0.357477
\(352\) −0.985138 + 8.64196i −0.0525080 + 0.460618i
\(353\) −15.9601 + 27.6437i −0.849469 + 1.47132i 0.0322133 + 0.999481i \(0.489744\pi\)
−0.881683 + 0.471843i \(0.843589\pi\)
\(354\) 0.0149031 + 0.141793i 0.000792091 + 0.00753624i
\(355\) −7.54892 + 8.38393i −0.400655 + 0.444973i
\(356\) −1.04525 + 3.21695i −0.0553982 + 0.170498i
\(357\) 0 0
\(358\) −0.793358 0.576408i −0.0419303 0.0304641i
\(359\) −3.50007 + 0.743963i −0.184727 + 0.0392649i −0.299346 0.954145i \(-0.596768\pi\)
0.114619 + 0.993409i \(0.463435\pi\)
\(360\) 6.43669 + 1.36816i 0.339243 + 0.0721084i
\(361\) −1.86337 17.7288i −0.0980720 0.933093i
\(362\) −1.22501 2.12179i −0.0643853 0.111519i
\(363\) 1.97467 1.38233i 0.103643 0.0725536i
\(364\) 0 0
\(365\) −29.9768 + 21.7794i −1.56906 + 1.13999i
\(366\) 0.0283704 0.0315085i 0.00148295 0.00164698i
\(367\) 1.53496 + 1.70475i 0.0801244 + 0.0889872i 0.781874 0.623437i \(-0.214264\pi\)
−0.701749 + 0.712424i \(0.747597\pi\)
\(368\) 23.9126 10.6466i 1.24653 0.554990i
\(369\) 2.08251 19.8138i 0.108411 1.03146i
\(370\) 0.695045 2.13913i 0.0361337 0.111208i
\(371\) 0 0
\(372\) −2.65644 + 1.93001i −0.137730 + 0.100067i
\(373\) −3.98428 6.90097i −0.206298 0.357319i 0.744247 0.667904i \(-0.232808\pi\)
−0.950546 + 0.310585i \(0.899475\pi\)
\(374\) −0.989088 + 0.429999i −0.0511445 + 0.0222347i
\(375\) 1.03144 1.78651i 0.0532636 0.0922552i
\(376\) −5.51010 2.45325i −0.284162 0.126517i
\(377\) 10.3423 + 31.8302i 0.532653 + 1.63934i
\(378\) 0 0
\(379\) 9.40174 + 6.83077i 0.482935 + 0.350873i 0.802461 0.596705i \(-0.203524\pi\)
−0.319526 + 0.947578i \(0.603524\pi\)
\(380\) 3.08496 29.3514i 0.158255 1.50570i
\(381\) 0.0424051 + 0.0470956i 0.00217248 + 0.00241278i
\(382\) −2.57901 0.548187i −0.131954 0.0280477i
\(383\) 11.4910 + 5.11612i 0.587162 + 0.261421i 0.678743 0.734376i \(-0.262525\pi\)
−0.0915805 + 0.995798i \(0.529192\pi\)
\(384\) 1.48632 0.0758482
\(385\) 0 0
\(386\) 5.07741 0.258433
\(387\) 2.16361 + 0.963303i 0.109983 + 0.0489675i
\(388\) −23.0227 4.89363i −1.16880 0.248437i
\(389\) −0.293276 0.325716i −0.0148697 0.0165144i 0.735664 0.677347i \(-0.236870\pi\)
−0.750534 + 0.660832i \(0.770204\pi\)
\(390\) −0.0663974 + 0.631729i −0.00336216 + 0.0319888i
\(391\) 8.23731 + 5.98476i 0.416579 + 0.302662i
\(392\) 0 0
\(393\) 1.11769 + 3.43990i 0.0563800 + 0.173520i
\(394\) 4.98082 + 2.21760i 0.250930 + 0.111721i
\(395\) 3.06064 5.30119i 0.153998 0.266732i
\(396\) 12.6421 + 14.2910i 0.635290 + 0.718149i
\(397\) −8.40734 14.5619i −0.421952 0.730843i 0.574178 0.818730i \(-0.305322\pi\)
−0.996130 + 0.0878876i \(0.971988\pi\)
\(398\) −3.42602 + 2.48915i −0.171731 + 0.124770i
\(399\) 0 0
\(400\) 1.40196 4.31480i 0.0700981 0.215740i
\(401\) −3.85301 + 36.6590i −0.192410 + 1.83066i 0.292696 + 0.956206i \(0.405448\pi\)
−0.485106 + 0.874455i \(0.661219\pi\)
\(402\) 0.0745684 0.0332000i 0.00371913 0.00165586i
\(403\) 26.4191 + 29.3413i 1.31603 + 1.46160i
\(404\) 4.81624 5.34898i 0.239617 0.266122i
\(405\) 17.3024 12.5710i 0.859766 0.624656i
\(406\) 0 0
\(407\) 10.7586 7.67308i 0.533283 0.380340i
\(408\) 0.140692 + 0.243685i 0.00696528 + 0.0120642i
\(409\) −1.70109 16.1847i −0.0841133 0.800284i −0.952529 0.304448i \(-0.901528\pi\)
0.868416 0.495837i \(-0.165139\pi\)
\(410\) 3.72666 + 0.792126i 0.184047 + 0.0391203i
\(411\) 1.99892 0.424883i 0.0985993 0.0209579i
\(412\) −1.81559 1.31911i −0.0894479 0.0649877i
\(413\) 0 0
\(414\) −1.46158 + 4.49828i −0.0718328 + 0.221079i
\(415\) −3.75344 + 4.16862i −0.184249 + 0.204630i
\(416\) −1.40765 13.3929i −0.0690155 0.656639i
\(417\) 0.528813 0.915931i 0.0258961 0.0448533i
\(418\) −3.07611 + 3.35659i −0.150457 + 0.164176i
\(419\) 5.56352 0.271796 0.135898 0.990723i \(-0.456608\pi\)
0.135898 + 0.990723i \(0.456608\pi\)
\(420\) 0 0
\(421\) 6.64120 + 20.4395i 0.323672 + 0.996161i 0.972036 + 0.234831i \(0.0754536\pi\)
−0.648364 + 0.761331i \(0.724546\pi\)
\(422\) 1.67419 0.355861i 0.0814985 0.0173230i
\(423\) −18.2092 + 8.10725i −0.885361 + 0.394188i
\(424\) −5.37093 + 2.39129i −0.260835 + 0.116131i
\(425\) 1.72620 0.366914i 0.0837328 0.0177980i
\(426\) −0.0692485 0.213125i −0.00335510 0.0103259i
\(427\) 0 0
\(428\) −2.27455 −0.109944
\(429\) −2.52143 + 2.75134i −0.121736 + 0.132836i
\(430\) −0.226455 + 0.392232i −0.0109206 + 0.0189151i
\(431\) 2.89740 + 27.5669i 0.139563 + 1.32785i 0.810238 + 0.586101i \(0.199338\pi\)
−0.670675 + 0.741751i \(0.733996\pi\)
\(432\) 3.22520 3.58195i 0.155173 0.172337i
\(433\) 2.87019 8.83352i 0.137932 0.424512i −0.858102 0.513479i \(-0.828356\pi\)
0.996035 + 0.0889667i \(0.0283565\pi\)
\(434\) 0 0
\(435\) −2.88346 2.09496i −0.138251 0.100445i
\(436\) 17.7325 3.76916i 0.849233 0.180510i
\(437\) 42.0433 + 8.93658i 2.01120 + 0.427494i
\(438\) −0.0769336 0.731975i −0.00367603 0.0349751i
\(439\) 7.35590 + 12.7408i 0.351078 + 0.608085i 0.986439 0.164131i \(-0.0524818\pi\)
−0.635361 + 0.772216i \(0.719148\pi\)
\(440\) −6.01928 + 4.29298i −0.286958 + 0.204660i
\(441\) 0 0
\(442\) 1.35091 0.981494i 0.0642563 0.0466849i
\(443\) 1.63499 1.81584i 0.0776806 0.0862730i −0.703052 0.711139i \(-0.748180\pi\)
0.780732 + 0.624866i \(0.214846\pi\)
\(444\) −1.13852 1.26445i −0.0540317 0.0600083i
\(445\) −3.95692 + 1.76173i −0.187576 + 0.0835141i
\(446\) −0.414373 + 3.94250i −0.0196211 + 0.186683i
\(447\) −0.0624272 + 0.192131i −0.00295271 + 0.00908750i
\(448\) 0 0
\(449\) −3.85849 + 2.80335i −0.182093 + 0.132298i −0.675098 0.737728i \(-0.735899\pi\)
0.493005 + 0.870027i \(0.335899\pi\)
\(450\) 0.409891 + 0.709952i 0.0193225 + 0.0334675i
\(451\) 14.8310 + 16.7654i 0.698367 + 0.789453i
\(452\) 3.21296 5.56502i 0.151125 0.261756i
\(453\) −3.62263 1.61290i −0.170206 0.0757805i
\(454\) −1.79492 5.52420i −0.0842398 0.259264i
\(455\) 0 0
\(456\) 0.960995 + 0.698203i 0.0450027 + 0.0326964i
\(457\) −3.24953 + 30.9172i −0.152007 + 1.44625i 0.606761 + 0.794884i \(0.292468\pi\)
−0.758768 + 0.651361i \(0.774198\pi\)
\(458\) −3.00261 3.33473i −0.140303 0.155822i
\(459\) 1.83393 + 0.389813i 0.0856004 + 0.0181949i
\(460\) 31.4686 + 14.0107i 1.46723 + 0.653254i
\(461\) 29.7215 1.38427 0.692134 0.721769i \(-0.256671\pi\)
0.692134 + 0.721769i \(0.256671\pi\)
\(462\) 0 0
\(463\) −25.4553 −1.18301 −0.591505 0.806302i \(-0.701466\pi\)
−0.591505 + 0.806302i \(0.701466\pi\)
\(464\) 22.0043 + 9.79694i 1.02152 + 0.454812i
\(465\) −4.11277 0.874196i −0.190725 0.0405399i
\(466\) −3.05978 3.39823i −0.141741 0.157420i
\(467\) 0.332914 3.16746i 0.0154054 0.146573i −0.984115 0.177531i \(-0.943189\pi\)
0.999521 + 0.0309579i \(0.00985577\pi\)
\(468\) −23.8992 17.3638i −1.10474 0.802643i
\(469\) 0 0
\(470\) −1.17789 3.62517i −0.0543320 0.167217i
\(471\) 2.45693 + 1.09390i 0.113209 + 0.0504041i
\(472\) 1.28463 2.22505i 0.0591301 0.102416i
\(473\) −2.44029 + 1.06090i −0.112205 + 0.0487802i
\(474\) 0.0607948 + 0.105300i 0.00279240 + 0.00483657i
\(475\) 6.02709 4.37894i 0.276542 0.200920i
\(476\) 0 0
\(477\) −6.00389 + 18.4781i −0.274899 + 0.846052i
\(478\) −0.404348 + 3.84711i −0.0184944 + 0.175963i
\(479\) 2.95398 1.31520i 0.134971 0.0600929i −0.338140 0.941096i \(-0.609798\pi\)
0.473111 + 0.881003i \(0.343131\pi\)
\(480\) 0.959606 + 1.06575i 0.0437998 + 0.0486446i
\(481\) −13.6900 + 15.2043i −0.624212 + 0.693258i
\(482\) 4.42019 3.21146i 0.201334 0.146278i
\(483\) 0 0
\(484\) −21.4338 0.376632i −0.974264 0.0171196i
\(485\) −15.0699 26.1019i −0.684289 1.18522i
\(486\) 0.136925 + 1.30275i 0.00621104 + 0.0590941i
\(487\) −9.65526 2.05229i −0.437521 0.0929980i −0.0161154 0.999870i \(-0.505130\pi\)
−0.421406 + 0.906872i \(0.638463\pi\)
\(488\) −0.747354 + 0.158855i −0.0338311 + 0.00719103i
\(489\) 1.43581 + 1.04318i 0.0649296 + 0.0471741i
\(490\) 0 0
\(491\) 1.30591 4.01917i 0.0589348 0.181383i −0.917255 0.398300i \(-0.869600\pi\)
0.976190 + 0.216918i \(0.0696003\pi\)
\(492\) 1.92852 2.14184i 0.0869445 0.0965617i
\(493\) 0.979362 + 9.31801i 0.0441083 + 0.419662i
\(494\) 3.52455 6.10470i 0.158577 0.274663i
\(495\) −2.76728 + 24.2755i −0.124380 + 1.09110i
\(496\) 28.4152 1.27588
\(497\) 0 0
\(498\) −0.0344314 0.105969i −0.00154291 0.00474859i
\(499\) 19.9496 4.24042i 0.893066 0.189827i 0.261550 0.965190i \(-0.415766\pi\)
0.631516 + 0.775363i \(0.282433\pi\)
\(500\) −16.7602 + 7.46211i −0.749538 + 0.333716i
\(501\) 2.61273 1.16326i 0.116728 0.0519708i
\(502\) −2.63193 + 0.559434i −0.117469 + 0.0249687i
\(503\) −7.40382 22.7866i −0.330120 1.01600i −0.969076 0.246762i \(-0.920634\pi\)
0.638956 0.769243i \(-0.279366\pi\)
\(504\) 0 0
\(505\) 9.21692 0.410147
\(506\) −2.61648 4.62524i −0.116317 0.205617i
\(507\) 1.46467 2.53688i 0.0650483 0.112667i
\(508\) −0.0589134 0.560524i −0.00261386 0.0248692i
\(509\) 2.47137 2.74474i 0.109542 0.121658i −0.685880 0.727714i \(-0.740583\pi\)
0.795422 + 0.606056i \(0.207249\pi\)
\(510\) −0.0549509 + 0.169121i −0.00243327 + 0.00748882i
\(511\) 0 0
\(512\) −13.1822 9.57742i −0.582576 0.423266i
\(513\) 7.74188 1.64559i 0.341813 0.0726545i
\(514\) −5.08051 1.07990i −0.224092 0.0476322i
\(515\) −0.300389 2.85801i −0.0132367 0.125939i
\(516\) 0.171309 + 0.296716i 0.00754147 + 0.0130622i
\(517\) 7.10714 21.2369i 0.312572 0.933997i
\(518\) 0 0
\(519\) 1.04811 0.761497i 0.0460069 0.0334260i
\(520\) 7.65940 8.50662i 0.335887 0.373040i
\(521\) −0.159433 0.177069i −0.00698491 0.00775753i 0.739642 0.673000i \(-0.234995\pi\)
−0.746627 + 0.665243i \(0.768328\pi\)
\(522\) −3.97605 + 1.77025i −0.174027 + 0.0774818i
\(523\) 2.29873 21.8710i 0.100516 0.956350i −0.821764 0.569828i \(-0.807010\pi\)
0.922280 0.386522i \(-0.126324\pi\)
\(524\) 9.94018 30.5927i 0.434239 1.33645i
\(525\) 0 0
\(526\) −0.354624 + 0.257649i −0.0154623 + 0.0112340i
\(527\) 5.52653 + 9.57223i 0.240739 + 0.416973i
\(528\) 0.257271 + 2.67349i 0.0111963 + 0.116349i
\(529\) −13.5839 + 23.5280i −0.590604 + 1.02296i
\(530\) −3.39424 1.51121i −0.147436 0.0656429i
\(531\) −2.62375 8.07508i −0.113861 0.350429i
\(532\) 0 0
\(533\) −28.0373 20.3703i −1.21443 0.882336i
\(534\) 0.00899321 0.0855647i 0.000389174 0.00370275i
\(535\) −1.94892 2.16450i −0.0842592 0.0935793i
\(536\) −1.43879 0.305824i −0.0621461 0.0132096i
\(537\) −0.867817 0.386377i −0.0374491 0.0166734i
\(538\) 1.62573 0.0700900
\(539\) 0 0
\(540\) 6.34305 0.272961
\(541\) 26.1556 + 11.6452i 1.12452 + 0.500668i 0.882833 0.469687i \(-0.155633\pi\)
0.241686 + 0.970355i \(0.422300\pi\)
\(542\) −0.263553 0.0560199i −0.0113206 0.00240626i
\(543\) −1.58807 1.76373i −0.0681504 0.0756887i
\(544\) 0.394066 3.74929i 0.0168955 0.160749i
\(545\) 18.7807 + 13.6450i 0.804477 + 0.584486i
\(546\) 0 0
\(547\) 1.98033 + 6.09482i 0.0846727 + 0.260596i 0.984425 0.175805i \(-0.0562529\pi\)
−0.899752 + 0.436401i \(0.856253\pi\)
\(548\) −16.6033 7.39225i −0.709256 0.315781i
\(549\) −1.26248 + 2.18667i −0.0538812 + 0.0933250i
\(550\) −0.899202 0.199403i −0.0383421 0.00850259i
\(551\) 19.7762 + 34.2534i 0.842495 + 1.45924i
\(552\) −1.12164 + 0.814919i −0.0477402 + 0.0346853i
\(553\) 0 0
\(554\) 0.722815 2.22460i 0.0307095 0.0945141i
\(555\) 0.227747 2.16686i 0.00966730 0.0919782i
\(556\) −8.59280 + 3.82576i −0.364416 + 0.162248i
\(557\) −15.0683 16.7351i −0.638466 0.709088i 0.333885 0.942614i \(-0.391640\pi\)
−0.972351 + 0.233526i \(0.924974\pi\)
\(558\) −3.43563 + 3.81565i −0.145442 + 0.161529i
\(559\) 3.33298 2.42155i 0.140970 0.102421i
\(560\) 0 0
\(561\) −0.850583 + 0.606640i −0.0359116 + 0.0256124i
\(562\) 1.48749 + 2.57640i 0.0627459 + 0.108679i
\(563\) 3.11774 + 29.6633i 0.131397 + 1.25016i 0.839229 + 0.543778i \(0.183007\pi\)
−0.707832 + 0.706381i \(0.750327\pi\)
\(564\) −2.82050 0.599515i −0.118764 0.0252441i
\(565\) 8.04875 1.71081i 0.338613 0.0719745i
\(566\) −0.0549082 0.0398932i −0.00230797 0.00167684i
\(567\) 0 0
\(568\) −1.24789 + 3.84062i −0.0523604 + 0.161149i
\(569\) 19.5897 21.7566i 0.821244 0.912084i −0.176141 0.984365i \(-0.556361\pi\)
0.997384 + 0.0722815i \(0.0230280\pi\)
\(570\) 0.0784678 + 0.746571i 0.00328665 + 0.0312704i
\(571\) −18.9626 + 32.8442i −0.793559 + 1.37449i 0.130190 + 0.991489i \(0.458441\pi\)
−0.923750 + 0.382996i \(0.874892\pi\)
\(572\) 32.5242 6.61515i 1.35991 0.276593i
\(573\) −2.55409 −0.106699
\(574\) 0 0
\(575\) 2.68699 + 8.26969i 0.112055 + 0.344870i
\(576\) −19.6289 + 4.17224i −0.817869 + 0.173843i
\(577\) 8.01420 3.56815i 0.333635 0.148544i −0.233080 0.972458i \(-0.574880\pi\)
0.566716 + 0.823913i \(0.308214\pi\)
\(578\) −3.08608 + 1.37401i −0.128364 + 0.0571513i
\(579\) 4.81098 1.02260i 0.199937 0.0424980i
\(580\) 9.79515 + 30.1464i 0.406721 + 1.25176i
\(581\) 0 0
\(582\) 0.598679 0.0248161
\(583\) −10.7480 18.9996i −0.445136 0.786882i
\(584\) −6.63161 + 11.4863i −0.274418 + 0.475306i
\(585\) −3.95411 37.6209i −0.163483 1.55543i
\(586\) 2.44365 2.71395i 0.100946 0.112112i
\(587\) 2.83372 8.72130i 0.116960 0.359966i −0.875391 0.483416i \(-0.839396\pi\)
0.992351 + 0.123450i \(0.0393958\pi\)
\(588\) 0 0
\(589\) 37.7489 + 27.4262i 1.55542 + 1.13008i
\(590\) 1.58821 0.337584i 0.0653854 0.0138981i
\(591\) 5.16608 + 1.09809i 0.212504 + 0.0451692i
\(592\) 1.53912 + 14.6438i 0.0632575 + 0.601855i
\(593\) −3.62798 6.28385i −0.148983 0.258047i 0.781869 0.623443i \(-0.214267\pi\)
−0.930852 + 0.365396i \(0.880933\pi\)
\(594\) −0.786562 0.582097i −0.0322730 0.0238837i
\(595\) 0 0
\(596\) 1.45352 1.05605i 0.0595386 0.0432573i
\(597\) −2.74492 + 3.04854i −0.112342 + 0.124769i
\(598\) 5.50525 + 6.11420i 0.225126 + 0.250028i
\(599\) −18.2874 + 8.14208i −0.747203 + 0.332676i −0.744770 0.667321i \(-0.767441\pi\)
−0.00243264 + 0.999997i \(0.500774\pi\)
\(600\) −0.0251182 + 0.238984i −0.00102545 + 0.00975647i
\(601\) −3.48280 + 10.7189i −0.142066 + 0.437235i −0.996622 0.0821246i \(-0.973829\pi\)
0.854556 + 0.519360i \(0.173829\pi\)
\(602\) 0 0
\(603\) −3.93261 + 2.85721i −0.160148 + 0.116354i
\(604\) 17.6334 + 30.5419i 0.717493 + 1.24273i
\(605\) −18.0069 20.7195i −0.732085 0.842366i
\(606\) −0.0915397 + 0.158551i −0.00371854 + 0.00644071i
\(607\) −12.3566 5.50153i −0.501541 0.223300i 0.140342 0.990103i \(-0.455180\pi\)
−0.641883 + 0.766803i \(0.721846\pi\)
\(608\) −4.91792 15.1358i −0.199448 0.613838i
\(609\) 0 0
\(610\) −0.390637 0.283814i −0.0158164 0.0114913i
\(611\) −3.62427 + 34.4826i −0.146622 + 1.39502i
\(612\) −5.53367 6.14577i −0.223686 0.248428i
\(613\) 30.1238 + 6.40301i 1.21669 + 0.258615i 0.771154 0.636649i \(-0.219680\pi\)
0.445535 + 0.895264i \(0.353013\pi\)
\(614\) −5.91809 2.63490i −0.238834 0.106336i
\(615\) 3.69064 0.148821
\(616\) 0 0
\(617\) 23.6896 0.953707 0.476853 0.878983i \(-0.341777\pi\)
0.476853 + 0.878983i \(0.341777\pi\)
\(618\) 0.0521475 + 0.0232175i 0.00209768 + 0.000933947i
\(619\) 31.7779 + 6.75459i 1.27726 + 0.271490i 0.796112 0.605149i \(-0.206887\pi\)
0.481148 + 0.876639i \(0.340220\pi\)
\(620\) 25.0215 + 27.7892i 1.00489 + 1.11604i
\(621\) −0.965627 + 9.18733i −0.0387493 + 0.368675i
\(622\) 5.82385 + 4.23127i 0.233515 + 0.169659i
\(623\) 0 0
\(624\) −1.28501 3.95485i −0.0514415 0.158321i
\(625\) −27.0694 12.0521i −1.08277 0.482082i
\(626\) −0.00387084 + 0.00670450i −0.000154710 + 0.000267966i
\(627\) −2.23866 + 3.79999i −0.0894036 + 0.151757i
\(628\) −11.9593 20.7141i −0.477228 0.826583i
\(629\) −4.63370 + 3.36658i −0.184758 + 0.134234i
\(630\) 0 0
\(631\) −4.67646 + 14.3927i −0.186167 + 0.572962i −0.999967 0.00818299i \(-0.997395\pi\)
0.813800 + 0.581145i \(0.197395\pi\)
\(632\) 0.229033 2.17910i 0.00911044 0.0866801i
\(633\) 1.51467 0.674374i 0.0602027 0.0268040i
\(634\) 3.38897 + 3.76384i 0.134593 + 0.149481i
\(635\) 0.482924 0.536341i 0.0191642 0.0212840i
\(636\) −2.27388 + 1.65207i −0.0901654 + 0.0655090i
\(637\) 0 0
\(638\) 1.55187 4.63716i 0.0614393 0.183587i
\(639\) 6.67262 + 11.5573i 0.263965 + 0.457200i
\(640\) −1.76932 16.8340i −0.0699385 0.665420i
\(641\) 16.1886 + 3.44099i 0.639410 + 0.135911i 0.516198 0.856469i \(-0.327347\pi\)
0.123213 + 0.992380i \(0.460680\pi\)
\(642\) 0.0565902 0.0120286i 0.00223344 0.000474732i
\(643\) −1.61403 1.17266i −0.0636513 0.0462454i 0.555505 0.831513i \(-0.312525\pi\)
−0.619156 + 0.785268i \(0.712525\pi\)
\(644\) 0 0
\(645\) −0.135575 + 0.417258i −0.00533828 + 0.0164295i
\(646\) 1.32045 1.46650i 0.0519522 0.0576988i
\(647\) −4.22835 40.2301i −0.166234 1.58161i −0.686194 0.727418i \(-0.740720\pi\)
0.519961 0.854190i \(-0.325947\pi\)
\(648\) 3.82773 6.62982i 0.150367 0.260444i
\(649\) 8.68029 + 3.95645i 0.340731 + 0.155304i
\(650\) 1.42602 0.0559329
\(651\) 0 0
\(652\) −4.87747 15.0113i −0.191016 0.587888i
\(653\) 40.5791 8.62535i 1.58798 0.337536i 0.672563 0.740040i \(-0.265193\pi\)
0.915418 + 0.402504i \(0.131860\pi\)
\(654\) −0.421248 + 0.187552i −0.0164721 + 0.00733385i
\(655\) 37.6296 16.7538i 1.47031 0.654625i
\(656\) −24.3965 + 5.18564i −0.952523 + 0.202465i
\(657\) 13.5445 + 41.6856i 0.528421 + 1.62631i
\(658\) 0 0
\(659\) −51.1359 −1.99197 −0.995985 0.0895158i \(-0.971468\pi\)
−0.995985 + 0.0895158i \(0.971468\pi\)
\(660\) −2.38805 + 2.60579i −0.0929548 + 0.101430i
\(661\) 21.4420 37.1387i 0.833998 1.44453i −0.0608459 0.998147i \(-0.519380\pi\)
0.894844 0.446380i \(-0.147287\pi\)
\(662\) −0.254371 2.42018i −0.00988643 0.0940631i
\(663\) 1.08235 1.20207i 0.0420349 0.0466844i
\(664\) −0.620472 + 1.90962i −0.0240790 + 0.0741075i
\(665\) 0 0
\(666\) −2.15249 1.56387i −0.0834072 0.0605988i
\(667\) −45.1555 + 9.59809i −1.74843 + 0.371640i
\(668\) −24.8795 5.28830i −0.962617 0.204611i
\(669\) 0.401401 + 3.81907i 0.0155190 + 0.147654i
\(670\) −0.464789 0.805037i −0.0179563 0.0311013i
\(671\) −0.852898 2.70560i −0.0329258 0.104448i
\(672\) 0 0
\(673\) 20.2313 14.6989i 0.779858 0.566600i −0.125078 0.992147i \(-0.539918\pi\)
0.904936 + 0.425547i \(0.139918\pi\)
\(674\) 1.13598 1.26164i 0.0437564 0.0485964i
\(675\) 1.07138 + 1.18989i 0.0412375 + 0.0457989i
\(676\) −23.7998 + 10.5963i −0.915376 + 0.407552i
\(677\) 1.03681 9.86456i 0.0398477 0.379126i −0.956365 0.292175i \(-0.905621\pi\)
0.996213 0.0869509i \(-0.0277123\pi\)
\(678\) −0.0505080 + 0.155448i −0.00193975 + 0.00596993i
\(679\) 0 0
\(680\) 2.59249 1.88356i 0.0994175 0.0722310i
\(681\) −2.81332 4.87282i −0.107807 0.186727i
\(682\) −0.552570 5.74217i −0.0211590 0.219879i
\(683\) 19.9490 34.5527i 0.763328 1.32212i −0.177798 0.984067i \(-0.556897\pi\)
0.941126 0.338056i \(-0.109769\pi\)
\(684\) −31.8931 14.1997i −1.21946 0.542941i
\(685\) −7.19174 22.1339i −0.274782 0.845692i
\(686\) 0 0
\(687\) −3.51667 2.55501i −0.134169 0.0974798i
\(688\) 0.309923 2.94872i 0.0118157 0.112419i
\(689\) 22.6145 + 25.1159i 0.861543 + 0.956840i
\(690\) −0.857026 0.182166i −0.0326264 0.00693496i
\(691\) −6.04220 2.69016i −0.229856 0.102338i 0.288577 0.957457i \(-0.406818\pi\)
−0.518433 + 0.855118i \(0.673484\pi\)
\(692\) −11.5218 −0.437995
\(693\) 0 0
\(694\) −6.26194 −0.237700
\(695\) −11.0033 4.89899i −0.417379 0.185829i
\(696\) −1.24790 0.265250i −0.0473017 0.0100543i
\(697\) −6.49181 7.20988i −0.245895 0.273094i
\(698\) 0.261531 2.48830i 0.00989911 0.0941837i
\(699\) −3.58363 2.60366i −0.135545 0.0984795i
\(700\) 0 0
\(701\) 4.51215 + 13.8870i 0.170421 + 0.524503i 0.999395 0.0347848i \(-0.0110746\pi\)
−0.828973 + 0.559288i \(0.811075\pi\)
\(702\) 1.38403 + 0.616211i 0.0522369 + 0.0232574i
\(703\) −12.0894 + 20.9394i −0.455960 + 0.789746i
\(704\) 11.4442 19.4258i 0.431319 0.732137i
\(705\) −1.84620 3.19771i −0.0695320 0.120433i
\(706\) −5.84167 + 4.24422i −0.219854 + 0.159733i
\(707\) 0 0
\(708\) 0.379563 1.16817i 0.0142648 0.0439027i
\(709\) 0.433172 4.12136i 0.0162681 0.154781i −0.983372 0.181602i \(-0.941872\pi\)
0.999640 + 0.0268211i \(0.00853844\pi\)
\(710\) −2.33141 + 1.03801i −0.0874963 + 0.0389559i
\(711\) −4.84513 5.38106i −0.181707 0.201806i
\(712\) −1.03743 + 1.15218i −0.0388793 + 0.0431798i
\(713\) −44.0593 + 32.0109i −1.65003 + 1.19882i
\(714\) 0 0
\(715\) 34.1631 + 25.2824i 1.27763 + 0.945510i
\(716\) 4.22416 + 7.31646i 0.157864 + 0.273429i
\(717\) 0.391689 + 3.72667i 0.0146279 + 0.139175i
\(718\) −0.791756 0.168293i −0.0295481 0.00628063i
\(719\) −16.6503 + 3.53913i −0.620951 + 0.131987i −0.507636 0.861572i \(-0.669480\pi\)
−0.113315 + 0.993559i \(0.536147\pi\)
\(720\) −22.0250 16.0021i −0.820825 0.596364i
\(721\) 0 0
\(722\) 1.24612 3.83517i 0.0463759 0.142730i
\(723\) 3.54145 3.93318i 0.131708 0.146276i
\(724\) 2.20630 + 20.9916i 0.0819966 + 0.780145i
\(725\) −4.00068 + 6.92938i −0.148582 + 0.257351i
\(726\) 0.535260 0.103979i 0.0198653 0.00385902i
\(727\) −21.6199 −0.801837 −0.400918 0.916114i \(-0.631309\pi\)
−0.400918 + 0.916114i \(0.631309\pi\)
\(728\) 0 0
\(729\) −7.55284 23.2453i −0.279735 0.860936i
\(730\) −8.19873 + 1.74269i −0.303449 + 0.0645000i
\(731\) 1.05361 0.469099i 0.0389693 0.0173503i
\(732\) −0.333691 + 0.148569i −0.0123336 + 0.00549126i
\(733\) 47.1786 10.0281i 1.74258 0.370397i 0.776797 0.629751i \(-0.216843\pi\)
0.965782 + 0.259354i \(0.0835096\pi\)
\(734\) 0.160355 + 0.493523i 0.00591883 + 0.0182163i
\(735\) 0 0
\(736\) 18.5751 0.684688
\(737\) 0.618567 5.42628i 0.0227852 0.199880i
\(738\) 2.25340 3.90300i 0.0829487 0.143671i
\(739\) 0.853315 + 8.11875i 0.0313897 + 0.298653i 0.998942 + 0.0459831i \(0.0146420\pi\)
−0.967553 + 0.252670i \(0.918691\pi\)
\(740\) −12.9658 + 14.4000i −0.476634 + 0.529356i
\(741\) 2.11010 6.49421i 0.0775163 0.238571i
\(742\) 0 0
\(743\) −15.8254 11.4978i −0.580577 0.421814i 0.258355 0.966050i \(-0.416820\pi\)
−0.838932 + 0.544236i \(0.816820\pi\)
\(744\) −1.47216 + 0.312917i −0.0539720 + 0.0114721i
\(745\) 2.25039 + 0.478334i 0.0824477 + 0.0175248i
\(746\) −0.188421 1.79270i −0.00689857 0.0656355i
\(747\) 3.31773 + 5.74648i 0.121389 + 0.210253i
\(748\) 9.29113 + 0.0816249i 0.339717 + 0.00298450i
\(749\) 0 0
\(750\) 0.377527 0.274289i 0.0137853 0.0100156i
\(751\) 0.746949 0.829571i 0.0272566 0.0302715i −0.729362 0.684128i \(-0.760183\pi\)
0.756619 + 0.653856i \(0.226850\pi\)
\(752\) 16.6971 + 18.5440i 0.608881 + 0.676230i
\(753\) −2.38115 + 1.06016i −0.0867738 + 0.0386342i
\(754\) −0.791374 + 7.52942i −0.0288201 + 0.274205i
\(755\) −13.9552 + 42.9497i −0.507882 + 1.56310i
\(756\) 0 0
\(757\) 21.5015 15.6218i 0.781485 0.567782i −0.123939 0.992290i \(-0.539553\pi\)
0.905424 + 0.424508i \(0.139553\pi\)
\(758\) 1.31442 + 2.27665i 0.0477420 + 0.0826916i
\(759\) −3.41072 3.85557i −0.123801 0.139948i
\(760\) 6.76385 11.7153i 0.245351 0.424960i
\(761\) 5.75536 + 2.56245i 0.208632 + 0.0928888i 0.508392 0.861126i \(-0.330240\pi\)
−0.299760 + 0.954015i \(0.596907\pi\)
\(762\) 0.00443000 + 0.0136341i 0.000160482 + 0.000493913i
\(763\) 0 0
\(764\) 18.3766 + 13.3514i 0.664844 + 0.483037i
\(765\) 1.10694 10.5319i 0.0400216 0.380780i
\(766\) 1.90394 + 2.11454i 0.0687920 + 0.0764013i
\(767\) −14.4468 3.07075i −0.521642 0.110878i
\(768\) −2.41453 1.07502i −0.0871269 0.0387914i
\(769\) 13.1916 0.475700 0.237850 0.971302i \(-0.423557\pi\)
0.237850 + 0.971302i \(0.423557\pi\)
\(770\) 0 0
\(771\) −5.03141 −0.181202
\(772\) −39.9606 17.7916i −1.43821 0.640333i
\(773\) −44.8166 9.52605i −1.61194 0.342628i −0.688162 0.725557i \(-0.741582\pi\)
−0.923778 + 0.382929i \(0.874915\pi\)
\(774\) 0.358488 + 0.398142i 0.0128856 + 0.0143109i
\(775\) −0.986671 + 9.38754i −0.0354423 + 0.337211i
\(776\) −8.72809 6.34133i −0.313320 0.227640i
\(777\) 0 0
\(778\) −0.0306381 0.0942944i −0.00109843 0.00338062i
\(779\) −37.4153 16.6584i −1.34054 0.596848i
\(780\) 2.73619 4.73921i 0.0979711 0.169691i
\(781\) −14.6381 3.24609i −0.523792 0.116154i
\(782\) 1.15163 + 1.99468i 0.0411821 + 0.0713295i
\(783\) −6.87723 + 4.99660i −0.245772 + 0.178564i
\(784\) 0 0
\(785\) 9.46469 29.1293i 0.337809 1.03967i
\(786\) −0.0855240 + 0.813707i −0.00305054 + 0.0290240i
\(787\) −17.2184 + 7.66615i −0.613771 + 0.273269i −0.689986 0.723823i \(-0.742383\pi\)
0.0762146 + 0.997091i \(0.475717\pi\)
\(788\) −31.4297 34.9063i −1.11964 1.24348i
\(789\) −0.284124 + 0.315552i −0.0101151 + 0.0112339i
\(790\) 1.12025 0.813909i 0.0398567 0.0289576i
\(791\) 0 0
\(792\) 2.62938 + 8.34104i 0.0934311 + 0.296386i
\(793\) 2.19608 + 3.80373i 0.0779852 + 0.135074i
\(794\) −0.397592 3.78283i −0.0141100 0.134248i
\(795\) −3.52049 0.748304i −0.124859 0.0265396i
\(796\) 35.6858 7.58526i 1.26485 0.268852i
\(797\) 22.7830 + 16.5528i 0.807016 + 0.586331i 0.912964 0.408040i \(-0.133788\pi\)
−0.105948 + 0.994372i \(0.533788\pi\)
\(798\) 0 0
\(799\) −2.99947 + 9.23141i −0.106114 + 0.326584i
\(800\) 2.15427 2.39256i 0.0761651 0.0845899i
\(801\) 0.535566 + 5.09557i 0.0189233 + 0.180043i
\(802\) −4.16917 + 7.22122i −0.147219 + 0.254990i
\(803\) −44.8099 20.4242i −1.58131 0.720755i
\(804\) −0.703208 −0.0248002
\(805\) 0 0
\(806\) 2.75996 + 8.49429i 0.0972155 + 0.299199i
\(807\) 1.54042 0.327426i 0.0542252 0.0115259i
\(808\) 3.01396 1.34190i 0.106031 0.0472079i
\(809\) −5.97963 + 2.66230i −0.210233 + 0.0936016i −0.509151 0.860677i \(-0.670041\pi\)
0.298919 + 0.954279i \(0.403374\pi\)
\(810\) 4.73226 1.00587i 0.166275 0.0353428i
\(811\) 5.81096 + 17.8843i 0.204050 + 0.628002i 0.999751 + 0.0223122i \(0.00710279\pi\)
−0.795701 + 0.605690i \(0.792897\pi\)
\(812\) 0 0
\(813\) −0.261006 −0.00915387
\(814\) 2.92930 0.595794i 0.102672 0.0208826i
\(815\) 10.1058 17.5037i 0.353990 0.613129i
\(816\) −0.121684 1.15775i −0.00425980 0.0405293i
\(817\) 3.25782 3.61817i 0.113977 0.126584i
\(818\) 1.13760 3.50116i 0.0397751 0.122415i
\(819\) 0 0
\(820\) −26.5542 19.2927i −0.927311 0.673731i
\(821\) 11.3348 2.40928i 0.395586 0.0840844i −0.00582351 0.999983i \(-0.501854\pi\)
0.401410 + 0.915899i \(0.368520\pi\)
\(822\) 0.452178 + 0.0961134i 0.0157715 + 0.00335234i
\(823\) −1.29055 12.2788i −0.0449857 0.428010i −0.993717 0.111925i \(-0.964298\pi\)
0.948731 0.316085i \(-0.102368\pi\)
\(824\) −0.514328 0.890843i −0.0179175 0.0310340i
\(825\) −0.892177 0.00783800i −0.0310616 0.000272884i
\(826\) 0 0
\(827\) 3.63717 2.64256i 0.126477 0.0918907i −0.522748 0.852487i \(-0.675093\pi\)
0.649225 + 0.760596i \(0.275093\pi\)
\(828\) 27.2653 30.2812i 0.947536 1.05234i
\(829\) −13.2908 14.7610i −0.461610 0.512670i 0.466731 0.884399i \(-0.345432\pi\)
−0.928341 + 0.371729i \(0.878765\pi\)
\(830\) −1.15921 + 0.516115i −0.0402369 + 0.0179146i
\(831\) 0.236846 2.25344i 0.00821610 0.0781710i
\(832\) −10.7869 + 33.1988i −0.373970 + 1.15096i
\(833\) 0 0
\(834\) 0.193555 0.140626i 0.00670226 0.00486947i
\(835\) −16.2853 28.2069i −0.563576 0.976142i
\(836\) 35.9715 15.6384i 1.24410 0.540864i
\(837\) −5.01418 + 8.68481i −0.173315 + 0.300191i
\(838\) 1.14973 + 0.511891i 0.0397166 + 0.0176830i
\(839\) −13.5513 41.7065i −0.467842 1.43987i −0.855373 0.518012i \(-0.826672\pi\)
0.387532 0.921856i \(-0.373328\pi\)
\(840\) 0 0
\(841\) −10.9057 7.92348i −0.376060 0.273224i
\(842\) −0.508175 + 4.83496i −0.0175129 + 0.166624i
\(843\) 1.92833 + 2.14162i 0.0664151 + 0.0737615i
\(844\) −14.4233 3.06577i −0.496471 0.105528i
\(845\) −30.4762 13.5689i −1.04841 0.466784i
\(846\) −4.50894 −0.155021
\(847\) 0 0
\(848\) 24.3232 0.835261
\(849\) −0.0600616 0.0267411i −0.00206131 0.000917753i
\(850\) 0.390485 + 0.0830002i 0.0133935 + 0.00284688i
\(851\) −18.8833 20.9720i −0.647311 0.718912i
\(852\) −0.201800 + 1.92000i −0.00691356 + 0.0657781i
\(853\) −31.6655 23.0063i −1.08421 0.787721i −0.105794 0.994388i \(-0.533738\pi\)
−0.978411 + 0.206667i \(0.933738\pi\)
\(854\) 0 0
\(855\) −13.8146 42.5169i −0.472449 1.45405i
\(856\) −0.952433 0.424050i −0.0325535 0.0144937i
\(857\) −17.5262 + 30.3563i −0.598684 + 1.03695i 0.394332 + 0.918968i \(0.370976\pi\)
−0.993016 + 0.117982i \(0.962357\pi\)
\(858\) −0.774212 + 0.336583i −0.0264311 + 0.0114908i
\(859\) 16.2603 + 28.1636i 0.554794 + 0.960931i 0.997920 + 0.0644717i \(0.0205362\pi\)
−0.443126 + 0.896459i \(0.646130\pi\)
\(860\) 3.15667 2.29345i 0.107642 0.0782061i
\(861\) 0 0
\(862\) −1.93763 + 5.96341i −0.0659959 + 0.203114i
\(863\) −1.32688 + 12.6244i −0.0451675 + 0.429740i 0.948449 + 0.316930i \(0.102652\pi\)
−0.993617 + 0.112811i \(0.964015\pi\)
\(864\) 3.12473 1.39122i 0.106305 0.0473302i
\(865\) −9.87236 10.9644i −0.335670 0.372800i
\(866\) 1.40590 1.56140i 0.0477743 0.0530587i
\(867\) −2.64741 + 1.92345i −0.0899107 + 0.0653239i
\(868\) 0 0
\(869\) 8.13505 + 0.0714685i 0.275963 + 0.00242440i
\(870\) −0.403126 0.698234i −0.0136672 0.0236724i
\(871\) 0.883859 + 8.40936i 0.0299484 + 0.284940i
\(872\) 8.12792 + 1.72764i 0.275246 + 0.0585054i
\(873\) −34.8736 + 7.41262i −1.18029 + 0.250879i
\(874\) 7.86619 + 5.71512i 0.266078 + 0.193317i
\(875\) 0 0
\(876\) −1.95940 + 6.03041i −0.0662020 + 0.203749i
\(877\) −18.8253 + 20.9076i −0.635685 + 0.706000i −0.971796 0.235822i \(-0.924222\pi\)
0.336111 + 0.941822i \(0.390888\pi\)
\(878\) 0.347868 + 3.30975i 0.0117400 + 0.111699i
\(879\) 1.76882 3.06369i 0.0596610 0.103336i
\(880\) 29.9736 6.09638i 1.01041 0.205509i
\(881\) −36.7964 −1.23970 −0.619850 0.784720i \(-0.712807\pi\)
−0.619850 + 0.784720i \(0.712807\pi\)
\(882\) 0 0
\(883\) −0.705855 2.17240i −0.0237539 0.0731070i 0.938477 0.345342i \(-0.112237\pi\)
−0.962231 + 0.272235i \(0.912237\pi\)
\(884\) −14.0712 + 2.99094i −0.473267 + 0.100596i
\(885\) 1.43688 0.639739i 0.0483001 0.0215046i
\(886\) 0.504949 0.224818i 0.0169641 0.00755291i
\(887\) −41.3440 + 8.78794i −1.38820 + 0.295070i −0.840592 0.541668i \(-0.817793\pi\)
−0.547603 + 0.836738i \(0.684460\pi\)
\(888\) −0.241002 0.741728i −0.00808750 0.0248908i
\(889\) 0 0
\(890\) −0.979808 −0.0328432
\(891\) 25.8640 + 11.7887i 0.866477 + 0.394937i
\(892\) 17.0760 29.5765i 0.571747 0.990295i
\(893\) 4.28313 + 40.7512i 0.143329 + 1.36369i
\(894\) −0.0305786 + 0.0339609i −0.00102270 + 0.00113582i
\(895\) −3.34304 + 10.2888i −0.111745 + 0.343917i
\(896\) 0 0
\(897\) 6.44778 + 4.68459i 0.215285 + 0.156414i
\(898\) −1.05531 + 0.224312i −0.0352160 + 0.00748539i
\(899\) −49.0191 10.4193i −1.63488 0.347504i
\(900\) −0.738231 7.02380i −0.0246077 0.234127i
\(901\) 4.73066 + 8.19374i 0.157601 + 0.272973i
\(902\) 1.52234 + 4.82923i 0.0506884 + 0.160796i
\(903\) 0 0
\(904\) 2.38288 1.73127i 0.0792535 0.0575810i
\(905\) −18.0855 + 20.0859i −0.601181 + 0.667679i
\(906\) −0.600231 0.666624i −0.0199414 0.0221471i
\(907\) 36.1111 16.0777i 1.19905 0.533852i 0.292629 0.956226i \(-0.405470\pi\)
0.906422 + 0.422374i \(0.138803\pi\)
\(908\) −5.23066 + 49.7664i −0.173586 + 1.65156i
\(909\) 3.36915 10.3692i 0.111748 0.343924i
\(910\) 0 0
\(911\) 28.5013 20.7074i 0.944291 0.686067i −0.00515893 0.999987i \(-0.501642\pi\)
0.949450 + 0.313919i \(0.101642\pi\)
\(912\) −2.45717 4.25593i −0.0813649 0.140928i
\(913\) −7.27830 1.61401i −0.240876 0.0534158i
\(914\) −3.51617 + 6.09019i −0.116305 + 0.201446i
\(915\) −0.427299 0.190246i −0.0141261 0.00628934i
\(916\) 11.9462 + 36.7666i 0.394713 + 1.21480i
\(917\) 0 0
\(918\) 0.343123 + 0.249293i 0.0113247 + 0.00822791i
\(919\) 4.14042 39.3935i 0.136580 1.29947i −0.684649 0.728873i \(-0.740045\pi\)
0.821229 0.570598i \(-0.193289\pi\)
\(920\) 10.5650 + 11.7336i 0.348316 + 0.386844i
\(921\) −6.13821 1.30472i −0.202261 0.0429919i
\(922\) 6.14208 + 2.73463i 0.202279 + 0.0900602i
\(923\) 23.2141 0.764101
\(924\) 0 0
\(925\) −4.89131 −0.160825
\(926\) −5.26045 2.34210i −0.172869 0.0769663i
\(927\) −3.32511 0.706774i −0.109211 0.0232135i
\(928\) 11.4373 + 12.7024i 0.375448 + 0.416977i
\(929\) −0.273506 + 2.60224i −0.00897344 + 0.0853766i −0.998092 0.0617438i \(-0.980334\pi\)
0.989119 + 0.147120i \(0.0470005\pi\)
\(930\) −0.769488 0.559066i −0.0252325 0.0183325i
\(931\) 0 0
\(932\) 12.1736 + 37.4666i 0.398761 + 1.22726i
\(933\) 6.37043 + 2.83630i 0.208559 + 0.0928563i
\(934\) 0.360232 0.623939i 0.0117871 0.0204159i
\(935\) 7.88332 + 8.91152i 0.257812 + 0.291438i
\(936\) −6.77026 11.7264i −0.221293 0.383291i
\(937\) −43.5575 + 31.6464i −1.42296 + 1.03384i −0.431689 + 0.902022i \(0.642082\pi\)
−0.991274 + 0.131820i \(0.957918\pi\)
\(938\) 0 0
\(939\) −0.00231742 + 0.00713228i −7.56261e−5 + 0.000232753i
\(940\) −3.43255 + 32.6585i −0.111957 + 1.06520i
\(941\) 27.0844 12.0588i 0.882927 0.393105i 0.0853711 0.996349i \(-0.472792\pi\)
0.797556 + 0.603245i \(0.206126\pi\)
\(942\) 0.407088 + 0.452117i 0.0132636 + 0.0147308i
\(943\) 31.9862 35.5243i 1.04161 1.15683i
\(944\) −8.59940 + 6.24783i −0.279887 + 0.203349i
\(945\) 0 0
\(946\) −0.601908 0.00528791i −0.0195697 0.000171925i
\(947\) 7.89306 + 13.6712i 0.256490 + 0.444254i 0.965299 0.261146i \(-0.0841006\pi\)
−0.708809 + 0.705400i \(0.750767\pi\)
\(948\) −0.109494 1.04176i −0.00355620 0.0338349i
\(949\) 74.5779 + 15.8520i 2.42090 + 0.514578i
\(950\) 1.64842 0.350383i 0.0534820 0.0113679i
\(951\) 3.96919 + 2.88378i 0.128710 + 0.0935131i
\(952\) 0 0
\(953\) −10.8502 + 33.3934i −0.351472 + 1.08172i 0.606555 + 0.795041i \(0.292551\pi\)
−0.958027 + 0.286678i \(0.907449\pi\)
\(954\) −2.94087 + 3.26616i −0.0952141 + 0.105746i
\(955\) 3.04040 + 28.9275i 0.0983852 + 0.936072i
\(956\) 16.6629 28.8609i 0.538916 0.933429i
\(957\) 0.536503 4.70638i 0.0173427 0.152136i
\(958\) 0.731463 0.0236325
\(959\) 0 0
\(960\) −1.14874 3.53546i −0.0370754 0.114106i
\(961\) −27.5055 + 5.84647i −0.887274 + 0.188596i
\(962\) −4.22803 + 1.88244i −0.136317 + 0.0606924i
\(963\) −3.14750 + 1.40136i −0.101427 + 0.0451581i
\(964\) −46.0413 + 9.78637i −1.48289 + 0.315198i
\(965\) −17.3090 53.2716i −0.557196 1.71487i
\(966\) 0 0
\(967\) −49.2820 −1.58480 −0.792401 0.610001i \(-0.791169\pi\)
−0.792401 + 0.610001i \(0.791169\pi\)
\(968\) −8.90487 4.15367i −0.286213 0.133504i
\(969\) 0.955798 1.65549i 0.0307046 0.0531820i
\(970\) −0.712672 6.78062i −0.0228825 0.217713i
\(971\) 24.9870 27.7508i 0.801870 0.890567i −0.194033 0.980995i \(-0.562157\pi\)
0.995903 + 0.0904283i \(0.0288236\pi\)
\(972\) 3.48730 10.7328i 0.111855 0.344255i
\(973\) 0 0
\(974\) −1.80647 1.31248i −0.0578831 0.0420545i
\(975\) 1.35119 0.287203i 0.0432726 0.00919787i
\(976\) 3.09192 + 0.657207i 0.0989698 + 0.0210367i
\(977\) −4.18620 39.8291i −0.133929 1.27425i −0.830606 0.556861i \(-0.812006\pi\)
0.696677 0.717385i \(-0.254661\pi\)
\(978\) 0.200735 + 0.347684i 0.00641881 + 0.0111177i
\(979\) −4.62723 3.42439i −0.147887 0.109444i
\(980\) 0 0
\(981\) 22.2159 16.1408i 0.709299 0.515336i
\(982\) 0.639669 0.710424i 0.0204127 0.0226705i
\(983\) −34.8225 38.6743i −1.11067 1.23352i −0.969907 0.243476i \(-0.921712\pi\)
−0.140759 0.990044i \(-0.544954\pi\)
\(984\) 1.20685 0.537324i 0.0384730 0.0171293i
\(985\) 6.28713 59.8180i 0.200325 1.90596i
\(986\) −0.654946 + 2.01572i −0.0208577 + 0.0641935i
\(987\) 0 0
\(988\) −49.1304 + 35.6953i −1.56305 + 1.13562i
\(989\) 2.84131 + 4.92129i 0.0903484 + 0.156488i
\(990\) −2.80542 + 4.76202i −0.0891621 + 0.151347i
\(991\) −22.7414 + 39.3892i −0.722404 + 1.25124i 0.237630 + 0.971356i \(0.423630\pi\)
−0.960034 + 0.279885i \(0.909704\pi\)
\(992\) 18.4212 + 8.20162i 0.584872 + 0.260402i
\(993\) −0.728455 2.24195i −0.0231168 0.0711463i
\(994\) 0 0
\(995\) 37.7953 + 27.4599i 1.19819 + 0.870536i
\(996\) −0.100338 + 0.954655i −0.00317934 + 0.0302494i
\(997\) 18.7085 + 20.7779i 0.592503 + 0.658041i 0.962592 0.270955i \(-0.0873395\pi\)
−0.370089 + 0.928996i \(0.620673\pi\)
\(998\) 4.51282 + 0.959230i 0.142851 + 0.0303639i
\(999\) −4.74731 2.11364i −0.150198 0.0668725i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.q.g.410.2 32
7.2 even 3 inner 539.2.q.g.520.3 32
7.3 odd 6 539.2.f.e.344.3 16
7.4 even 3 77.2.f.b.36.3 yes 16
7.5 odd 6 539.2.q.f.520.3 32
7.6 odd 2 539.2.q.f.410.2 32
11.4 even 5 inner 539.2.q.g.312.3 32
21.11 odd 6 693.2.m.i.190.2 16
77.4 even 15 77.2.f.b.15.3 16
77.18 odd 30 847.2.f.x.323.2 16
77.24 even 30 5929.2.a.bs.1.5 8
77.25 even 15 847.2.f.w.148.2 16
77.26 odd 30 539.2.q.f.422.2 32
77.31 odd 30 5929.2.a.bt.1.4 8
77.32 odd 6 847.2.f.x.729.2 16
77.37 even 15 inner 539.2.q.g.422.2 32
77.39 odd 30 847.2.f.v.372.3 16
77.46 odd 30 847.2.a.o.1.5 8
77.48 odd 10 539.2.q.f.312.3 32
77.53 even 15 847.2.a.p.1.4 8
77.59 odd 30 539.2.f.e.246.3 16
77.60 even 15 847.2.f.w.372.2 16
77.74 odd 30 847.2.f.v.148.3 16
231.53 odd 30 7623.2.a.ct.1.5 8
231.158 odd 30 693.2.m.i.631.2 16
231.200 even 30 7623.2.a.cw.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.f.b.15.3 16 77.4 even 15
77.2.f.b.36.3 yes 16 7.4 even 3
539.2.f.e.246.3 16 77.59 odd 30
539.2.f.e.344.3 16 7.3 odd 6
539.2.q.f.312.3 32 77.48 odd 10
539.2.q.f.410.2 32 7.6 odd 2
539.2.q.f.422.2 32 77.26 odd 30
539.2.q.f.520.3 32 7.5 odd 6
539.2.q.g.312.3 32 11.4 even 5 inner
539.2.q.g.410.2 32 1.1 even 1 trivial
539.2.q.g.422.2 32 77.37 even 15 inner
539.2.q.g.520.3 32 7.2 even 3 inner
693.2.m.i.190.2 16 21.11 odd 6
693.2.m.i.631.2 16 231.158 odd 30
847.2.a.o.1.5 8 77.46 odd 30
847.2.a.p.1.4 8 77.53 even 15
847.2.f.v.148.3 16 77.74 odd 30
847.2.f.v.372.3 16 77.39 odd 30
847.2.f.w.148.2 16 77.25 even 15
847.2.f.w.372.2 16 77.60 even 15
847.2.f.x.323.2 16 77.18 odd 30
847.2.f.x.729.2 16 77.32 odd 6
5929.2.a.bs.1.5 8 77.24 even 30
5929.2.a.bt.1.4 8 77.31 odd 30
7623.2.a.ct.1.5 8 231.53 odd 30
7623.2.a.cw.1.4 8 231.200 even 30