Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [546,2,Mod(17,546)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(546, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("546.17");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 546.bi (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.35983195036\) |
Analytic rank: | \(0\) |
Dimension: | \(34\) |
Relative dimension: | \(17\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | 1.00000 | −1.72563 | − | 0.148954i | 1.00000 | 3.72094 | − | 2.14828i | −1.72563 | − | 0.148954i | 1.54641 | + | 2.14677i | 1.00000 | 2.95563 | + | 0.514080i | 3.72094 | − | 2.14828i | ||||||
17.2 | 1.00000 | −1.66986 | − | 0.459961i | 1.00000 | 0.567570 | − | 0.327687i | −1.66986 | − | 0.459961i | −2.37289 | + | 1.17020i | 1.00000 | 2.57687 | + | 1.53614i | 0.567570 | − | 0.327687i | ||||||
17.3 | 1.00000 | −1.63421 | + | 0.573890i | 1.00000 | −1.62172 | + | 0.936303i | −1.63421 | + | 0.573890i | 2.04281 | − | 1.68135i | 1.00000 | 2.34130 | − | 1.87572i | −1.62172 | + | 0.936303i | ||||||
17.4 | 1.00000 | −1.23948 | + | 1.20983i | 1.00000 | 1.58996 | − | 0.917964i | −1.23948 | + | 1.20983i | −0.364289 | − | 2.62055i | 1.00000 | 0.0726040 | − | 2.99912i | 1.58996 | − | 0.917964i | ||||||
17.5 | 1.00000 | −0.942473 | − | 1.45318i | 1.00000 | 3.27919 | − | 1.89324i | −0.942473 | − | 1.45318i | 0.475130 | − | 2.60274i | 1.00000 | −1.22349 | + | 2.73917i | 3.27919 | − | 1.89324i | ||||||
17.6 | 1.00000 | −0.889878 | − | 1.48597i | 1.00000 | −2.84717 | + | 1.64381i | −0.889878 | − | 1.48597i | 1.87202 | + | 1.86964i | 1.00000 | −1.41623 | + | 2.64467i | −2.84717 | + | 1.64381i | ||||||
17.7 | 1.00000 | 0.166804 | + | 1.72400i | 1.00000 | 1.41302 | − | 0.815806i | 0.166804 | + | 1.72400i | 2.62951 | + | 0.292738i | 1.00000 | −2.94435 | + | 0.575141i | 1.41302 | − | 0.815806i | ||||||
17.8 | 1.00000 | 0.243110 | + | 1.71490i | 1.00000 | −2.60318 | + | 1.50295i | 0.243110 | + | 1.71490i | −2.60776 | − | 0.446759i | 1.00000 | −2.88179 | + | 0.833822i | −2.60318 | + | 1.50295i | ||||||
17.9 | 1.00000 | 0.403394 | − | 1.68442i | 1.00000 | −1.80315 | + | 1.04105i | 0.403394 | − | 1.68442i | −0.800654 | − | 2.52170i | 1.00000 | −2.67455 | − | 1.35897i | −1.80315 | + | 1.04105i | ||||||
17.10 | 1.00000 | 0.517534 | − | 1.65292i | 1.00000 | 0.870413 | − | 0.502533i | 0.517534 | − | 1.65292i | 2.64571 | − | 0.0151415i | 1.00000 | −2.46432 | − | 1.71089i | 0.870413 | − | 0.502533i | ||||||
17.11 | 1.00000 | 0.942850 | − | 1.45294i | 1.00000 | 1.98183 | − | 1.14421i | 0.942850 | − | 1.45294i | −0.877809 | + | 2.49589i | 1.00000 | −1.22207 | − | 2.73981i | 1.98183 | − | 1.14421i | ||||||
17.12 | 1.00000 | 1.06823 | + | 1.36341i | 1.00000 | 2.88000 | − | 1.66277i | 1.06823 | + | 1.36341i | −2.37914 | − | 1.15746i | 1.00000 | −0.717779 | + | 2.91287i | 2.88000 | − | 1.66277i | ||||||
17.13 | 1.00000 | 1.13542 | + | 1.30799i | 1.00000 | −1.26448 | + | 0.730045i | 1.13542 | + | 1.30799i | −1.08820 | + | 2.41160i | 1.00000 | −0.421657 | + | 2.97022i | −1.26448 | + | 0.730045i | ||||||
17.14 | 1.00000 | 1.48743 | + | 0.887438i | 1.00000 | 0.511132 | − | 0.295102i | 1.48743 | + | 0.887438i | 2.62812 | − | 0.304939i | 1.00000 | 1.42491 | + | 2.64001i | 0.511132 | − | 0.295102i | ||||||
17.15 | 1.00000 | 1.67564 | − | 0.438430i | 1.00000 | 1.57344 | − | 0.908426i | 1.67564 | − | 0.438430i | −2.47008 | − | 0.947995i | 1.00000 | 2.61556 | − | 1.46930i | 1.57344 | − | 0.908426i | ||||||
17.16 | 1.00000 | 1.73046 | − | 0.0741172i | 1.00000 | −1.09866 | + | 0.634311i | 1.73046 | − | 0.0741172i | 0.151485 | + | 2.64141i | 1.00000 | 2.98901 | − | 0.256514i | −1.09866 | + | 0.634311i | ||||||
17.17 | 1.00000 | 1.73066 | + | 0.0694407i | 1.00000 | −2.64914 | + | 1.52948i | 1.73066 | + | 0.0694407i | 0.969634 | − | 2.46167i | 1.00000 | 2.99036 | + | 0.240356i | −2.64914 | + | 1.52948i | ||||||
257.1 | 1.00000 | −1.72563 | + | 0.148954i | 1.00000 | 3.72094 | + | 2.14828i | −1.72563 | + | 0.148954i | 1.54641 | − | 2.14677i | 1.00000 | 2.95563 | − | 0.514080i | 3.72094 | + | 2.14828i | ||||||
257.2 | 1.00000 | −1.66986 | + | 0.459961i | 1.00000 | 0.567570 | + | 0.327687i | −1.66986 | + | 0.459961i | −2.37289 | − | 1.17020i | 1.00000 | 2.57687 | − | 1.53614i | 0.567570 | + | 0.327687i | ||||||
257.3 | 1.00000 | −1.63421 | − | 0.573890i | 1.00000 | −1.62172 | − | 0.936303i | −1.63421 | − | 0.573890i | 2.04281 | + | 1.68135i | 1.00000 | 2.34130 | + | 1.87572i | −1.62172 | − | 0.936303i | ||||||
See all 34 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
273.br | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 546.2.bi.f | yes | 34 |
3.b | odd | 2 | 1 | 546.2.bi.e | ✓ | 34 | |
7.d | odd | 6 | 1 | 546.2.bn.e | yes | 34 | |
13.e | even | 6 | 1 | 546.2.bn.f | yes | 34 | |
21.g | even | 6 | 1 | 546.2.bn.f | yes | 34 | |
39.h | odd | 6 | 1 | 546.2.bn.e | yes | 34 | |
91.l | odd | 6 | 1 | 546.2.bi.e | ✓ | 34 | |
273.br | even | 6 | 1 | inner | 546.2.bi.f | yes | 34 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
546.2.bi.e | ✓ | 34 | 3.b | odd | 2 | 1 | |
546.2.bi.e | ✓ | 34 | 91.l | odd | 6 | 1 | |
546.2.bi.f | yes | 34 | 1.a | even | 1 | 1 | trivial |
546.2.bi.f | yes | 34 | 273.br | even | 6 | 1 | inner |
546.2.bn.e | yes | 34 | 7.d | odd | 6 | 1 | |
546.2.bn.e | yes | 34 | 39.h | odd | 6 | 1 | |
546.2.bn.f | yes | 34 | 13.e | even | 6 | 1 | |
546.2.bn.f | yes | 34 | 21.g | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{34} - 9 T_{5}^{33} - 10 T_{5}^{32} + 333 T_{5}^{31} - 234 T_{5}^{30} - 7575 T_{5}^{29} + \cdots + 3270763083 \) acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\).