Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [56,4,Mod(37,56)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(56, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("56.37");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 56 = 2^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 56.p (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.30410696032\) |
Analytic rank: | \(0\) |
Dimension: | \(44\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −2.82711 | + | 0.0861459i | −0.982205 | + | 0.567076i | 7.98516 | − | 0.487088i | −5.55772 | − | 3.20875i | 2.72796 | − | 1.68780i | 10.9028 | + | 14.9709i | −22.5330 | + | 2.06494i | −12.8568 | + | 22.2687i | 15.9887 | + | 8.59273i |
37.2 | −2.72280 | + | 0.765755i | 5.66005 | − | 3.26783i | 6.82724 | − | 4.16999i | −3.76893 | − | 2.17599i | −12.9088 | + | 13.2318i | −3.65934 | − | 18.1551i | −15.3960 | + | 16.5820i | 7.85742 | − | 13.6095i | 11.9283 | + | 3.03871i |
37.3 | −2.70712 | − | 0.819467i | −8.54801 | + | 4.93520i | 6.65695 | + | 4.43678i | 3.19579 | + | 1.84509i | 27.1847 | − | 6.35534i | −18.3785 | − | 2.28733i | −14.3853 | − | 17.4660i | 35.2124 | − | 60.9896i | −7.13937 | − | 7.61370i |
37.4 | −2.39920 | − | 1.49795i | 6.82792 | − | 3.94210i | 3.51228 | + | 7.18776i | 13.5811 | + | 7.84104i | −22.2866 | − | 0.770025i | −1.13912 | + | 18.4852i | 2.34028 | − | 22.5061i | 17.5803 | − | 30.4500i | −20.8382 | − | 39.1560i |
37.5 | −2.15037 | − | 1.83737i | 1.18522 | − | 0.684286i | 1.24817 | + | 7.90203i | −10.2713 | − | 5.93013i | −3.80594 | − | 0.706211i | −12.2158 | − | 13.9203i | 11.8349 | − | 19.2856i | −12.5635 | + | 21.7606i | 11.1912 | + | 31.6241i |
37.6 | −2.11891 | + | 1.87356i | −1.06569 | + | 0.615275i | 0.979578 | − | 7.93980i | 15.9258 | + | 9.19477i | 1.10535 | − | 3.30034i | −17.4761 | + | 6.13062i | 12.8000 | + | 18.6590i | −12.7429 | + | 22.0713i | −50.9723 | + | 10.3550i |
37.7 | −1.96852 | + | 2.03099i | −5.91297 | + | 3.41385i | −0.249876 | − | 7.99610i | −6.49634 | − | 3.75066i | 4.70627 | − | 18.7294i | 17.5560 | − | 5.89813i | 16.7319 | + | 15.2330i | 9.80880 | − | 16.9893i | 20.4057 | − | 5.81078i |
37.8 | −1.48377 | − | 2.40799i | −2.65541 | + | 1.53310i | −3.59684 | + | 7.14582i | 7.57927 | + | 4.37589i | 7.63171 | + | 4.11942i | 17.7736 | − | 5.20552i | 22.5440 | − | 1.94162i | −8.79921 | + | 15.2407i | −0.708800 | − | 24.7436i |
37.9 | −0.774634 | + | 2.72028i | 5.91297 | − | 3.41385i | −6.79988 | − | 4.21445i | 6.49634 | + | 3.75066i | 4.70627 | + | 18.7294i | 17.5560 | − | 5.89813i | 16.7319 | − | 15.2330i | 9.80880 | − | 16.9893i | −15.2351 | + | 14.7665i |
37.10 | −0.563091 | + | 2.77181i | 1.06569 | − | 0.615275i | −7.36586 | − | 3.12156i | −15.9258 | − | 9.19477i | 1.10535 | + | 3.30034i | −17.4761 | + | 6.13062i | 12.8000 | − | 18.6590i | −12.7429 | + | 22.0713i | 34.4538 | − | 38.9658i |
37.11 | −0.181977 | − | 2.82257i | 7.07996 | − | 4.08762i | −7.93377 | + | 1.02729i | −17.0228 | − | 9.82813i | −12.8260 | − | 19.2398i | 15.6931 | + | 9.83491i | 4.34335 | + | 22.2066i | 19.9172 | − | 34.4977i | −24.6428 | + | 49.8365i |
37.12 | 0.0844787 | − | 2.82717i | −3.95946 | + | 2.28599i | −7.98573 | − | 0.477670i | −0.420105 | − | 0.242548i | 6.12839 | + | 11.3872i | −11.5119 | + | 14.5078i | −2.02508 | + | 22.5366i | −3.04846 | + | 5.28008i | −0.721213 | + | 1.16722i |
37.13 | 0.698235 | + | 2.74089i | −5.66005 | + | 3.26783i | −7.02494 | + | 3.82757i | 3.76893 | + | 2.17599i | −12.9088 | − | 13.2318i | −3.65934 | − | 18.1551i | −15.3960 | − | 16.5820i | 7.85742 | − | 13.6095i | −3.33255 | + | 11.8496i |
37.14 | 0.941296 | − | 2.66720i | 4.43871 | − | 2.56269i | −6.22792 | − | 5.02125i | 13.1631 | + | 7.59971i | −2.65707 | − | 14.2512i | 1.45519 | − | 18.4630i | −19.2550 | + | 11.8846i | −0.365251 | + | 0.632633i | 32.6603 | − | 27.9550i |
37.15 | 1.33895 | + | 2.49143i | 0.982205 | − | 0.567076i | −4.41441 | + | 6.67181i | 5.55772 | + | 3.20875i | 2.72796 | + | 1.68780i | 10.9028 | + | 14.9709i | −22.5330 | − | 2.06494i | −12.8568 | + | 22.2687i | −0.552841 | + | 18.1430i |
37.16 | 1.83922 | − | 2.14879i | −4.43871 | + | 2.56269i | −1.23457 | − | 7.90417i | −13.1631 | − | 7.59971i | −2.65707 | + | 14.2512i | 1.45519 | − | 18.4630i | −19.2550 | − | 11.8846i | −0.365251 | + | 0.632633i | −40.5399 | + | 14.3072i |
37.17 | 2.06324 | + | 1.93470i | 8.54801 | − | 4.93520i | 0.513891 | + | 7.98348i | −3.19579 | − | 1.84509i | 27.1847 | + | 6.35534i | −18.3785 | − | 2.28733i | −14.3853 | + | 17.4660i | 35.2124 | − | 60.9896i | −3.02397 | − | 9.98973i |
37.18 | 2.40616 | − | 1.48674i | 3.95946 | − | 2.28599i | 3.57919 | − | 7.15468i | 0.420105 | + | 0.242548i | 6.12839 | − | 11.3872i | −11.5119 | + | 14.5078i | −2.02508 | − | 22.5366i | −3.04846 | + | 5.28008i | 1.37145 | − | 0.0409803i |
37.19 | 2.49686 | + | 1.32879i | −6.82792 | + | 3.94210i | 4.46864 | + | 6.63560i | −13.5811 | − | 7.84104i | −22.2866 | + | 0.770025i | −1.13912 | + | 18.4852i | 2.34028 | + | 22.5061i | 17.5803 | − | 30.4500i | −23.4910 | − | 37.6244i |
37.20 | 2.53540 | − | 1.25369i | −7.07996 | + | 4.08762i | 4.85654 | − | 6.35720i | 17.0228 | + | 9.82813i | −12.8260 | + | 19.2398i | 15.6931 | + | 9.83491i | 4.34335 | − | 22.2066i | 19.9172 | − | 34.4977i | 55.4811 | + | 3.57700i |
See all 44 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
8.b | even | 2 | 1 | inner |
56.p | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 56.4.p.a | ✓ | 44 |
4.b | odd | 2 | 1 | 224.4.t.a | 44 | ||
7.c | even | 3 | 1 | inner | 56.4.p.a | ✓ | 44 |
8.b | even | 2 | 1 | inner | 56.4.p.a | ✓ | 44 |
8.d | odd | 2 | 1 | 224.4.t.a | 44 | ||
28.g | odd | 6 | 1 | 224.4.t.a | 44 | ||
56.k | odd | 6 | 1 | 224.4.t.a | 44 | ||
56.p | even | 6 | 1 | inner | 56.4.p.a | ✓ | 44 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
56.4.p.a | ✓ | 44 | 1.a | even | 1 | 1 | trivial |
56.4.p.a | ✓ | 44 | 7.c | even | 3 | 1 | inner |
56.4.p.a | ✓ | 44 | 8.b | even | 2 | 1 | inner |
56.4.p.a | ✓ | 44 | 56.p | even | 6 | 1 | inner |
224.4.t.a | 44 | 4.b | odd | 2 | 1 | ||
224.4.t.a | 44 | 8.d | odd | 2 | 1 | ||
224.4.t.a | 44 | 28.g | odd | 6 | 1 | ||
224.4.t.a | 44 | 56.k | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(56, [\chi])\).