Properties

Label 560.4.q.i.401.1
Level $560$
Weight $4$
Character 560.401
Analytic conductor $33.041$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,4,Mod(81,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.81");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 560.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0410696032\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 401.1
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 560.401
Dual form 560.4.q.i.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.62132 - 4.54026i) q^{3} +(-2.50000 + 4.33013i) q^{5} +(5.10660 + 17.8023i) q^{7} +(-0.242641 + 0.420266i) q^{9} +(14.0711 + 24.3718i) q^{11} -3.85786 q^{13} +26.2132 q^{15} +(-19.1838 - 33.2273i) q^{17} +(58.3848 - 101.125i) q^{19} +(67.4411 - 69.8509i) q^{21} +(-88.2315 + 152.821i) q^{23} +(-12.5000 - 21.6506i) q^{25} -139.007 q^{27} -209.853 q^{29} +(-103.711 - 179.632i) q^{31} +(73.7696 - 127.773i) q^{33} +(-89.8528 - 22.3936i) q^{35} +(7.83348 - 13.5680i) q^{37} +(10.1127 + 17.5157i) q^{39} -10.5736 q^{41} +325.929 q^{43} +(-1.21320 - 2.10133i) q^{45} +(-94.2548 + 163.254i) q^{47} +(-290.845 + 181.819i) q^{49} +(-100.574 + 174.199i) q^{51} +(137.591 + 238.314i) q^{53} -140.711 q^{55} -612.181 q^{57} +(21.9096 + 37.9485i) q^{59} +(-427.551 + 740.540i) q^{61} +(-8.72078 - 2.17344i) q^{63} +(9.64466 - 16.7050i) q^{65} +(-272.710 - 472.347i) q^{67} +925.132 q^{69} -1026.97 q^{71} +(126.439 + 218.998i) q^{73} +(-65.5330 + 113.507i) q^{75} +(-362.019 + 374.955i) q^{77} +(-461.321 + 799.031i) q^{79} +(370.934 + 642.476i) q^{81} +960.071 q^{83} +191.838 q^{85} +(550.091 + 952.786i) q^{87} +(66.6026 - 115.359i) q^{89} +(-19.7006 - 68.6789i) q^{91} +(-543.718 + 941.747i) q^{93} +(291.924 + 505.627i) q^{95} -1021.11 q^{97} -13.6569 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 10 q^{5} - 22 q^{7} + 16 q^{9} + 28 q^{11} - 72 q^{13} + 20 q^{15} + 76 q^{17} + 160 q^{19} + 134 q^{21} - 22 q^{23} - 50 q^{25} + 4 q^{27} - 500 q^{29} - 132 q^{31} + 148 q^{33} - 20 q^{35}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.62132 4.54026i −0.504473 0.873773i −0.999987 0.00517309i \(-0.998353\pi\)
0.495513 0.868600i \(-0.334980\pi\)
\(4\) 0 0
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 5.10660 + 17.8023i 0.275731 + 0.961235i
\(8\) 0 0
\(9\) −0.242641 + 0.420266i −0.00898669 + 0.0155654i
\(10\) 0 0
\(11\) 14.0711 + 24.3718i 0.385690 + 0.668034i 0.991865 0.127297i \(-0.0406302\pi\)
−0.606175 + 0.795331i \(0.707297\pi\)
\(12\) 0 0
\(13\) −3.85786 −0.0823061 −0.0411530 0.999153i \(-0.513103\pi\)
−0.0411530 + 0.999153i \(0.513103\pi\)
\(14\) 0 0
\(15\) 26.2132 0.451215
\(16\) 0 0
\(17\) −19.1838 33.2273i −0.273691 0.474047i 0.696113 0.717932i \(-0.254911\pi\)
−0.969804 + 0.243885i \(0.921578\pi\)
\(18\) 0 0
\(19\) 58.3848 101.125i 0.704968 1.22104i −0.261735 0.965140i \(-0.584295\pi\)
0.966703 0.255900i \(-0.0823719\pi\)
\(20\) 0 0
\(21\) 67.4411 69.8509i 0.700803 0.725843i
\(22\) 0 0
\(23\) −88.2315 + 152.821i −0.799893 + 1.38546i 0.119792 + 0.992799i \(0.461777\pi\)
−0.919685 + 0.392656i \(0.871556\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 0 0
\(27\) −139.007 −0.990812
\(28\) 0 0
\(29\) −209.853 −1.34375 −0.671874 0.740666i \(-0.734510\pi\)
−0.671874 + 0.740666i \(0.734510\pi\)
\(30\) 0 0
\(31\) −103.711 179.632i −0.600871 1.04074i −0.992690 0.120696i \(-0.961487\pi\)
0.391819 0.920042i \(-0.371846\pi\)
\(32\) 0 0
\(33\) 73.7696 127.773i 0.389140 0.674011i
\(34\) 0 0
\(35\) −89.8528 22.3936i −0.433940 0.108149i
\(36\) 0 0
\(37\) 7.83348 13.5680i 0.0348058 0.0602855i −0.848098 0.529840i \(-0.822252\pi\)
0.882904 + 0.469554i \(0.155585\pi\)
\(38\) 0 0
\(39\) 10.1127 + 17.5157i 0.0415212 + 0.0719169i
\(40\) 0 0
\(41\) −10.5736 −0.0402760 −0.0201380 0.999797i \(-0.506411\pi\)
−0.0201380 + 0.999797i \(0.506411\pi\)
\(42\) 0 0
\(43\) 325.929 1.15590 0.577950 0.816072i \(-0.303853\pi\)
0.577950 + 0.816072i \(0.303853\pi\)
\(44\) 0 0
\(45\) −1.21320 2.10133i −0.00401897 0.00696106i
\(46\) 0 0
\(47\) −94.2548 + 163.254i −0.292521 + 0.506661i −0.974405 0.224799i \(-0.927827\pi\)
0.681884 + 0.731460i \(0.261161\pi\)
\(48\) 0 0
\(49\) −290.845 + 181.819i −0.847945 + 0.530084i
\(50\) 0 0
\(51\) −100.574 + 174.199i −0.276140 + 0.478288i
\(52\) 0 0
\(53\) 137.591 + 238.314i 0.356595 + 0.617641i 0.987390 0.158309i \(-0.0506041\pi\)
−0.630794 + 0.775950i \(0.717271\pi\)
\(54\) 0 0
\(55\) −140.711 −0.344971
\(56\) 0 0
\(57\) −612.181 −1.42255
\(58\) 0 0
\(59\) 21.9096 + 37.9485i 0.0483455 + 0.0837369i 0.889186 0.457547i \(-0.151272\pi\)
−0.840840 + 0.541284i \(0.817938\pi\)
\(60\) 0 0
\(61\) −427.551 + 740.540i −0.897414 + 1.55437i −0.0666267 + 0.997778i \(0.521224\pi\)
−0.830788 + 0.556589i \(0.812110\pi\)
\(62\) 0 0
\(63\) −8.72078 2.17344i −0.0174399 0.00434646i
\(64\) 0 0
\(65\) 9.64466 16.7050i 0.0184042 0.0318770i
\(66\) 0 0
\(67\) −272.710 472.347i −0.497265 0.861289i 0.502730 0.864444i \(-0.332329\pi\)
−0.999995 + 0.00315473i \(0.998996\pi\)
\(68\) 0 0
\(69\) 925.132 1.61410
\(70\) 0 0
\(71\) −1026.97 −1.71661 −0.858306 0.513138i \(-0.828483\pi\)
−0.858306 + 0.513138i \(0.828483\pi\)
\(72\) 0 0
\(73\) 126.439 + 218.998i 0.202719 + 0.351120i 0.949404 0.314058i \(-0.101689\pi\)
−0.746684 + 0.665179i \(0.768355\pi\)
\(74\) 0 0
\(75\) −65.5330 + 113.507i −0.100895 + 0.174755i
\(76\) 0 0
\(77\) −362.019 + 374.955i −0.535791 + 0.554936i
\(78\) 0 0
\(79\) −461.321 + 799.031i −0.656996 + 1.13795i 0.324394 + 0.945922i \(0.394840\pi\)
−0.981390 + 0.192028i \(0.938494\pi\)
\(80\) 0 0
\(81\) 370.934 + 642.476i 0.508825 + 0.881311i
\(82\) 0 0
\(83\) 960.071 1.26966 0.634828 0.772653i \(-0.281071\pi\)
0.634828 + 0.772653i \(0.281071\pi\)
\(84\) 0 0
\(85\) 191.838 0.244797
\(86\) 0 0
\(87\) 550.091 + 952.786i 0.677885 + 1.17413i
\(88\) 0 0
\(89\) 66.6026 115.359i 0.0793243 0.137394i −0.823634 0.567121i \(-0.808057\pi\)
0.902959 + 0.429728i \(0.141390\pi\)
\(90\) 0 0
\(91\) −19.7006 68.6789i −0.0226943 0.0791155i
\(92\) 0 0
\(93\) −543.718 + 941.747i −0.606246 + 1.05005i
\(94\) 0 0
\(95\) 291.924 + 505.627i 0.315271 + 0.546066i
\(96\) 0 0
\(97\) −1021.11 −1.06884 −0.534421 0.845218i \(-0.679470\pi\)
−0.534421 + 0.845218i \(0.679470\pi\)
\(98\) 0 0
\(99\) −13.6569 −0.0138643
\(100\) 0 0
\(101\) −481.779 834.466i −0.474642 0.822104i 0.524936 0.851141i \(-0.324089\pi\)
−0.999578 + 0.0290376i \(0.990756\pi\)
\(102\) 0 0
\(103\) −899.150 + 1557.37i −0.860155 + 1.48983i 0.0116248 + 0.999932i \(0.496300\pi\)
−0.871779 + 0.489899i \(0.837034\pi\)
\(104\) 0 0
\(105\) 133.860 + 466.656i 0.124414 + 0.433723i
\(106\) 0 0
\(107\) 139.501 241.624i 0.126038 0.218305i −0.796100 0.605165i \(-0.793107\pi\)
0.922138 + 0.386860i \(0.126440\pi\)
\(108\) 0 0
\(109\) −390.537 676.429i −0.343180 0.594405i 0.641841 0.766837i \(-0.278171\pi\)
−0.985021 + 0.172432i \(0.944837\pi\)
\(110\) 0 0
\(111\) −82.1362 −0.0702345
\(112\) 0 0
\(113\) −587.239 −0.488874 −0.244437 0.969665i \(-0.578603\pi\)
−0.244437 + 0.969665i \(0.578603\pi\)
\(114\) 0 0
\(115\) −441.157 764.107i −0.357723 0.619594i
\(116\) 0 0
\(117\) 0.936075 1.62133i 0.000739659 0.00128113i
\(118\) 0 0
\(119\) 493.558 511.194i 0.380205 0.393791i
\(120\) 0 0
\(121\) 269.510 466.805i 0.202487 0.350718i
\(122\) 0 0
\(123\) 27.7168 + 48.0069i 0.0203182 + 0.0351921i
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1559.62 −1.08972 −0.544860 0.838527i \(-0.683417\pi\)
−0.544860 + 0.838527i \(0.683417\pi\)
\(128\) 0 0
\(129\) −854.364 1479.80i −0.583121 1.00999i
\(130\) 0 0
\(131\) −826.823 + 1432.10i −0.551449 + 0.955138i 0.446721 + 0.894673i \(0.352592\pi\)
−0.998170 + 0.0604645i \(0.980742\pi\)
\(132\) 0 0
\(133\) 2098.41 + 522.977i 1.36809 + 0.340962i
\(134\) 0 0
\(135\) 347.518 601.919i 0.221552 0.383740i
\(136\) 0 0
\(137\) 148.329 + 256.913i 0.0925007 + 0.160216i 0.908563 0.417748i \(-0.137181\pi\)
−0.816062 + 0.577964i \(0.803847\pi\)
\(138\) 0 0
\(139\) −237.868 −0.145149 −0.0725745 0.997363i \(-0.523121\pi\)
−0.0725745 + 0.997363i \(0.523121\pi\)
\(140\) 0 0
\(141\) 988.288 0.590276
\(142\) 0 0
\(143\) −54.2843 94.0231i −0.0317446 0.0549833i
\(144\) 0 0
\(145\) 524.632 908.689i 0.300471 0.520431i
\(146\) 0 0
\(147\) 1587.90 + 843.908i 0.890939 + 0.473499i
\(148\) 0 0
\(149\) −1368.56 + 2370.41i −0.752459 + 1.30330i 0.194169 + 0.980968i \(0.437799\pi\)
−0.946628 + 0.322329i \(0.895534\pi\)
\(150\) 0 0
\(151\) −1781.82 3086.21i −0.960283 1.66326i −0.721788 0.692114i \(-0.756679\pi\)
−0.238495 0.971144i \(-0.576654\pi\)
\(152\) 0 0
\(153\) 18.6190 0.00983831
\(154\) 0 0
\(155\) 1037.11 0.537435
\(156\) 0 0
\(157\) −624.539 1081.73i −0.317475 0.549884i 0.662485 0.749075i \(-0.269502\pi\)
−0.979961 + 0.199191i \(0.936168\pi\)
\(158\) 0 0
\(159\) 721.339 1249.40i 0.359786 0.623167i
\(160\) 0 0
\(161\) −3171.14 790.327i −1.55230 0.386873i
\(162\) 0 0
\(163\) −982.318 + 1701.42i −0.472031 + 0.817582i −0.999488 0.0320000i \(-0.989812\pi\)
0.527457 + 0.849582i \(0.323146\pi\)
\(164\) 0 0
\(165\) 368.848 + 638.863i 0.174029 + 0.301427i
\(166\) 0 0
\(167\) 939.402 0.435288 0.217644 0.976028i \(-0.430163\pi\)
0.217644 + 0.976028i \(0.430163\pi\)
\(168\) 0 0
\(169\) −2182.12 −0.993226
\(170\) 0 0
\(171\) 28.3330 + 49.0743i 0.0126707 + 0.0219462i
\(172\) 0 0
\(173\) 1351.22 2340.38i 0.593821 1.02853i −0.399891 0.916563i \(-0.630952\pi\)
0.993712 0.111966i \(-0.0357147\pi\)
\(174\) 0 0
\(175\) 321.599 333.090i 0.138918 0.143881i
\(176\) 0 0
\(177\) 114.864 198.951i 0.0487781 0.0844861i
\(178\) 0 0
\(179\) −717.024 1241.92i −0.299402 0.518579i 0.676597 0.736353i \(-0.263454\pi\)
−0.975999 + 0.217774i \(0.930120\pi\)
\(180\) 0 0
\(181\) 2711.21 1.11339 0.556693 0.830718i \(-0.312070\pi\)
0.556693 + 0.830718i \(0.312070\pi\)
\(182\) 0 0
\(183\) 4482.99 1.81089
\(184\) 0 0
\(185\) 39.1674 + 67.8399i 0.0155656 + 0.0269605i
\(186\) 0 0
\(187\) 539.872 935.086i 0.211120 0.365670i
\(188\) 0 0
\(189\) −709.854 2474.65i −0.273197 0.952404i
\(190\) 0 0
\(191\) −1747.30 + 3026.41i −0.661938 + 1.14651i 0.318168 + 0.948034i \(0.396933\pi\)
−0.980106 + 0.198476i \(0.936401\pi\)
\(192\) 0 0
\(193\) 814.881 + 1411.41i 0.303919 + 0.526403i 0.977020 0.213147i \(-0.0683714\pi\)
−0.673101 + 0.739551i \(0.735038\pi\)
\(194\) 0 0
\(195\) −101.127 −0.0371377
\(196\) 0 0
\(197\) 693.696 0.250882 0.125441 0.992101i \(-0.459965\pi\)
0.125441 + 0.992101i \(0.459965\pi\)
\(198\) 0 0
\(199\) −1902.81 3295.76i −0.677821 1.17402i −0.975636 0.219397i \(-0.929591\pi\)
0.297815 0.954624i \(-0.403742\pi\)
\(200\) 0 0
\(201\) −1429.72 + 2476.35i −0.501714 + 0.868995i
\(202\) 0 0
\(203\) −1071.63 3735.87i −0.370512 1.29166i
\(204\) 0 0
\(205\) 26.4340 45.7850i 0.00900600 0.0155988i
\(206\) 0 0
\(207\) −42.8171 74.1614i −0.0143768 0.0249013i
\(208\) 0 0
\(209\) 3286.14 1.08760
\(210\) 0 0
\(211\) 627.239 0.204649 0.102324 0.994751i \(-0.467372\pi\)
0.102324 + 0.994751i \(0.467372\pi\)
\(212\) 0 0
\(213\) 2692.03 + 4662.73i 0.865985 + 1.49993i
\(214\) 0 0
\(215\) −814.822 + 1411.31i −0.258467 + 0.447678i
\(216\) 0 0
\(217\) 2668.26 2763.60i 0.834716 0.864541i
\(218\) 0 0
\(219\) 662.872 1148.13i 0.204533 0.354262i
\(220\) 0 0
\(221\) 74.0084 + 128.186i 0.0225264 + 0.0390169i
\(222\) 0 0
\(223\) 2000.99 0.600878 0.300439 0.953801i \(-0.402867\pi\)
0.300439 + 0.953801i \(0.402867\pi\)
\(224\) 0 0
\(225\) 12.1320 0.00359468
\(226\) 0 0
\(227\) −796.121 1378.92i −0.232777 0.403182i 0.725847 0.687856i \(-0.241448\pi\)
−0.958624 + 0.284674i \(0.908115\pi\)
\(228\) 0 0
\(229\) 1962.58 3399.29i 0.566336 0.980923i −0.430588 0.902549i \(-0.641694\pi\)
0.996924 0.0783742i \(-0.0249729\pi\)
\(230\) 0 0
\(231\) 2651.36 + 660.785i 0.755181 + 0.188210i
\(232\) 0 0
\(233\) −1084.88 + 1879.06i −0.305032 + 0.528331i −0.977269 0.212005i \(-0.932001\pi\)
0.672236 + 0.740337i \(0.265334\pi\)
\(234\) 0 0
\(235\) −471.274 816.271i −0.130819 0.226586i
\(236\) 0 0
\(237\) 4837.08 1.32575
\(238\) 0 0
\(239\) −1057.70 −0.286262 −0.143131 0.989704i \(-0.545717\pi\)
−0.143131 + 0.989704i \(0.545717\pi\)
\(240\) 0 0
\(241\) −1199.62 2077.80i −0.320640 0.555365i 0.659980 0.751283i \(-0.270565\pi\)
−0.980620 + 0.195918i \(0.937231\pi\)
\(242\) 0 0
\(243\) 68.0749 117.909i 0.0179712 0.0311271i
\(244\) 0 0
\(245\) −60.1851 1713.94i −0.0156942 0.446938i
\(246\) 0 0
\(247\) −225.241 + 390.128i −0.0580231 + 0.100499i
\(248\) 0 0
\(249\) −2516.65 4358.97i −0.640508 1.10939i
\(250\) 0 0
\(251\) 3812.95 0.958848 0.479424 0.877583i \(-0.340846\pi\)
0.479424 + 0.877583i \(0.340846\pi\)
\(252\) 0 0
\(253\) −4966.05 −1.23404
\(254\) 0 0
\(255\) −502.868 870.993i −0.123493 0.213897i
\(256\) 0 0
\(257\) −1745.08 + 3022.57i −0.423561 + 0.733629i −0.996285 0.0861194i \(-0.972553\pi\)
0.572724 + 0.819748i \(0.305887\pi\)
\(258\) 0 0
\(259\) 281.544 + 70.1678i 0.0675455 + 0.0168340i
\(260\) 0 0
\(261\) 50.9188 88.1940i 0.0120758 0.0209160i
\(262\) 0 0
\(263\) 3562.28 + 6170.05i 0.835207 + 1.44662i 0.893862 + 0.448343i \(0.147986\pi\)
−0.0586547 + 0.998278i \(0.518681\pi\)
\(264\) 0 0
\(265\) −1375.91 −0.318949
\(266\) 0 0
\(267\) −698.347 −0.160068
\(268\) 0 0
\(269\) 213.971 + 370.609i 0.0484984 + 0.0840017i 0.889256 0.457411i \(-0.151223\pi\)
−0.840757 + 0.541412i \(0.817890\pi\)
\(270\) 0 0
\(271\) 4094.29 7091.52i 0.917751 1.58959i 0.114927 0.993374i \(-0.463337\pi\)
0.802824 0.596217i \(-0.203330\pi\)
\(272\) 0 0
\(273\) −260.179 + 269.475i −0.0576803 + 0.0597413i
\(274\) 0 0
\(275\) 351.777 609.295i 0.0771379 0.133607i
\(276\) 0 0
\(277\) 2084.98 + 3611.29i 0.452254 + 0.783326i 0.998526 0.0542815i \(-0.0172868\pi\)
−0.546272 + 0.837608i \(0.683954\pi\)
\(278\) 0 0
\(279\) 100.658 0.0215994
\(280\) 0 0
\(281\) 1284.60 0.272714 0.136357 0.990660i \(-0.456461\pi\)
0.136357 + 0.990660i \(0.456461\pi\)
\(282\) 0 0
\(283\) 2394.67 + 4147.70i 0.502998 + 0.871219i 0.999994 + 0.00346581i \(0.00110320\pi\)
−0.496996 + 0.867753i \(0.665563\pi\)
\(284\) 0 0
\(285\) 1530.45 2650.82i 0.318092 0.550951i
\(286\) 0 0
\(287\) −53.9951 188.234i −0.0111053 0.0387147i
\(288\) 0 0
\(289\) 1720.47 2979.93i 0.350186 0.606541i
\(290\) 0 0
\(291\) 2676.65 + 4636.09i 0.539202 + 0.933926i
\(292\) 0 0
\(293\) 6983.27 1.39238 0.696189 0.717858i \(-0.254877\pi\)
0.696189 + 0.717858i \(0.254877\pi\)
\(294\) 0 0
\(295\) −219.096 −0.0432416
\(296\) 0 0
\(297\) −1955.98 3387.85i −0.382146 0.661897i
\(298\) 0 0
\(299\) 340.385 589.564i 0.0658361 0.114031i
\(300\) 0 0
\(301\) 1664.39 + 5802.29i 0.318717 + 1.11109i
\(302\) 0 0
\(303\) −2525.80 + 4374.81i −0.478888 + 0.829459i
\(304\) 0 0
\(305\) −2137.75 3702.70i −0.401336 0.695134i
\(306\) 0 0
\(307\) 2069.43 0.384719 0.192359 0.981325i \(-0.438386\pi\)
0.192359 + 0.981325i \(0.438386\pi\)
\(308\) 0 0
\(309\) 9427.84 1.73570
\(310\) 0 0
\(311\) 1060.98 + 1837.67i 0.193449 + 0.335064i 0.946391 0.323023i \(-0.104699\pi\)
−0.752942 + 0.658087i \(0.771366\pi\)
\(312\) 0 0
\(313\) −764.398 + 1323.98i −0.138039 + 0.239091i −0.926754 0.375668i \(-0.877413\pi\)
0.788715 + 0.614759i \(0.210747\pi\)
\(314\) 0 0
\(315\) 31.2132 32.3285i 0.00558306 0.00578255i
\(316\) 0 0
\(317\) −2571.22 + 4453.49i −0.455565 + 0.789062i −0.998721 0.0505699i \(-0.983896\pi\)
0.543155 + 0.839632i \(0.317230\pi\)
\(318\) 0 0
\(319\) −2952.85 5114.49i −0.518270 0.897669i
\(320\) 0 0
\(321\) −1462.71 −0.254332
\(322\) 0 0
\(323\) −4480.16 −0.771773
\(324\) 0 0
\(325\) 48.2233 + 83.5252i 0.00823061 + 0.0142558i
\(326\) 0 0
\(327\) −2047.44 + 3546.28i −0.346250 + 0.599723i
\(328\) 0 0
\(329\) −3387.62 844.281i −0.567677 0.141479i
\(330\) 0 0
\(331\) −2887.02 + 5000.47i −0.479411 + 0.830364i −0.999721 0.0236134i \(-0.992483\pi\)
0.520310 + 0.853977i \(0.325816\pi\)
\(332\) 0 0
\(333\) 3.80144 + 6.58429i 0.000625579 + 0.00108353i
\(334\) 0 0
\(335\) 2727.10 0.444768
\(336\) 0 0
\(337\) −484.761 −0.0783579 −0.0391790 0.999232i \(-0.512474\pi\)
−0.0391790 + 0.999232i \(0.512474\pi\)
\(338\) 0 0
\(339\) 1539.34 + 2666.22i 0.246624 + 0.427165i
\(340\) 0 0
\(341\) 2918.64 5055.23i 0.463499 0.802804i
\(342\) 0 0
\(343\) −4722.03 4249.24i −0.743339 0.668914i
\(344\) 0 0
\(345\) −2312.83 + 4005.94i −0.360923 + 0.625138i
\(346\) 0 0
\(347\) −3899.11 6753.45i −0.603213 1.04480i −0.992331 0.123608i \(-0.960553\pi\)
0.389118 0.921188i \(-0.372780\pi\)
\(348\) 0 0
\(349\) −662.157 −0.101560 −0.0507800 0.998710i \(-0.516171\pi\)
−0.0507800 + 0.998710i \(0.516171\pi\)
\(350\) 0 0
\(351\) 536.271 0.0815499
\(352\) 0 0
\(353\) −3313.07 5738.40i −0.499538 0.865225i 0.500462 0.865759i \(-0.333164\pi\)
−1.00000 0.000533475i \(0.999830\pi\)
\(354\) 0 0
\(355\) 2567.44 4446.93i 0.383846 0.664841i
\(356\) 0 0
\(357\) −3614.73 900.881i −0.535887 0.133556i
\(358\) 0 0
\(359\) 5199.03 9004.98i 0.764329 1.32386i −0.176272 0.984342i \(-0.556404\pi\)
0.940601 0.339515i \(-0.110263\pi\)
\(360\) 0 0
\(361\) −3388.06 5868.30i −0.493959 0.855562i
\(362\) 0 0
\(363\) −2825.89 −0.408597
\(364\) 0 0
\(365\) −1264.39 −0.181318
\(366\) 0 0
\(367\) 1123.15 + 1945.36i 0.159750 + 0.276694i 0.934778 0.355232i \(-0.115598\pi\)
−0.775029 + 0.631926i \(0.782265\pi\)
\(368\) 0 0
\(369\) 2.56558 4.44372i 0.000361948 0.000626913i
\(370\) 0 0
\(371\) −3539.93 + 3666.41i −0.495374 + 0.513075i
\(372\) 0 0
\(373\) −96.0126 + 166.299i −0.0133280 + 0.0230848i −0.872612 0.488413i \(-0.837576\pi\)
0.859284 + 0.511498i \(0.170909\pi\)
\(374\) 0 0
\(375\) −327.665 567.533i −0.0451215 0.0781527i
\(376\) 0 0
\(377\) 809.584 0.110599
\(378\) 0 0
\(379\) 4565.76 0.618805 0.309403 0.950931i \(-0.399871\pi\)
0.309403 + 0.950931i \(0.399871\pi\)
\(380\) 0 0
\(381\) 4088.28 + 7081.10i 0.549734 + 0.952168i
\(382\) 0 0
\(383\) 693.535 1201.24i 0.0925273 0.160262i −0.816047 0.577986i \(-0.803839\pi\)
0.908574 + 0.417724i \(0.137172\pi\)
\(384\) 0 0
\(385\) −718.553 2504.98i −0.0951191 0.331599i
\(386\) 0 0
\(387\) −79.0836 + 136.977i −0.0103877 + 0.0179921i
\(388\) 0 0
\(389\) −2291.50 3969.00i −0.298673 0.517317i 0.677160 0.735836i \(-0.263211\pi\)
−0.975833 + 0.218519i \(0.929877\pi\)
\(390\) 0 0
\(391\) 6770.45 0.875694
\(392\) 0 0
\(393\) 8669.47 1.11277
\(394\) 0 0
\(395\) −2306.60 3995.16i −0.293817 0.508907i
\(396\) 0 0
\(397\) 4480.53 7760.50i 0.566426 0.981079i −0.430489 0.902596i \(-0.641659\pi\)
0.996915 0.0784836i \(-0.0250078\pi\)
\(398\) 0 0
\(399\) −3126.16 10898.2i −0.392240 1.36740i
\(400\) 0 0
\(401\) −5814.64 + 10071.2i −0.724113 + 1.25420i 0.235225 + 0.971941i \(0.424417\pi\)
−0.959338 + 0.282259i \(0.908916\pi\)
\(402\) 0 0
\(403\) 400.102 + 692.997i 0.0494553 + 0.0856591i
\(404\) 0 0
\(405\) −3709.34 −0.455107
\(406\) 0 0
\(407\) 440.902 0.0536970
\(408\) 0 0
\(409\) −2160.07 3741.34i −0.261145 0.452317i 0.705401 0.708808i \(-0.250767\pi\)
−0.966546 + 0.256491i \(0.917433\pi\)
\(410\) 0 0
\(411\) 777.635 1346.90i 0.0933282 0.161649i
\(412\) 0 0
\(413\) −563.688 + 583.830i −0.0671605 + 0.0695602i
\(414\) 0 0
\(415\) −2400.18 + 4157.23i −0.283904 + 0.491736i
\(416\) 0 0
\(417\) 623.528 + 1079.98i 0.0732238 + 0.126827i
\(418\) 0 0
\(419\) −7824.02 −0.912240 −0.456120 0.889918i \(-0.650761\pi\)
−0.456120 + 0.889918i \(0.650761\pi\)
\(420\) 0 0
\(421\) 6944.28 0.803904 0.401952 0.915661i \(-0.368332\pi\)
0.401952 + 0.915661i \(0.368332\pi\)
\(422\) 0 0
\(423\) −45.7401 79.2242i −0.00525759 0.00910641i
\(424\) 0 0
\(425\) −479.594 + 830.681i −0.0547382 + 0.0948093i
\(426\) 0 0
\(427\) −15366.7 3829.76i −1.74156 0.434039i
\(428\) 0 0
\(429\) −284.593 + 492.929i −0.0320286 + 0.0554752i
\(430\) 0 0
\(431\) 1628.68 + 2820.96i 0.182020 + 0.315268i 0.942568 0.334013i \(-0.108403\pi\)
−0.760548 + 0.649282i \(0.775070\pi\)
\(432\) 0 0
\(433\) −16857.1 −1.87090 −0.935449 0.353461i \(-0.885005\pi\)
−0.935449 + 0.353461i \(0.885005\pi\)
\(434\) 0 0
\(435\) −5500.91 −0.606319
\(436\) 0 0
\(437\) 10302.8 + 17844.9i 1.12780 + 1.95340i
\(438\) 0 0
\(439\) 3976.51 6887.52i 0.432320 0.748800i −0.564753 0.825260i \(-0.691028\pi\)
0.997073 + 0.0764599i \(0.0243617\pi\)
\(440\) 0 0
\(441\) −5.84134 166.349i −0.000630746 0.0179623i
\(442\) 0 0
\(443\) −4854.88 + 8408.90i −0.520683 + 0.901849i 0.479028 + 0.877800i \(0.340989\pi\)
−0.999711 + 0.0240492i \(0.992344\pi\)
\(444\) 0 0
\(445\) 333.013 + 576.795i 0.0354749 + 0.0614443i
\(446\) 0 0
\(447\) 14349.7 1.51838
\(448\) 0 0
\(449\) −11758.3 −1.23588 −0.617938 0.786227i \(-0.712032\pi\)
−0.617938 + 0.786227i \(0.712032\pi\)
\(450\) 0 0
\(451\) −148.782 257.698i −0.0155341 0.0269058i
\(452\) 0 0
\(453\) −9341.46 + 16179.9i −0.968874 + 1.67814i
\(454\) 0 0
\(455\) 346.640 + 86.3913i 0.0357159 + 0.00890129i
\(456\) 0 0
\(457\) −1375.09 + 2381.72i −0.140753 + 0.243791i −0.927780 0.373127i \(-0.878286\pi\)
0.787028 + 0.616918i \(0.211619\pi\)
\(458\) 0 0
\(459\) 2666.68 + 4618.83i 0.271176 + 0.469691i
\(460\) 0 0
\(461\) −3041.43 −0.307275 −0.153637 0.988127i \(-0.549099\pi\)
−0.153637 + 0.988127i \(0.549099\pi\)
\(462\) 0 0
\(463\) −5422.89 −0.544327 −0.272163 0.962251i \(-0.587739\pi\)
−0.272163 + 0.962251i \(0.587739\pi\)
\(464\) 0 0
\(465\) −2718.59 4708.73i −0.271122 0.469596i
\(466\) 0 0
\(467\) −2773.80 + 4804.36i −0.274853 + 0.476059i −0.970098 0.242714i \(-0.921962\pi\)
0.695245 + 0.718772i \(0.255296\pi\)
\(468\) 0 0
\(469\) 7016.25 7266.95i 0.690790 0.715473i
\(470\) 0 0
\(471\) −3274.23 + 5671.14i −0.320316 + 0.554803i
\(472\) 0 0
\(473\) 4586.17 + 7943.48i 0.445819 + 0.772181i
\(474\) 0 0
\(475\) −2919.24 −0.281987
\(476\) 0 0
\(477\) −133.541 −0.0128185
\(478\) 0 0
\(479\) 564.275 + 977.353i 0.0538254 + 0.0932284i 0.891683 0.452661i \(-0.149525\pi\)
−0.837857 + 0.545889i \(0.816192\pi\)
\(480\) 0 0
\(481\) −30.2205 + 52.3434i −0.00286473 + 0.00496186i
\(482\) 0 0
\(483\) 4724.28 + 16469.5i 0.445056 + 1.55153i
\(484\) 0 0
\(485\) 2552.77 4421.52i 0.239000 0.413961i
\(486\) 0 0
\(487\) 2403.09 + 4162.27i 0.223602 + 0.387291i 0.955899 0.293695i \(-0.0948850\pi\)
−0.732297 + 0.680986i \(0.761552\pi\)
\(488\) 0 0
\(489\) 10299.9 0.952508
\(490\) 0 0
\(491\) 12452.1 1.14451 0.572255 0.820076i \(-0.306069\pi\)
0.572255 + 0.820076i \(0.306069\pi\)
\(492\) 0 0
\(493\) 4025.77 + 6972.83i 0.367772 + 0.636999i
\(494\) 0 0
\(495\) 34.1421 59.1359i 0.00310015 0.00536962i
\(496\) 0 0
\(497\) −5244.35 18282.5i −0.473323 1.65007i
\(498\) 0 0
\(499\) −5898.68 + 10216.8i −0.529180 + 0.916567i 0.470240 + 0.882538i \(0.344167\pi\)
−0.999421 + 0.0340289i \(0.989166\pi\)
\(500\) 0 0
\(501\) −2462.47 4265.13i −0.219591 0.380343i
\(502\) 0 0
\(503\) −2900.55 −0.257116 −0.128558 0.991702i \(-0.541035\pi\)
−0.128558 + 0.991702i \(0.541035\pi\)
\(504\) 0 0
\(505\) 4817.79 0.424533
\(506\) 0 0
\(507\) 5720.03 + 9907.38i 0.501056 + 0.867854i
\(508\) 0 0
\(509\) −4743.42 + 8215.85i −0.413062 + 0.715444i −0.995223 0.0976294i \(-0.968874\pi\)
0.582161 + 0.813074i \(0.302207\pi\)
\(510\) 0 0
\(511\) −3253.00 + 3369.24i −0.281613 + 0.291676i
\(512\) 0 0
\(513\) −8115.90 + 14057.2i −0.698491 + 1.20982i
\(514\) 0 0
\(515\) −4495.75 7786.87i −0.384673 0.666273i
\(516\) 0 0
\(517\) −5305.06 −0.451289
\(518\) 0 0
\(519\) −14167.9 −1.19827
\(520\) 0 0
\(521\) 10176.5 + 17626.2i 0.855740 + 1.48219i 0.875957 + 0.482390i \(0.160231\pi\)
−0.0202163 + 0.999796i \(0.506435\pi\)
\(522\) 0 0
\(523\) 4614.44 7992.45i 0.385804 0.668232i −0.606076 0.795407i \(-0.707257\pi\)
0.991880 + 0.127174i \(0.0405907\pi\)
\(524\) 0 0
\(525\) −2355.33 587.007i −0.195800 0.0487983i
\(526\) 0 0
\(527\) −3979.12 + 6892.04i −0.328906 + 0.569681i
\(528\) 0 0
\(529\) −9486.09 16430.4i −0.779658 1.35041i
\(530\) 0 0
\(531\) −21.2646 −0.00173787
\(532\) 0 0
\(533\) 40.7915 0.00331496
\(534\) 0 0
\(535\) 697.507 + 1208.12i 0.0563661 + 0.0976290i
\(536\) 0 0
\(537\) −3759.10 + 6510.95i −0.302080 + 0.523219i
\(538\) 0 0
\(539\) −8523.75 4530.04i −0.681158 0.362009i
\(540\) 0 0
\(541\) 348.637 603.857i 0.0277062 0.0479886i −0.851840 0.523802i \(-0.824513\pi\)
0.879546 + 0.475814i \(0.157846\pi\)
\(542\) 0 0
\(543\) −7106.96 12309.6i −0.561674 0.972847i
\(544\) 0 0
\(545\) 3905.37 0.306950
\(546\) 0 0
\(547\) 8032.62 0.627879 0.313940 0.949443i \(-0.398351\pi\)
0.313940 + 0.949443i \(0.398351\pi\)
\(548\) 0 0
\(549\) −207.482 359.370i −0.0161296 0.0279372i
\(550\) 0 0
\(551\) −12252.2 + 21221.4i −0.947299 + 1.64077i
\(552\) 0 0
\(553\) −16580.4 4132.25i −1.27499 0.317760i
\(554\) 0 0
\(555\) 205.341 355.660i 0.0157049 0.0272017i
\(556\) 0 0
\(557\) −6793.37 11766.5i −0.516776 0.895083i −0.999810 0.0194814i \(-0.993798\pi\)
0.483034 0.875602i \(-0.339535\pi\)
\(558\) 0 0
\(559\) −1257.39 −0.0951376
\(560\) 0 0
\(561\) −5660.71 −0.426017
\(562\) 0 0
\(563\) 8607.90 + 14909.3i 0.644369 + 1.11608i 0.984447 + 0.175683i \(0.0562133\pi\)
−0.340078 + 0.940397i \(0.610453\pi\)
\(564\) 0 0
\(565\) 1468.10 2542.82i 0.109316 0.189340i
\(566\) 0 0
\(567\) −9543.35 + 9884.35i −0.706848 + 0.732105i
\(568\) 0 0
\(569\) 9220.75 15970.8i 0.679357 1.17668i −0.295818 0.955244i \(-0.595592\pi\)
0.975175 0.221437i \(-0.0710746\pi\)
\(570\) 0 0
\(571\) −5390.17 9336.04i −0.395046 0.684240i 0.598061 0.801451i \(-0.295938\pi\)
−0.993107 + 0.117210i \(0.962605\pi\)
\(572\) 0 0
\(573\) 18320.9 1.33572
\(574\) 0 0
\(575\) 4411.57 0.319957
\(576\) 0 0
\(577\) 6481.49 + 11226.3i 0.467640 + 0.809975i 0.999316 0.0369719i \(-0.0117712\pi\)
−0.531677 + 0.846947i \(0.678438\pi\)
\(578\) 0 0
\(579\) 4272.13 7399.54i 0.306638 0.531113i
\(580\) 0 0
\(581\) 4902.70 + 17091.5i 0.350083 + 1.22044i
\(582\) 0 0
\(583\) −3872.10 + 6706.67i −0.275070 + 0.476436i
\(584\) 0 0
\(585\) 4.68037 + 8.10665i 0.000330786 + 0.000572938i
\(586\) 0 0
\(587\) 16181.8 1.13781 0.568905 0.822403i \(-0.307367\pi\)
0.568905 + 0.822403i \(0.307367\pi\)
\(588\) 0 0
\(589\) −24220.5 −1.69438
\(590\) 0 0
\(591\) −1818.40 3149.56i −0.126563 0.219214i
\(592\) 0 0
\(593\) −373.815 + 647.467i −0.0258866 + 0.0448369i −0.878678 0.477414i \(-0.841574\pi\)
0.852792 + 0.522251i \(0.174908\pi\)
\(594\) 0 0
\(595\) 979.639 + 3415.16i 0.0674979 + 0.235307i
\(596\) 0 0
\(597\) −9975.73 + 17278.5i −0.683885 + 1.18452i
\(598\) 0 0
\(599\) 1924.93 + 3334.08i 0.131303 + 0.227424i 0.924179 0.381959i \(-0.124751\pi\)
−0.792876 + 0.609383i \(0.791417\pi\)
\(600\) 0 0
\(601\) 1808.82 0.122768 0.0613838 0.998114i \(-0.480449\pi\)
0.0613838 + 0.998114i \(0.480449\pi\)
\(602\) 0 0
\(603\) 264.682 0.0178751
\(604\) 0 0
\(605\) 1347.55 + 2334.03i 0.0905549 + 0.156846i
\(606\) 0 0
\(607\) 268.046 464.270i 0.0179237 0.0310447i −0.856924 0.515442i \(-0.827628\pi\)
0.874848 + 0.484397i \(0.160961\pi\)
\(608\) 0 0
\(609\) −14152.7 + 14658.4i −0.941702 + 0.975351i
\(610\) 0 0
\(611\) 363.622 629.812i 0.0240762 0.0417013i
\(612\) 0 0
\(613\) −7367.99 12761.7i −0.485465 0.840851i 0.514395 0.857553i \(-0.328016\pi\)
−0.999861 + 0.0167026i \(0.994683\pi\)
\(614\) 0 0
\(615\) −277.168 −0.0181731
\(616\) 0 0
\(617\) 9604.91 0.626709 0.313354 0.949636i \(-0.398547\pi\)
0.313354 + 0.949636i \(0.398547\pi\)
\(618\) 0 0
\(619\) −4297.11 7442.81i −0.279023 0.483283i 0.692119 0.721783i \(-0.256677\pi\)
−0.971142 + 0.238501i \(0.923344\pi\)
\(620\) 0 0
\(621\) 12264.8 21243.3i 0.792544 1.37273i
\(622\) 0 0
\(623\) 2393.77 + 596.588i 0.153940 + 0.0383656i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −8614.04 14920.0i −0.548663 0.950312i
\(628\) 0 0
\(629\) −601.102 −0.0381042
\(630\) 0 0
\(631\) 14803.3 0.933933 0.466966 0.884275i \(-0.345347\pi\)
0.466966 + 0.884275i \(0.345347\pi\)
\(632\) 0 0
\(633\) −1644.19 2847.83i −0.103240 0.178817i
\(634\) 0 0
\(635\) 3899.06 6753.37i 0.243669 0.422046i
\(636\) 0 0
\(637\) 1122.04 701.432i 0.0697911 0.0436291i
\(638\) 0 0
\(639\) 249.186 431.603i 0.0154267 0.0267198i
\(640\) 0 0
\(641\) 4645.16 + 8045.65i 0.286229 + 0.495763i 0.972906 0.231199i \(-0.0742649\pi\)
−0.686678 + 0.726962i \(0.740932\pi\)
\(642\) 0 0
\(643\) 1861.78 0.114186 0.0570928 0.998369i \(-0.481817\pi\)
0.0570928 + 0.998369i \(0.481817\pi\)
\(644\) 0 0
\(645\) 8543.64 0.521559
\(646\) 0 0
\(647\) 14763.7 + 25571.5i 0.897095 + 1.55381i 0.831190 + 0.555989i \(0.187660\pi\)
0.0659057 + 0.997826i \(0.479006\pi\)
\(648\) 0 0
\(649\) −616.583 + 1067.95i −0.0372927 + 0.0645929i
\(650\) 0 0
\(651\) −19541.8 4870.31i −1.17650 0.293214i
\(652\) 0 0
\(653\) −2596.28 + 4496.88i −0.155590 + 0.269489i −0.933274 0.359166i \(-0.883061\pi\)
0.777684 + 0.628656i \(0.216394\pi\)
\(654\) 0 0
\(655\) −4134.11 7160.49i −0.246615 0.427151i
\(656\) 0 0
\(657\) −122.717 −0.00728711
\(658\) 0 0
\(659\) 11740.1 0.693976 0.346988 0.937870i \(-0.387205\pi\)
0.346988 + 0.937870i \(0.387205\pi\)
\(660\) 0 0
\(661\) −4396.25 7614.53i −0.258690 0.448065i 0.707201 0.707013i \(-0.249958\pi\)
−0.965891 + 0.258948i \(0.916624\pi\)
\(662\) 0 0
\(663\) 387.999 672.034i 0.0227280 0.0393660i
\(664\) 0 0
\(665\) −7510.59 + 7778.96i −0.437967 + 0.453617i
\(666\) 0 0
\(667\) 18515.6 32070.0i 1.07485 1.86170i
\(668\) 0 0
\(669\) −5245.22 9084.99i −0.303127 0.525032i
\(670\) 0 0
\(671\) −24064.4 −1.38449
\(672\) 0 0
\(673\) 30366.5 1.73929 0.869646 0.493676i \(-0.164347\pi\)
0.869646 + 0.493676i \(0.164347\pi\)
\(674\) 0 0
\(675\) 1737.59 + 3009.59i 0.0990812 + 0.171614i
\(676\) 0 0
\(677\) 8708.45 15083.5i 0.494377 0.856286i −0.505602 0.862767i \(-0.668730\pi\)
0.999979 + 0.00648104i \(0.00206299\pi\)
\(678\) 0 0
\(679\) −5214.39 18178.1i −0.294712 1.02741i
\(680\) 0 0
\(681\) −4173.78 + 7229.19i −0.234860 + 0.406789i
\(682\) 0 0
\(683\) 4414.16 + 7645.55i 0.247296 + 0.428329i 0.962775 0.270305i \(-0.0871246\pi\)
−0.715479 + 0.698635i \(0.753791\pi\)
\(684\) 0 0
\(685\) −1483.29 −0.0827351
\(686\) 0 0
\(687\) −20578.2 −1.14281
\(688\) 0 0
\(689\) −530.807 919.384i −0.0293500 0.0508356i
\(690\) 0 0
\(691\) 5315.51 9206.74i 0.292636 0.506861i −0.681796 0.731542i \(-0.738801\pi\)
0.974432 + 0.224681i \(0.0721342\pi\)
\(692\) 0 0
\(693\) −69.7401 243.124i −0.00382281 0.0133268i
\(694\) 0 0
\(695\) 594.670 1030.00i 0.0324563 0.0562159i
\(696\) 0 0
\(697\) 202.841 + 351.332i 0.0110232 + 0.0190927i
\(698\) 0 0
\(699\) 11375.2 0.615523
\(700\) 0 0
\(701\) 30120.7 1.62289 0.811443 0.584431i \(-0.198682\pi\)
0.811443 + 0.584431i \(0.198682\pi\)
\(702\) 0 0
\(703\) −914.712 1584.33i −0.0490740 0.0849986i
\(704\) 0 0
\(705\) −2470.72 + 4279.41i −0.131990 + 0.228613i
\(706\) 0 0
\(707\) 12395.2 12838.1i 0.659362 0.682921i
\(708\) 0 0
\(709\) −2207.47 + 3823.45i −0.116930 + 0.202529i −0.918550 0.395306i \(-0.870639\pi\)
0.801620 + 0.597834i \(0.203972\pi\)
\(710\) 0 0
\(711\) −223.870 387.755i −0.0118084 0.0204528i
\(712\) 0 0
\(713\) 36602.2 1.92253
\(714\) 0 0
\(715\) 542.843 0.0283932
\(716\) 0 0
\(717\) 2772.56 + 4802.21i 0.144412 + 0.250128i
\(718\) 0 0
\(719\) 8567.98 14840.2i 0.444411 0.769743i −0.553600 0.832783i \(-0.686746\pi\)
0.998011 + 0.0630401i \(0.0200796\pi\)
\(720\) 0 0
\(721\) −32316.5 8054.07i −1.66925 0.416019i
\(722\) 0 0
\(723\) −6289.18 + 10893.2i −0.323509 + 0.560334i
\(724\) 0 0
\(725\) 2623.16 + 4543.45i 0.134375 + 0.232744i
\(726\) 0 0
\(727\) 3271.77 0.166909 0.0834546 0.996512i \(-0.473405\pi\)
0.0834546 + 0.996512i \(0.473405\pi\)
\(728\) 0 0
\(729\) 19316.6 0.981386
\(730\) 0 0
\(731\) −6252.54 10829.7i −0.316359 0.547951i
\(732\) 0 0
\(733\) −2234.92 + 3870.99i −0.112618 + 0.195059i −0.916825 0.399290i \(-0.869257\pi\)
0.804207 + 0.594349i \(0.202590\pi\)
\(734\) 0 0
\(735\) −7623.99 + 4766.05i −0.382605 + 0.239182i
\(736\) 0 0
\(737\) 7674.63 13292.9i 0.383580 0.664381i
\(738\) 0 0
\(739\) −1237.60 2143.58i −0.0616046 0.106702i 0.833578 0.552401i \(-0.186288\pi\)
−0.895183 + 0.445699i \(0.852955\pi\)
\(740\) 0 0
\(741\) 2361.71 0.117084
\(742\) 0 0
\(743\) −9240.48 −0.456259 −0.228129 0.973631i \(-0.573261\pi\)
−0.228129 + 0.973631i \(0.573261\pi\)
\(744\) 0 0
\(745\) −6842.78 11852.0i −0.336510 0.582852i
\(746\) 0 0
\(747\) −232.952 + 403.485i −0.0114100 + 0.0197627i
\(748\) 0 0
\(749\) 5013.84 + 1249.57i 0.244595 + 0.0609592i
\(750\) 0 0
\(751\) 2526.23 4375.57i 0.122748 0.212605i −0.798103 0.602522i \(-0.794163\pi\)
0.920850 + 0.389916i \(0.127496\pi\)
\(752\) 0 0
\(753\) −9994.95 17311.8i −0.483713 0.837816i
\(754\) 0 0
\(755\) 17818.2 0.858903
\(756\) 0 0
\(757\) −37779.2 −1.81388 −0.906942 0.421256i \(-0.861589\pi\)
−0.906942 + 0.421256i \(0.861589\pi\)
\(758\) 0 0
\(759\) 13017.6 + 22547.1i 0.622541 + 1.07827i
\(760\) 0 0
\(761\) −3751.35 + 6497.52i −0.178694 + 0.309507i −0.941434 0.337199i \(-0.890521\pi\)
0.762739 + 0.646706i \(0.223854\pi\)
\(762\) 0 0
\(763\) 10047.7 10406.7i 0.476738 0.493772i
\(764\) 0 0
\(765\) −46.5476 + 80.6228i −0.00219991 + 0.00381036i
\(766\) 0 0
\(767\) −84.5243 146.400i −0.00397913 0.00689206i
\(768\) 0 0
\(769\) 24209.4 1.13526 0.567628 0.823285i \(-0.307861\pi\)
0.567628 + 0.823285i \(0.307861\pi\)
\(770\) 0 0
\(771\) 18297.7 0.854701
\(772\) 0 0
\(773\) −3760.50 6513.37i −0.174975 0.303065i 0.765178 0.643819i \(-0.222651\pi\)
−0.940153 + 0.340754i \(0.889318\pi\)
\(774\) 0 0
\(775\) −2592.77 + 4490.80i −0.120174 + 0.208148i
\(776\) 0 0
\(777\) −419.437 1462.22i −0.0193658 0.0675118i
\(778\) 0 0
\(779\) −617.337 + 1069.26i −0.0283933 + 0.0491787i
\(780\) 0 0
\(781\) −14450.6 25029.2i −0.662080 1.14676i
\(782\) 0 0
\(783\) 29171.0 1.33140
\(784\) 0 0
\(785\) 6245.39 0.283959
\(786\) 0 0
\(787\) −8060.68 13961.5i −0.365098 0.632368i 0.623694 0.781669i \(-0.285631\pi\)
−0.988792 + 0.149300i \(0.952298\pi\)
\(788\) 0 0
\(789\) 18675.7 32347.3i 0.842679 1.45956i
\(790\) 0 0
\(791\) −2998.79 10454.2i −0.134798 0.469923i
\(792\) 0 0
\(793\) 1649.43 2856.90i 0.0738627 0.127934i
\(794\) 0 0
\(795\) 3606.70 + 6246.98i 0.160901 + 0.278689i
\(796\) 0 0
\(797\) −32223.0 −1.43212 −0.716058 0.698041i \(-0.754056\pi\)
−0.716058 + 0.698041i \(0.754056\pi\)
\(798\) 0 0
\(799\) 7232.65 0.320241
\(800\) 0 0
\(801\) 32.3210 + 55.9816i 0.00142573 + 0.00246943i
\(802\) 0 0
\(803\) −3558.25 + 6163.07i −0.156374 + 0.270847i
\(804\) 0 0
\(805\) 11350.1 11755.6i 0.496941 0.514697i
\(806\) 0 0
\(807\) 1121.77 1942.97i 0.0489323 0.0847532i
\(808\) 0 0
\(809\) 12272.2 + 21256.0i 0.533334 + 0.923761i 0.999242 + 0.0389282i \(0.0123944\pi\)
−0.465908 + 0.884833i \(0.654272\pi\)
\(810\) 0 0
\(811\) −18783.9 −0.813308 −0.406654 0.913582i \(-0.633305\pi\)
−0.406654 + 0.913582i \(0.633305\pi\)
\(812\) 0 0
\(813\) −42929.8 −1.85192
\(814\) 0 0
\(815\) −4911.59 8507.12i −0.211099 0.365634i
\(816\) 0 0
\(817\) 19029.3 32959.7i 0.814872 1.41140i
\(818\) 0 0
\(819\) 33.6436 + 8.38482i 0.00143541 + 0.000357740i
\(820\) 0 0
\(821\) −9042.53 + 15662.1i −0.384393 + 0.665788i −0.991685 0.128691i \(-0.958923\pi\)
0.607292 + 0.794479i \(0.292256\pi\)
\(822\) 0 0
\(823\) 3717.59 + 6439.06i 0.157457 + 0.272723i 0.933951 0.357401i \(-0.116337\pi\)
−0.776494 + 0.630125i \(0.783004\pi\)
\(824\) 0 0
\(825\) −3688.48 −0.155656
\(826\) 0 0
\(827\) −26487.2 −1.11373 −0.556863 0.830604i \(-0.687995\pi\)
−0.556863 + 0.830604i \(0.687995\pi\)
\(828\) 0 0
\(829\) 9688.53 + 16781.0i 0.405906 + 0.703051i 0.994427 0.105432i \(-0.0336226\pi\)
−0.588520 + 0.808483i \(0.700289\pi\)
\(830\) 0 0
\(831\) 10930.8 18932.7i 0.456300 0.790334i
\(832\) 0 0
\(833\) 11620.8 + 6176.02i 0.483359 + 0.256887i
\(834\) 0 0
\(835\) −2348.50 + 4067.73i −0.0973333 + 0.168586i
\(836\) 0 0
\(837\) 14416.5 + 24970.2i 0.595350 + 1.03118i
\(838\) 0 0
\(839\) 4645.97 0.191176 0.0955880 0.995421i \(-0.469527\pi\)
0.0955880 + 0.995421i \(0.469527\pi\)
\(840\) 0 0
\(841\) 19649.2 0.805658
\(842\) 0 0
\(843\) −3367.35 5832.41i −0.137577 0.238291i
\(844\) 0 0
\(845\) 5455.29 9448.84i 0.222092 0.384675i
\(846\) 0 0
\(847\) 9686.50 + 2414.12i 0.392954 + 0.0979339i
\(848\) 0 0
\(849\) 12554.4 21744.9i 0.507499 0.879013i
\(850\) 0 0
\(851\) 1382.32 + 2394.25i 0.0556819 + 0.0964438i
\(852\) 0 0
\(853\) 32566.5 1.30722 0.653609 0.756833i \(-0.273254\pi\)
0.653609 + 0.756833i \(0.273254\pi\)
\(854\) 0 0
\(855\) −283.330 −0.0113330
\(856\) 0 0
\(857\) −67.4706 116.862i −0.00268932 0.00465805i 0.864678 0.502327i \(-0.167523\pi\)
−0.867367 + 0.497669i \(0.834189\pi\)
\(858\) 0 0
\(859\) −5190.45 + 8990.13i −0.206165 + 0.357089i −0.950503 0.310714i \(-0.899432\pi\)
0.744338 + 0.667803i \(0.232765\pi\)
\(860\) 0 0
\(861\) −713.095 + 738.575i −0.0282256 + 0.0292341i
\(862\) 0 0
\(863\) 12674.6 21953.1i 0.499941 0.865924i −0.500059 0.865992i \(-0.666688\pi\)
1.00000 6.76895e-5i \(2.15462e-5\pi\)
\(864\) 0 0
\(865\) 6756.08 + 11701.9i 0.265565 + 0.459972i
\(866\) 0 0
\(867\) −18039.6 −0.706639
\(868\) 0 0
\(869\) −25965.1 −1.01359
\(870\) 0 0
\(871\) 1052.08 + 1822.25i 0.0409280 + 0.0708893i
\(872\) 0 0
\(873\) 247.762 429.136i 0.00960536 0.0166370i
\(874\) 0 0
\(875\) 638.325 + 2225.29i 0.0246621 + 0.0859755i
\(876\) 0 0
\(877\) 11259.7 19502.3i 0.433537 0.750909i −0.563638 0.826022i \(-0.690599\pi\)
0.997175 + 0.0751134i \(0.0239319\pi\)
\(878\) 0 0
\(879\) −18305.4 31705.9i −0.702418 1.21662i
\(880\) 0 0
\(881\) −12419.9 −0.474958 −0.237479 0.971393i \(-0.576321\pi\)
−0.237479 + 0.971393i \(0.576321\pi\)
\(882\) 0 0
\(883\) 46011.8 1.75359 0.876794 0.480866i \(-0.159678\pi\)
0.876794 + 0.480866i \(0.159678\pi\)
\(884\) 0 0
\(885\) 574.321 + 994.753i 0.0218142 + 0.0377833i
\(886\) 0 0
\(887\) −14043.3 + 24323.8i −0.531600 + 0.920759i 0.467719 + 0.883877i \(0.345076\pi\)
−0.999320 + 0.0368816i \(0.988258\pi\)
\(888\) 0 0
\(889\) −7964.38 27764.9i −0.300469 1.04748i
\(890\) 0 0
\(891\) −10438.9 + 18080.6i −0.392497 + 0.679825i
\(892\) 0 0
\(893\) 11006.1 + 19063.1i 0.412436 + 0.714359i
\(894\) 0 0
\(895\) 7170.24 0.267793
\(896\) 0 0
\(897\) −3569.03 −0.132850
\(898\) 0 0
\(899\) 21764.0 + 37696.3i 0.807419 + 1.39849i
\(900\) 0 0
\(901\) 5279.02 9143.53i 0.195194 0.338086i
\(902\) 0 0
\(903\) 21981.0 22766.4i 0.810058 0.839002i
\(904\) 0 0
\(905\) −6778.03 + 11739.9i −0.248961 + 0.431213i
\(906\) 0 0
\(907\) −15229.4 26378.1i −0.557534 0.965677i −0.997702 0.0677613i \(-0.978414\pi\)
0.440168 0.897916i \(-0.354919\pi\)
\(908\) 0 0
\(909\) 467.597 0.0170618
\(910\) 0 0
\(911\) 26850.4 0.976502 0.488251 0.872703i \(-0.337635\pi\)
0.488251 + 0.872703i \(0.337635\pi\)
\(912\) 0 0
\(913\) 13509.2 + 23398.7i 0.489693 + 0.848174i
\(914\) 0 0
\(915\) −11207.5 + 19411.9i −0.404927 + 0.701353i
\(916\) 0 0
\(917\) −29716.9 7406.20i −1.07016 0.266711i
\(918\) 0 0
\(919\) −19047.9 + 32992.0i −0.683714 + 1.18423i 0.290125 + 0.956989i \(0.406303\pi\)
−0.973839 + 0.227238i \(0.927030\pi\)
\(920\) 0 0
\(921\) −5424.64 9395.76i −0.194080 0.336157i
\(922\) 0 0
\(923\) 3961.93 0.141288
\(924\) 0 0
\(925\) −391.674 −0.0139223
\(926\) 0 0
\(927\) −436.341 755.765i −0.0154599 0.0267773i
\(928\) 0 0
\(929\) −18177.5 + 31484.4i −0.641964 + 1.11191i 0.343030 + 0.939325i \(0.388547\pi\)
−0.984994 + 0.172590i \(0.944786\pi\)
\(930\) 0 0
\(931\) 1405.56 + 40027.3i 0.0494793 + 1.40907i
\(932\) 0 0
\(933\) 5562.34 9634.25i 0.195180 0.338061i
\(934\) 0 0
\(935\) 2699.36 + 4675.43i 0.0944155 + 0.163533i
\(936\) 0 0
\(937\) 37878.5 1.32064 0.660318 0.750986i \(-0.270421\pi\)
0.660318 + 0.750986i \(0.270421\pi\)
\(938\) 0 0
\(939\) 8014.93 0.278549
\(940\) 0 0
\(941\) −27062.8 46874.1i −0.937536 1.62386i −0.770047 0.637987i \(-0.779767\pi\)
−0.167489 0.985874i \(-0.553566\pi\)
\(942\) 0 0
\(943\) 932.924 1615.87i 0.0322165 0.0558007i
\(944\) 0 0
\(945\) 12490.2 + 3112.87i 0.429953 + 0.107155i
\(946\) 0 0
\(947\) −19172.9 + 33208.5i −0.657906 + 1.13953i 0.323251 + 0.946313i \(0.395224\pi\)
−0.981157 + 0.193213i \(0.938109\pi\)
\(948\) 0 0
\(949\) −487.783 844.865i −0.0166850 0.0288993i
\(950\) 0 0
\(951\) 26960.0 0.919282
\(952\) 0 0
\(953\) −15096.4 −0.513137 −0.256569 0.966526i \(-0.582592\pi\)
−0.256569 + 0.966526i \(0.582592\pi\)
\(954\) 0 0
\(955\) −8736.50 15132.1i −0.296028 0.512735i
\(956\) 0 0
\(957\) −15480.7 + 26813.4i −0.522906 + 0.905701i
\(958\) 0 0
\(959\) −3816.19 + 3952.55i −0.128500 + 0.133091i
\(960\) 0 0
\(961\) −6616.31 + 11459.8i −0.222091 + 0.384673i
\(962\) 0 0
\(963\) 67.6975 + 117.255i 0.00226534 + 0.00392368i
\(964\) 0 0
\(965\) −8148.81 −0.271833
\(966\) 0 0
\(967\) −6917.06 −0.230029 −0.115014 0.993364i \(-0.536691\pi\)
−0.115014 + 0.993364i \(0.536691\pi\)
\(968\) 0 0
\(969\) 11743.9 + 20341.1i 0.389339 + 0.674355i
\(970\) 0 0
\(971\) 19758.8 34223.3i 0.653029 1.13108i −0.329355 0.944206i \(-0.606831\pi\)
0.982384 0.186874i \(-0.0598355\pi\)
\(972\) 0 0
\(973\) −1214.70 4234.60i −0.0400220 0.139522i
\(974\) 0 0
\(975\) 252.817 437.893i 0.00830424 0.0143834i
\(976\) 0 0
\(977\) 19429.2 + 33652.4i 0.636229 + 1.10198i 0.986253 + 0.165240i \(0.0528400\pi\)
−0.350024 + 0.936741i \(0.613827\pi\)
\(978\) 0 0
\(979\) 3748.68 0.122378
\(980\) 0 0
\(981\) 379.040 0.0123362
\(982\) 0 0
\(983\) −255.115 441.872i −0.00827762 0.0143373i 0.861857 0.507151i \(-0.169302\pi\)
−0.870135 + 0.492814i \(0.835968\pi\)
\(984\) 0 0
\(985\) −1734.24 + 3003.79i −0.0560989 + 0.0971662i
\(986\) 0 0
\(987\) 5046.80 + 17593.8i 0.162757 + 0.567394i
\(988\) 0 0
\(989\) −28757.2 + 49808.9i −0.924596 + 1.60145i
\(990\) 0 0
\(991\) −18111.4 31369.9i −0.580553 1.00555i −0.995414 0.0956623i \(-0.969503\pi\)
0.414861 0.909885i \(-0.363830\pi\)
\(992\) 0 0
\(993\) 30271.2 0.967400
\(994\) 0 0
\(995\) 19028.1 0.606262
\(996\) 0 0
\(997\) 10428.0 + 18061.9i 0.331253 + 0.573747i 0.982758 0.184898i \(-0.0591954\pi\)
−0.651505 + 0.758644i \(0.725862\pi\)
\(998\) 0 0
\(999\) −1088.91 + 1886.05i −0.0344861 + 0.0597316i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.4.q.i.401.1 4
4.3 odd 2 35.4.e.b.16.1 yes 4
7.4 even 3 inner 560.4.q.i.81.1 4
12.11 even 2 315.4.j.c.226.2 4
20.3 even 4 175.4.k.c.149.2 8
20.7 even 4 175.4.k.c.149.3 8
20.19 odd 2 175.4.e.c.51.2 4
28.3 even 6 245.4.e.l.116.1 4
28.11 odd 6 35.4.e.b.11.1 4
28.19 even 6 245.4.a.h.1.2 2
28.23 odd 6 245.4.a.g.1.2 2
28.27 even 2 245.4.e.l.226.1 4
84.11 even 6 315.4.j.c.46.2 4
84.23 even 6 2205.4.a.bf.1.1 2
84.47 odd 6 2205.4.a.bg.1.1 2
140.19 even 6 1225.4.a.v.1.1 2
140.39 odd 6 175.4.e.c.151.2 4
140.67 even 12 175.4.k.c.74.2 8
140.79 odd 6 1225.4.a.x.1.1 2
140.123 even 12 175.4.k.c.74.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.e.b.11.1 4 28.11 odd 6
35.4.e.b.16.1 yes 4 4.3 odd 2
175.4.e.c.51.2 4 20.19 odd 2
175.4.e.c.151.2 4 140.39 odd 6
175.4.k.c.74.2 8 140.67 even 12
175.4.k.c.74.3 8 140.123 even 12
175.4.k.c.149.2 8 20.3 even 4
175.4.k.c.149.3 8 20.7 even 4
245.4.a.g.1.2 2 28.23 odd 6
245.4.a.h.1.2 2 28.19 even 6
245.4.e.l.116.1 4 28.3 even 6
245.4.e.l.226.1 4 28.27 even 2
315.4.j.c.46.2 4 84.11 even 6
315.4.j.c.226.2 4 12.11 even 2
560.4.q.i.81.1 4 7.4 even 3 inner
560.4.q.i.401.1 4 1.1 even 1 trivial
1225.4.a.v.1.1 2 140.19 even 6
1225.4.a.x.1.1 2 140.79 odd 6
2205.4.a.bf.1.1 2 84.23 even 6
2205.4.a.bg.1.1 2 84.47 odd 6