Properties

Label 245.4.a.h.1.2
Level $245$
Weight $4$
Character 245.1
Self dual yes
Analytic conductor $14.455$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [245,4,Mod(1,245)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(245, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("245.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 245.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.4554679514\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 35)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 245.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.58579 q^{2} +5.24264 q^{3} -5.48528 q^{4} -5.00000 q^{5} -8.31371 q^{6} +21.3848 q^{8} +0.485281 q^{9} +7.92893 q^{10} +28.1421 q^{11} -28.7574 q^{12} +3.85786 q^{13} -26.2132 q^{15} +9.97056 q^{16} -38.3675 q^{17} -0.769553 q^{18} -116.770 q^{19} +27.4264 q^{20} -44.6274 q^{22} -176.463 q^{23} +112.113 q^{24} +25.0000 q^{25} -6.11775 q^{26} -139.007 q^{27} -209.853 q^{29} +41.5685 q^{30} +207.421 q^{31} -186.889 q^{32} +147.539 q^{33} +60.8427 q^{34} -2.66190 q^{36} -15.6670 q^{37} +185.172 q^{38} +20.2254 q^{39} -106.924 q^{40} +10.5736 q^{41} -325.929 q^{43} -154.368 q^{44} -2.42641 q^{45} +279.833 q^{46} +188.510 q^{47} +52.2721 q^{48} -39.6447 q^{50} -201.147 q^{51} -21.1615 q^{52} -275.182 q^{53} +220.436 q^{54} -140.711 q^{55} -612.181 q^{57} +332.782 q^{58} -43.8192 q^{59} +143.787 q^{60} -855.102 q^{61} -328.926 q^{62} +216.602 q^{64} -19.2893 q^{65} -233.966 q^{66} -545.419 q^{67} +210.457 q^{68} -925.132 q^{69} +1026.97 q^{71} +10.3776 q^{72} +252.877 q^{73} +24.8444 q^{74} +131.066 q^{75} +640.514 q^{76} -32.0732 q^{78} -922.642 q^{79} -49.8528 q^{80} -741.867 q^{81} -16.7675 q^{82} +960.071 q^{83} +191.838 q^{85} +516.854 q^{86} -1100.18 q^{87} +601.813 q^{88} +133.205 q^{89} +3.84776 q^{90} +967.949 q^{92} +1087.44 q^{93} -298.936 q^{94} +583.848 q^{95} -979.794 q^{96} +1021.11 q^{97} +13.6569 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{2} + 2 q^{3} + 6 q^{4} - 10 q^{5} + 6 q^{6} + 6 q^{8} - 16 q^{9} + 30 q^{10} + 28 q^{11} - 66 q^{12} + 36 q^{13} - 10 q^{15} - 14 q^{16} + 76 q^{17} + 72 q^{18} - 160 q^{19} - 30 q^{20} - 44 q^{22}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58579 −0.560660 −0.280330 0.959904i \(-0.590444\pi\)
−0.280330 + 0.959904i \(0.590444\pi\)
\(3\) 5.24264 1.00895 0.504473 0.863427i \(-0.331687\pi\)
0.504473 + 0.863427i \(0.331687\pi\)
\(4\) −5.48528 −0.685660
\(5\) −5.00000 −0.447214
\(6\) −8.31371 −0.565676
\(7\) 0 0
\(8\) 21.3848 0.945083
\(9\) 0.485281 0.0179734
\(10\) 7.92893 0.250735
\(11\) 28.1421 0.771379 0.385690 0.922629i \(-0.373964\pi\)
0.385690 + 0.922629i \(0.373964\pi\)
\(12\) −28.7574 −0.691795
\(13\) 3.85786 0.0823061 0.0411530 0.999153i \(-0.486897\pi\)
0.0411530 + 0.999153i \(0.486897\pi\)
\(14\) 0 0
\(15\) −26.2132 −0.451215
\(16\) 9.97056 0.155790
\(17\) −38.3675 −0.547382 −0.273691 0.961818i \(-0.588245\pi\)
−0.273691 + 0.961818i \(0.588245\pi\)
\(18\) −0.769553 −0.0100770
\(19\) −116.770 −1.40994 −0.704968 0.709239i \(-0.749039\pi\)
−0.704968 + 0.709239i \(0.749039\pi\)
\(20\) 27.4264 0.306637
\(21\) 0 0
\(22\) −44.6274 −0.432482
\(23\) −176.463 −1.59979 −0.799893 0.600143i \(-0.795110\pi\)
−0.799893 + 0.600143i \(0.795110\pi\)
\(24\) 112.113 0.953538
\(25\) 25.0000 0.200000
\(26\) −6.11775 −0.0461457
\(27\) −139.007 −0.990812
\(28\) 0 0
\(29\) −209.853 −1.34375 −0.671874 0.740666i \(-0.734510\pi\)
−0.671874 + 0.740666i \(0.734510\pi\)
\(30\) 41.5685 0.252978
\(31\) 207.421 1.20174 0.600871 0.799346i \(-0.294821\pi\)
0.600871 + 0.799346i \(0.294821\pi\)
\(32\) −186.889 −1.03243
\(33\) 147.539 0.778281
\(34\) 60.8427 0.306895
\(35\) 0 0
\(36\) −2.66190 −0.0123236
\(37\) −15.6670 −0.0696117 −0.0348058 0.999394i \(-0.511081\pi\)
−0.0348058 + 0.999394i \(0.511081\pi\)
\(38\) 185.172 0.790495
\(39\) 20.2254 0.0830424
\(40\) −106.924 −0.422654
\(41\) 10.5736 0.0402760 0.0201380 0.999797i \(-0.493589\pi\)
0.0201380 + 0.999797i \(0.493589\pi\)
\(42\) 0 0
\(43\) −325.929 −1.15590 −0.577950 0.816072i \(-0.696147\pi\)
−0.577950 + 0.816072i \(0.696147\pi\)
\(44\) −154.368 −0.528904
\(45\) −2.42641 −0.00803794
\(46\) 279.833 0.896936
\(47\) 188.510 0.585042 0.292521 0.956259i \(-0.405506\pi\)
0.292521 + 0.956259i \(0.405506\pi\)
\(48\) 52.2721 0.157184
\(49\) 0 0
\(50\) −39.6447 −0.112132
\(51\) −201.147 −0.552279
\(52\) −21.1615 −0.0564340
\(53\) −275.182 −0.713191 −0.356595 0.934259i \(-0.616063\pi\)
−0.356595 + 0.934259i \(0.616063\pi\)
\(54\) 220.436 0.555509
\(55\) −140.711 −0.344971
\(56\) 0 0
\(57\) −612.181 −1.42255
\(58\) 332.782 0.753386
\(59\) −43.8192 −0.0966911 −0.0483455 0.998831i \(-0.515395\pi\)
−0.0483455 + 0.998831i \(0.515395\pi\)
\(60\) 143.787 0.309380
\(61\) −855.102 −1.79483 −0.897414 0.441189i \(-0.854557\pi\)
−0.897414 + 0.441189i \(0.854557\pi\)
\(62\) −328.926 −0.673768
\(63\) 0 0
\(64\) 216.602 0.423051
\(65\) −19.2893 −0.0368084
\(66\) −233.966 −0.436351
\(67\) −545.419 −0.994531 −0.497265 0.867598i \(-0.665662\pi\)
−0.497265 + 0.867598i \(0.665662\pi\)
\(68\) 210.457 0.375318
\(69\) −925.132 −1.61410
\(70\) 0 0
\(71\) 1026.97 1.71661 0.858306 0.513138i \(-0.171517\pi\)
0.858306 + 0.513138i \(0.171517\pi\)
\(72\) 10.3776 0.0169863
\(73\) 252.877 0.405439 0.202719 0.979237i \(-0.435022\pi\)
0.202719 + 0.979237i \(0.435022\pi\)
\(74\) 24.8444 0.0390285
\(75\) 131.066 0.201789
\(76\) 640.514 0.966737
\(77\) 0 0
\(78\) −32.0732 −0.0465586
\(79\) −922.642 −1.31399 −0.656996 0.753894i \(-0.728173\pi\)
−0.656996 + 0.753894i \(0.728173\pi\)
\(80\) −49.8528 −0.0696714
\(81\) −741.867 −1.01765
\(82\) −16.7675 −0.0225812
\(83\) 960.071 1.26966 0.634828 0.772653i \(-0.281071\pi\)
0.634828 + 0.772653i \(0.281071\pi\)
\(84\) 0 0
\(85\) 191.838 0.244797
\(86\) 516.854 0.648067
\(87\) −1100.18 −1.35577
\(88\) 601.813 0.729017
\(89\) 133.205 0.158649 0.0793243 0.996849i \(-0.474724\pi\)
0.0793243 + 0.996849i \(0.474724\pi\)
\(90\) 3.84776 0.00450655
\(91\) 0 0
\(92\) 967.949 1.09691
\(93\) 1087.44 1.21249
\(94\) −298.936 −0.328010
\(95\) 583.848 0.630542
\(96\) −979.794 −1.04166
\(97\) 1021.11 1.06884 0.534421 0.845218i \(-0.320530\pi\)
0.534421 + 0.845218i \(0.320530\pi\)
\(98\) 0 0
\(99\) 13.6569 0.0138643
\(100\) −137.132 −0.137132
\(101\) −963.558 −0.949284 −0.474642 0.880179i \(-0.657422\pi\)
−0.474642 + 0.880179i \(0.657422\pi\)
\(102\) 318.976 0.309641
\(103\) 1798.30 1.72031 0.860155 0.510034i \(-0.170367\pi\)
0.860155 + 0.510034i \(0.170367\pi\)
\(104\) 82.4996 0.0777860
\(105\) 0 0
\(106\) 436.379 0.399858
\(107\) 279.003 0.252077 0.126038 0.992025i \(-0.459774\pi\)
0.126038 + 0.992025i \(0.459774\pi\)
\(108\) 762.493 0.679361
\(109\) 781.073 0.686360 0.343180 0.939270i \(-0.388496\pi\)
0.343180 + 0.939270i \(0.388496\pi\)
\(110\) 223.137 0.193412
\(111\) −82.1362 −0.0702345
\(112\) 0 0
\(113\) −587.239 −0.488874 −0.244437 0.969665i \(-0.578603\pi\)
−0.244437 + 0.969665i \(0.578603\pi\)
\(114\) 970.788 0.797567
\(115\) 882.315 0.715446
\(116\) 1151.10 0.921354
\(117\) 1.87215 0.00147932
\(118\) 69.4879 0.0542108
\(119\) 0 0
\(120\) −560.563 −0.426435
\(121\) −539.020 −0.404974
\(122\) 1356.01 1.00629
\(123\) 55.4335 0.0406364
\(124\) −1137.76 −0.823986
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1559.62 1.08972 0.544860 0.838527i \(-0.316583\pi\)
0.544860 + 0.838527i \(0.316583\pi\)
\(128\) 1151.63 0.795240
\(129\) −1708.73 −1.16624
\(130\) 30.5887 0.0206370
\(131\) 1653.65 1.10290 0.551449 0.834209i \(-0.314075\pi\)
0.551449 + 0.834209i \(0.314075\pi\)
\(132\) −809.294 −0.533636
\(133\) 0 0
\(134\) 864.918 0.557594
\(135\) 695.036 0.443105
\(136\) −820.481 −0.517321
\(137\) −296.658 −0.185001 −0.0925007 0.995713i \(-0.529486\pi\)
−0.0925007 + 0.995713i \(0.529486\pi\)
\(138\) 1467.06 0.904961
\(139\) −237.868 −0.145149 −0.0725745 0.997363i \(-0.523121\pi\)
−0.0725745 + 0.997363i \(0.523121\pi\)
\(140\) 0 0
\(141\) 988.288 0.590276
\(142\) −1628.56 −0.962436
\(143\) 108.569 0.0634892
\(144\) 4.83853 0.00280007
\(145\) 1049.26 0.600942
\(146\) −401.009 −0.227313
\(147\) 0 0
\(148\) 85.9377 0.0477299
\(149\) 2737.11 1.50492 0.752459 0.658639i \(-0.228868\pi\)
0.752459 + 0.658639i \(0.228868\pi\)
\(150\) −207.843 −0.113135
\(151\) −3563.65 −1.92057 −0.960283 0.279030i \(-0.909987\pi\)
−0.960283 + 0.279030i \(0.909987\pi\)
\(152\) −2497.09 −1.33251
\(153\) −18.6190 −0.00983831
\(154\) 0 0
\(155\) −1037.11 −0.537435
\(156\) −110.942 −0.0569389
\(157\) −1249.08 −0.634951 −0.317475 0.948266i \(-0.602835\pi\)
−0.317475 + 0.948266i \(0.602835\pi\)
\(158\) 1463.11 0.736703
\(159\) −1442.68 −0.719571
\(160\) 934.447 0.461716
\(161\) 0 0
\(162\) 1176.44 0.570556
\(163\) −1964.64 −0.944062 −0.472031 0.881582i \(-0.656479\pi\)
−0.472031 + 0.881582i \(0.656479\pi\)
\(164\) −57.9991 −0.0276157
\(165\) −737.696 −0.348058
\(166\) −1522.47 −0.711846
\(167\) 939.402 0.435288 0.217644 0.976028i \(-0.430163\pi\)
0.217644 + 0.976028i \(0.430163\pi\)
\(168\) 0 0
\(169\) −2182.12 −0.993226
\(170\) −304.214 −0.137248
\(171\) −56.6661 −0.0253413
\(172\) 1787.81 0.792555
\(173\) 2702.43 1.18764 0.593821 0.804597i \(-0.297619\pi\)
0.593821 + 0.804597i \(0.297619\pi\)
\(174\) 1744.66 0.760126
\(175\) 0 0
\(176\) 280.593 0.120173
\(177\) −229.728 −0.0975561
\(178\) −211.235 −0.0889479
\(179\) −1434.05 −0.598804 −0.299402 0.954127i \(-0.596787\pi\)
−0.299402 + 0.954127i \(0.596787\pi\)
\(180\) 13.3095 0.00551130
\(181\) −2711.21 −1.11339 −0.556693 0.830718i \(-0.687930\pi\)
−0.556693 + 0.830718i \(0.687930\pi\)
\(182\) 0 0
\(183\) −4482.99 −1.81089
\(184\) −3773.62 −1.51193
\(185\) 78.3348 0.0311313
\(186\) −1724.44 −0.679796
\(187\) −1079.74 −0.422239
\(188\) −1034.03 −0.401140
\(189\) 0 0
\(190\) −925.858 −0.353520
\(191\) −3494.60 −1.32388 −0.661938 0.749559i \(-0.730266\pi\)
−0.661938 + 0.749559i \(0.730266\pi\)
\(192\) 1135.57 0.426836
\(193\) −1629.76 −0.607838 −0.303919 0.952698i \(-0.598295\pi\)
−0.303919 + 0.952698i \(0.598295\pi\)
\(194\) −1619.26 −0.599257
\(195\) −101.127 −0.0371377
\(196\) 0 0
\(197\) 693.696 0.250882 0.125441 0.992101i \(-0.459965\pi\)
0.125441 + 0.992101i \(0.459965\pi\)
\(198\) −21.6569 −0.00777316
\(199\) 3805.61 1.35564 0.677821 0.735227i \(-0.262924\pi\)
0.677821 + 0.735227i \(0.262924\pi\)
\(200\) 534.619 0.189017
\(201\) −2859.44 −1.00343
\(202\) 1528.00 0.532226
\(203\) 0 0
\(204\) 1103.35 0.378676
\(205\) −52.8680 −0.0180120
\(206\) −2851.72 −0.964509
\(207\) −85.6342 −0.0287536
\(208\) 38.4651 0.0128225
\(209\) −3286.14 −1.08760
\(210\) 0 0
\(211\) −627.239 −0.204649 −0.102324 0.994751i \(-0.532628\pi\)
−0.102324 + 0.994751i \(0.532628\pi\)
\(212\) 1509.45 0.489006
\(213\) 5384.06 1.73197
\(214\) −442.439 −0.141330
\(215\) 1629.64 0.516934
\(216\) −2972.64 −0.936400
\(217\) 0 0
\(218\) −1238.62 −0.384815
\(219\) 1325.74 0.409066
\(220\) 771.838 0.236533
\(221\) −148.017 −0.0450529
\(222\) 130.251 0.0393777
\(223\) 2000.99 0.600878 0.300439 0.953801i \(-0.402867\pi\)
0.300439 + 0.953801i \(0.402867\pi\)
\(224\) 0 0
\(225\) 12.1320 0.00359468
\(226\) 931.235 0.274092
\(227\) 1592.24 0.465554 0.232777 0.972530i \(-0.425219\pi\)
0.232777 + 0.972530i \(0.425219\pi\)
\(228\) 3357.98 0.975386
\(229\) 3925.16 1.13267 0.566336 0.824174i \(-0.308360\pi\)
0.566336 + 0.824174i \(0.308360\pi\)
\(230\) −1399.16 −0.401122
\(231\) 0 0
\(232\) −4487.66 −1.26995
\(233\) 2169.75 0.610065 0.305032 0.952342i \(-0.401333\pi\)
0.305032 + 0.952342i \(0.401333\pi\)
\(234\) −2.96883 −0.000829395 0
\(235\) −942.548 −0.261639
\(236\) 240.361 0.0662972
\(237\) −4837.08 −1.32575
\(238\) 0 0
\(239\) 1057.70 0.286262 0.143131 0.989704i \(-0.454283\pi\)
0.143131 + 0.989704i \(0.454283\pi\)
\(240\) −261.360 −0.0702948
\(241\) −2399.24 −0.641281 −0.320640 0.947201i \(-0.603898\pi\)
−0.320640 + 0.947201i \(0.603898\pi\)
\(242\) 854.771 0.227053
\(243\) −136.150 −0.0359424
\(244\) 4690.47 1.23064
\(245\) 0 0
\(246\) −87.9058 −0.0227832
\(247\) −450.481 −0.116046
\(248\) 4435.66 1.13574
\(249\) 5033.31 1.28102
\(250\) 198.223 0.0501470
\(251\) 3812.95 0.958848 0.479424 0.877583i \(-0.340846\pi\)
0.479424 + 0.877583i \(0.340846\pi\)
\(252\) 0 0
\(253\) −4966.05 −1.23404
\(254\) −2473.23 −0.610962
\(255\) 1005.74 0.246987
\(256\) −3559.06 −0.868910
\(257\) −3490.16 −0.847122 −0.423561 0.905868i \(-0.639220\pi\)
−0.423561 + 0.905868i \(0.639220\pi\)
\(258\) 2709.68 0.653865
\(259\) 0 0
\(260\) 105.807 0.0252381
\(261\) −101.838 −0.0241517
\(262\) −2622.33 −0.618351
\(263\) 7124.56 1.67041 0.835207 0.549936i \(-0.185348\pi\)
0.835207 + 0.549936i \(0.185348\pi\)
\(264\) 3155.09 0.735539
\(265\) 1375.91 0.318949
\(266\) 0 0
\(267\) 698.347 0.160068
\(268\) 2991.78 0.681910
\(269\) 427.943 0.0969968 0.0484984 0.998823i \(-0.484556\pi\)
0.0484984 + 0.998823i \(0.484556\pi\)
\(270\) −1102.18 −0.248431
\(271\) −8188.58 −1.83550 −0.917751 0.397157i \(-0.869997\pi\)
−0.917751 + 0.397157i \(0.869997\pi\)
\(272\) −382.546 −0.0852767
\(273\) 0 0
\(274\) 470.436 0.103723
\(275\) 703.553 0.154276
\(276\) 5074.61 1.10672
\(277\) −4169.96 −0.904507 −0.452254 0.891889i \(-0.649380\pi\)
−0.452254 + 0.891889i \(0.649380\pi\)
\(278\) 377.208 0.0813792
\(279\) 100.658 0.0215994
\(280\) 0 0
\(281\) 1284.60 0.272714 0.136357 0.990660i \(-0.456461\pi\)
0.136357 + 0.990660i \(0.456461\pi\)
\(282\) −1567.21 −0.330944
\(283\) −4789.35 −1.00600 −0.502998 0.864287i \(-0.667770\pi\)
−0.502998 + 0.864287i \(0.667770\pi\)
\(284\) −5633.25 −1.17701
\(285\) 3060.90 0.636184
\(286\) −172.167 −0.0355959
\(287\) 0 0
\(288\) −90.6939 −0.0185562
\(289\) −3440.93 −0.700373
\(290\) −1663.91 −0.336924
\(291\) 5353.30 1.07840
\(292\) −1387.10 −0.277993
\(293\) −6983.27 −1.39238 −0.696189 0.717858i \(-0.745123\pi\)
−0.696189 + 0.717858i \(0.745123\pi\)
\(294\) 0 0
\(295\) 219.096 0.0432416
\(296\) −335.034 −0.0657888
\(297\) −3911.96 −0.764292
\(298\) −4340.47 −0.843748
\(299\) −680.770 −0.131672
\(300\) −718.934 −0.138359
\(301\) 0 0
\(302\) 5651.18 1.07678
\(303\) −5051.59 −0.957777
\(304\) −1164.26 −0.219654
\(305\) 4275.51 0.802672
\(306\) 29.5258 0.00551595
\(307\) 2069.43 0.384719 0.192359 0.981325i \(-0.438386\pi\)
0.192359 + 0.981325i \(0.438386\pi\)
\(308\) 0 0
\(309\) 9427.84 1.73570
\(310\) 1644.63 0.301318
\(311\) −2121.96 −0.386898 −0.193449 0.981110i \(-0.561967\pi\)
−0.193449 + 0.981110i \(0.561967\pi\)
\(312\) 432.516 0.0784820
\(313\) −1528.80 −0.276079 −0.138039 0.990427i \(-0.544080\pi\)
−0.138039 + 0.990427i \(0.544080\pi\)
\(314\) 1980.77 0.355992
\(315\) 0 0
\(316\) 5060.95 0.900951
\(317\) 5142.44 0.911131 0.455565 0.890202i \(-0.349437\pi\)
0.455565 + 0.890202i \(0.349437\pi\)
\(318\) 2287.78 0.403435
\(319\) −5905.71 −1.03654
\(320\) −1083.01 −0.189194
\(321\) 1462.71 0.254332
\(322\) 0 0
\(323\) 4480.16 0.771773
\(324\) 4069.35 0.697762
\(325\) 96.4466 0.0164612
\(326\) 3115.49 0.529298
\(327\) 4094.89 0.692501
\(328\) 226.114 0.0380642
\(329\) 0 0
\(330\) 1169.83 0.195142
\(331\) −5774.04 −0.958822 −0.479411 0.877591i \(-0.659150\pi\)
−0.479411 + 0.877591i \(0.659150\pi\)
\(332\) −5266.26 −0.870553
\(333\) −7.60288 −0.00125116
\(334\) −1489.69 −0.244049
\(335\) 2727.10 0.444768
\(336\) 0 0
\(337\) −484.761 −0.0783579 −0.0391790 0.999232i \(-0.512474\pi\)
−0.0391790 + 0.999232i \(0.512474\pi\)
\(338\) 3460.37 0.556862
\(339\) −3078.68 −0.493248
\(340\) −1052.28 −0.167847
\(341\) 5837.28 0.926998
\(342\) 89.8603 0.0142079
\(343\) 0 0
\(344\) −6969.92 −1.09242
\(345\) 4625.66 0.721847
\(346\) −4285.48 −0.665864
\(347\) −7798.21 −1.20643 −0.603213 0.797580i \(-0.706113\pi\)
−0.603213 + 0.797580i \(0.706113\pi\)
\(348\) 6034.81 0.929597
\(349\) 662.157 0.101560 0.0507800 0.998710i \(-0.483829\pi\)
0.0507800 + 0.998710i \(0.483829\pi\)
\(350\) 0 0
\(351\) −536.271 −0.0815499
\(352\) −5259.47 −0.796394
\(353\) −6626.14 −0.999076 −0.499538 0.866292i \(-0.666497\pi\)
−0.499538 + 0.866292i \(0.666497\pi\)
\(354\) 364.300 0.0546958
\(355\) −5134.87 −0.767692
\(356\) −730.668 −0.108779
\(357\) 0 0
\(358\) 2274.10 0.335725
\(359\) 10398.1 1.52866 0.764329 0.644827i \(-0.223070\pi\)
0.764329 + 0.644827i \(0.223070\pi\)
\(360\) −51.8882 −0.00759652
\(361\) 6776.13 0.987918
\(362\) 4299.41 0.624231
\(363\) −2825.89 −0.408597
\(364\) 0 0
\(365\) −1264.39 −0.181318
\(366\) 7109.07 1.01529
\(367\) −2246.31 −0.319499 −0.159750 0.987158i \(-0.551069\pi\)
−0.159750 + 0.987158i \(0.551069\pi\)
\(368\) −1759.44 −0.249231
\(369\) 5.13117 0.000723897 0
\(370\) −124.222 −0.0174541
\(371\) 0 0
\(372\) −5964.89 −0.831358
\(373\) 192.025 0.0266560 0.0133280 0.999911i \(-0.495757\pi\)
0.0133280 + 0.999911i \(0.495757\pi\)
\(374\) 1712.24 0.236733
\(375\) −655.330 −0.0902429
\(376\) 4031.24 0.552913
\(377\) −809.584 −0.110599
\(378\) 0 0
\(379\) −4565.76 −0.618805 −0.309403 0.950931i \(-0.600129\pi\)
−0.309403 + 0.950931i \(0.600129\pi\)
\(380\) −3202.57 −0.432338
\(381\) 8176.55 1.09947
\(382\) 5541.69 0.742245
\(383\) −1387.07 −0.185055 −0.0925273 0.995710i \(-0.529495\pi\)
−0.0925273 + 0.995710i \(0.529495\pi\)
\(384\) 6037.58 0.802355
\(385\) 0 0
\(386\) 2584.45 0.340791
\(387\) −158.167 −0.0207754
\(388\) −5601.06 −0.732862
\(389\) 4583.01 0.597346 0.298673 0.954355i \(-0.403456\pi\)
0.298673 + 0.954355i \(0.403456\pi\)
\(390\) 160.366 0.0208216
\(391\) 6770.45 0.875694
\(392\) 0 0
\(393\) 8669.47 1.11277
\(394\) −1100.05 −0.140660
\(395\) 4613.21 0.587635
\(396\) −74.9117 −0.00950620
\(397\) 8961.06 1.13285 0.566426 0.824112i \(-0.308326\pi\)
0.566426 + 0.824112i \(0.308326\pi\)
\(398\) −6034.89 −0.760054
\(399\) 0 0
\(400\) 249.264 0.0311580
\(401\) 11629.3 1.44823 0.724113 0.689682i \(-0.242250\pi\)
0.724113 + 0.689682i \(0.242250\pi\)
\(402\) 4534.46 0.562582
\(403\) 800.203 0.0989106
\(404\) 5285.39 0.650886
\(405\) 3709.34 0.455107
\(406\) 0 0
\(407\) −440.902 −0.0536970
\(408\) −4301.49 −0.521949
\(409\) −4320.13 −0.522290 −0.261145 0.965300i \(-0.584100\pi\)
−0.261145 + 0.965300i \(0.584100\pi\)
\(410\) 83.8373 0.0100986
\(411\) −1555.27 −0.186656
\(412\) −9864.19 −1.17955
\(413\) 0 0
\(414\) 135.798 0.0161210
\(415\) −4800.36 −0.567808
\(416\) −720.994 −0.0849751
\(417\) −1247.06 −0.146448
\(418\) 5211.12 0.609771
\(419\) −7824.02 −0.912240 −0.456120 0.889918i \(-0.650761\pi\)
−0.456120 + 0.889918i \(0.650761\pi\)
\(420\) 0 0
\(421\) 6944.28 0.803904 0.401952 0.915661i \(-0.368332\pi\)
0.401952 + 0.915661i \(0.368332\pi\)
\(422\) 994.667 0.114738
\(423\) 91.4802 0.0105152
\(424\) −5884.70 −0.674024
\(425\) −959.188 −0.109476
\(426\) −8537.97 −0.971047
\(427\) 0 0
\(428\) −1530.41 −0.172839
\(429\) 569.186 0.0640572
\(430\) −2584.27 −0.289824
\(431\) 3257.36 0.364041 0.182020 0.983295i \(-0.441736\pi\)
0.182020 + 0.983295i \(0.441736\pi\)
\(432\) −1385.98 −0.154359
\(433\) 16857.1 1.87090 0.935449 0.353461i \(-0.114995\pi\)
0.935449 + 0.353461i \(0.114995\pi\)
\(434\) 0 0
\(435\) 5500.91 0.606319
\(436\) −4284.41 −0.470610
\(437\) 20605.5 2.25559
\(438\) −2102.35 −0.229347
\(439\) −7953.02 −0.864640 −0.432320 0.901720i \(-0.642305\pi\)
−0.432320 + 0.901720i \(0.642305\pi\)
\(440\) −3009.07 −0.326026
\(441\) 0 0
\(442\) 234.723 0.0252593
\(443\) −9709.76 −1.04137 −0.520683 0.853750i \(-0.674323\pi\)
−0.520683 + 0.853750i \(0.674323\pi\)
\(444\) 450.540 0.0481570
\(445\) −666.026 −0.0709498
\(446\) −3173.14 −0.336889
\(447\) 14349.7 1.51838
\(448\) 0 0
\(449\) −11758.3 −1.23588 −0.617938 0.786227i \(-0.712032\pi\)
−0.617938 + 0.786227i \(0.712032\pi\)
\(450\) −19.2388 −0.00201539
\(451\) 297.563 0.0310681
\(452\) 3221.17 0.335202
\(453\) −18682.9 −1.93775
\(454\) −2524.96 −0.261018
\(455\) 0 0
\(456\) −13091.3 −1.34443
\(457\) 2750.18 0.281505 0.140753 0.990045i \(-0.455048\pi\)
0.140753 + 0.990045i \(0.455048\pi\)
\(458\) −6224.47 −0.635044
\(459\) 5333.36 0.542353
\(460\) −4839.75 −0.490553
\(461\) 3041.43 0.307275 0.153637 0.988127i \(-0.450901\pi\)
0.153637 + 0.988127i \(0.450901\pi\)
\(462\) 0 0
\(463\) 5422.89 0.544327 0.272163 0.962251i \(-0.412261\pi\)
0.272163 + 0.962251i \(0.412261\pi\)
\(464\) −2092.35 −0.209343
\(465\) −5437.18 −0.542243
\(466\) −3440.76 −0.342039
\(467\) 5547.60 0.549705 0.274853 0.961486i \(-0.411371\pi\)
0.274853 + 0.961486i \(0.411371\pi\)
\(468\) −10.2693 −0.00101431
\(469\) 0 0
\(470\) 1494.68 0.146690
\(471\) −6548.47 −0.640632
\(472\) −937.064 −0.0913810
\(473\) −9172.34 −0.891637
\(474\) 7670.57 0.743294
\(475\) −2919.24 −0.281987
\(476\) 0 0
\(477\) −133.541 −0.0128185
\(478\) −1677.28 −0.160496
\(479\) −1128.55 −0.107651 −0.0538254 0.998550i \(-0.517141\pi\)
−0.0538254 + 0.998550i \(0.517141\pi\)
\(480\) 4898.97 0.465847
\(481\) −60.4410 −0.00572946
\(482\) 3804.68 0.359540
\(483\) 0 0
\(484\) 2956.68 0.277674
\(485\) −5105.53 −0.478001
\(486\) 215.904 0.0201515
\(487\) 4806.18 0.447205 0.223602 0.974680i \(-0.428218\pi\)
0.223602 + 0.974680i \(0.428218\pi\)
\(488\) −18286.2 −1.69626
\(489\) −10299.9 −0.952508
\(490\) 0 0
\(491\) −12452.1 −1.14451 −0.572255 0.820076i \(-0.693931\pi\)
−0.572255 + 0.820076i \(0.693931\pi\)
\(492\) −304.069 −0.0278627
\(493\) 8051.53 0.735543
\(494\) 714.367 0.0650625
\(495\) −68.2843 −0.00620030
\(496\) 2068.11 0.187219
\(497\) 0 0
\(498\) −7981.75 −0.718214
\(499\) −11797.4 −1.05836 −0.529180 0.848509i \(-0.677501\pi\)
−0.529180 + 0.848509i \(0.677501\pi\)
\(500\) 685.660 0.0613273
\(501\) 4924.94 0.439182
\(502\) −6046.52 −0.537588
\(503\) −2900.55 −0.257116 −0.128558 0.991702i \(-0.541035\pi\)
−0.128558 + 0.991702i \(0.541035\pi\)
\(504\) 0 0
\(505\) 4817.79 0.424533
\(506\) 7875.09 0.691878
\(507\) −11440.1 −1.00211
\(508\) −8554.98 −0.747177
\(509\) −9486.85 −0.826124 −0.413062 0.910703i \(-0.635541\pi\)
−0.413062 + 0.910703i \(0.635541\pi\)
\(510\) −1594.88 −0.138476
\(511\) 0 0
\(512\) −3569.14 −0.308076
\(513\) 16231.8 1.39698
\(514\) 5534.65 0.474947
\(515\) −8991.50 −0.769346
\(516\) 9372.86 0.799645
\(517\) 5305.06 0.451289
\(518\) 0 0
\(519\) 14167.9 1.19827
\(520\) −412.498 −0.0347870
\(521\) 20353.0 1.71148 0.855740 0.517406i \(-0.173102\pi\)
0.855740 + 0.517406i \(0.173102\pi\)
\(522\) 161.493 0.0135409
\(523\) −9228.89 −0.771608 −0.385804 0.922581i \(-0.626076\pi\)
−0.385804 + 0.922581i \(0.626076\pi\)
\(524\) −9070.71 −0.756213
\(525\) 0 0
\(526\) −11298.0 −0.936535
\(527\) −7958.25 −0.657811
\(528\) 1471.05 0.121248
\(529\) 18972.2 1.55932
\(530\) −2181.90 −0.178822
\(531\) −21.2646 −0.00173787
\(532\) 0 0
\(533\) 40.7915 0.00331496
\(534\) −1107.43 −0.0897437
\(535\) −1395.01 −0.112732
\(536\) −11663.7 −0.939914
\(537\) −7518.20 −0.604161
\(538\) −678.626 −0.0543822
\(539\) 0 0
\(540\) −3812.47 −0.303819
\(541\) −697.274 −0.0554125 −0.0277062 0.999616i \(-0.508820\pi\)
−0.0277062 + 0.999616i \(0.508820\pi\)
\(542\) 12985.3 1.02909
\(543\) −14213.9 −1.12335
\(544\) 7170.48 0.565132
\(545\) −3905.37 −0.306950
\(546\) 0 0
\(547\) −8032.62 −0.627879 −0.313940 0.949443i \(-0.601649\pi\)
−0.313940 + 0.949443i \(0.601649\pi\)
\(548\) 1627.25 0.126848
\(549\) −414.965 −0.0322591
\(550\) −1115.69 −0.0864963
\(551\) 24504.4 1.89460
\(552\) −19783.7 −1.52546
\(553\) 0 0
\(554\) 6612.66 0.507121
\(555\) 410.681 0.0314098
\(556\) 1304.77 0.0995228
\(557\) 13586.7 1.03355 0.516776 0.856120i \(-0.327132\pi\)
0.516776 + 0.856120i \(0.327132\pi\)
\(558\) −159.622 −0.0121099
\(559\) −1257.39 −0.0951376
\(560\) 0 0
\(561\) −5660.71 −0.426017
\(562\) −2037.10 −0.152900
\(563\) −17215.8 −1.28874 −0.644369 0.764715i \(-0.722880\pi\)
−0.644369 + 0.764715i \(0.722880\pi\)
\(564\) −5421.04 −0.404729
\(565\) 2936.19 0.218631
\(566\) 7594.88 0.564022
\(567\) 0 0
\(568\) 21961.6 1.62234
\(569\) −18441.5 −1.35871 −0.679357 0.733808i \(-0.737741\pi\)
−0.679357 + 0.733808i \(0.737741\pi\)
\(570\) −4853.94 −0.356683
\(571\) −10780.3 −0.790093 −0.395046 0.918661i \(-0.629271\pi\)
−0.395046 + 0.918661i \(0.629271\pi\)
\(572\) −595.529 −0.0435320
\(573\) −18320.9 −1.33572
\(574\) 0 0
\(575\) −4411.57 −0.319957
\(576\) 105.113 0.00760366
\(577\) 12963.0 0.935279 0.467640 0.883919i \(-0.345105\pi\)
0.467640 + 0.883919i \(0.345105\pi\)
\(578\) 5456.58 0.392671
\(579\) −8544.25 −0.613276
\(580\) −5755.51 −0.412042
\(581\) 0 0
\(582\) −8489.18 −0.604619
\(583\) −7744.20 −0.550141
\(584\) 5407.72 0.383173
\(585\) −9.36075 −0.000661571 0
\(586\) 11074.0 0.780651
\(587\) 16181.8 1.13781 0.568905 0.822403i \(-0.307367\pi\)
0.568905 + 0.822403i \(0.307367\pi\)
\(588\) 0 0
\(589\) −24220.5 −1.69438
\(590\) −347.439 −0.0242438
\(591\) 3636.80 0.253127
\(592\) −156.208 −0.0108448
\(593\) −747.630 −0.0517732 −0.0258866 0.999665i \(-0.508241\pi\)
−0.0258866 + 0.999665i \(0.508241\pi\)
\(594\) 6203.53 0.428508
\(595\) 0 0
\(596\) −15013.8 −1.03186
\(597\) 19951.5 1.36777
\(598\) 1079.56 0.0738233
\(599\) 3849.86 0.262606 0.131303 0.991342i \(-0.458084\pi\)
0.131303 + 0.991342i \(0.458084\pi\)
\(600\) 2802.82 0.190708
\(601\) −1808.82 −0.122768 −0.0613838 0.998114i \(-0.519551\pi\)
−0.0613838 + 0.998114i \(0.519551\pi\)
\(602\) 0 0
\(603\) −264.682 −0.0178751
\(604\) 19547.6 1.31685
\(605\) 2695.10 0.181110
\(606\) 8010.74 0.536987
\(607\) −536.092 −0.0358473 −0.0179237 0.999839i \(-0.505706\pi\)
−0.0179237 + 0.999839i \(0.505706\pi\)
\(608\) 21823.0 1.45566
\(609\) 0 0
\(610\) −6780.04 −0.450026
\(611\) 727.245 0.0481525
\(612\) 102.131 0.00674573
\(613\) 14736.0 0.970931 0.485465 0.874256i \(-0.338650\pi\)
0.485465 + 0.874256i \(0.338650\pi\)
\(614\) −3281.68 −0.215697
\(615\) −277.168 −0.0181731
\(616\) 0 0
\(617\) 9604.91 0.626709 0.313354 0.949636i \(-0.398547\pi\)
0.313354 + 0.949636i \(0.398547\pi\)
\(618\) −14950.5 −0.973138
\(619\) 8594.22 0.558047 0.279023 0.960284i \(-0.409989\pi\)
0.279023 + 0.960284i \(0.409989\pi\)
\(620\) 5688.82 0.368498
\(621\) 24529.6 1.58509
\(622\) 3364.98 0.216918
\(623\) 0 0
\(624\) 201.659 0.0129372
\(625\) 625.000 0.0400000
\(626\) 2424.34 0.154786
\(627\) −17228.1 −1.09733
\(628\) 6851.55 0.435361
\(629\) 601.102 0.0381042
\(630\) 0 0
\(631\) −14803.3 −0.933933 −0.466966 0.884275i \(-0.654653\pi\)
−0.466966 + 0.884275i \(0.654653\pi\)
\(632\) −19730.5 −1.24183
\(633\) −3288.39 −0.206480
\(634\) −8154.82 −0.510835
\(635\) −7798.12 −0.487337
\(636\) 7913.50 0.493381
\(637\) 0 0
\(638\) 9365.19 0.581146
\(639\) 498.372 0.0308533
\(640\) −5758.15 −0.355642
\(641\) −9290.31 −0.572458 −0.286229 0.958161i \(-0.592402\pi\)
−0.286229 + 0.958161i \(0.592402\pi\)
\(642\) −2319.55 −0.142594
\(643\) 1861.78 0.114186 0.0570928 0.998369i \(-0.481817\pi\)
0.0570928 + 0.998369i \(0.481817\pi\)
\(644\) 0 0
\(645\) 8543.64 0.521559
\(646\) −7104.58 −0.432703
\(647\) −29527.4 −1.79419 −0.897095 0.441837i \(-0.854327\pi\)
−0.897095 + 0.441837i \(0.854327\pi\)
\(648\) −15864.7 −0.961764
\(649\) −1233.17 −0.0745855
\(650\) −152.944 −0.00922915
\(651\) 0 0
\(652\) 10776.6 0.647306
\(653\) 5192.55 0.311180 0.155590 0.987822i \(-0.450272\pi\)
0.155590 + 0.987822i \(0.450272\pi\)
\(654\) −6493.61 −0.388258
\(655\) −8268.23 −0.493231
\(656\) 105.425 0.00627461
\(657\) 122.717 0.00728711
\(658\) 0 0
\(659\) −11740.1 −0.693976 −0.346988 0.937870i \(-0.612795\pi\)
−0.346988 + 0.937870i \(0.612795\pi\)
\(660\) 4046.47 0.238649
\(661\) −8792.50 −0.517381 −0.258690 0.965960i \(-0.583291\pi\)
−0.258690 + 0.965960i \(0.583291\pi\)
\(662\) 9156.39 0.537573
\(663\) −775.999 −0.0454559
\(664\) 20530.9 1.19993
\(665\) 0 0
\(666\) 12.0565 0.000701474 0
\(667\) 37031.3 2.14971
\(668\) −5152.88 −0.298460
\(669\) 10490.4 0.606254
\(670\) −4324.59 −0.249364
\(671\) −24064.4 −1.38449
\(672\) 0 0
\(673\) 30366.5 1.73929 0.869646 0.493676i \(-0.164347\pi\)
0.869646 + 0.493676i \(0.164347\pi\)
\(674\) 768.728 0.0439322
\(675\) −3475.18 −0.198162
\(676\) 11969.5 0.681015
\(677\) 17416.9 0.988754 0.494377 0.869248i \(-0.335396\pi\)
0.494377 + 0.869248i \(0.335396\pi\)
\(678\) 4882.13 0.276544
\(679\) 0 0
\(680\) 4102.41 0.231353
\(681\) 8347.55 0.469719
\(682\) −9256.68 −0.519731
\(683\) 8828.32 0.494592 0.247296 0.968940i \(-0.420458\pi\)
0.247296 + 0.968940i \(0.420458\pi\)
\(684\) 310.829 0.0173755
\(685\) 1483.29 0.0827351
\(686\) 0 0
\(687\) 20578.2 1.14281
\(688\) −3249.69 −0.180078
\(689\) −1061.61 −0.0586999
\(690\) −7335.31 −0.404711
\(691\) −10631.0 −0.585273 −0.292636 0.956224i \(-0.594533\pi\)
−0.292636 + 0.956224i \(0.594533\pi\)
\(692\) −14823.6 −0.814319
\(693\) 0 0
\(694\) 12366.3 0.676395
\(695\) 1189.34 0.0649126
\(696\) −23527.2 −1.28131
\(697\) −405.683 −0.0220464
\(698\) −1050.04 −0.0569407
\(699\) 11375.2 0.615523
\(700\) 0 0
\(701\) 30120.7 1.62289 0.811443 0.584431i \(-0.198682\pi\)
0.811443 + 0.584431i \(0.198682\pi\)
\(702\) 850.411 0.0457218
\(703\) 1829.42 0.0981480
\(704\) 6095.65 0.326333
\(705\) −4941.44 −0.263979
\(706\) 10507.6 0.560142
\(707\) 0 0
\(708\) 1260.12 0.0668904
\(709\) 4414.94 0.233860 0.116930 0.993140i \(-0.462695\pi\)
0.116930 + 0.993140i \(0.462695\pi\)
\(710\) 8142.81 0.430415
\(711\) −447.741 −0.0236169
\(712\) 2848.56 0.149936
\(713\) −36602.2 −1.92253
\(714\) 0 0
\(715\) −542.843 −0.0283932
\(716\) 7866.16 0.410576
\(717\) 5545.12 0.288823
\(718\) −16489.1 −0.857058
\(719\) −17136.0 −0.888822 −0.444411 0.895823i \(-0.646587\pi\)
−0.444411 + 0.895823i \(0.646587\pi\)
\(720\) −24.1926 −0.00125223
\(721\) 0 0
\(722\) −10745.5 −0.553886
\(723\) −12578.4 −0.647018
\(724\) 14871.8 0.763405
\(725\) −5246.32 −0.268750
\(726\) 4481.26 0.229084
\(727\) 3271.77 0.166909 0.0834546 0.996512i \(-0.473405\pi\)
0.0834546 + 0.996512i \(0.473405\pi\)
\(728\) 0 0
\(729\) 19316.6 0.981386
\(730\) 2005.05 0.101658
\(731\) 12505.1 0.632719
\(732\) 24590.5 1.24165
\(733\) −4469.84 −0.225235 −0.112618 0.993638i \(-0.535923\pi\)
−0.112618 + 0.993638i \(0.535923\pi\)
\(734\) 3562.16 0.179130
\(735\) 0 0
\(736\) 32979.1 1.65166
\(737\) −15349.3 −0.767161
\(738\) −8.13694 −0.000405860 0
\(739\) −2475.20 −0.123209 −0.0616046 0.998101i \(-0.519622\pi\)
−0.0616046 + 0.998101i \(0.519622\pi\)
\(740\) −429.688 −0.0213455
\(741\) −2361.71 −0.117084
\(742\) 0 0
\(743\) 9240.48 0.456259 0.228129 0.973631i \(-0.426739\pi\)
0.228129 + 0.973631i \(0.426739\pi\)
\(744\) 23254.6 1.14591
\(745\) −13685.6 −0.673020
\(746\) −304.511 −0.0149450
\(747\) 465.905 0.0228200
\(748\) 5922.70 0.289513
\(749\) 0 0
\(750\) 1039.21 0.0505956
\(751\) 5052.47 0.245496 0.122748 0.992438i \(-0.460829\pi\)
0.122748 + 0.992438i \(0.460829\pi\)
\(752\) 1879.55 0.0911437
\(753\) 19989.9 0.967427
\(754\) 1283.83 0.0620082
\(755\) 17818.2 0.858903
\(756\) 0 0
\(757\) −37779.2 −1.81388 −0.906942 0.421256i \(-0.861589\pi\)
−0.906942 + 0.421256i \(0.861589\pi\)
\(758\) 7240.32 0.346939
\(759\) −26035.2 −1.24508
\(760\) 12485.5 0.595914
\(761\) −7502.70 −0.357388 −0.178694 0.983905i \(-0.557187\pi\)
−0.178694 + 0.983905i \(0.557187\pi\)
\(762\) −12966.3 −0.616428
\(763\) 0 0
\(764\) 19168.9 0.907729
\(765\) 93.0952 0.00439982
\(766\) 2199.60 0.103753
\(767\) −169.049 −0.00795826
\(768\) −18658.9 −0.876684
\(769\) −24209.4 −1.13526 −0.567628 0.823285i \(-0.692139\pi\)
−0.567628 + 0.823285i \(0.692139\pi\)
\(770\) 0 0
\(771\) −18297.7 −0.854701
\(772\) 8939.70 0.416770
\(773\) −7520.99 −0.349950 −0.174975 0.984573i \(-0.555984\pi\)
−0.174975 + 0.984573i \(0.555984\pi\)
\(774\) 250.819 0.0116480
\(775\) 5185.53 0.240348
\(776\) 21836.1 1.01014
\(777\) 0 0
\(778\) −7267.67 −0.334908
\(779\) −1234.67 −0.0567866
\(780\) 554.710 0.0254638
\(781\) 28901.3 1.32416
\(782\) −10736.5 −0.490967
\(783\) 29171.0 1.33140
\(784\) 0 0
\(785\) 6245.39 0.283959
\(786\) −13747.9 −0.623883
\(787\) 16121.4 0.730196 0.365098 0.930969i \(-0.381035\pi\)
0.365098 + 0.930969i \(0.381035\pi\)
\(788\) −3805.12 −0.172020
\(789\) 37351.5 1.68536
\(790\) −7315.56 −0.329463
\(791\) 0 0
\(792\) 292.049 0.0131029
\(793\) −3298.87 −0.147725
\(794\) −14210.3 −0.635146
\(795\) 7213.39 0.321802
\(796\) −20874.9 −0.929510
\(797\) 32223.0 1.43212 0.716058 0.698041i \(-0.245944\pi\)
0.716058 + 0.698041i \(0.245944\pi\)
\(798\) 0 0
\(799\) −7232.65 −0.320241
\(800\) −4672.23 −0.206486
\(801\) 64.6420 0.00285145
\(802\) −18441.5 −0.811962
\(803\) 7116.50 0.312747
\(804\) 15684.8 0.688011
\(805\) 0 0
\(806\) −1268.95 −0.0554552
\(807\) 2243.55 0.0978646
\(808\) −20605.5 −0.897151
\(809\) −24544.4 −1.06667 −0.533334 0.845905i \(-0.679061\pi\)
−0.533334 + 0.845905i \(0.679061\pi\)
\(810\) −5882.21 −0.255160
\(811\) −18783.9 −0.813308 −0.406654 0.913582i \(-0.633305\pi\)
−0.406654 + 0.913582i \(0.633305\pi\)
\(812\) 0 0
\(813\) −42929.8 −1.85192
\(814\) 699.176 0.0301058
\(815\) 9823.18 0.422197
\(816\) −2005.55 −0.0860396
\(817\) 38058.6 1.62974
\(818\) 6850.80 0.292827
\(819\) 0 0
\(820\) 289.996 0.0123501
\(821\) 18085.1 0.768786 0.384393 0.923170i \(-0.374411\pi\)
0.384393 + 0.923170i \(0.374411\pi\)
\(822\) 2466.33 0.104651
\(823\) 7435.18 0.314914 0.157457 0.987526i \(-0.449670\pi\)
0.157457 + 0.987526i \(0.449670\pi\)
\(824\) 38456.3 1.62583
\(825\) 3688.48 0.155656
\(826\) 0 0
\(827\) 26487.2 1.11373 0.556863 0.830604i \(-0.312005\pi\)
0.556863 + 0.830604i \(0.312005\pi\)
\(828\) 469.728 0.0197152
\(829\) 19377.1 0.811813 0.405906 0.913915i \(-0.366956\pi\)
0.405906 + 0.913915i \(0.366956\pi\)
\(830\) 7612.34 0.318347
\(831\) −21861.6 −0.912600
\(832\) 835.622 0.0348197
\(833\) 0 0
\(834\) 1977.56 0.0821073
\(835\) −4697.01 −0.194667
\(836\) 18025.4 0.745721
\(837\) −28833.1 −1.19070
\(838\) 12407.2 0.511456
\(839\) 4645.97 0.191176 0.0955880 0.995421i \(-0.469527\pi\)
0.0955880 + 0.995421i \(0.469527\pi\)
\(840\) 0 0
\(841\) 19649.2 0.805658
\(842\) −11012.1 −0.450717
\(843\) 6734.69 0.275154
\(844\) 3440.58 0.140320
\(845\) 10910.6 0.444184
\(846\) −145.068 −0.00589544
\(847\) 0 0
\(848\) −2743.72 −0.111108
\(849\) −25108.8 −1.01500
\(850\) 1521.07 0.0613791
\(851\) 2764.64 0.111364
\(852\) −29533.1 −1.18754
\(853\) −32566.5 −1.30722 −0.653609 0.756833i \(-0.726746\pi\)
−0.653609 + 0.756833i \(0.726746\pi\)
\(854\) 0 0
\(855\) 283.330 0.0113330
\(856\) 5966.42 0.238234
\(857\) −134.941 −0.00537865 −0.00268932 0.999996i \(-0.500856\pi\)
−0.00268932 + 0.999996i \(0.500856\pi\)
\(858\) −902.607 −0.0359143
\(859\) 10380.9 0.412331 0.206165 0.978517i \(-0.433902\pi\)
0.206165 + 0.978517i \(0.433902\pi\)
\(860\) −8939.06 −0.354441
\(861\) 0 0
\(862\) −5165.48 −0.204103
\(863\) 25349.3 0.999883 0.499941 0.866059i \(-0.333355\pi\)
0.499941 + 0.866059i \(0.333355\pi\)
\(864\) 25979.0 1.02294
\(865\) −13512.2 −0.531130
\(866\) −26731.7 −1.04894
\(867\) −18039.6 −0.706639
\(868\) 0 0
\(869\) −25965.1 −1.01359
\(870\) −8723.28 −0.339939
\(871\) −2104.15 −0.0818559
\(872\) 16703.1 0.648667
\(873\) 495.524 0.0192107
\(874\) −32675.9 −1.26462
\(875\) 0 0
\(876\) −7272.08 −0.280480
\(877\) −22519.4 −0.867075 −0.433537 0.901136i \(-0.642735\pi\)
−0.433537 + 0.901136i \(0.642735\pi\)
\(878\) 12611.8 0.484769
\(879\) −36610.8 −1.40484
\(880\) −1402.96 −0.0537431
\(881\) 12419.9 0.474958 0.237479 0.971393i \(-0.423679\pi\)
0.237479 + 0.971393i \(0.423679\pi\)
\(882\) 0 0
\(883\) −46011.8 −1.75359 −0.876794 0.480866i \(-0.840322\pi\)
−0.876794 + 0.480866i \(0.840322\pi\)
\(884\) 811.913 0.0308910
\(885\) 1148.64 0.0436284
\(886\) 15397.6 0.583852
\(887\) 28086.7 1.06320 0.531600 0.846995i \(-0.321591\pi\)
0.531600 + 0.846995i \(0.321591\pi\)
\(888\) −1756.46 −0.0663774
\(889\) 0 0
\(890\) 1056.17 0.0397787
\(891\) −20877.7 −0.784994
\(892\) −10976.0 −0.411998
\(893\) −22012.2 −0.824871
\(894\) −22755.5 −0.851296
\(895\) 7170.24 0.267793
\(896\) 0 0
\(897\) −3569.03 −0.132850
\(898\) 18646.2 0.692907
\(899\) −43528.0 −1.61484
\(900\) −66.5476 −0.00246473
\(901\) 10558.0 0.390388
\(902\) −471.872 −0.0174187
\(903\) 0 0
\(904\) −12558.0 −0.462026
\(905\) 13556.1 0.497921
\(906\) 29627.1 1.08642
\(907\) −30458.8 −1.11507 −0.557534 0.830154i \(-0.688252\pi\)
−0.557534 + 0.830154i \(0.688252\pi\)
\(908\) −8733.90 −0.319212
\(909\) −467.597 −0.0170618
\(910\) 0 0
\(911\) −26850.4 −0.976502 −0.488251 0.872703i \(-0.662365\pi\)
−0.488251 + 0.872703i \(0.662365\pi\)
\(912\) −6103.79 −0.221619
\(913\) 27018.5 0.979387
\(914\) −4361.20 −0.157829
\(915\) 22415.0 0.809853
\(916\) −21530.6 −0.776628
\(917\) 0 0
\(918\) −8457.57 −0.304076
\(919\) −38095.8 −1.36743 −0.683714 0.729750i \(-0.739636\pi\)
−0.683714 + 0.729750i \(0.739636\pi\)
\(920\) 18868.1 0.676156
\(921\) 10849.3 0.388161
\(922\) −4823.06 −0.172277
\(923\) 3961.93 0.141288
\(924\) 0 0
\(925\) −391.674 −0.0139223
\(926\) −8599.55 −0.305182
\(927\) 872.682 0.0309198
\(928\) 39219.3 1.38732
\(929\) −36355.0 −1.28393 −0.641964 0.766735i \(-0.721880\pi\)
−0.641964 + 0.766735i \(0.721880\pi\)
\(930\) 8622.20 0.304014
\(931\) 0 0
\(932\) −11901.7 −0.418297
\(933\) −11124.7 −0.390360
\(934\) −8797.31 −0.308198
\(935\) 5398.72 0.188831
\(936\) 40.0355 0.00139808
\(937\) −37878.5 −1.32064 −0.660318 0.750986i \(-0.729579\pi\)
−0.660318 + 0.750986i \(0.729579\pi\)
\(938\) 0 0
\(939\) −8014.93 −0.278549
\(940\) 5170.14 0.179395
\(941\) −54125.6 −1.87507 −0.937536 0.347887i \(-0.886899\pi\)
−0.937536 + 0.347887i \(0.886899\pi\)
\(942\) 10384.5 0.359177
\(943\) −1865.85 −0.0644330
\(944\) −436.902 −0.0150635
\(945\) 0 0
\(946\) 14545.4 0.499906
\(947\) −38345.9 −1.31581 −0.657906 0.753100i \(-0.728557\pi\)
−0.657906 + 0.753100i \(0.728557\pi\)
\(948\) 26532.7 0.909012
\(949\) 975.566 0.0333701
\(950\) 4629.29 0.158099
\(951\) 26960.0 0.919282
\(952\) 0 0
\(953\) −15096.4 −0.513137 −0.256569 0.966526i \(-0.582592\pi\)
−0.256569 + 0.966526i \(0.582592\pi\)
\(954\) 211.767 0.00718680
\(955\) 17473.0 0.592055
\(956\) −5801.76 −0.196279
\(957\) −30961.5 −1.04581
\(958\) 1789.64 0.0603556
\(959\) 0 0
\(960\) −5677.84 −0.190887
\(961\) 13232.6 0.444182
\(962\) 95.8465 0.00321228
\(963\) 135.395 0.00453068
\(964\) 13160.5 0.439701
\(965\) 8148.81 0.271833
\(966\) 0 0
\(967\) 6917.06 0.230029 0.115014 0.993364i \(-0.463309\pi\)
0.115014 + 0.993364i \(0.463309\pi\)
\(968\) −11526.8 −0.382734
\(969\) 23487.9 0.778678
\(970\) 8096.29 0.267996
\(971\) −39517.7 −1.30606 −0.653029 0.757333i \(-0.726502\pi\)
−0.653029 + 0.757333i \(0.726502\pi\)
\(972\) 746.820 0.0246443
\(973\) 0 0
\(974\) −7621.57 −0.250730
\(975\) 505.635 0.0166085
\(976\) −8525.85 −0.279616
\(977\) −38858.4 −1.27246 −0.636229 0.771500i \(-0.719507\pi\)
−0.636229 + 0.771500i \(0.719507\pi\)
\(978\) 16333.4 0.534034
\(979\) 3748.68 0.122378
\(980\) 0 0
\(981\) 379.040 0.0123362
\(982\) 19746.3 0.641681
\(983\) 510.230 0.0165552 0.00827762 0.999966i \(-0.497365\pi\)
0.00827762 + 0.999966i \(0.497365\pi\)
\(984\) 1185.43 0.0384047
\(985\) −3468.48 −0.112198
\(986\) −12768.0 −0.412390
\(987\) 0 0
\(988\) 2471.02 0.0795683
\(989\) 57514.4 1.84919
\(990\) 108.284 0.00347626
\(991\) −36222.8 −1.16111 −0.580553 0.814223i \(-0.697164\pi\)
−0.580553 + 0.814223i \(0.697164\pi\)
\(992\) −38764.9 −1.24071
\(993\) −30271.2 −0.967400
\(994\) 0 0
\(995\) −19028.1 −0.606262
\(996\) −27609.1 −0.878341
\(997\) 20856.1 0.662505 0.331253 0.943542i \(-0.392529\pi\)
0.331253 + 0.943542i \(0.392529\pi\)
\(998\) 18708.1 0.593381
\(999\) 2177.82 0.0689721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.4.a.h.1.2 2
3.2 odd 2 2205.4.a.bg.1.1 2
5.4 even 2 1225.4.a.v.1.1 2
7.2 even 3 245.4.e.l.116.1 4
7.3 odd 6 35.4.e.b.16.1 yes 4
7.4 even 3 245.4.e.l.226.1 4
7.5 odd 6 35.4.e.b.11.1 4
7.6 odd 2 245.4.a.g.1.2 2
21.5 even 6 315.4.j.c.46.2 4
21.17 even 6 315.4.j.c.226.2 4
21.20 even 2 2205.4.a.bf.1.1 2
28.3 even 6 560.4.q.i.401.1 4
28.19 even 6 560.4.q.i.81.1 4
35.3 even 12 175.4.k.c.149.2 8
35.12 even 12 175.4.k.c.74.2 8
35.17 even 12 175.4.k.c.149.3 8
35.19 odd 6 175.4.e.c.151.2 4
35.24 odd 6 175.4.e.c.51.2 4
35.33 even 12 175.4.k.c.74.3 8
35.34 odd 2 1225.4.a.x.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
35.4.e.b.11.1 4 7.5 odd 6
35.4.e.b.16.1 yes 4 7.3 odd 6
175.4.e.c.51.2 4 35.24 odd 6
175.4.e.c.151.2 4 35.19 odd 6
175.4.k.c.74.2 8 35.12 even 12
175.4.k.c.74.3 8 35.33 even 12
175.4.k.c.149.2 8 35.3 even 12
175.4.k.c.149.3 8 35.17 even 12
245.4.a.g.1.2 2 7.6 odd 2
245.4.a.h.1.2 2 1.1 even 1 trivial
245.4.e.l.116.1 4 7.2 even 3
245.4.e.l.226.1 4 7.4 even 3
315.4.j.c.46.2 4 21.5 even 6
315.4.j.c.226.2 4 21.17 even 6
560.4.q.i.81.1 4 28.19 even 6
560.4.q.i.401.1 4 28.3 even 6
1225.4.a.v.1.1 2 5.4 even 2
1225.4.a.x.1.1 2 35.34 odd 2
2205.4.a.bf.1.1 2 21.20 even 2
2205.4.a.bg.1.1 2 3.2 odd 2