Properties

Label 576.5.m.a.271.5
Level $576$
Weight $5$
Character 576.271
Analytic conductor $59.541$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,5,Mod(271,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.271");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 576.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(59.5410987363\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 4 x^{13} + 15 x^{12} - 34 x^{11} + 62 x^{10} - 312 x^{9} + 1432 x^{8} - 4960 x^{7} + \cdots + 2097152 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{42} \)
Twist minimal: no (minimal twist has level 16)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 271.5
Root \(-2.40693 - 1.48549i\) of defining polynomial
Character \(\chi\) \(=\) 576.271
Dual form 576.5.m.a.559.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(8.04297 + 8.04297i) q^{5} +49.8797 q^{7} +(-84.2573 + 84.2573i) q^{11} +(19.4838 - 19.4838i) q^{13} -437.855 q^{17} +(-349.021 - 349.021i) q^{19} -404.840 q^{23} -495.621i q^{25} +(1031.65 - 1031.65i) q^{29} +1506.15i q^{31} +(401.181 + 401.181i) q^{35} +(-434.262 - 434.262i) q^{37} -696.847i q^{41} +(-917.612 + 917.612i) q^{43} +111.917i q^{47} +86.9810 q^{49} +(-1041.19 - 1041.19i) q^{53} -1355.36 q^{55} +(-1711.60 + 1711.60i) q^{59} +(3711.24 - 3711.24i) q^{61} +313.415 q^{65} +(1854.18 + 1854.18i) q^{67} -1161.89 q^{71} -905.295i q^{73} +(-4202.72 + 4202.72i) q^{77} -5869.63i q^{79} +(-7560.06 - 7560.06i) q^{83} +(-3521.65 - 3521.65i) q^{85} -6439.80i q^{89} +(971.844 - 971.844i) q^{91} -5614.33i q^{95} -413.032 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{5} + 4 q^{7} + 94 q^{11} - 2 q^{13} + 4 q^{17} + 706 q^{19} + 1148 q^{23} - 862 q^{29} + 1340 q^{35} - 1826 q^{37} - 1694 q^{43} + 682 q^{49} + 482 q^{53} + 11780 q^{55} - 2786 q^{59} - 3778 q^{61}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 8.04297 + 8.04297i 0.321719 + 0.321719i 0.849426 0.527707i \(-0.176948\pi\)
−0.527707 + 0.849426i \(0.676948\pi\)
\(6\) 0 0
\(7\) 49.8797 1.01795 0.508976 0.860781i \(-0.330024\pi\)
0.508976 + 0.860781i \(0.330024\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −84.2573 + 84.2573i −0.696341 + 0.696341i −0.963619 0.267278i \(-0.913876\pi\)
0.267278 + 0.963619i \(0.413876\pi\)
\(12\) 0 0
\(13\) 19.4838 19.4838i 0.115289 0.115289i −0.647109 0.762398i \(-0.724022\pi\)
0.762398 + 0.647109i \(0.224022\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −437.855 −1.51507 −0.757535 0.652795i \(-0.773596\pi\)
−0.757535 + 0.652795i \(0.773596\pi\)
\(18\) 0 0
\(19\) −349.021 349.021i −0.966817 0.966817i 0.0326494 0.999467i \(-0.489606\pi\)
−0.999467 + 0.0326494i \(0.989606\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −404.840 −0.765293 −0.382647 0.923895i \(-0.624987\pi\)
−0.382647 + 0.923895i \(0.624987\pi\)
\(24\) 0 0
\(25\) 495.621i 0.792994i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1031.65 1031.65i 1.22670 1.22670i 0.261490 0.965206i \(-0.415786\pi\)
0.965206 0.261490i \(-0.0842139\pi\)
\(30\) 0 0
\(31\) 1506.15i 1.56728i 0.621217 + 0.783638i \(0.286638\pi\)
−0.621217 + 0.783638i \(0.713362\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 401.181 + 401.181i 0.327494 + 0.327494i
\(36\) 0 0
\(37\) −434.262 434.262i −0.317211 0.317211i 0.530484 0.847695i \(-0.322010\pi\)
−0.847695 + 0.530484i \(0.822010\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 696.847i 0.414543i −0.978283 0.207272i \(-0.933542\pi\)
0.978283 0.207272i \(-0.0664584\pi\)
\(42\) 0 0
\(43\) −917.612 + 917.612i −0.496275 + 0.496275i −0.910276 0.414002i \(-0.864131\pi\)
0.414002 + 0.910276i \(0.364131\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 111.917i 0.0506641i 0.999679 + 0.0253321i \(0.00806431\pi\)
−0.999679 + 0.0253321i \(0.991936\pi\)
\(48\) 0 0
\(49\) 86.9810 0.0362270
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1041.19 1041.19i −0.370663 0.370663i 0.497056 0.867719i \(-0.334414\pi\)
−0.867719 + 0.497056i \(0.834414\pi\)
\(54\) 0 0
\(55\) −1355.36 −0.448052
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1711.60 + 1711.60i −0.491697 + 0.491697i −0.908841 0.417144i \(-0.863031\pi\)
0.417144 + 0.908841i \(0.363031\pi\)
\(60\) 0 0
\(61\) 3711.24 3711.24i 0.997376 0.997376i −0.00262076 0.999997i \(-0.500834\pi\)
0.999997 + 0.00262076i \(0.000834216\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 313.415 0.0741810
\(66\) 0 0
\(67\) 1854.18 + 1854.18i 0.413049 + 0.413049i 0.882799 0.469750i \(-0.155656\pi\)
−0.469750 + 0.882799i \(0.655656\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1161.89 −0.230489 −0.115244 0.993337i \(-0.536765\pi\)
−0.115244 + 0.993337i \(0.536765\pi\)
\(72\) 0 0
\(73\) 905.295i 0.169881i −0.996386 0.0849404i \(-0.972930\pi\)
0.996386 0.0849404i \(-0.0270700\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4202.72 + 4202.72i −0.708842 + 0.708842i
\(78\) 0 0
\(79\) 5869.63i 0.940495i −0.882535 0.470247i \(-0.844165\pi\)
0.882535 0.470247i \(-0.155835\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7560.06 7560.06i −1.09741 1.09741i −0.994713 0.102698i \(-0.967252\pi\)
−0.102698 0.994713i \(-0.532748\pi\)
\(84\) 0 0
\(85\) −3521.65 3521.65i −0.487426 0.487426i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6439.80i 0.813004i −0.913650 0.406502i \(-0.866748\pi\)
0.913650 0.406502i \(-0.133252\pi\)
\(90\) 0 0
\(91\) 971.844 971.844i 0.117358 0.117358i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5614.33i 0.622087i
\(96\) 0 0
\(97\) −413.032 −0.0438976 −0.0219488 0.999759i \(-0.506987\pi\)
−0.0219488 + 0.999759i \(0.506987\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8460.63 8460.63i −0.829392 0.829392i 0.158041 0.987433i \(-0.449482\pi\)
−0.987433 + 0.158041i \(0.949482\pi\)
\(102\) 0 0
\(103\) −17007.9 −1.60316 −0.801578 0.597891i \(-0.796006\pi\)
−0.801578 + 0.597891i \(0.796006\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9368.65 9368.65i 0.818294 0.818294i −0.167567 0.985861i \(-0.553591\pi\)
0.985861 + 0.167567i \(0.0535909\pi\)
\(108\) 0 0
\(109\) −8308.73 + 8308.73i −0.699329 + 0.699329i −0.964266 0.264937i \(-0.914649\pi\)
0.264937 + 0.964266i \(0.414649\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5814.63 −0.455371 −0.227685 0.973735i \(-0.573116\pi\)
−0.227685 + 0.973735i \(0.573116\pi\)
\(114\) 0 0
\(115\) −3256.12 3256.12i −0.246209 0.246209i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −21840.1 −1.54227
\(120\) 0 0
\(121\) 442.428i 0.0302185i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9013.12 9013.12i 0.576840 0.576840i
\(126\) 0 0
\(127\) 20367.1i 1.26276i 0.775472 + 0.631382i \(0.217512\pi\)
−0.775472 + 0.631382i \(0.782488\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 4414.52 + 4414.52i 0.257242 + 0.257242i 0.823931 0.566690i \(-0.191776\pi\)
−0.566690 + 0.823931i \(0.691776\pi\)
\(132\) 0 0
\(133\) −17409.1 17409.1i −0.984174 0.984174i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11018.7i 0.587067i 0.955949 + 0.293533i \(0.0948312\pi\)
−0.955949 + 0.293533i \(0.905169\pi\)
\(138\) 0 0
\(139\) 14957.2 14957.2i 0.774140 0.774140i −0.204688 0.978827i \(-0.565618\pi\)
0.978827 + 0.204688i \(0.0656178\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3283.30i 0.160560i
\(144\) 0 0
\(145\) 16595.1 0.789302
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −15393.9 15393.9i −0.693388 0.693388i 0.269588 0.962976i \(-0.413112\pi\)
−0.962976 + 0.269588i \(0.913112\pi\)
\(150\) 0 0
\(151\) 16971.9 0.744347 0.372174 0.928163i \(-0.378613\pi\)
0.372174 + 0.928163i \(0.378613\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −12113.9 + 12113.9i −0.504222 + 0.504222i
\(156\) 0 0
\(157\) 1167.73 1167.73i 0.0473744 0.0473744i −0.683023 0.730397i \(-0.739335\pi\)
0.730397 + 0.683023i \(0.239335\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −20193.3 −0.779032
\(162\) 0 0
\(163\) −28076.2 28076.2i −1.05673 1.05673i −0.998291 0.0584383i \(-0.981388\pi\)
−0.0584383 0.998291i \(-0.518612\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2929.82 −0.105053 −0.0525264 0.998620i \(-0.516727\pi\)
−0.0525264 + 0.998620i \(0.516727\pi\)
\(168\) 0 0
\(169\) 27801.8i 0.973417i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8560.97 + 8560.97i −0.286043 + 0.286043i −0.835513 0.549470i \(-0.814829\pi\)
0.549470 + 0.835513i \(0.314829\pi\)
\(174\) 0 0
\(175\) 24721.4i 0.807230i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −24420.1 24420.1i −0.762153 0.762153i 0.214558 0.976711i \(-0.431169\pi\)
−0.976711 + 0.214558i \(0.931169\pi\)
\(180\) 0 0
\(181\) −10946.5 10946.5i −0.334133 0.334133i 0.520021 0.854154i \(-0.325924\pi\)
−0.854154 + 0.520021i \(0.825924\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6985.52i 0.204106i
\(186\) 0 0
\(187\) 36892.5 36892.5i 1.05501 1.05501i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 22384.9i 0.613604i −0.951773 0.306802i \(-0.900741\pi\)
0.951773 0.306802i \(-0.0992590\pi\)
\(192\) 0 0
\(193\) −30429.5 −0.816920 −0.408460 0.912776i \(-0.633934\pi\)
−0.408460 + 0.912776i \(0.633934\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −19093.9 19093.9i −0.491997 0.491997i 0.416938 0.908935i \(-0.363103\pi\)
−0.908935 + 0.416938i \(0.863103\pi\)
\(198\) 0 0
\(199\) −67963.8 −1.71621 −0.858107 0.513470i \(-0.828360\pi\)
−0.858107 + 0.513470i \(0.828360\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 51458.4 51458.4i 1.24872 1.24872i
\(204\) 0 0
\(205\) 5604.72 5604.72i 0.133366 0.133366i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 58815.1 1.34647
\(210\) 0 0
\(211\) 55219.8 + 55219.8i 1.24031 + 1.24031i 0.959872 + 0.280438i \(0.0904797\pi\)
0.280438 + 0.959872i \(0.409520\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −14760.6 −0.319322
\(216\) 0 0
\(217\) 75126.4i 1.59541i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −8531.07 + 8531.07i −0.174670 + 0.174670i
\(222\) 0 0
\(223\) 40417.5i 0.812754i 0.913705 + 0.406377i \(0.133208\pi\)
−0.913705 + 0.406377i \(0.866792\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1672.85 1672.85i −0.0324643 0.0324643i 0.690688 0.723153i \(-0.257308\pi\)
−0.723153 + 0.690688i \(0.757308\pi\)
\(228\) 0 0
\(229\) −26519.0 26519.0i −0.505691 0.505691i 0.407510 0.913201i \(-0.366397\pi\)
−0.913201 + 0.407510i \(0.866397\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24163.3i 0.445087i 0.974923 + 0.222543i \(0.0714359\pi\)
−0.974923 + 0.222543i \(0.928564\pi\)
\(234\) 0 0
\(235\) −900.145 + 900.145i −0.0162996 + 0.0162996i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 76356.4i 1.33675i 0.743825 + 0.668374i \(0.233010\pi\)
−0.743825 + 0.668374i \(0.766990\pi\)
\(240\) 0 0
\(241\) 40548.1 0.698130 0.349065 0.937099i \(-0.386499\pi\)
0.349065 + 0.937099i \(0.386499\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 699.586 + 699.586i 0.0116549 + 0.0116549i
\(246\) 0 0
\(247\) −13600.5 −0.222926
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −10536.0 + 10536.0i −0.167235 + 0.167235i −0.785763 0.618528i \(-0.787729\pi\)
0.618528 + 0.785763i \(0.287729\pi\)
\(252\) 0 0
\(253\) 34110.7 34110.7i 0.532905 0.532905i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −37983.9 −0.575086 −0.287543 0.957768i \(-0.592838\pi\)
−0.287543 + 0.957768i \(0.592838\pi\)
\(258\) 0 0
\(259\) −21660.9 21660.9i −0.322906 0.322906i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 37545.0 0.542801 0.271400 0.962467i \(-0.412513\pi\)
0.271400 + 0.962467i \(0.412513\pi\)
\(264\) 0 0
\(265\) 16748.6i 0.238498i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4676.63 + 4676.63i −0.0646291 + 0.0646291i −0.738683 0.674053i \(-0.764552\pi\)
0.674053 + 0.738683i \(0.264552\pi\)
\(270\) 0 0
\(271\) 2746.12i 0.0373922i −0.999825 0.0186961i \(-0.994049\pi\)
0.999825 0.0186961i \(-0.00595149\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 41759.7 + 41759.7i 0.552194 + 0.552194i
\(276\) 0 0
\(277\) −33056.5 33056.5i −0.430822 0.430822i 0.458086 0.888908i \(-0.348535\pi\)
−0.888908 + 0.458086i \(0.848535\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 80033.0i 1.01358i 0.862071 + 0.506788i \(0.169167\pi\)
−0.862071 + 0.506788i \(0.830833\pi\)
\(282\) 0 0
\(283\) 72284.3 72284.3i 0.902549 0.902549i −0.0931068 0.995656i \(-0.529680\pi\)
0.995656 + 0.0931068i \(0.0296798\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 34758.5i 0.421985i
\(288\) 0 0
\(289\) 108196. 1.29544
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 84911.3 + 84911.3i 0.989077 + 0.989077i 0.999941 0.0108641i \(-0.00345823\pi\)
−0.0108641 + 0.999941i \(0.503458\pi\)
\(294\) 0 0
\(295\) −27532.6 −0.316376
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7887.81 + 7887.81i −0.0882296 + 0.0882296i
\(300\) 0 0
\(301\) −45770.2 + 45770.2i −0.505184 + 0.505184i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 59698.7 0.641749
\(306\) 0 0
\(307\) 55472.5 + 55472.5i 0.588574 + 0.588574i 0.937245 0.348671i \(-0.113367\pi\)
−0.348671 + 0.937245i \(0.613367\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −127048. −1.31355 −0.656777 0.754084i \(-0.728081\pi\)
−0.656777 + 0.754084i \(0.728081\pi\)
\(312\) 0 0
\(313\) 25469.3i 0.259974i −0.991516 0.129987i \(-0.958507\pi\)
0.991516 0.129987i \(-0.0414935\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 94218.4 94218.4i 0.937599 0.937599i −0.0605656 0.998164i \(-0.519290\pi\)
0.998164 + 0.0605656i \(0.0192904\pi\)
\(318\) 0 0
\(319\) 173848.i 1.70840i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 152821. + 152821.i 1.46480 + 1.46480i
\(324\) 0 0
\(325\) −9656.57 9656.57i −0.0914232 0.0914232i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5582.38i 0.0515737i
\(330\) 0 0
\(331\) −65141.3 + 65141.3i −0.594567 + 0.594567i −0.938862 0.344295i \(-0.888118\pi\)
0.344295 + 0.938862i \(0.388118\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 29826.2i 0.265771i
\(336\) 0 0
\(337\) 135004. 1.18874 0.594369 0.804193i \(-0.297402\pi\)
0.594369 + 0.804193i \(0.297402\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −126904. 126904.i −1.09136 1.09136i
\(342\) 0 0
\(343\) −115422. −0.981075
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10849.2 10849.2i 0.0901025 0.0901025i −0.660619 0.750721i \(-0.729706\pi\)
0.750721 + 0.660619i \(0.229706\pi\)
\(348\) 0 0
\(349\) −6073.15 + 6073.15i −0.0498612 + 0.0498612i −0.731598 0.681737i \(-0.761225\pi\)
0.681737 + 0.731598i \(0.261225\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 143445. 1.15116 0.575579 0.817746i \(-0.304777\pi\)
0.575579 + 0.817746i \(0.304777\pi\)
\(354\) 0 0
\(355\) −9345.08 9345.08i −0.0741526 0.0741526i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 124076. 0.962718 0.481359 0.876523i \(-0.340143\pi\)
0.481359 + 0.876523i \(0.340143\pi\)
\(360\) 0 0
\(361\) 113310.i 0.869472i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 7281.26 7281.26i 0.0546538 0.0546538i
\(366\) 0 0
\(367\) 126240.i 0.937268i 0.883392 + 0.468634i \(0.155254\pi\)
−0.883392 + 0.468634i \(0.844746\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −51934.3 51934.3i −0.377317 0.377317i
\(372\) 0 0
\(373\) −95513.7 95513.7i −0.686512 0.686512i 0.274948 0.961459i \(-0.411339\pi\)
−0.961459 + 0.274948i \(0.911339\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 40200.9i 0.282848i
\(378\) 0 0
\(379\) 31220.0 31220.0i 0.217347 0.217347i −0.590032 0.807380i \(-0.700885\pi\)
0.807380 + 0.590032i \(0.200885\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 253102.i 1.72543i 0.505689 + 0.862716i \(0.331238\pi\)
−0.505689 + 0.862716i \(0.668762\pi\)
\(384\) 0 0
\(385\) −67604.7 −0.456095
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 43279.4 + 43279.4i 0.286011 + 0.286011i 0.835500 0.549490i \(-0.185178\pi\)
−0.549490 + 0.835500i \(0.685178\pi\)
\(390\) 0 0
\(391\) 177261. 1.15947
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 47209.2 47209.2i 0.302575 0.302575i
\(396\) 0 0
\(397\) 198533. 198533.i 1.25965 1.25965i 0.308395 0.951258i \(-0.400208\pi\)
0.951258 0.308395i \(-0.0997920\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 89330.8 0.555536 0.277768 0.960648i \(-0.410405\pi\)
0.277768 + 0.960648i \(0.410405\pi\)
\(402\) 0 0
\(403\) 29345.5 + 29345.5i 0.180689 + 0.180689i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 73179.5 0.441775
\(408\) 0 0
\(409\) 26716.3i 0.159709i 0.996807 + 0.0798545i \(0.0254456\pi\)
−0.996807 + 0.0798545i \(0.974554\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −85373.9 + 85373.9i −0.500524 + 0.500524i
\(414\) 0 0
\(415\) 121611.i 0.706115i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −119011. 119011.i −0.677889 0.677889i 0.281633 0.959522i \(-0.409124\pi\)
−0.959522 + 0.281633i \(0.909124\pi\)
\(420\) 0 0
\(421\) 126967. + 126967.i 0.716355 + 0.716355i 0.967857 0.251502i \(-0.0809245\pi\)
−0.251502 + 0.967857i \(0.580925\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 217010.i 1.20144i
\(426\) 0 0
\(427\) 185115. 185115.i 1.01528 1.01528i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 82986.1i 0.446736i 0.974734 + 0.223368i \(0.0717051\pi\)
−0.974734 + 0.223368i \(0.928295\pi\)
\(432\) 0 0
\(433\) −153228. −0.817265 −0.408633 0.912699i \(-0.633994\pi\)
−0.408633 + 0.912699i \(0.633994\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 141298. + 141298.i 0.739899 + 0.739899i
\(438\) 0 0
\(439\) −48984.2 −0.254172 −0.127086 0.991892i \(-0.540562\pi\)
−0.127086 + 0.991892i \(0.540562\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5464.01 5464.01i 0.0278422 0.0278422i −0.693049 0.720891i \(-0.743733\pi\)
0.720891 + 0.693049i \(0.243733\pi\)
\(444\) 0 0
\(445\) 51795.1 51795.1i 0.261559 0.261559i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −140068. −0.694776 −0.347388 0.937721i \(-0.612931\pi\)
−0.347388 + 0.937721i \(0.612931\pi\)
\(450\) 0 0
\(451\) 58714.4 + 58714.4i 0.288664 + 0.288664i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 15633.0 0.0755127
\(456\) 0 0
\(457\) 219788.i 1.05238i 0.850368 + 0.526188i \(0.176379\pi\)
−0.850368 + 0.526188i \(0.823621\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −124163. + 124163.i −0.584239 + 0.584239i −0.936065 0.351826i \(-0.885561\pi\)
0.351826 + 0.936065i \(0.385561\pi\)
\(462\) 0 0
\(463\) 236566.i 1.10354i −0.833995 0.551772i \(-0.813952\pi\)
0.833995 0.551772i \(-0.186048\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 73415.5 + 73415.5i 0.336631 + 0.336631i 0.855098 0.518467i \(-0.173497\pi\)
−0.518467 + 0.855098i \(0.673497\pi\)
\(468\) 0 0
\(469\) 92485.8 + 92485.8i 0.420465 + 0.420465i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 154631.i 0.691153i
\(474\) 0 0
\(475\) −172982. + 172982.i −0.766681 + 0.766681i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 212004.i 0.924003i −0.886879 0.462002i \(-0.847131\pi\)
0.886879 0.462002i \(-0.152869\pi\)
\(480\) 0 0
\(481\) −16922.1 −0.0731417
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3322.01 3322.01i −0.0141227 0.0141227i
\(486\) 0 0
\(487\) −26716.3 −0.112647 −0.0563234 0.998413i \(-0.517938\pi\)
−0.0563234 + 0.998413i \(0.517938\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 99544.8 99544.8i 0.412910 0.412910i −0.469841 0.882751i \(-0.655689\pi\)
0.882751 + 0.469841i \(0.155689\pi\)
\(492\) 0 0
\(493\) −451714. + 451714.i −1.85853 + 1.85853i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −57954.9 −0.234627
\(498\) 0 0
\(499\) −189887. 189887.i −0.762597 0.762597i 0.214194 0.976791i \(-0.431287\pi\)
−0.976791 + 0.214194i \(0.931287\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 188872. 0.746502 0.373251 0.927730i \(-0.378243\pi\)
0.373251 + 0.927730i \(0.378243\pi\)
\(504\) 0 0
\(505\) 136097.i 0.533662i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14343.5 14343.5i 0.0553629 0.0553629i −0.678883 0.734246i \(-0.737536\pi\)
0.734246 + 0.678883i \(0.237536\pi\)
\(510\) 0 0
\(511\) 45155.8i 0.172931i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −136794. 136794.i −0.515765 0.515765i
\(516\) 0 0
\(517\) −9429.82 9429.82i −0.0352795 0.0352795i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 65377.4i 0.240853i 0.992722 + 0.120427i \(0.0384262\pi\)
−0.992722 + 0.120427i \(0.961574\pi\)
\(522\) 0 0
\(523\) 143634. 143634.i 0.525113 0.525113i −0.393998 0.919111i \(-0.628908\pi\)
0.919111 + 0.393998i \(0.128908\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 659477.i 2.37453i
\(528\) 0 0
\(529\) −115946. −0.414327
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −13577.2 13577.2i −0.0477921 0.0477921i
\(534\) 0 0
\(535\) 150704. 0.526521
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7328.78 + 7328.78i −0.0252263 + 0.0252263i
\(540\) 0 0
\(541\) −275122. + 275122.i −0.940007 + 0.940007i −0.998300 0.0582928i \(-0.981434\pi\)
0.0582928 + 0.998300i \(0.481434\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −133654. −0.449975
\(546\) 0 0
\(547\) 1032.53 + 1032.53i 0.00345087 + 0.00345087i 0.708830 0.705379i \(-0.249223\pi\)
−0.705379 + 0.708830i \(0.749223\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −720136. −2.37198
\(552\) 0 0
\(553\) 292775.i 0.957379i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 223266. 223266.i 0.719635 0.719635i −0.248895 0.968530i \(-0.580067\pi\)
0.968530 + 0.248895i \(0.0800674\pi\)
\(558\) 0 0
\(559\) 35757.1i 0.114430i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 191551. + 191551.i 0.604322 + 0.604322i 0.941457 0.337134i \(-0.109458\pi\)
−0.337134 + 0.941457i \(0.609458\pi\)
\(564\) 0 0
\(565\) −46766.9 46766.9i −0.146501 0.146501i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 119746.i 0.369858i −0.982752 0.184929i \(-0.940795\pi\)
0.982752 0.184929i \(-0.0592055\pi\)
\(570\) 0 0
\(571\) −375516. + 375516.i −1.15175 + 1.15175i −0.165544 + 0.986202i \(0.552938\pi\)
−0.986202 + 0.165544i \(0.947062\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 200647.i 0.606873i
\(576\) 0 0
\(577\) 185281. 0.556518 0.278259 0.960506i \(-0.410243\pi\)
0.278259 + 0.960506i \(0.410243\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −377093. 377093.i −1.11711 1.11711i
\(582\) 0 0
\(583\) 175456. 0.516216
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −483071. + 483071.i −1.40196 + 1.40196i −0.608081 + 0.793875i \(0.708060\pi\)
−0.793875 + 0.608081i \(0.791940\pi\)
\(588\) 0 0
\(589\) 525679. 525679.i 1.51527 1.51527i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −636299. −1.80947 −0.904736 0.425973i \(-0.859932\pi\)
−0.904736 + 0.425973i \(0.859932\pi\)
\(594\) 0 0
\(595\) −175659. 175659.i −0.496177 0.496177i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 410280. 1.14347 0.571737 0.820437i \(-0.306270\pi\)
0.571737 + 0.820437i \(0.306270\pi\)
\(600\) 0 0
\(601\) 531872.i 1.47251i −0.676704 0.736255i \(-0.736592\pi\)
0.676704 0.736255i \(-0.263408\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3558.44 + 3558.44i −0.00972184 + 0.00972184i
\(606\) 0 0
\(607\) 505448.i 1.37182i −0.727684 0.685912i \(-0.759403\pi\)
0.727684 0.685912i \(-0.240597\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2180.57 + 2180.57i 0.00584099 + 0.00584099i
\(612\) 0 0
\(613\) −31334.4 31334.4i −0.0833873 0.0833873i 0.664183 0.747570i \(-0.268780\pi\)
−0.747570 + 0.664183i \(0.768780\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 481833.i 1.26569i −0.774280 0.632844i \(-0.781888\pi\)
0.774280 0.632844i \(-0.218112\pi\)
\(618\) 0 0
\(619\) −55035.5 + 55035.5i −0.143635 + 0.143635i −0.775268 0.631632i \(-0.782385\pi\)
0.631632 + 0.775268i \(0.282385\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 321215.i 0.827599i
\(624\) 0 0
\(625\) −164779. −0.421834
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 190144. + 190144.i 0.480597 + 0.480597i
\(630\) 0 0
\(631\) 188802. 0.474184 0.237092 0.971487i \(-0.423806\pi\)
0.237092 + 0.971487i \(0.423806\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −163812. + 163812.i −0.406255 + 0.406255i
\(636\) 0 0
\(637\) 1694.72 1694.72i 0.00417656 0.00417656i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 442081. 1.07593 0.537967 0.842966i \(-0.319193\pi\)
0.537967 + 0.842966i \(0.319193\pi\)
\(642\) 0 0
\(643\) 246339. + 246339.i 0.595814 + 0.595814i 0.939196 0.343382i \(-0.111573\pi\)
−0.343382 + 0.939196i \(0.611573\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −54549.4 −0.130311 −0.0651555 0.997875i \(-0.520754\pi\)
−0.0651555 + 0.997875i \(0.520754\pi\)
\(648\) 0 0
\(649\) 288429.i 0.684778i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −231745. + 231745.i −0.543481 + 0.543481i −0.924548 0.381066i \(-0.875557\pi\)
0.381066 + 0.924548i \(0.375557\pi\)
\(654\) 0 0
\(655\) 71011.8i 0.165519i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −479757. 479757.i −1.10472 1.10472i −0.993833 0.110883i \(-0.964632\pi\)
−0.110883 0.993833i \(-0.535368\pi\)
\(660\) 0 0
\(661\) 515798. + 515798.i 1.18053 + 1.18053i 0.979607 + 0.200922i \(0.0643937\pi\)
0.200922 + 0.979607i \(0.435606\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 280041.i 0.633254i
\(666\) 0 0
\(667\) −417654. + 417654.i −0.938782 + 0.938782i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 625397.i 1.38903i
\(672\) 0 0
\(673\) −505551. −1.11618 −0.558090 0.829780i \(-0.688466\pi\)
−0.558090 + 0.829780i \(0.688466\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 460825. + 460825.i 1.00545 + 1.00545i 0.999985 + 0.00546007i \(0.00173800\pi\)
0.00546007 + 0.999985i \(0.498262\pi\)
\(678\) 0 0
\(679\) −20601.9 −0.0446857
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 120242. 120242.i 0.257761 0.257761i −0.566382 0.824143i \(-0.691657\pi\)
0.824143 + 0.566382i \(0.191657\pi\)
\(684\) 0 0
\(685\) −88622.7 + 88622.7i −0.188870 + 0.188870i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −40572.7 −0.0854664
\(690\) 0 0
\(691\) −166965. 166965.i −0.349678 0.349678i 0.510311 0.859990i \(-0.329530\pi\)
−0.859990 + 0.510311i \(0.829530\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 240600. 0.498111
\(696\) 0 0
\(697\) 305118.i 0.628062i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −39689.8 + 39689.8i −0.0807687 + 0.0807687i −0.746337 0.665568i \(-0.768189\pi\)
0.665568 + 0.746337i \(0.268189\pi\)
\(702\) 0 0
\(703\) 303133.i 0.613371i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −422013. 422013.i −0.844281 0.844281i
\(708\) 0 0
\(709\) 250742. + 250742.i 0.498809 + 0.498809i 0.911067 0.412258i \(-0.135260\pi\)
−0.412258 + 0.911067i \(0.635260\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 609751.i 1.19943i
\(714\) 0 0
\(715\) −26407.5 + 26407.5i −0.0516553 + 0.0516553i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 133454.i 0.258152i −0.991635 0.129076i \(-0.958799\pi\)
0.991635 0.129076i \(-0.0412011\pi\)
\(720\) 0 0
\(721\) −848347. −1.63194
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −511309. 511309.i −0.972763 0.972763i
\(726\) 0 0
\(727\) −583370. −1.10376 −0.551881 0.833923i \(-0.686090\pi\)
−0.551881 + 0.833923i \(0.686090\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 401781. 401781.i 0.751891 0.751891i
\(732\) 0 0
\(733\) 534516. 534516.i 0.994838 0.994838i −0.00514857 0.999987i \(-0.501639\pi\)
0.999987 + 0.00514857i \(0.00163885\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −312456. −0.575247
\(738\) 0 0
\(739\) 91929.4 + 91929.4i 0.168332 + 0.168332i 0.786246 0.617914i \(-0.212022\pi\)
−0.617914 + 0.786246i \(0.712022\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 83329.2 0.150945 0.0754727 0.997148i \(-0.475953\pi\)
0.0754727 + 0.997148i \(0.475953\pi\)
\(744\) 0 0
\(745\) 247625.i 0.446151i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 467305. 467305.i 0.832985 0.832985i
\(750\) 0 0
\(751\) 318689.i 0.565051i −0.959260 0.282525i \(-0.908828\pi\)
0.959260 0.282525i \(-0.0911722\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 136504. + 136504.i 0.239470 + 0.239470i
\(756\) 0 0
\(757\) −428881. 428881.i −0.748419 0.748419i 0.225763 0.974182i \(-0.427512\pi\)
−0.974182 + 0.225763i \(0.927512\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 718933.i 1.24142i 0.784040 + 0.620711i \(0.213156\pi\)
−0.784040 + 0.620711i \(0.786844\pi\)
\(762\) 0 0
\(763\) −414437. + 414437.i −0.711884 + 0.711884i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 66696.8i 0.113374i
\(768\) 0 0
\(769\) 421326. 0.712468 0.356234 0.934397i \(-0.384061\pi\)
0.356234 + 0.934397i \(0.384061\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −455325. 455325.i −0.762013 0.762013i 0.214673 0.976686i \(-0.431132\pi\)
−0.976686 + 0.214673i \(0.931132\pi\)
\(774\) 0 0
\(775\) 746482. 1.24284
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −243214. + 243214.i −0.400788 + 0.400788i
\(780\) 0 0
\(781\) 97898.1 97898.1i 0.160499 0.160499i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 18784.0 0.0304825
\(786\) 0 0
\(787\) −541211. 541211.i −0.873811 0.873811i 0.119074 0.992885i \(-0.462007\pi\)
−0.992885 + 0.119074i \(0.962007\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −290032. −0.463546
\(792\) 0 0
\(793\) 144618.i 0.229972i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −481291. + 481291.i −0.757690 + 0.757690i −0.975901 0.218212i \(-0.929978\pi\)
0.218212 + 0.975901i \(0.429978\pi\)
\(798\) 0 0
\(799\) 49003.4i 0.0767597i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 76277.7 + 76277.7i 0.118295 + 0.118295i
\(804\) 0 0
\(805\) −162414. 162414.i −0.250629 0.250629i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34438.5i 0.0526195i −0.999654 0.0263097i \(-0.991624\pi\)
0.999654 0.0263097i \(-0.00837562\pi\)
\(810\) 0 0
\(811\) −227480. + 227480.i −0.345862 + 0.345862i −0.858566 0.512704i \(-0.828644\pi\)
0.512704 + 0.858566i \(0.328644\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 451633.i 0.679939i
\(816\) 0 0
\(817\) 640532. 0.959614
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 807677. + 807677.i 1.19826 + 1.19826i 0.974687 + 0.223573i \(0.0717722\pi\)
0.223573 + 0.974687i \(0.428228\pi\)
\(822\) 0 0
\(823\) 703593. 1.03878 0.519388 0.854539i \(-0.326160\pi\)
0.519388 + 0.854539i \(0.326160\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −775918. + 775918.i −1.13450 + 1.13450i −0.145081 + 0.989420i \(0.546344\pi\)
−0.989420 + 0.145081i \(0.953656\pi\)
\(828\) 0 0
\(829\) −804056. + 804056.i −1.16998 + 1.16998i −0.187763 + 0.982214i \(0.560124\pi\)
−0.982214 + 0.187763i \(0.939876\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −38085.1 −0.0548864
\(834\) 0 0
\(835\) −23564.4 23564.4i −0.0337974 0.0337974i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −248652. −0.353239 −0.176619 0.984279i \(-0.556516\pi\)
−0.176619 + 0.984279i \(0.556516\pi\)
\(840\) 0 0
\(841\) 1.42133e6i 2.00957i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −223609. + 223609.i −0.313166 + 0.313166i
\(846\) 0 0
\(847\) 22068.2i 0.0307610i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 175807. + 175807.i 0.242760 + 0.242760i
\(852\) 0 0
\(853\) 779867. + 779867.i 1.07182 + 1.07182i 0.997213 + 0.0746081i \(0.0237706\pi\)
0.0746081 + 0.997213i \(0.476229\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 481792.i 0.655992i 0.944679 + 0.327996i \(0.106373\pi\)
−0.944679 + 0.327996i \(0.893627\pi\)
\(858\) 0 0
\(859\) 947889. 947889.i 1.28461 1.28461i 0.346594 0.938015i \(-0.387338\pi\)
0.938015 0.346594i \(-0.112662\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.00011e6i 1.34284i −0.741077 0.671421i \(-0.765684\pi\)
0.741077 0.671421i \(-0.234316\pi\)
\(864\) 0 0
\(865\) −137711. −0.184051
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 494559. + 494559.i 0.654905 + 0.654905i
\(870\) 0 0
\(871\) 72252.8 0.0952398
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 449571. 449571.i 0.587195 0.587195i
\(876\) 0 0
\(877\) −747906. + 747906.i −0.972406 + 0.972406i −0.999629 0.0272234i \(-0.991333\pi\)
0.0272234 + 0.999629i \(0.491333\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 53961.8 0.0695240 0.0347620 0.999396i \(-0.488933\pi\)
0.0347620 + 0.999396i \(0.488933\pi\)
\(882\) 0 0
\(883\) 629494. + 629494.i 0.807366 + 0.807366i 0.984234 0.176869i \(-0.0565968\pi\)
−0.176869 + 0.984234i \(0.556597\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 880807. 1.11952 0.559762 0.828653i \(-0.310893\pi\)
0.559762 + 0.828653i \(0.310893\pi\)
\(888\) 0 0
\(889\) 1.01590e6i 1.28543i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 39061.4 39061.4i 0.0489829 0.0489829i
\(894\) 0 0
\(895\) 392821.i 0.490398i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.55383e6 + 1.55383e6i 1.92257 + 1.92257i
\(900\) 0 0
\(901\) 455891. + 455891.i 0.561580 + 0.561580i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 176085.i 0.214994i
\(906\) 0 0
\(907\) −662568. + 662568.i −0.805408 + 0.805408i −0.983935 0.178527i \(-0.942867\pi\)
0.178527 + 0.983935i \(0.442867\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 817906.i 0.985522i 0.870165 + 0.492761i \(0.164012\pi\)
−0.870165 + 0.492761i \(0.835988\pi\)
\(912\) 0 0
\(913\) 1.27398e6 1.52834
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 220195. + 220195.i 0.261860 + 0.261860i
\(918\) 0 0
\(919\) 33891.9 0.0401296 0.0200648 0.999799i \(-0.493613\pi\)
0.0200648 + 0.999799i \(0.493613\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −22638.1 + 22638.1i −0.0265728 + 0.0265728i
\(924\) 0 0
\(925\) −215230. + 215230.i −0.251547 + 0.251547i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 207783. 0.240757 0.120378 0.992728i \(-0.461589\pi\)
0.120378 + 0.992728i \(0.461589\pi\)
\(930\) 0 0
\(931\) −30358.2 30358.2i −0.0350249 0.0350249i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 593450. 0.678830
\(936\) 0 0
\(937\) 1.12361e6i 1.27979i 0.768464 + 0.639893i \(0.221022\pi\)
−0.768464 + 0.639893i \(0.778978\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 856765. 856765.i 0.967570 0.967570i −0.0319200 0.999490i \(-0.510162\pi\)
0.999490 + 0.0319200i \(0.0101622\pi\)
\(942\) 0 0
\(943\) 282112.i 0.317247i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −246666. 246666.i −0.275048 0.275048i 0.556080 0.831129i \(-0.312305\pi\)
−0.831129 + 0.556080i \(0.812305\pi\)
\(948\) 0 0
\(949\) −17638.6 17638.6i −0.0195853 0.0195853i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 219446.i 0.241625i 0.992675 + 0.120812i \(0.0385500\pi\)
−0.992675 + 0.120812i \(0.961450\pi\)
\(954\) 0 0
\(955\) 180041. 180041.i 0.197408 0.197408i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 549607.i 0.597606i
\(960\) 0 0
\(961\) −1.34498e6 −1.45636
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −244743. 244743.i −0.262819 0.262819i
\(966\) 0 0
\(967\) −650799. −0.695975 −0.347988 0.937499i \(-0.613135\pi\)
−0.347988 + 0.937499i \(0.613135\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 790825. 790825.i 0.838768 0.838768i −0.149929 0.988697i \(-0.547904\pi\)
0.988697 + 0.149929i \(0.0479044\pi\)
\(972\) 0 0
\(973\) 746058. 746058.i 0.788037 0.788037i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.40812e6 1.47520 0.737600 0.675237i \(-0.235959\pi\)
0.737600 + 0.675237i \(0.235959\pi\)
\(978\) 0 0
\(979\) 542600. + 542600.i 0.566128 + 0.566128i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −208227. −0.215491 −0.107746 0.994179i \(-0.534363\pi\)
−0.107746 + 0.994179i \(0.534363\pi\)
\(984\) 0 0
\(985\) 307144.i 0.316569i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 371486. 371486.i 0.379796 0.379796i
\(990\) 0 0
\(991\) 170063.i 0.173166i −0.996245 0.0865831i \(-0.972405\pi\)
0.996245 0.0865831i \(-0.0275948\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −546631. 546631.i −0.552138 0.552138i
\(996\) 0 0
\(997\) −917799. 917799.i −0.923331 0.923331i 0.0739326 0.997263i \(-0.476445\pi\)
−0.997263 + 0.0739326i \(0.976445\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.5.m.a.271.5 14
3.2 odd 2 64.5.f.a.15.4 14
4.3 odd 2 144.5.m.a.91.1 14
12.11 even 2 16.5.f.a.11.7 yes 14
16.3 odd 4 inner 576.5.m.a.559.5 14
16.13 even 4 144.5.m.a.19.1 14
24.5 odd 2 128.5.f.a.31.4 14
24.11 even 2 128.5.f.b.31.4 14
48.5 odd 4 128.5.f.b.95.4 14
48.11 even 4 128.5.f.a.95.4 14
48.29 odd 4 16.5.f.a.3.7 14
48.35 even 4 64.5.f.a.47.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
16.5.f.a.3.7 14 48.29 odd 4
16.5.f.a.11.7 yes 14 12.11 even 2
64.5.f.a.15.4 14 3.2 odd 2
64.5.f.a.47.4 14 48.35 even 4
128.5.f.a.31.4 14 24.5 odd 2
128.5.f.a.95.4 14 48.11 even 4
128.5.f.b.31.4 14 24.11 even 2
128.5.f.b.95.4 14 48.5 odd 4
144.5.m.a.19.1 14 16.13 even 4
144.5.m.a.91.1 14 4.3 odd 2
576.5.m.a.271.5 14 1.1 even 1 trivial
576.5.m.a.559.5 14 16.3 odd 4 inner