Properties

Label 16.5.f.a.11.7
Level $16$
Weight $5$
Character 16.11
Analytic conductor $1.654$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [16,5,Mod(3,16)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(16, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("16.3");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 16 = 2^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 16.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.65391940934\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 4 x^{13} + 15 x^{12} - 34 x^{11} + 62 x^{10} - 312 x^{9} + 1432 x^{8} - 4960 x^{7} + \cdots + 2097152 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{21} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 11.7
Root \(-2.40693 - 1.48549i\) of defining polynomial
Character \(\chi\) \(=\) 16.11
Dual form 16.5.f.a.3.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.89242 + 0.921438i) q^{2} +(-0.0461995 - 0.0461995i) q^{3} +(14.3019 + 7.17325i) q^{4} +(-8.04297 - 8.04297i) q^{5} +(-0.137258 - 0.222398i) q^{6} -49.8797 q^{7} +(49.0594 + 41.0996i) q^{8} -80.9957i q^{9} +(-23.8955 - 38.7177i) q^{10} +(-84.2573 + 84.2573i) q^{11} +(-0.329340 - 0.992142i) q^{12} +(19.4838 - 19.4838i) q^{13} +(-194.153 - 45.9610i) q^{14} +0.743162i q^{15} +(153.089 + 205.182i) q^{16} +437.855 q^{17} +(74.6325 - 315.270i) q^{18} +(349.021 + 349.021i) q^{19} +(-57.3356 - 172.724i) q^{20} +(2.30442 + 2.30442i) q^{21} +(-405.603 + 250.327i) q^{22} -404.840 q^{23} +(-0.367736 - 4.16530i) q^{24} -495.621i q^{25} +(93.7922 - 57.8860i) q^{26} +(-7.48412 + 7.48412i) q^{27} +(-713.374 - 357.799i) q^{28} +(-1031.65 + 1031.65i) q^{29} +(-0.684778 + 2.89270i) q^{30} -1506.15i q^{31} +(406.824 + 939.718i) q^{32} +7.78529 q^{33} +(1704.32 + 403.456i) q^{34} +(401.181 + 401.181i) q^{35} +(581.003 - 1158.39i) q^{36} +(-434.262 - 434.262i) q^{37} +(1036.94 + 1680.14i) q^{38} -1.80028 q^{39} +(-64.0199 - 725.146i) q^{40} +696.847i q^{41} +(6.84639 + 11.0931i) q^{42} +(917.612 - 917.612i) q^{43} +(-1809.44 + 600.641i) q^{44} +(-651.446 + 651.446i) q^{45} +(-1575.81 - 373.035i) q^{46} +111.917i q^{47} +(2.40668 - 16.5520i) q^{48} +86.9810 q^{49} +(456.684 - 1929.17i) q^{50} +(-20.2287 - 20.2287i) q^{51} +(418.417 - 138.893i) q^{52} +(1041.19 + 1041.19i) q^{53} +(-36.0275 + 22.2352i) q^{54} +1355.36 q^{55} +(-2447.06 - 2050.04i) q^{56} -32.2492i q^{57} +(-4966.23 + 3065.02i) q^{58} +(-1711.60 + 1711.60i) q^{59} +(-5.33089 + 10.6286i) q^{60} +(3711.24 - 3711.24i) q^{61} +(1387.83 - 5862.58i) q^{62} +4040.04i q^{63} +(717.641 + 4032.64i) q^{64} -313.415 q^{65} +(30.3036 + 7.17366i) q^{66} +(-1854.18 - 1854.18i) q^{67} +(6262.16 + 3140.84i) q^{68} +(18.7034 + 18.7034i) q^{69} +(1191.90 + 1931.23i) q^{70} -1161.89 q^{71} +(3328.89 - 3973.60i) q^{72} -905.295i q^{73} +(-1290.19 - 2090.48i) q^{74} +(-22.8975 + 22.8975i) q^{75} +(2488.05 + 7495.28i) q^{76} +(4202.72 - 4202.72i) q^{77} +(-7.00746 - 1.65885i) q^{78} +5869.63i q^{79} +(418.984 - 2881.56i) q^{80} -6559.96 q^{81} +(-642.101 + 2712.42i) q^{82} +(-7560.06 - 7560.06i) q^{83} +(16.4274 + 49.4877i) q^{84} +(-3521.65 - 3521.65i) q^{85} +(4417.25 - 2726.21i) q^{86} +95.3236 q^{87} +(-7596.55 + 670.665i) q^{88} +6439.80i q^{89} +(-3135.97 + 1935.44i) q^{90} +(-971.844 + 971.844i) q^{91} +(-5789.98 - 2904.02i) q^{92} +(-69.5835 + 69.5835i) q^{93} +(-103.125 + 435.628i) q^{94} -5614.33i q^{95} +(24.6194 - 62.2096i) q^{96} -413.032 q^{97} +(338.567 + 80.1476i) q^{98} +(6824.48 + 6824.48i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{2} - 2 q^{3} - 8 q^{4} - 2 q^{5} + 64 q^{6} - 4 q^{7} - 92 q^{8} - 100 q^{10} + 94 q^{11} - 332 q^{12} - 2 q^{13} + 44 q^{14} - 168 q^{16} - 4 q^{17} + 1390 q^{18} - 706 q^{19} + 1900 q^{20}+ \cdots + 49214 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/16\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(15\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.89242 + 0.921438i 0.973106 + 0.230359i
\(3\) −0.0461995 0.0461995i −0.00513328 0.00513328i 0.704535 0.709669i \(-0.251155\pi\)
−0.709669 + 0.704535i \(0.751155\pi\)
\(4\) 14.3019 + 7.17325i 0.893869 + 0.448328i
\(5\) −8.04297 8.04297i −0.321719 0.321719i 0.527707 0.849426i \(-0.323052\pi\)
−0.849426 + 0.527707i \(0.823052\pi\)
\(6\) −0.137258 0.222398i −0.00381272 0.00617772i
\(7\) −49.8797 −1.01795 −0.508976 0.860781i \(-0.669976\pi\)
−0.508976 + 0.860781i \(0.669976\pi\)
\(8\) 49.0594 + 41.0996i 0.766552 + 0.642182i
\(9\) 80.9957i 0.999947i
\(10\) −23.8955 38.7177i −0.238955 0.387177i
\(11\) −84.2573 + 84.2573i −0.696341 + 0.696341i −0.963619 0.267278i \(-0.913876\pi\)
0.267278 + 0.963619i \(0.413876\pi\)
\(12\) −0.329340 0.992142i −0.00228709 0.00688987i
\(13\) 19.4838 19.4838i 0.115289 0.115289i −0.647109 0.762398i \(-0.724022\pi\)
0.762398 + 0.647109i \(0.224022\pi\)
\(14\) −194.153 45.9610i −0.990575 0.234495i
\(15\) 0.743162i 0.00330294i
\(16\) 153.089 + 205.182i 0.598004 + 0.801493i
\(17\) 437.855 1.51507 0.757535 0.652795i \(-0.226404\pi\)
0.757535 + 0.652795i \(0.226404\pi\)
\(18\) 74.6325 315.270i 0.230347 0.973054i
\(19\) 349.021 + 349.021i 0.966817 + 0.966817i 0.999467 0.0326494i \(-0.0103945\pi\)
−0.0326494 + 0.999467i \(0.510394\pi\)
\(20\) −57.3356 172.724i −0.143339 0.431810i
\(21\) 2.30442 + 2.30442i 0.00522543 + 0.00522543i
\(22\) −405.603 + 250.327i −0.838022 + 0.517205i
\(23\) −404.840 −0.765293 −0.382647 0.923895i \(-0.624987\pi\)
−0.382647 + 0.923895i \(0.624987\pi\)
\(24\) −0.367736 4.16530i −0.000638430 0.00723143i
\(25\) 495.621i 0.792994i
\(26\) 93.7922 57.8860i 0.138746 0.0856302i
\(27\) −7.48412 + 7.48412i −0.0102663 + 0.0102663i
\(28\) −713.374 357.799i −0.909916 0.456377i
\(29\) −1031.65 + 1031.65i −1.22670 + 1.22670i −0.261490 + 0.965206i \(0.584214\pi\)
−0.965206 + 0.261490i \(0.915786\pi\)
\(30\) −0.684778 + 2.89270i −0.000760864 + 0.00321411i
\(31\) 1506.15i 1.56728i −0.621217 0.783638i \(-0.713362\pi\)
0.621217 0.783638i \(-0.286638\pi\)
\(32\) 406.824 + 939.718i 0.397290 + 0.917693i
\(33\) 7.78529 0.00714903
\(34\) 1704.32 + 403.456i 1.47432 + 0.349011i
\(35\) 401.181 + 401.181i 0.327494 + 0.327494i
\(36\) 581.003 1158.39i 0.448304 0.893822i
\(37\) −434.262 434.262i −0.317211 0.317211i 0.530484 0.847695i \(-0.322010\pi\)
−0.847695 + 0.530484i \(0.822010\pi\)
\(38\) 1036.94 + 1680.14i 0.718100 + 1.16353i
\(39\) −1.80028 −0.00118362
\(40\) −64.0199 725.146i −0.0400124 0.453216i
\(41\) 696.847i 0.414543i 0.978283 + 0.207272i \(0.0664584\pi\)
−0.978283 + 0.207272i \(0.933542\pi\)
\(42\) 6.84639 + 11.0931i 0.00388117 + 0.00628863i
\(43\) 917.612 917.612i 0.496275 0.496275i −0.414002 0.910276i \(-0.635869\pi\)
0.910276 + 0.414002i \(0.135869\pi\)
\(44\) −1809.44 + 600.641i −0.934627 + 0.310249i
\(45\) −651.446 + 651.446i −0.321702 + 0.321702i
\(46\) −1575.81 373.035i −0.744711 0.176292i
\(47\) 111.917i 0.0506641i 0.999679 + 0.0253321i \(0.00806431\pi\)
−0.999679 + 0.0253321i \(0.991936\pi\)
\(48\) 2.40668 16.5520i 0.00104457 0.00718401i
\(49\) 86.9810 0.0362270
\(50\) 456.684 1929.17i 0.182674 0.771667i
\(51\) −20.2287 20.2287i −0.00777728 0.00777728i
\(52\) 418.417 138.893i 0.154740 0.0513658i
\(53\) 1041.19 + 1041.19i 0.370663 + 0.370663i 0.867719 0.497056i \(-0.165586\pi\)
−0.497056 + 0.867719i \(0.665586\pi\)
\(54\) −36.0275 + 22.2352i −0.0123551 + 0.00762525i
\(55\) 1355.36 0.448052
\(56\) −2447.06 2050.04i −0.780314 0.653710i
\(57\) 32.2492i 0.00992589i
\(58\) −4966.23 + 3065.02i −1.47629 + 0.911124i
\(59\) −1711.60 + 1711.60i −0.491697 + 0.491697i −0.908841 0.417144i \(-0.863031\pi\)
0.417144 + 0.908841i \(0.363031\pi\)
\(60\) −5.33089 + 10.6286i −0.00148080 + 0.00295240i
\(61\) 3711.24 3711.24i 0.997376 0.997376i −0.00262076 0.999997i \(-0.500834\pi\)
0.999997 + 0.00262076i \(0.000834216\pi\)
\(62\) 1387.83 5862.58i 0.361037 1.52513i
\(63\) 4040.04i 1.01790i
\(64\) 717.641 + 4032.64i 0.175205 + 0.984532i
\(65\) −313.415 −0.0741810
\(66\) 30.3036 + 7.17366i 0.00695676 + 0.00164685i
\(67\) −1854.18 1854.18i −0.413049 0.413049i 0.469750 0.882799i \(-0.344344\pi\)
−0.882799 + 0.469750i \(0.844344\pi\)
\(68\) 6262.16 + 3140.84i 1.35427 + 0.679248i
\(69\) 18.7034 + 18.7034i 0.00392846 + 0.00392846i
\(70\) 1191.90 + 1931.23i 0.243245 + 0.394128i
\(71\) −1161.89 −0.230489 −0.115244 0.993337i \(-0.536765\pi\)
−0.115244 + 0.993337i \(0.536765\pi\)
\(72\) 3328.89 3973.60i 0.642148 0.766512i
\(73\) 905.295i 0.169881i −0.996386 0.0849404i \(-0.972930\pi\)
0.996386 0.0849404i \(-0.0270700\pi\)
\(74\) −1290.19 2090.48i −0.235608 0.381753i
\(75\) −22.8975 + 22.8975i −0.00407066 + 0.00407066i
\(76\) 2488.05 + 7495.28i 0.430757 + 1.29766i
\(77\) 4202.72 4202.72i 0.708842 0.708842i
\(78\) −7.00746 1.65885i −0.00115178 0.000272657i
\(79\) 5869.63i 0.940495i 0.882535 + 0.470247i \(0.155835\pi\)
−0.882535 + 0.470247i \(0.844165\pi\)
\(80\) 418.984 2881.56i 0.0654663 0.450244i
\(81\) −6559.96 −0.999842
\(82\) −642.101 + 2712.42i −0.0954939 + 0.403394i
\(83\) −7560.06 7560.06i −1.09741 1.09741i −0.994713 0.102698i \(-0.967252\pi\)
−0.102698 0.994713i \(-0.532748\pi\)
\(84\) 16.4274 + 49.4877i 0.00232815 + 0.00701356i
\(85\) −3521.65 3521.65i −0.487426 0.487426i
\(86\) 4417.25 2726.21i 0.597249 0.368606i
\(87\) 95.3236 0.0125939
\(88\) −7596.55 + 670.665i −0.980959 + 0.0866045i
\(89\) 6439.80i 0.813004i 0.913650 + 0.406502i \(0.133252\pi\)
−0.913650 + 0.406502i \(0.866748\pi\)
\(90\) −3135.97 + 1935.44i −0.387157 + 0.238943i
\(91\) −971.844 + 971.844i −0.117358 + 0.117358i
\(92\) −5789.98 2904.02i −0.684072 0.343102i
\(93\) −69.5835 + 69.5835i −0.00804527 + 0.00804527i
\(94\) −103.125 + 435.628i −0.0116710 + 0.0493015i
\(95\) 5614.33i 0.622087i
\(96\) 24.6194 62.2096i 0.00267138 0.00675017i
\(97\) −413.032 −0.0438976 −0.0219488 0.999759i \(-0.506987\pi\)
−0.0219488 + 0.999759i \(0.506987\pi\)
\(98\) 338.567 + 80.1476i 0.0352527 + 0.00834523i
\(99\) 6824.48 + 6824.48i 0.696304 + 0.696304i
\(100\) 3555.22 7088.33i 0.355522 0.708833i
\(101\) 8460.63 + 8460.63i 0.829392 + 0.829392i 0.987433 0.158041i \(-0.0505177\pi\)
−0.158041 + 0.987433i \(0.550518\pi\)
\(102\) −60.0991 97.3781i −0.00577654 0.00935968i
\(103\) 17007.9 1.60316 0.801578 0.597891i \(-0.203994\pi\)
0.801578 + 0.597891i \(0.203994\pi\)
\(104\) 1756.64 155.086i 0.162411 0.0143385i
\(105\) 37.0687i 0.00336224i
\(106\) 3093.37 + 5012.15i 0.275309 + 0.446080i
\(107\) 9368.65 9368.65i 0.818294 0.818294i −0.167567 0.985861i \(-0.553591\pi\)
0.985861 + 0.167567i \(0.0535909\pi\)
\(108\) −160.723 + 53.3518i −0.0137794 + 0.00457405i
\(109\) −8308.73 + 8308.73i −0.699329 + 0.699329i −0.964266 0.264937i \(-0.914649\pi\)
0.264937 + 0.964266i \(0.414649\pi\)
\(110\) 5275.62 + 1248.88i 0.436002 + 0.103213i
\(111\) 40.1254i 0.00325667i
\(112\) −7636.03 10234.4i −0.608740 0.815882i
\(113\) 5814.63 0.455371 0.227685 0.973735i \(-0.426884\pi\)
0.227685 + 0.973735i \(0.426884\pi\)
\(114\) 29.7156 125.528i 0.00228652 0.00965894i
\(115\) 3256.12 + 3256.12i 0.246209 + 0.246209i
\(116\) −22154.9 + 7354.29i −1.64647 + 0.546544i
\(117\) −1578.10 1578.10i −0.115283 0.115283i
\(118\) −8239.39 + 5085.13i −0.591740 + 0.365206i
\(119\) −21840.1 −1.54227
\(120\) −30.5437 + 36.4591i −0.00212109 + 0.00253188i
\(121\) 442.428i 0.0302185i
\(122\) 17865.4 11026.0i 1.20031 0.740797i
\(123\) 32.1940 32.1940i 0.00212797 0.00212797i
\(124\) 10804.0 21540.9i 0.702654 1.40094i
\(125\) −9013.12 + 9013.12i −0.576840 + 0.576840i
\(126\) −3722.64 + 15725.5i −0.234483 + 0.990523i
\(127\) 20367.1i 1.26276i −0.775472 0.631382i \(-0.782488\pi\)
0.775472 0.631382i \(-0.217512\pi\)
\(128\) −922.465 + 16358.0i −0.0563028 + 0.998414i
\(129\) −84.7864 −0.00509503
\(130\) −1219.94 288.792i −0.0721860 0.0170883i
\(131\) 4414.52 + 4414.52i 0.257242 + 0.257242i 0.823931 0.566690i \(-0.191776\pi\)
−0.566690 + 0.823931i \(0.691776\pi\)
\(132\) 111.344 + 55.8458i 0.00639029 + 0.00320511i
\(133\) −17409.1 17409.1i −0.984174 0.984174i
\(134\) −5508.74 8925.76i −0.306791 0.497091i
\(135\) 120.389 0.00660571
\(136\) 21480.9 + 17995.7i 1.16138 + 0.972950i
\(137\) 11018.7i 0.587067i −0.955949 0.293533i \(-0.905169\pi\)
0.955949 0.293533i \(-0.0948312\pi\)
\(138\) 55.5676 + 90.0356i 0.00291785 + 0.00472777i
\(139\) −14957.2 + 14957.2i −0.774140 + 0.774140i −0.978827 0.204688i \(-0.934382\pi\)
0.204688 + 0.978827i \(0.434382\pi\)
\(140\) 2859.88 + 8615.41i 0.145912 + 0.439562i
\(141\) 5.17051 5.17051i 0.000260073 0.000260073i
\(142\) −4522.59 1070.61i −0.224290 0.0530953i
\(143\) 3283.30i 0.160560i
\(144\) 16618.9 12399.6i 0.801451 0.597972i
\(145\) 16595.1 0.789302
\(146\) 834.173 3523.79i 0.0391336 0.165312i
\(147\) −4.01848 4.01848i −0.000185963 0.000185963i
\(148\) −3095.71 9325.85i −0.141331 0.425760i
\(149\) 15393.9 + 15393.9i 0.693388 + 0.693388i 0.962976 0.269588i \(-0.0868876\pi\)
−0.269588 + 0.962976i \(0.586888\pi\)
\(150\) −110.225 + 68.0280i −0.00489890 + 0.00302347i
\(151\) −16971.9 −0.744347 −0.372174 0.928163i \(-0.621387\pi\)
−0.372174 + 0.928163i \(0.621387\pi\)
\(152\) 2778.11 + 31467.4i 0.120244 + 1.36199i
\(153\) 35464.4i 1.51499i
\(154\) 20231.3 12486.2i 0.853066 0.526490i
\(155\) −12113.9 + 12113.9i −0.504222 + 0.504222i
\(156\) −25.7475 12.9139i −0.00105800 0.000530649i
\(157\) 1167.73 1167.73i 0.0473744 0.0473744i −0.683023 0.730397i \(-0.739335\pi\)
0.730397 + 0.683023i \(0.239335\pi\)
\(158\) −5408.50 + 22847.1i −0.216652 + 0.915201i
\(159\) 96.2051i 0.00380543i
\(160\) 4286.05 10830.2i 0.167424 0.423055i
\(161\) 20193.3 0.779032
\(162\) −25534.1 6044.60i −0.972952 0.230323i
\(163\) 28076.2 + 28076.2i 1.05673 + 1.05673i 0.998291 + 0.0584383i \(0.0186121\pi\)
0.0584383 + 0.998291i \(0.481388\pi\)
\(164\) −4998.66 + 9966.24i −0.185851 + 0.370547i
\(165\) −62.6168 62.6168i −0.00229998 0.00229998i
\(166\) −22460.8 36393.1i −0.815098 1.32070i
\(167\) −2929.82 −0.105053 −0.0525264 0.998620i \(-0.516727\pi\)
−0.0525264 + 0.998620i \(0.516727\pi\)
\(168\) 18.3425 + 207.764i 0.000649891 + 0.00736125i
\(169\) 27801.8i 0.973417i
\(170\) −10462.8 16952.8i −0.362034 0.586600i
\(171\) 28269.2 28269.2i 0.966767 0.966767i
\(172\) 19705.9 6541.34i 0.666098 0.221111i
\(173\) 8560.97 8560.97i 0.286043 0.286043i −0.549470 0.835513i \(-0.685171\pi\)
0.835513 + 0.549470i \(0.185171\pi\)
\(174\) 371.040 + 87.8347i 0.0122552 + 0.00290113i
\(175\) 24721.4i 0.807230i
\(176\) −30187.0 4389.23i −0.974527 0.141698i
\(177\) 158.150 0.00504804
\(178\) −5933.88 + 25066.4i −0.187283 + 0.791139i
\(179\) −24420.1 24420.1i −0.762153 0.762153i 0.214558 0.976711i \(-0.431169\pi\)
−0.976711 + 0.214558i \(0.931169\pi\)
\(180\) −13989.9 + 4643.94i −0.431787 + 0.143331i
\(181\) −10946.5 10946.5i −0.334133 0.334133i 0.520021 0.854154i \(-0.325924\pi\)
−0.854154 + 0.520021i \(0.825924\pi\)
\(182\) −4678.32 + 2887.33i −0.141237 + 0.0871674i
\(183\) −342.915 −0.0102396
\(184\) −19861.2 16638.8i −0.586637 0.491457i
\(185\) 6985.52i 0.204106i
\(186\) −334.965 + 206.732i −0.00968220 + 0.00597559i
\(187\) −36892.5 + 36892.5i −1.05501 + 1.05501i
\(188\) −802.809 + 1600.63i −0.0227141 + 0.0452871i
\(189\) 373.306 373.306i 0.0104506 0.0104506i
\(190\) 5173.26 21853.3i 0.143303 0.605356i
\(191\) 22384.9i 0.613604i −0.951773 0.306802i \(-0.900741\pi\)
0.951773 0.306802i \(-0.0992590\pi\)
\(192\) 153.151 219.461i 0.00415450 0.00595326i
\(193\) −30429.5 −0.816920 −0.408460 0.912776i \(-0.633934\pi\)
−0.408460 + 0.912776i \(0.633934\pi\)
\(194\) −1607.70 380.584i −0.0427170 0.0101122i
\(195\) 14.4796 + 14.4796i 0.000380792 + 0.000380792i
\(196\) 1243.99 + 623.937i 0.0323822 + 0.0162416i
\(197\) 19093.9 + 19093.9i 0.491997 + 0.491997i 0.908935 0.416938i \(-0.136897\pi\)
−0.416938 + 0.908935i \(0.636897\pi\)
\(198\) 20275.4 + 32852.1i 0.517177 + 0.837978i
\(199\) 67963.8 1.71621 0.858107 0.513470i \(-0.171640\pi\)
0.858107 + 0.513470i \(0.171640\pi\)
\(200\) 20369.9 24314.9i 0.509246 0.607872i
\(201\) 171.324i 0.00424060i
\(202\) 25136.4 + 40728.3i 0.616028 + 0.998144i
\(203\) 51458.4 51458.4i 1.24872 1.24872i
\(204\) −144.203 434.414i −0.00346510 0.0104386i
\(205\) 5604.72 5604.72i 0.133366 0.133366i
\(206\) 66201.8 + 15671.7i 1.56004 + 0.369302i
\(207\) 32790.3i 0.765253i
\(208\) 6980.48 + 1014.97i 0.161346 + 0.0234600i
\(209\) −58815.1 −1.34647
\(210\) 34.1565 144.287i 0.000774523 0.00327181i
\(211\) −55219.8 55219.8i −1.24031 1.24031i −0.959872 0.280438i \(-0.909520\pi\)
−0.280438 0.959872i \(-0.590480\pi\)
\(212\) 7422.30 + 22359.8i 0.165146 + 0.497503i
\(213\) 53.6790 + 53.6790i 0.00118316 + 0.00118316i
\(214\) 45099.4 27834.1i 0.984788 0.607785i
\(215\) −14760.6 −0.319322
\(216\) −674.761 + 59.5716i −0.0144625 + 0.00127683i
\(217\) 75126.4i 1.59541i
\(218\) −39997.1 + 24685.1i −0.841618 + 0.519424i
\(219\) −41.8242 + 41.8242i −0.000872046 + 0.000872046i
\(220\) 19384.2 + 9722.31i 0.400500 + 0.200874i
\(221\) 8531.07 8531.07i 0.174670 0.174670i
\(222\) −36.9731 + 156.185i −0.000750204 + 0.00316908i
\(223\) 40417.5i 0.812754i −0.913705 0.406377i \(-0.866792\pi\)
0.913705 0.406377i \(-0.133208\pi\)
\(224\) −20292.3 46872.8i −0.404422 0.934168i
\(225\) −40143.2 −0.792952
\(226\) 22633.0 + 5357.82i 0.443124 + 0.104899i
\(227\) −1672.85 1672.85i −0.0324643 0.0324643i 0.690688 0.723153i \(-0.257308\pi\)
−0.723153 + 0.690688i \(0.757308\pi\)
\(228\) 231.332 461.225i 0.00445005 0.00887244i
\(229\) −26519.0 26519.0i −0.505691 0.505691i 0.407510 0.913201i \(-0.366397\pi\)
−0.913201 + 0.407510i \(0.866397\pi\)
\(230\) 9673.87 + 15674.5i 0.182871 + 0.296304i
\(231\) −388.328 −0.00727737
\(232\) −93012.7 + 8211.67i −1.72809 + 0.152565i
\(233\) 24163.3i 0.445087i −0.974923 0.222543i \(-0.928564\pi\)
0.974923 0.222543i \(-0.0714359\pi\)
\(234\) −4688.52 7596.76i −0.0856257 0.138738i
\(235\) 900.145 900.145i 0.0162996 0.0162996i
\(236\) −36756.8 + 12201.4i −0.659954 + 0.219071i
\(237\) 271.174 271.174i 0.00482782 0.00482782i
\(238\) −85010.8 20124.3i −1.50079 0.355276i
\(239\) 76356.4i 1.33675i 0.743825 + 0.668374i \(0.233010\pi\)
−0.743825 + 0.668374i \(0.766990\pi\)
\(240\) −152.484 + 113.770i −0.00264729 + 0.00197517i
\(241\) 40548.1 0.698130 0.349065 0.937099i \(-0.386499\pi\)
0.349065 + 0.937099i \(0.386499\pi\)
\(242\) −407.670 + 1722.12i −0.00696111 + 0.0294058i
\(243\) 909.281 + 909.281i 0.0153988 + 0.0153988i
\(244\) 79699.4 26456.1i 1.33867 0.444372i
\(245\) −699.586 699.586i −0.0116549 0.0116549i
\(246\) 154.977 95.6479i 0.00256093 0.00158054i
\(247\) 13600.5 0.222926
\(248\) 61902.3 73890.9i 1.00648 1.20140i
\(249\) 698.542i 0.0112666i
\(250\) −43387.9 + 26777.8i −0.694206 + 0.428446i
\(251\) −10536.0 + 10536.0i −0.167235 + 0.167235i −0.785763 0.618528i \(-0.787729\pi\)
0.618528 + 0.785763i \(0.287729\pi\)
\(252\) −28980.2 + 57780.3i −0.456353 + 0.909868i
\(253\) 34110.7 34110.7i 0.532905 0.532905i
\(254\) 18767.0 79277.4i 0.290889 1.22880i
\(255\) 325.397i 0.00500419i
\(256\) −18663.5 + 62822.3i −0.284783 + 0.958592i
\(257\) 37983.9 0.575086 0.287543 0.957768i \(-0.407162\pi\)
0.287543 + 0.957768i \(0.407162\pi\)
\(258\) −330.025 78.1254i −0.00495800 0.00117369i
\(259\) 21660.9 + 21660.9i 0.322906 + 0.322906i
\(260\) −4482.43 2248.20i −0.0663081 0.0332574i
\(261\) 83559.4 + 83559.4i 1.22663 + 1.22663i
\(262\) 13115.5 + 21250.9i 0.191065 + 0.309581i
\(263\) 37545.0 0.542801 0.271400 0.962467i \(-0.412513\pi\)
0.271400 + 0.962467i \(0.412513\pi\)
\(264\) 381.941 + 319.972i 0.00548010 + 0.00459097i
\(265\) 16748.6i 0.238498i
\(266\) −51722.0 83804.8i −0.730992 1.18442i
\(267\) 297.516 297.516i 0.00417338 0.00417338i
\(268\) −13217.8 39818.8i −0.184031 0.554394i
\(269\) 4676.63 4676.63i 0.0646291 0.0646291i −0.674053 0.738683i \(-0.735448\pi\)
0.738683 + 0.674053i \(0.235448\pi\)
\(270\) 468.605 + 110.931i 0.00642806 + 0.00152169i
\(271\) 2746.12i 0.0373922i 0.999825 + 0.0186961i \(0.00595149\pi\)
−0.999825 + 0.0186961i \(0.994049\pi\)
\(272\) 67030.8 + 89840.1i 0.906018 + 1.21432i
\(273\) 89.7975 0.00120487
\(274\) 10153.0 42889.3i 0.135236 0.571278i
\(275\) 41759.7 + 41759.7i 0.552194 + 0.552194i
\(276\) 133.330 + 401.659i 0.00175029 + 0.00527277i
\(277\) −33056.5 33056.5i −0.430822 0.430822i 0.458086 0.888908i \(-0.348535\pi\)
−0.888908 + 0.458086i \(0.848535\pi\)
\(278\) −72001.7 + 44437.5i −0.931650 + 0.574989i
\(279\) −121992. −1.56719
\(280\) 3193.29 + 36170.0i 0.0407307 + 0.461352i
\(281\) 80033.0i 1.01358i −0.862071 0.506788i \(-0.830833\pi\)
0.862071 0.506788i \(-0.169167\pi\)
\(282\) 24.8901 15.3615i 0.000312989 0.000193168i
\(283\) −72284.3 + 72284.3i −0.902549 + 0.902549i −0.995656 0.0931068i \(-0.970320\pi\)
0.0931068 + 0.995656i \(0.470320\pi\)
\(284\) −16617.3 8334.56i −0.206027 0.103335i
\(285\) −259.379 + 259.379i −0.00319334 + 0.00319334i
\(286\) −3025.35 + 12780.0i −0.0369866 + 0.156242i
\(287\) 34758.5i 0.421985i
\(288\) 76113.1 32951.0i 0.917645 0.397269i
\(289\) 108196. 1.29544
\(290\) 64595.1 + 15291.3i 0.768075 + 0.181823i
\(291\) 19.0819 + 19.0819i 0.000225339 + 0.000225339i
\(292\) 6493.91 12947.4i 0.0761623 0.151851i
\(293\) −84911.3 84911.3i −0.989077 0.989077i 0.0108641 0.999941i \(-0.496542\pi\)
−0.999941 + 0.0108641i \(0.996542\pi\)
\(294\) −11.9388 19.3444i −0.000138124 0.000223800i
\(295\) 27532.6 0.316376
\(296\) −3456.61 39152.7i −0.0394518 0.446867i
\(297\) 1261.18i 0.0142977i
\(298\) 45735.0 + 74104.1i 0.515011 + 0.834468i
\(299\) −7887.81 + 7887.81i −0.0882296 + 0.0882296i
\(300\) −491.727 + 163.228i −0.00546363 + 0.00181365i
\(301\) −45770.2 + 45770.2i −0.505184 + 0.505184i
\(302\) −66061.7 15638.5i −0.724329 0.171467i
\(303\) 781.754i 0.00851500i
\(304\) −18181.6 + 125044.i −0.196737 + 1.35306i
\(305\) −59698.7 −0.641749
\(306\) 32678.2 138042.i 0.348992 1.47425i
\(307\) −55472.5 55472.5i −0.588574 0.588574i 0.348671 0.937245i \(-0.386633\pi\)
−0.937245 + 0.348671i \(0.886633\pi\)
\(308\) 90254.1 29959.8i 0.951406 0.315818i
\(309\) −785.756 785.756i −0.00822944 0.00822944i
\(310\) −58314.8 + 35990.3i −0.606814 + 0.374509i
\(311\) −127048. −1.31355 −0.656777 0.754084i \(-0.728081\pi\)
−0.656777 + 0.754084i \(0.728081\pi\)
\(312\) −88.3207 73.9909i −0.000907305 0.000760097i
\(313\) 25469.3i 0.259974i −0.991516 0.129987i \(-0.958507\pi\)
0.991516 0.129987i \(-0.0414935\pi\)
\(314\) 5621.29 3469.31i 0.0570134 0.0351871i
\(315\) 32493.9 32493.9i 0.327477 0.327477i
\(316\) −42104.3 + 83946.9i −0.421650 + 0.840679i
\(317\) −94218.4 + 94218.4i −0.937599 + 0.937599i −0.998164 0.0605656i \(-0.980710\pi\)
0.0605656 + 0.998164i \(0.480710\pi\)
\(318\) 88.6470 374.471i 0.000876617 0.00370309i
\(319\) 173848.i 1.70840i
\(320\) 26662.4 38206.4i 0.260375 0.373109i
\(321\) −865.654 −0.00840107
\(322\) 78600.8 + 18606.9i 0.758080 + 0.179457i
\(323\) 152821. + 152821.i 1.46480 + 1.46480i
\(324\) −93820.0 47056.2i −0.893728 0.448257i
\(325\) −9656.57 9656.57i −0.0914232 0.0914232i
\(326\) 83414.1 + 135155.i 0.784882 + 1.27174i
\(327\) 767.719 0.00717971
\(328\) −28640.2 + 34186.9i −0.266212 + 0.317769i
\(329\) 5582.38i 0.0515737i
\(330\) −186.034 301.429i −0.00170830 0.00276794i
\(331\) 65141.3 65141.3i 0.594567 0.594567i −0.344295 0.938862i \(-0.611882\pi\)
0.938862 + 0.344295i \(0.111882\pi\)
\(332\) −53893.1 162354.i −0.488942 1.47294i
\(333\) −35173.4 + 35173.4i −0.317195 + 0.317195i
\(334\) −11404.1 2699.64i −0.102227 0.0241999i
\(335\) 29826.2i 0.265771i
\(336\) −120.045 + 825.606i −0.00106332 + 0.00731298i
\(337\) 135004. 1.18874 0.594369 0.804193i \(-0.297402\pi\)
0.594369 + 0.804193i \(0.297402\pi\)
\(338\) −25617.6 + 108216.i −0.224236 + 0.947238i
\(339\) −268.633 268.633i −0.00233754 0.00233754i
\(340\) −25104.7 75628.1i −0.217168 0.654222i
\(341\) 126904. + 126904.i 1.09136 + 1.09136i
\(342\) 136084. 83987.4i 1.16347 0.718062i
\(343\) 115422. 0.981075
\(344\) 82730.9 7303.94i 0.699119 0.0617221i
\(345\) 300.862i 0.00252772i
\(346\) 41211.3 25434.5i 0.344242 0.212457i
\(347\) 10849.2 10849.2i 0.0901025 0.0901025i −0.660619 0.750721i \(-0.729706\pi\)
0.750721 + 0.660619i \(0.229706\pi\)
\(348\) 1363.31 + 683.780i 0.0112573 + 0.00564622i
\(349\) −6073.15 + 6073.15i −0.0498612 + 0.0498612i −0.731598 0.681737i \(-0.761225\pi\)
0.681737 + 0.731598i \(0.261225\pi\)
\(350\) −22779.3 + 96226.2i −0.185953 + 0.785520i
\(351\) 291.638i 0.00236717i
\(352\) −113456. 44900.1i −0.915676 0.362378i
\(353\) −143445. −1.15116 −0.575579 0.817746i \(-0.695223\pi\)
−0.575579 + 0.817746i \(0.695223\pi\)
\(354\) 615.586 + 145.725i 0.00491227 + 0.00116286i
\(355\) 9345.08 + 9345.08i 0.0741526 + 0.0741526i
\(356\) −46194.3 + 92101.5i −0.364492 + 0.726719i
\(357\) 1009.00 + 1009.00i 0.00791690 + 0.00791690i
\(358\) −72551.9 117555.i −0.566086 0.917225i
\(359\) 124076. 0.962718 0.481359 0.876523i \(-0.340143\pi\)
0.481359 + 0.876523i \(0.340143\pi\)
\(360\) −58733.7 + 5185.34i −0.453192 + 0.0400103i
\(361\) 113310.i 0.869472i
\(362\) −32522.0 52695.0i −0.248176 0.402117i
\(363\) 20.4400 20.4400i 0.000155120 0.000155120i
\(364\) −20870.5 + 6927.94i −0.157518 + 0.0522879i
\(365\) −7281.26 + 7281.26i −0.0546538 + 0.0546538i
\(366\) −1334.77 315.974i −0.00996423 0.00235879i
\(367\) 126240.i 0.937268i −0.883392 0.468634i \(-0.844746\pi\)
0.883392 0.468634i \(-0.155254\pi\)
\(368\) −61976.6 83066.0i −0.457648 0.613377i
\(369\) 56441.7 0.414521
\(370\) −6436.72 + 27190.6i −0.0470177 + 0.198616i
\(371\) −51934.3 51934.3i −0.377317 0.377317i
\(372\) −1494.32 + 496.037i −0.0107983 + 0.00358450i
\(373\) −95513.7 95513.7i −0.686512 0.686512i 0.274948 0.961459i \(-0.411339\pi\)
−0.961459 + 0.274948i \(0.911339\pi\)
\(374\) −177595. + 109607.i −1.26966 + 0.783601i
\(375\) 832.804 0.00592216
\(376\) −4599.75 + 5490.58i −0.0325356 + 0.0388367i
\(377\) 40200.9i 0.282848i
\(378\) 1797.04 1109.09i 0.0125769 0.00776214i
\(379\) −31220.0 + 31220.0i −0.217347 + 0.217347i −0.807380 0.590032i \(-0.799115\pi\)
0.590032 + 0.807380i \(0.299115\pi\)
\(380\) 40273.0 80295.6i 0.278899 0.556064i
\(381\) −940.951 + 940.951i −0.00648212 + 0.00648212i
\(382\) 20626.3 87131.5i 0.141350 0.597102i
\(383\) 253102.i 1.72543i 0.505689 + 0.862716i \(0.331238\pi\)
−0.505689 + 0.862716i \(0.668762\pi\)
\(384\) 798.350 713.115i 0.00541415 0.00483612i
\(385\) −67604.7 −0.456095
\(386\) −118444. 28038.9i −0.794950 0.188185i
\(387\) −74322.6 74322.6i −0.496248 0.496248i
\(388\) −5907.15 2962.78i −0.0392387 0.0196805i
\(389\) −43279.4 43279.4i −0.286011 0.286011i 0.549490 0.835500i \(-0.314822\pi\)
−0.835500 + 0.549490i \(0.814822\pi\)
\(390\) 43.0187 + 69.7028i 0.000282832 + 0.000458270i
\(391\) −177261. −1.15947
\(392\) 4267.23 + 3574.89i 0.0277699 + 0.0232643i
\(393\) 407.898i 0.00264099i
\(394\) 56727.7 + 91915.4i 0.365429 + 0.592101i
\(395\) 47209.2 47209.2i 0.302575 0.302575i
\(396\) 48649.4 + 146557.i 0.310232 + 0.934578i
\(397\) 198533. 198533.i 1.25965 1.25965i 0.308395 0.951258i \(-0.400208\pi\)
0.951258 0.308395i \(-0.0997920\pi\)
\(398\) 264544. + 62624.4i 1.67006 + 0.395346i
\(399\) 1608.58i 0.0101041i
\(400\) 101693. 75874.2i 0.635579 0.474214i
\(401\) −89330.8 −0.555536 −0.277768 0.960648i \(-0.589595\pi\)
−0.277768 + 0.960648i \(0.589595\pi\)
\(402\) −157.865 + 666.867i −0.000976861 + 0.00412655i
\(403\) −29345.5 29345.5i −0.180689 0.180689i
\(404\) 60312.9 + 181693.i 0.369528 + 1.11321i
\(405\) 52761.6 + 52761.6i 0.321668 + 0.321668i
\(406\) 247714. 152882.i 1.50279 0.927481i
\(407\) 73179.5 0.441775
\(408\) −161.015 1823.80i −0.000967266 0.0109561i
\(409\) 26716.3i 0.159709i 0.996807 + 0.0798545i \(0.0254456\pi\)
−0.996807 + 0.0798545i \(0.974554\pi\)
\(410\) 26980.3 16651.5i 0.160502 0.0990573i
\(411\) −509.057 + 509.057i −0.00301358 + 0.00301358i
\(412\) 243245. + 122002.i 1.43301 + 0.718739i
\(413\) 85373.9 85373.9i 0.500524 0.500524i
\(414\) −30214.2 + 127634.i −0.176283 + 0.744672i
\(415\) 121611.i 0.706115i
\(416\) 26235.7 + 10382.8i 0.151603 + 0.0599966i
\(417\) 1382.03 0.00794775
\(418\) −228933. 54194.5i −1.31026 0.310172i
\(419\) −119011. 119011.i −0.677889 0.677889i 0.281633 0.959522i \(-0.409124\pi\)
−0.959522 + 0.281633i \(0.909124\pi\)
\(420\) 265.903 530.153i 0.00150739 0.00300540i
\(421\) 126967. + 126967.i 0.716355 + 0.716355i 0.967857 0.251502i \(-0.0809245\pi\)
−0.251502 + 0.967857i \(0.580925\pi\)
\(422\) −164057. 265821.i −0.921236 1.49267i
\(423\) 9064.80 0.0506614
\(424\) 8287.61 + 93872.8i 0.0460996 + 0.522166i
\(425\) 217010.i 1.20144i
\(426\) 159.479 + 258.403i 0.000878791 + 0.00142390i
\(427\) −185115. + 185115.i −1.01528 + 1.01528i
\(428\) 201193. 66785.9i 1.09831 0.364584i
\(429\) 151.687 151.687i 0.000824201 0.000824201i
\(430\) −57454.7 13601.0i −0.310734 0.0735587i
\(431\) 82986.1i 0.446736i 0.974734 + 0.223368i \(0.0717051\pi\)
−0.974734 + 0.223368i \(0.928295\pi\)
\(432\) −2681.35 389.872i −0.0143676 0.00208908i
\(433\) −153228. −0.817265 −0.408633 0.912699i \(-0.633994\pi\)
−0.408633 + 0.912699i \(0.633994\pi\)
\(434\) −69224.3 + 292424.i −0.367518 + 1.55251i
\(435\) −766.685 766.685i −0.00405171 0.00405171i
\(436\) −178431. + 59230.1i −0.938638 + 0.311580i
\(437\) −141298. 141298.i −0.739899 0.739899i
\(438\) −201.336 + 124.259i −0.00104948 + 0.000647709i
\(439\) 48984.2 0.254172 0.127086 0.991892i \(-0.459438\pi\)
0.127086 + 0.991892i \(0.459438\pi\)
\(440\) 66492.9 + 55704.7i 0.343455 + 0.287731i
\(441\) 7045.09i 0.0362251i
\(442\) 41067.4 25345.7i 0.210210 0.129736i
\(443\) 5464.01 5464.01i 0.0278422 0.0278422i −0.693049 0.720891i \(-0.743733\pi\)
0.720891 + 0.693049i \(0.243733\pi\)
\(444\) −287.830 + 573.870i −0.00146006 + 0.00291104i
\(445\) 51795.1 51795.1i 0.261559 0.261559i
\(446\) 37242.2 157322.i 0.187226 0.790896i
\(447\) 1422.38i 0.00711870i
\(448\) −35795.7 201147.i −0.178351 1.00221i
\(449\) 140068. 0.694776 0.347388 0.937721i \(-0.387069\pi\)
0.347388 + 0.937721i \(0.387069\pi\)
\(450\) −156254. 36989.5i −0.771626 0.182664i
\(451\) −58714.4 58714.4i −0.288664 0.288664i
\(452\) 83160.3 + 41709.8i 0.407042 + 0.204155i
\(453\) 784.092 + 784.092i 0.00382094 + 0.00382094i
\(454\) −4970.02 8052.88i −0.0241127 0.0390696i
\(455\) 15633.0 0.0755127
\(456\) 1325.43 1582.13i 0.00637422 0.00760871i
\(457\) 219788.i 1.05238i 0.850368 + 0.526188i \(0.176379\pi\)
−0.850368 + 0.526188i \(0.823621\pi\)
\(458\) −78787.4 127659.i −0.375600 0.608582i
\(459\) −3276.96 + 3276.96i −0.0155541 + 0.0155541i
\(460\) 23211.7 + 69925.6i 0.109696 + 0.330461i
\(461\) 124163. 124163.i 0.584239 0.584239i −0.351826 0.936065i \(-0.614439\pi\)
0.936065 + 0.351826i \(0.114439\pi\)
\(462\) −1511.54 357.820i −0.00708165 0.00167641i
\(463\) 236566.i 1.10354i 0.833995 + 0.551772i \(0.186048\pi\)
−0.833995 + 0.551772i \(0.813952\pi\)
\(464\) −369611. 53742.1i −1.71676 0.249619i
\(465\) 1119.32 0.00517663
\(466\) 22265.0 94053.8i 0.102530 0.433116i
\(467\) 73415.5 + 73415.5i 0.336631 + 0.336631i 0.855098 0.518467i \(-0.173497\pi\)
−0.518467 + 0.855098i \(0.673497\pi\)
\(468\) −11249.8 33890.0i −0.0513631 0.154732i
\(469\) 92485.8 + 92485.8i 0.420465 + 0.420465i
\(470\) 4333.17 2674.32i 0.0196160 0.0121065i
\(471\) −107.897 −0.000486372
\(472\) −154316. + 13623.9i −0.692670 + 0.0611528i
\(473\) 154631.i 0.691153i
\(474\) 1305.39 805.654i 0.00581012 0.00358585i
\(475\) 172982. 172982.i 0.766681 0.766681i
\(476\) −312355. 156664.i −1.37859 0.691442i
\(477\) 84332.1 84332.1i 0.370643 0.370643i
\(478\) −70357.7 + 297211.i −0.307933 + 1.30080i
\(479\) 212004.i 0.924003i −0.886879 0.462002i \(-0.847131\pi\)
0.886879 0.462002i \(-0.152869\pi\)
\(480\) −698.363 + 302.337i −0.00303109 + 0.00131223i
\(481\) −16922.1 −0.0731417
\(482\) 157830. + 37362.5i 0.679354 + 0.160821i
\(483\) −932.920 932.920i −0.00399899 0.00399899i
\(484\) −3173.65 + 6327.57i −0.0135478 + 0.0270113i
\(485\) 3322.01 + 3322.01i 0.0141227 + 0.0141227i
\(486\) 2701.46 + 4377.15i 0.0114374 + 0.0185319i
\(487\) 26716.3 0.112647 0.0563234 0.998413i \(-0.482062\pi\)
0.0563234 + 0.998413i \(0.482062\pi\)
\(488\) 334601. 29540.4i 1.40504 0.124044i
\(489\) 2594.22i 0.0108490i
\(490\) −2078.46 3367.71i −0.00865664 0.0140263i
\(491\) 99544.8 99544.8i 0.412910 0.412910i −0.469841 0.882751i \(-0.655689\pi\)
0.882751 + 0.469841i \(0.155689\pi\)
\(492\) 691.371 229.500i 0.00285615 0.000948096i
\(493\) −451714. + 451714.i −1.85853 + 1.85853i
\(494\) 52938.9 + 12532.0i 0.216931 + 0.0513531i
\(495\) 109778.i 0.448028i
\(496\) 309036. 230575.i 1.25616 0.937238i
\(497\) 57954.9 0.234627
\(498\) −643.663 + 2719.02i −0.00259537 + 0.0109636i
\(499\) 189887. + 189887.i 0.762597 + 0.762597i 0.976791 0.214194i \(-0.0687125\pi\)
−0.214194 + 0.976791i \(0.568713\pi\)
\(500\) −193558. + 64251.5i −0.774233 + 0.257006i
\(501\) 135.356 + 135.356i 0.000539265 + 0.000539265i
\(502\) −50718.8 + 31302.3i −0.201262 + 0.124213i
\(503\) 188872. 0.746502 0.373251 0.927730i \(-0.378243\pi\)
0.373251 + 0.927730i \(0.378243\pi\)
\(504\) −166044. + 198202.i −0.653676 + 0.780273i
\(505\) 136097.i 0.533662i
\(506\) 164204. 101342.i 0.641332 0.395813i
\(507\) 1284.43 1284.43i 0.00499682 0.00499682i
\(508\) 146098. 291289.i 0.566132 1.12875i
\(509\) −14343.5 + 14343.5i −0.0553629 + 0.0553629i −0.734246 0.678883i \(-0.762464\pi\)
0.678883 + 0.734246i \(0.262464\pi\)
\(510\) −299.833 + 1266.58i −0.00115276 + 0.00486961i
\(511\) 45155.8i 0.172931i
\(512\) −130533. + 227334.i −0.497944 + 0.867209i
\(513\) −5224.23 −0.0198513
\(514\) 147849. + 34999.8i 0.559620 + 0.132477i
\(515\) −136794. 136794.i −0.515765 0.515765i
\(516\) −1212.61 608.194i −0.00455429 0.00228425i
\(517\) −9429.82 9429.82i −0.0352795 0.0352795i
\(518\) 64354.1 + 104272.i 0.239837 + 0.388606i
\(519\) −791.025 −0.00293667
\(520\) −15375.9 12881.2i −0.0568636 0.0476377i
\(521\) 65377.4i 0.240853i −0.992722 0.120427i \(-0.961574\pi\)
0.992722 0.120427i \(-0.0384262\pi\)
\(522\) 248254. + 402243.i 0.911076 + 1.47621i
\(523\) −143634. + 143634.i −0.525113 + 0.525113i −0.919111 0.393998i \(-0.871092\pi\)
0.393998 + 0.919111i \(0.371092\pi\)
\(524\) 31469.6 + 94802.6i 0.114612 + 0.345269i
\(525\) 1142.12 1142.12i 0.00414374 0.00414374i
\(526\) 146141. + 34595.4i 0.528203 + 0.125039i
\(527\) 659477.i 2.37453i
\(528\) 1191.84 + 1597.40i 0.00427515 + 0.00572989i
\(529\) −115946. −0.414327
\(530\) 15432.7 65192.4i 0.0549404 0.232084i
\(531\) 138632. + 138632.i 0.491671 + 0.491671i
\(532\) −124103. 373862.i −0.438490 1.32096i
\(533\) 13577.2 + 13577.2i 0.0477921 + 0.0477921i
\(534\) 1432.20 883.915i 0.00502251 0.00309976i
\(535\) −150704. −0.526521
\(536\) −14758.8 167171.i −0.0513713 0.581877i
\(537\) 2256.40i 0.00782469i
\(538\) 22512.6 13894.2i 0.0777789 0.0480030i
\(539\) −7328.78 + 7328.78i −0.0252263 + 0.0252263i
\(540\) 1721.79 + 863.581i 0.00590464 + 0.00296153i
\(541\) −275122. + 275122.i −0.940007 + 0.940007i −0.998300 0.0582928i \(-0.981434\pi\)
0.0582928 + 0.998300i \(0.481434\pi\)
\(542\) −2530.38 + 10689.0i −0.00861363 + 0.0363865i
\(543\) 1011.45i 0.00343039i
\(544\) 178130. + 411460.i 0.601921 + 1.39037i
\(545\) 133654. 0.449975
\(546\) 349.530 + 82.7427i 0.00117246 + 0.000277552i
\(547\) −1032.53 1032.53i −0.00345087 0.00345087i 0.705379 0.708830i \(-0.250777\pi\)
−0.708830 + 0.705379i \(0.750777\pi\)
\(548\) 79039.6 157588.i 0.263199 0.524761i
\(549\) −300594. 300594.i −0.997323 0.997323i
\(550\) 124067. + 201025.i 0.410140 + 0.664547i
\(551\) −720136. −2.37198
\(552\) 148.874 + 1686.28i 0.000488586 + 0.00553416i
\(553\) 292775.i 0.957379i
\(554\) −98210.4 159129.i −0.319991 0.518479i
\(555\) 322.727 322.727i 0.00104773 0.00104773i
\(556\) −321207. + 106624.i −1.03905 + 0.344911i
\(557\) −223266. + 223266.i −0.719635 + 0.719635i −0.968530 0.248895i \(-0.919933\pi\)
0.248895 + 0.968530i \(0.419933\pi\)
\(558\) −474844. 112408.i −1.52505 0.361018i
\(559\) 35757.1i 0.114430i
\(560\) −20898.8 + 143731.i −0.0666416 + 0.458327i
\(561\) 3408.83 0.0108313
\(562\) 73745.4 311522.i 0.233487 0.986317i
\(563\) 191551. + 191551.i 0.604322 + 0.604322i 0.941457 0.337134i \(-0.109458\pi\)
−0.337134 + 0.941457i \(0.609458\pi\)
\(564\) 111.038 36.8588i 0.000349069 0.000115873i
\(565\) −46766.9 46766.9i −0.146501 0.146501i
\(566\) −347966. + 214755.i −1.08619 + 0.670365i
\(567\) 327209. 1.01779
\(568\) −57001.8 47753.4i −0.176682 0.148016i
\(569\) 119746.i 0.369858i 0.982752 + 0.184929i \(0.0592055\pi\)
−0.982752 + 0.184929i \(0.940795\pi\)
\(570\) −1248.62 + 770.612i −0.00384308 + 0.00237184i
\(571\) 375516. 375516.i 1.15175 1.15175i 0.165544 0.986202i \(-0.447062\pi\)
0.986202 0.165544i \(-0.0529379\pi\)
\(572\) −23551.9 + 46957.4i −0.0719837 + 0.143520i
\(573\) −1034.17 + 1034.17i −0.00314980 + 0.00314980i
\(574\) 32027.8 135295.i 0.0972083 0.410636i
\(575\) 200647.i 0.606873i
\(576\) 326627. 58125.9i 0.984480 0.175196i
\(577\) 185281. 0.556518 0.278259 0.960506i \(-0.410243\pi\)
0.278259 + 0.960506i \(0.410243\pi\)
\(578\) 421145. + 99696.0i 1.26060 + 0.298416i
\(579\) 1405.83 + 1405.83i 0.00419348 + 0.00419348i
\(580\) 237341. + 119041.i 0.705533 + 0.353866i
\(581\) 377093. + 377093.i 1.11711 + 1.11711i
\(582\) 56.6920 + 91.8576i 0.000167369 + 0.000271187i
\(583\) −175456. −0.516216
\(584\) 37207.3 44413.2i 0.109094 0.130223i
\(585\) 25385.3i 0.0741771i
\(586\) −252270. 408751.i −0.734633 1.19032i
\(587\) −483071. + 483071.i −1.40196 + 1.40196i −0.608081 + 0.793875i \(0.708060\pi\)
−0.793875 + 0.608081i \(0.791940\pi\)
\(588\) −28.6464 86.2975i −8.28543e−5 0.000249599i
\(589\) 525679. 525679.i 1.51527 1.51527i
\(590\) 107169. + 25369.6i 0.307868 + 0.0728803i
\(591\) 1764.26i 0.00505112i
\(592\) 22622.1 155584.i 0.0645491 0.443936i
\(593\) 636299. 1.80947 0.904736 0.425973i \(-0.140068\pi\)
0.904736 + 0.425973i \(0.140068\pi\)
\(594\) 1162.10 4909.06i 0.00329360 0.0139131i
\(595\) 175659. + 175659.i 0.496177 + 0.496177i
\(596\) 109738. + 330586.i 0.308933 + 0.930663i
\(597\) −3139.90 3139.90i −0.00880981 0.00880981i
\(598\) −37970.8 + 23434.6i −0.106181 + 0.0655322i
\(599\) 410280. 1.14347 0.571737 0.820437i \(-0.306270\pi\)
0.571737 + 0.820437i \(0.306270\pi\)
\(600\) −2064.41 + 182.258i −0.00573448 + 0.000506271i
\(601\) 531872.i 1.47251i −0.676704 0.736255i \(-0.736592\pi\)
0.676704 0.736255i \(-0.263408\pi\)
\(602\) −220331. + 135982.i −0.607971 + 0.375223i
\(603\) −150181. + 150181.i −0.413028 + 0.413028i
\(604\) −242730. 121743.i −0.665349 0.333712i
\(605\) 3558.44 3558.44i 0.00972184 0.00972184i
\(606\) 720.337 3042.92i 0.00196151 0.00828599i
\(607\) 505448.i 1.37182i 0.727684 + 0.685912i \(0.240597\pi\)
−0.727684 + 0.685912i \(0.759403\pi\)
\(608\) −185991. + 469972.i −0.503135 + 1.27135i
\(609\) −4754.71 −0.0128200
\(610\) −232373. 55008.6i −0.624489 0.147833i
\(611\) 2180.57 + 2180.57i 0.00584099 + 0.00584099i
\(612\) 254395. 507208.i 0.679212 1.35420i
\(613\) −31334.4 31334.4i −0.0833873 0.0833873i 0.664183 0.747570i \(-0.268780\pi\)
−0.747570 + 0.664183i \(0.768780\pi\)
\(614\) −164808. 267037.i −0.437161 0.708329i
\(615\) −517.871 −0.00136921
\(616\) 378913. 33452.6i 0.998570 0.0881592i
\(617\) 481833.i 1.26569i 0.774280 + 0.632844i \(0.218112\pi\)
−0.774280 + 0.632844i \(0.781888\pi\)
\(618\) −2334.47 3782.52i −0.00611239 0.00990385i
\(619\) 55035.5 55035.5i 0.143635 0.143635i −0.631632 0.775268i \(-0.717615\pi\)
0.775268 + 0.631632i \(0.217615\pi\)
\(620\) −260149. + 86356.1i −0.676766 + 0.224652i
\(621\) 3029.87 3029.87i 0.00785672 0.00785672i
\(622\) −494526. 117067.i −1.27823 0.302590i
\(623\) 321215.i 0.827599i
\(624\) −275.603 369.386i −0.000707808 0.000948661i
\(625\) −164779. −0.421834
\(626\) 23468.4 99137.5i 0.0598873 0.252982i
\(627\) 2717.23 + 2717.23i 0.00691180 + 0.00691180i
\(628\) 25077.2 8324.36i 0.0635858 0.0211072i
\(629\) −190144. 190144.i −0.480597 0.480597i
\(630\) 156421. 96538.9i 0.394107 0.243232i
\(631\) −188802. −0.474184 −0.237092 0.971487i \(-0.576194\pi\)
−0.237092 + 0.971487i \(0.576194\pi\)
\(632\) −241240. + 287960.i −0.603969 + 0.720939i
\(633\) 5102.26i 0.0127337i
\(634\) −453554. + 279921.i −1.12837 + 0.696398i
\(635\) −163812. + 163812.i −0.406255 + 0.406255i
\(636\) 690.103 1375.92i 0.00170608 0.00340156i
\(637\) 1694.72 1694.72i 0.00417656 0.00417656i
\(638\) 160190. 676691.i 0.393545 1.66245i
\(639\) 94108.5i 0.230477i
\(640\) 138986. 124148.i 0.339322 0.303095i
\(641\) −442081. −1.07593 −0.537967 0.842966i \(-0.680807\pi\)
−0.537967 + 0.842966i \(0.680807\pi\)
\(642\) −3369.49 797.646i −0.00817512 0.00193526i
\(643\) −246339. 246339.i −0.595814 0.595814i 0.343382 0.939196i \(-0.388427\pi\)
−0.939196 + 0.343382i \(0.888427\pi\)
\(644\) 288802. + 144851.i 0.696353 + 0.349262i
\(645\) 681.935 + 681.935i 0.00163917 + 0.00163917i
\(646\) 454028. + 735657.i 1.08797 + 1.76283i
\(647\) −54549.4 −0.130311 −0.0651555 0.997875i \(-0.520754\pi\)
−0.0651555 + 0.997875i \(0.520754\pi\)
\(648\) −321828. 269612.i −0.766431 0.642080i
\(649\) 288429.i 0.684778i
\(650\) −28689.5 46485.4i −0.0679042 0.110025i
\(651\) 3470.80 3470.80i 0.00818970 0.00818970i
\(652\) 200146. + 602942.i 0.470816 + 1.41834i
\(653\) 231745. 231745.i 0.543481 0.543481i −0.381066 0.924548i \(-0.624443\pi\)
0.924548 + 0.381066i \(0.124443\pi\)
\(654\) 2988.29 + 707.405i 0.00698661 + 0.00165391i
\(655\) 71011.8i 0.165519i
\(656\) −142981. + 106680.i −0.332254 + 0.247899i
\(657\) −73325.0 −0.169872
\(658\) 5143.82 21729.0i 0.0118805 0.0501866i
\(659\) −479757. 479757.i −1.10472 1.10472i −0.993833 0.110883i \(-0.964632\pi\)
−0.110883 0.993833i \(-0.535368\pi\)
\(660\) −446.374 1344.71i −0.00102473 0.00308702i
\(661\) 515798. + 515798.i 1.18053 + 1.18053i 0.979607 + 0.200922i \(0.0643937\pi\)
0.200922 + 0.979607i \(0.435606\pi\)
\(662\) 313581. 193534.i 0.715541 0.441612i
\(663\) −788.263 −0.00179326
\(664\) −60176.1 681608.i −0.136486 1.54596i
\(665\) 280041.i 0.633254i
\(666\) −169320. + 104500.i −0.381733 + 0.235595i
\(667\) 417654. 417654.i 0.938782 0.938782i
\(668\) −41902.0 21016.3i −0.0939034 0.0470981i
\(669\) −1867.27 + 1867.27i −0.00417210 + 0.00417210i
\(670\) −27483.0 + 116096.i −0.0612230 + 0.258624i
\(671\) 625397.i 1.38903i
\(672\) −1228.01 + 3102.99i −0.00271934 + 0.00687136i
\(673\) −505551. −1.11618 −0.558090 0.829780i \(-0.688466\pi\)
−0.558090 + 0.829780i \(0.688466\pi\)
\(674\) 525492. + 124398.i 1.15677 + 0.273837i
\(675\) 3709.29 + 3709.29i 0.00814111 + 0.00814111i
\(676\) −199429. + 397618.i −0.436410 + 0.870107i
\(677\) −460825. 460825.i −1.00545 1.00545i −0.999985 0.00546007i \(-0.998262\pi\)
−0.00546007 0.999985i \(-0.501738\pi\)
\(678\) −798.104 1293.16i −0.00173620 0.00281315i
\(679\) 20601.9 0.0446857
\(680\) −28031.4 317509.i −0.0606216 0.686654i
\(681\) 154.570i 0.000333297i
\(682\) 377031. + 610900.i 0.810603 + 1.31341i
\(683\) 120242. 120242.i 0.257761 0.257761i −0.566382 0.824143i \(-0.691657\pi\)
0.824143 + 0.566382i \(0.191657\pi\)
\(684\) 607086. 201522.i 1.29759 0.430734i
\(685\) −88622.7 + 88622.7i −0.188870 + 0.188870i
\(686\) 449273. + 106355.i 0.954690 + 0.226000i
\(687\) 2450.33i 0.00519171i
\(688\) 328754. + 47801.4i 0.694535 + 0.100987i
\(689\) 40572.7 0.0854664
\(690\) 277.225 1171.08i 0.000582284 0.00245974i
\(691\) 166965. + 166965.i 0.349678 + 0.349678i 0.859990 0.510311i \(-0.170470\pi\)
−0.510311 + 0.859990i \(0.670470\pi\)
\(692\) 183848. 61028.2i 0.383926 0.127444i
\(693\) −340403. 340403.i −0.708805 0.708805i
\(694\) 52226.3 32232.7i 0.108435 0.0669233i
\(695\) 240600. 0.498111
\(696\) 4676.51 + 3917.76i 0.00965392 + 0.00808760i
\(697\) 305118.i 0.628062i
\(698\) −29235.3 + 18043.2i −0.0600062 + 0.0370342i
\(699\) −1116.33 + 1116.33i −0.00228475 + 0.00228475i
\(700\) −177333. + 353564.i −0.361904 + 0.721558i
\(701\) 39689.8 39689.8i 0.0807687 0.0807687i −0.665568 0.746337i \(-0.731811\pi\)
0.746337 + 0.665568i \(0.231811\pi\)
\(702\) −268.726 + 1135.18i −0.000545300 + 0.00230351i
\(703\) 303133.i 0.613371i
\(704\) −400246. 279313.i −0.807573 0.563567i
\(705\) −83.1725 −0.000167341
\(706\) −558347. 132175.i −1.12020 0.265180i
\(707\) −422013. 422013.i −0.844281 0.844281i
\(708\) 2261.85 + 1134.45i 0.00451228 + 0.00226318i
\(709\) 250742. + 250742.i 0.498809 + 0.498809i 0.911067 0.412258i \(-0.135260\pi\)
−0.412258 + 0.911067i \(0.635260\pi\)
\(710\) 27764.1 + 44985.9i 0.0550766 + 0.0892401i
\(711\) 475415. 0.940445
\(712\) −264674. + 315933.i −0.522096 + 0.623210i
\(713\) 609751.i 1.19943i
\(714\) 2997.73 + 4857.19i 0.00588024 + 0.00952771i
\(715\) 26407.5 26407.5i 0.0516553 0.0516553i
\(716\) −174083. 524426.i −0.339570 1.02296i
\(717\) 3527.63 3527.63i 0.00686190 0.00686190i
\(718\) 482957. + 114328.i 0.936826 + 0.221771i
\(719\) 133454.i 0.258152i −0.991635 0.129076i \(-0.958799\pi\)
0.991635 0.129076i \(-0.0412011\pi\)
\(720\) −233394. 33935.9i −0.450221 0.0654628i
\(721\) −848347. −1.63194
\(722\) −104409. + 441052.i −0.200291 + 0.846088i
\(723\) −1873.30 1873.30i −0.00358370 0.00358370i
\(724\) −78034.0 235078.i −0.148870 0.448472i
\(725\) 511309. + 511309.i 0.972763 + 0.972763i
\(726\) 98.3952 60.7269i 0.000186681 0.000115215i
\(727\) 583370. 1.10376 0.551881 0.833923i \(-0.313910\pi\)
0.551881 + 0.833923i \(0.313910\pi\)
\(728\) −87620.5 + 7735.62i −0.165327 + 0.0145959i
\(729\) 531273.i 0.999684i
\(730\) −35051.0 + 21632.5i −0.0657740 + 0.0405939i
\(731\) 401781. 401781.i 0.751891 0.751891i
\(732\) −4904.33 2459.81i −0.00915288 0.00459071i
\(733\) 534516. 534516.i 0.994838 0.994838i −0.00514857 0.999987i \(-0.501639\pi\)
0.999987 + 0.00514857i \(0.00163885\pi\)
\(734\) 116322. 491378.i 0.215909 0.912061i
\(735\) 64.6410i 0.000119656i
\(736\) −164699. 380435.i −0.304043 0.702304i
\(737\) 312456. 0.575247
\(738\) 219695. + 52007.5i 0.403373 + 0.0954889i
\(739\) −91929.4 91929.4i −0.168332 0.168332i 0.617914 0.786246i \(-0.287978\pi\)
−0.786246 + 0.617914i \(0.787978\pi\)
\(740\) −50108.9 + 99906.2i −0.0915063 + 0.182444i
\(741\) −628.336 628.336i −0.00114434 0.00114434i
\(742\) −154296. 250005.i −0.280251 0.454088i
\(743\) 83329.2 0.150945 0.0754727 0.997148i \(-0.475953\pi\)
0.0754727 + 0.997148i \(0.475953\pi\)
\(744\) −6273.58 + 553.866i −0.0113336 + 0.00100060i
\(745\) 247625.i 0.446151i
\(746\) −283770. 459789.i −0.509904 0.826193i
\(747\) −612333. + 612333.i −1.09735 + 1.09735i
\(748\) −792272. + 262994.i −1.41602 + 0.470048i
\(749\) −467305. + 467305.i −0.832985 + 0.832985i
\(750\) 3241.62 + 767.377i 0.00576289 + 0.00136422i
\(751\) 318689.i 0.565051i 0.959260 + 0.282525i \(0.0911722\pi\)
−0.959260 + 0.282525i \(0.908828\pi\)
\(752\) −22963.4 + 17133.3i −0.0406069 + 0.0302973i
\(753\) 973.515 0.00171693
\(754\) −37042.7 + 156479.i −0.0651567 + 0.275241i
\(755\) 136504. + 136504.i 0.239470 + 0.239470i
\(756\) 8016.80 2661.17i 0.0140268 0.00465617i
\(757\) −428881. 428881.i −0.748419 0.748419i 0.225763 0.974182i \(-0.427512\pi\)
−0.974182 + 0.225763i \(0.927512\pi\)
\(758\) −150288. + 92754.0i −0.261570 + 0.161434i
\(759\) −3151.80 −0.00547110
\(760\) 230747. 275435.i 0.399493 0.476862i
\(761\) 718933.i 1.24142i −0.784040 0.620711i \(-0.786844\pi\)
0.784040 0.620711i \(-0.213156\pi\)
\(762\) −4529.61 + 2795.55i −0.00780100 + 0.00481457i
\(763\) 414437. 414437.i 0.711884 0.711884i
\(764\) 160572. 320147.i 0.275096 0.548482i
\(765\) −285239. + 285239.i −0.487401 + 0.487401i
\(766\) −233218. + 985179.i −0.397469 + 1.67903i
\(767\) 66696.8i 0.113374i
\(768\) 3764.60 2040.11i 0.00638259 0.00345885i
\(769\) 421326. 0.712468 0.356234 0.934397i \(-0.384061\pi\)
0.356234 + 0.934397i \(0.384061\pi\)
\(770\) −263146. 62293.6i −0.443829 0.105066i
\(771\) −1754.84 1754.84i −0.00295208 0.00295208i
\(772\) −435199. 218278.i −0.730220 0.366248i
\(773\) 455325. + 455325.i 0.762013 + 0.762013i 0.976686 0.214673i \(-0.0688685\pi\)
−0.214673 + 0.976686i \(0.568868\pi\)
\(774\) −220811. 357779.i −0.368587 0.597218i
\(775\) −746482. −1.24284
\(776\) −20263.1 16975.5i −0.0336498 0.0281902i
\(777\) 2001.44i 0.00331513i
\(778\) −128582. 208341.i −0.212433 0.344204i
\(779\) −243214. + 243214.i −0.400788 + 0.400788i
\(780\) 103.220 + 310.952i 0.000169658 + 0.000511098i
\(781\) 97898.1 97898.1i 0.160499 0.160499i
\(782\) −689976. 163335.i −1.12829 0.267095i
\(783\) 15442.0i 0.0251872i
\(784\) 13315.8 + 17847.0i 0.0216639 + 0.0290357i
\(785\) −18784.0 −0.0304825
\(786\) 375.852 1587.71i 0.000608376 0.00256996i
\(787\) 541211. + 541211.i 0.873811 + 0.873811i 0.992885 0.119074i \(-0.0379927\pi\)
−0.119074 + 0.992885i \(0.537993\pi\)
\(788\) 136114. + 410045.i 0.219205 + 0.660357i
\(789\) −1734.56 1734.56i −0.00278635 0.00278635i
\(790\) 227259. 140258.i 0.364138 0.224736i
\(791\) −290032. −0.463546
\(792\) 54321.0 + 615288.i 0.0865999 + 0.980908i
\(793\) 144618.i 0.229972i
\(794\) 955709. 589838.i 1.51595 0.935603i
\(795\) −773.775 + 773.775i −0.00122428 + 0.00122428i
\(796\) 972012. + 487521.i 1.53407 + 0.769427i
\(797\) 481291. 481291.i 0.757690 0.757690i −0.218212 0.975901i \(-0.570022\pi\)
0.975901 + 0.218212i \(0.0700224\pi\)
\(798\) −1482.21 + 6261.27i −0.00232757 + 0.00983234i
\(799\) 49003.4i 0.0767597i
\(800\) 465744. 201631.i 0.727725 0.315048i
\(801\) 521597. 0.812961
\(802\) −347713. 82312.7i −0.540595 0.127973i
\(803\) 76277.7 + 76277.7i 0.118295 + 0.118295i
\(804\) −1228.95 + 2450.26i −0.00190118 + 0.00379054i
\(805\) −162414. 162414.i −0.250629 0.250629i
\(806\) −87185.2 141265.i −0.134206 0.217453i
\(807\) −432.116 −0.000663518
\(808\) 67344.3 + 762802.i 0.103152 + 1.16839i
\(809\) 34438.5i 0.0526195i 0.999654 + 0.0263097i \(0.00837562\pi\)
−0.999654 + 0.0263097i \(0.991624\pi\)
\(810\) 156754. + 253987.i 0.238918 + 0.387116i
\(811\) 227480. 227480.i 0.345862 0.345862i −0.512704 0.858566i \(-0.671356\pi\)
0.858566 + 0.512704i \(0.171356\pi\)
\(812\) 1.10508e6 366830.i 1.67603 0.556355i
\(813\) 126.869 126.869i 0.000191944 0.000191944i
\(814\) 284846. + 67430.4i 0.429893 + 0.101767i
\(815\) 451633.i 0.679939i
\(816\) 1053.78 7247.36i 0.00158259 0.0108843i
\(817\) 640532. 0.959614
\(818\) −24617.4 + 103991.i −0.0367905 + 0.155414i
\(819\) 78715.2 + 78715.2i 0.117352 + 0.117352i
\(820\) 120362. 39954.1i 0.179004 0.0594202i
\(821\) −807677. 807677.i −1.19826 1.19826i −0.974687 0.223573i \(-0.928228\pi\)
−0.223573 0.974687i \(-0.571772\pi\)
\(822\) −2450.53 + 1512.40i −0.00362674 + 0.00223832i
\(823\) −703593. −1.03878 −0.519388 0.854539i \(-0.673840\pi\)
−0.519388 + 0.854539i \(0.673840\pi\)
\(824\) 834395. + 699017.i 1.22890 + 1.02952i
\(825\) 3858.56i 0.00566914i
\(826\) 410978. 253645.i 0.602363 0.371762i
\(827\) −775918. + 775918.i −1.13450 + 1.13450i −0.145081 + 0.989420i \(0.546344\pi\)
−0.989420 + 0.145081i \(0.953656\pi\)
\(828\) −235213. + 468964.i −0.343084 + 0.684036i
\(829\) −804056. + 804056.i −1.16998 + 1.16998i −0.187763 + 0.982214i \(0.560124\pi\)
−0.982214 + 0.187763i \(0.939876\pi\)
\(830\) −112057. + 473360.i −0.162660 + 0.687125i
\(831\) 3054.39i 0.00442305i
\(832\) 92553.5 + 64588.7i 0.133704 + 0.0933061i
\(833\) 38085.1 0.0548864
\(834\) 5379.43 + 1273.45i 0.00773400 + 0.00183084i
\(835\) 23564.4 + 23564.4i 0.0337974 + 0.0337974i
\(836\) −841168. 421896.i −1.20357 0.603660i
\(837\) 11272.2 + 11272.2i 0.0160901 + 0.0160901i
\(838\) −353580. 572902.i −0.503500 0.815816i
\(839\) −248652. −0.353239 −0.176619 0.984279i \(-0.556516\pi\)
−0.176619 + 0.984279i \(0.556516\pi\)
\(840\) 1523.51 1818.57i 0.00215917 0.00257733i
\(841\) 1.42133e6i 2.00957i
\(842\) 377218. + 611203.i 0.532070 + 0.862108i
\(843\) −3697.49 + 3697.49i −0.00520297 + 0.00520297i
\(844\) −393643. 1.18585e6i −0.552609 1.66474i
\(845\) 223609. 223609.i 0.313166 0.313166i
\(846\) 35284.0 + 8352.65i 0.0492989 + 0.0116703i
\(847\) 22068.2i 0.0307610i
\(848\) −54239.1 + 373029.i −0.0754259 + 0.518742i
\(849\) 6679.00 0.00926608
\(850\) 199961. 844696.i 0.276763 1.16913i
\(851\) 175807. + 175807.i 0.242760 + 0.242760i
\(852\) 382.659 + 1152.76i 0.000527148 + 0.00158804i
\(853\) 779867. + 779867.i 1.07182 + 1.07182i 0.997213 + 0.0746081i \(0.0237706\pi\)
0.0746081 + 0.997213i \(0.476229\pi\)
\(854\) −891119. + 549974.i −1.22186 + 0.754096i
\(855\) −454737. −0.622054
\(856\) 844668. 74571.9i 1.15276 0.101772i
\(857\) 481792.i 0.655992i −0.944679 0.327996i \(-0.893627\pi\)
0.944679 0.327996i \(-0.106373\pi\)
\(858\) 730.199 450.659i 0.000991897 0.000612172i
\(859\) −947889. + 947889.i −1.28461 + 1.28461i −0.346594 + 0.938015i \(0.612662\pi\)
−0.938015 + 0.346594i \(0.887338\pi\)
\(860\) −211105. 105882.i −0.285432 0.143161i
\(861\) −1605.83 + 1605.83i −0.00216617 + 0.00216617i
\(862\) −76466.5 + 323017.i −0.102910 + 0.434721i
\(863\) 1.00011e6i 1.34284i −0.741077 0.671421i \(-0.765684\pi\)
0.741077 0.671421i \(-0.234316\pi\)
\(864\) −10077.7 3988.24i −0.0135000 0.00534262i
\(865\) −137711. −0.184051
\(866\) −596429. 141190.i −0.795285 0.188265i
\(867\) −4998.61 4998.61i −0.00664984 0.00664984i
\(868\) −538900. + 1.07445e6i −0.715268 + 1.42609i
\(869\) −494559. 494559.i −0.654905 0.654905i
\(870\) −2277.81 3690.71i −0.00300939 0.00487609i
\(871\) −72252.8 −0.0952398
\(872\) −749107. + 66135.3i −0.985169 + 0.0869761i
\(873\) 33453.9i 0.0438953i
\(874\) −419793. 680187.i −0.549557 0.890442i
\(875\) 449571. 449571.i 0.587195 0.587195i
\(876\) −898.181 + 298.150i −0.00117046 + 0.000388532i
\(877\) −747906. + 747906.i −0.972406 + 0.972406i −0.999629 0.0272234i \(-0.991333\pi\)
0.0272234 + 0.999629i \(0.491333\pi\)
\(878\) 190667. + 45135.9i 0.247336 + 0.0585508i
\(879\) 7845.72i 0.0101544i
\(880\) 207490. + 278095.i 0.267937 + 0.359110i
\(881\) −53961.8 −0.0695240 −0.0347620 0.999396i \(-0.511067\pi\)
−0.0347620 + 0.999396i \(0.511067\pi\)
\(882\) 6491.61 27422.5i 0.00834479 0.0352508i
\(883\) −629494. 629494.i −0.807366 0.807366i 0.176869 0.984234i \(-0.443403\pi\)
−0.984234 + 0.176869i \(0.943403\pi\)
\(884\) 183206. 60815.1i 0.234442 0.0778228i
\(885\) −1271.99 1271.99i −0.00162405 0.00162405i
\(886\) 26303.0 16233.5i 0.0335072 0.0206797i
\(887\) 880807. 1.11952 0.559762 0.828653i \(-0.310893\pi\)
0.559762 + 0.828653i \(0.310893\pi\)
\(888\) −1649.14 + 1968.53i −0.00209137 + 0.00249641i
\(889\) 1.01590e6i 1.28543i
\(890\) 249335. 153883.i 0.314777 0.194272i
\(891\) 552724. 552724.i 0.696231 0.696231i
\(892\) 289925. 578047.i 0.364381 0.726496i
\(893\) −39061.4 + 39061.4i −0.0489829 + 0.0489829i
\(894\) 1310.64 5536.51i 0.00163986 0.00692725i
\(895\) 392821.i 0.490398i
\(896\) 46012.3 815932.i 0.0573136 1.01634i
\(897\) 728.826 0.000905814
\(898\) 545202. + 129063.i 0.676090 + 0.160048i
\(899\) 1.55383e6 + 1.55383e6i 1.92257 + 1.92257i
\(900\) −574124. 287957.i −0.708796 0.355503i
\(901\) 455891. + 455891.i 0.561580 + 0.561580i
\(902\) −174440. 282643.i −0.214404 0.347396i
\(903\) 4229.12 0.00518650
\(904\) 285262. + 238979.i 0.349065 + 0.292431i
\(905\) 176085.i 0.214994i
\(906\) 2329.52 + 3774.51i 0.00283799 + 0.00459837i
\(907\) 662568. 662568.i 0.805408 0.805408i −0.178527 0.983935i \(-0.557133\pi\)
0.983935 + 0.178527i \(0.0571333\pi\)
\(908\) −11925.2 35924.8i −0.0144642 0.0435735i
\(909\) 685275. 685275.i 0.829348 0.829348i
\(910\) 60850.3 + 14404.9i 0.0734819 + 0.0173951i
\(911\) 817906.i 0.985522i 0.870165 + 0.492761i \(0.164012\pi\)
−0.870165 + 0.492761i \(0.835988\pi\)
\(912\) 6616.97 4937.00i 0.00795553 0.00593572i
\(913\) 1.27398e6 1.52834
\(914\) −202521. + 855506.i −0.242425 + 1.02407i
\(915\) 2758.05 + 2758.05i 0.00329428 + 0.00329428i
\(916\) −189045. 569499.i −0.225306 0.678737i
\(917\) −220195. 220195.i −0.261860 0.261860i
\(918\) −15774.8 + 9735.81i −0.0187189 + 0.0115528i
\(919\) −33891.9 −0.0401296 −0.0200648 0.999799i \(-0.506387\pi\)
−0.0200648 + 0.999799i \(0.506387\pi\)
\(920\) 25917.8 + 293568.i 0.0306212 + 0.346843i
\(921\) 5125.61i 0.00604263i
\(922\) 597704. 368887.i 0.703111 0.433941i
\(923\) −22638.1 + 22638.1i −0.0265728 + 0.0265728i
\(924\) −5553.82 2785.57i −0.00650501 0.00326265i
\(925\) −215230. + 215230.i −0.251547 + 0.251547i
\(926\) −217980. + 920813.i −0.254212 + 1.07386i
\(927\) 1.37757e6i 1.60307i
\(928\) −1.38916e6 549760.i −1.61308 0.638377i
\(929\) −207783. −0.240757 −0.120378 0.992728i \(-0.538411\pi\)
−0.120378 + 0.992728i \(0.538411\pi\)
\(930\) 4356.85 + 1031.38i 0.00503741 + 0.00119248i
\(931\) 30358.2 + 30358.2i 0.0350249 + 0.0350249i
\(932\) 173329. 345581.i 0.199545 0.397849i
\(933\) 5869.57 + 5869.57i 0.00674284 + 0.00674284i
\(934\) 218116. + 353412.i 0.250032 + 0.405124i
\(935\) 593450. 0.678830
\(936\) −12561.3 142280.i −0.0143378 0.162402i
\(937\) 1.12361e6i 1.27979i 0.768464 + 0.639893i \(0.221022\pi\)
−0.768464 + 0.639893i \(0.778978\pi\)
\(938\) 274774. + 445214.i 0.312299 + 0.506015i
\(939\) −1176.67 + 1176.67i −0.00133452 + 0.00133452i
\(940\) 19330.8 6416.83i 0.0218773 0.00726214i
\(941\) −856765. + 856765.i −0.967570 + 0.967570i −0.999490 0.0319200i \(-0.989838\pi\)
0.0319200 + 0.999490i \(0.489838\pi\)
\(942\) −419.982 99.4206i −0.000473291 0.000112040i
\(943\) 282112.i 0.317247i
\(944\) −613216. 89162.7i −0.688129 0.100055i
\(945\) −6004.97 −0.00672430
\(946\) −142483. + 601889.i −0.159214 + 0.672565i
\(947\) −246666. 246666.i −0.275048 0.275048i 0.556080 0.831129i \(-0.312305\pi\)
−0.831129 + 0.556080i \(0.812305\pi\)
\(948\) 5823.50 1933.11i 0.00647989 0.00215099i
\(949\) −17638.6 17638.6i −0.0195853 0.0195853i
\(950\) 832713. 513928.i 0.922673 0.569449i
\(951\) 8705.68 0.00962591
\(952\) −1.07146e6 897619.i −1.18223 0.990417i
\(953\) 219446.i 0.241625i −0.992675 0.120812i \(-0.961450\pi\)
0.992675 0.120812i \(-0.0385500\pi\)
\(954\) 405963. 250549.i 0.446056 0.275294i
\(955\) −180041. + 180041.i −0.197408 + 0.197408i
\(956\) −547724. + 1.09204e6i −0.599302 + 1.19488i
\(957\) −8031.71 + 8031.71i −0.00876968 + 0.00876968i
\(958\) 195349. 825210.i 0.212853 0.899153i
\(959\) 549607.i 0.597606i
\(960\) −2996.91 + 533.324i −0.00325185 + 0.000578694i
\(961\) −1.34498e6 −1.45636
\(962\) −65868.1 15592.7i −0.0711746 0.0168489i
\(963\) −758821. 758821.i −0.818251 0.818251i
\(964\) 579915. + 290861.i 0.624037 + 0.312991i
\(965\) 244743. + 244743.i 0.262819 + 0.262819i
\(966\) −2771.69 4490.95i −0.00297023 0.00481264i
\(967\) 650799. 0.695975 0.347988 0.937499i \(-0.386865\pi\)
0.347988 + 0.937499i \(0.386865\pi\)
\(968\) −18183.6 + 21705.3i −0.0194057 + 0.0231640i
\(969\) 14120.5i 0.0150384i
\(970\) 9869.63 + 15991.7i 0.0104896 + 0.0169961i
\(971\) 790825. 790825.i 0.838768 0.838768i −0.149929 0.988697i \(-0.547904\pi\)
0.988697 + 0.149929i \(0.0479044\pi\)
\(972\) 6481.95 + 19527.0i 0.00686078 + 0.0206682i
\(973\) 746058. 746058.i 0.788037 0.788037i
\(974\) 103991. + 24617.4i 0.109617 + 0.0259492i
\(975\) 892.258i 0.000938602i
\(976\) 1.32963e6 + 193330.i 1.39582 + 0.202955i
\(977\) −1.40812e6 −1.47520 −0.737600 0.675237i \(-0.764041\pi\)
−0.737600 + 0.675237i \(0.764041\pi\)
\(978\) 2390.41 10097.8i 0.00249916 0.0105572i
\(979\) −542600. 542600.i −0.566128 0.566128i
\(980\) −4987.11 15023.7i −0.00519274 0.0156432i
\(981\) 672972. + 672972.i 0.699292 + 0.699292i
\(982\) 479195. 295746.i 0.496923 0.306688i
\(983\) −208227. −0.215491 −0.107746 0.994179i \(-0.534363\pi\)
−0.107746 + 0.994179i \(0.534363\pi\)
\(984\) 2902.58 256.256i 0.00299774 0.000264657i
\(985\) 307144.i 0.316569i
\(986\) −2.17449e6 + 1.34204e6i −2.23668 + 1.38042i
\(987\) −257.903 + 257.903i −0.000264742 + 0.000264742i
\(988\) 194513. + 97559.7i 0.199267 + 0.0999440i
\(989\) −371486. + 371486.i −0.379796 + 0.379796i
\(990\) 101154. 427303.i 0.103208 0.435979i
\(991\) 170063.i 0.173166i 0.996245 + 0.0865831i \(0.0275948\pi\)
−0.996245 + 0.0865831i \(0.972405\pi\)
\(992\) 1.41536e6 612740.i 1.43828 0.622663i
\(993\) −6019.00 −0.00610416
\(994\) 225585. + 53401.8i 0.228317 + 0.0540485i
\(995\) −546631. 546631.i −0.552138 0.552138i
\(996\) −5010.82 + 9990.49i −0.00505115 + 0.0100709i
\(997\) −917799. 917799.i −0.923331 0.923331i 0.0739326 0.997263i \(-0.476445\pi\)
−0.997263 + 0.0739326i \(0.976445\pi\)
\(998\) 564153. + 914091.i 0.566416 + 0.917759i
\(999\) 6500.15 0.00651317
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 16.5.f.a.11.7 yes 14
3.2 odd 2 144.5.m.a.91.1 14
4.3 odd 2 64.5.f.a.15.4 14
8.3 odd 2 128.5.f.a.31.4 14
8.5 even 2 128.5.f.b.31.4 14
12.11 even 2 576.5.m.a.271.5 14
16.3 odd 4 inner 16.5.f.a.3.7 14
16.5 even 4 128.5.f.a.95.4 14
16.11 odd 4 128.5.f.b.95.4 14
16.13 even 4 64.5.f.a.47.4 14
48.29 odd 4 576.5.m.a.559.5 14
48.35 even 4 144.5.m.a.19.1 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
16.5.f.a.3.7 14 16.3 odd 4 inner
16.5.f.a.11.7 yes 14 1.1 even 1 trivial
64.5.f.a.15.4 14 4.3 odd 2
64.5.f.a.47.4 14 16.13 even 4
128.5.f.a.31.4 14 8.3 odd 2
128.5.f.a.95.4 14 16.5 even 4
128.5.f.b.31.4 14 8.5 even 2
128.5.f.b.95.4 14 16.11 odd 4
144.5.m.a.19.1 14 48.35 even 4
144.5.m.a.91.1 14 3.2 odd 2
576.5.m.a.271.5 14 12.11 even 2
576.5.m.a.559.5 14 48.29 odd 4