Properties

Label 576.5.m.a.559.5
Level 576576
Weight 55
Character 576.559
Analytic conductor 59.54159.541
Analytic rank 00
Dimension 1414
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [576,5,Mod(271,576)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(576, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("576.271");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k == 5 5
Character orbit: [χ][\chi] == 576.m (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 59.541098736359.5410987363
Analytic rank: 00
Dimension: 1414
Relative dimension: 77 over Q(i)\Q(i)
Coefficient field: Q[x]/(x14)\mathbb{Q}[x]/(x^{14} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x144x13+15x1234x11+62x10312x9+1432x84960x7++2097152 x^{14} - 4 x^{13} + 15 x^{12} - 34 x^{11} + 62 x^{10} - 312 x^{9} + 1432 x^{8} - 4960 x^{7} + \cdots + 2097152 Copy content Toggle raw display
Coefficient ring: Z[a1,,a25]\Z[a_1, \ldots, a_{25}]
Coefficient ring index: 242 2^{42}
Twist minimal: no (minimal twist has level 16)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Embedding invariants

Embedding label 559.5
Root 2.40693+1.48549i-2.40693 + 1.48549i of defining polynomial
Character χ\chi == 576.559
Dual form 576.5.m.a.271.5

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(8.042978.04297i)q5+49.8797q7+(84.257384.2573i)q11+(19.4838+19.4838i)q13437.855q17+(349.021+349.021i)q19404.840q23+495.621iq25+(1031.65+1031.65i)q291506.15iq31+(401.181401.181i)q35+(434.262+434.262i)q37+696.847iq41+(917.612917.612i)q43111.917iq47+86.9810q49+(1041.19+1041.19i)q531355.36q55+(1711.601711.60i)q59+(3711.24+3711.24i)q61+313.415q65+(1854.181854.18i)q671161.89q71+905.295iq73+(4202.724202.72i)q77+5869.63iq79+(7560.06+7560.06i)q83+(3521.65+3521.65i)q85+6439.80iq89+(971.844+971.844i)q91+5614.33iq95413.032q97+O(q100)q+(8.04297 - 8.04297i) q^{5} +49.8797 q^{7} +(-84.2573 - 84.2573i) q^{11} +(19.4838 + 19.4838i) q^{13} -437.855 q^{17} +(-349.021 + 349.021i) q^{19} -404.840 q^{23} +495.621i q^{25} +(1031.65 + 1031.65i) q^{29} -1506.15i q^{31} +(401.181 - 401.181i) q^{35} +(-434.262 + 434.262i) q^{37} +696.847i q^{41} +(-917.612 - 917.612i) q^{43} -111.917i q^{47} +86.9810 q^{49} +(-1041.19 + 1041.19i) q^{53} -1355.36 q^{55} +(-1711.60 - 1711.60i) q^{59} +(3711.24 + 3711.24i) q^{61} +313.415 q^{65} +(1854.18 - 1854.18i) q^{67} -1161.89 q^{71} +905.295i q^{73} +(-4202.72 - 4202.72i) q^{77} +5869.63i q^{79} +(-7560.06 + 7560.06i) q^{83} +(-3521.65 + 3521.65i) q^{85} +6439.80i q^{89} +(971.844 + 971.844i) q^{91} +5614.33i q^{95} -413.032 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 14q+2q5+4q7+94q112q13+4q17+706q19+1148q23862q29+1340q351826q371694q43+682q49+482q53+11780q552786q593778q61+4q97+O(q100) 14 q + 2 q^{5} + 4 q^{7} + 94 q^{11} - 2 q^{13} + 4 q^{17} + 706 q^{19} + 1148 q^{23} - 862 q^{29} + 1340 q^{35} - 1826 q^{37} - 1694 q^{43} + 682 q^{49} + 482 q^{53} + 11780 q^{55} - 2786 q^{59} - 3778 q^{61}+ \cdots - 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/576Z)×\left(\mathbb{Z}/576\mathbb{Z}\right)^\times.

nn 6565 127127 325325
χ(n)\chi(n) 11 1-1 e(34)e\left(\frac{3}{4}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 8.04297 8.04297i 0.321719 0.321719i −0.527707 0.849426i 0.676948π-0.676948\pi
0.849426 + 0.527707i 0.176948π0.176948\pi
66 0 0
77 49.8797 1.01795 0.508976 0.860781i 0.330024π-0.330024\pi
0.508976 + 0.860781i 0.330024π0.330024\pi
88 0 0
99 0 0
1010 0 0
1111 −84.2573 84.2573i −0.696341 0.696341i 0.267278 0.963619i 0.413876π-0.413876\pi
−0.963619 + 0.267278i 0.913876π0.913876\pi
1212 0 0
1313 19.4838 + 19.4838i 0.115289 + 0.115289i 0.762398 0.647109i 0.224022π-0.224022\pi
−0.647109 + 0.762398i 0.724022π0.724022\pi
1414 0 0
1515 0 0
1616 0 0
1717 −437.855 −1.51507 −0.757535 0.652795i 0.773596π-0.773596\pi
−0.757535 + 0.652795i 0.773596π0.773596\pi
1818 0 0
1919 −349.021 + 349.021i −0.966817 + 0.966817i −0.999467 0.0326494i 0.989606π-0.989606\pi
0.0326494 + 0.999467i 0.489606π0.489606\pi
2020 0 0
2121 0 0
2222 0 0
2323 −404.840 −0.765293 −0.382647 0.923895i 0.624987π-0.624987\pi
−0.382647 + 0.923895i 0.624987π0.624987\pi
2424 0 0
2525 495.621i 0.792994i
2626 0 0
2727 0 0
2828 0 0
2929 1031.65 + 1031.65i 1.22670 + 1.22670i 0.965206 + 0.261490i 0.0842139π0.0842139\pi
0.261490 + 0.965206i 0.415786π0.415786\pi
3030 0 0
3131 1506.15i 1.56728i −0.621217 0.783638i 0.713362π-0.713362\pi
0.621217 0.783638i 0.286638π-0.286638\pi
3232 0 0
3333 0 0
3434 0 0
3535 401.181 401.181i 0.327494 0.327494i
3636 0 0
3737 −434.262 + 434.262i −0.317211 + 0.317211i −0.847695 0.530484i 0.822010π-0.822010\pi
0.530484 + 0.847695i 0.322010π0.322010\pi
3838 0 0
3939 0 0
4040 0 0
4141 696.847i 0.414543i 0.978283 + 0.207272i 0.0664584π0.0664584\pi
−0.978283 + 0.207272i 0.933542π0.933542\pi
4242 0 0
4343 −917.612 917.612i −0.496275 0.496275i 0.414002 0.910276i 0.364131π-0.364131\pi
−0.910276 + 0.414002i 0.864131π0.864131\pi
4444 0 0
4545 0 0
4646 0 0
4747 111.917i 0.0506641i −0.999679 0.0253321i 0.991936π-0.991936\pi
0.999679 0.0253321i 0.00806431π-0.00806431\pi
4848 0 0
4949 86.9810 0.0362270
5050 0 0
5151 0 0
5252 0 0
5353 −1041.19 + 1041.19i −0.370663 + 0.370663i −0.867719 0.497056i 0.834414π-0.834414\pi
0.497056 + 0.867719i 0.334414π0.334414\pi
5454 0 0
5555 −1355.36 −0.448052
5656 0 0
5757 0 0
5858 0 0
5959 −1711.60 1711.60i −0.491697 0.491697i 0.417144 0.908841i 0.363031π-0.363031\pi
−0.908841 + 0.417144i 0.863031π0.863031\pi
6060 0 0
6161 3711.24 + 3711.24i 0.997376 + 0.997376i 0.999997 0.00262076i 0.000834216π-0.000834216\pi
−0.00262076 + 0.999997i 0.500834π0.500834\pi
6262 0 0
6363 0 0
6464 0 0
6565 313.415 0.0741810
6666 0 0
6767 1854.18 1854.18i 0.413049 0.413049i −0.469750 0.882799i 0.655656π-0.655656\pi
0.882799 + 0.469750i 0.155656π0.155656\pi
6868 0 0
6969 0 0
7070 0 0
7171 −1161.89 −0.230489 −0.115244 0.993337i 0.536765π-0.536765\pi
−0.115244 + 0.993337i 0.536765π0.536765\pi
7272 0 0
7373 905.295i 0.169881i 0.996386 + 0.0849404i 0.0270700π0.0270700\pi
−0.996386 + 0.0849404i 0.972930π0.972930\pi
7474 0 0
7575 0 0
7676 0 0
7777 −4202.72 4202.72i −0.708842 0.708842i
7878 0 0
7979 5869.63i 0.940495i 0.882535 + 0.470247i 0.155835π0.155835\pi
−0.882535 + 0.470247i 0.844165π0.844165\pi
8080 0 0
8181 0 0
8282 0 0
8383 −7560.06 + 7560.06i −1.09741 + 1.09741i −0.102698 + 0.994713i 0.532748π0.532748\pi
−0.994713 + 0.102698i 0.967252π0.967252\pi
8484 0 0
8585 −3521.65 + 3521.65i −0.487426 + 0.487426i
8686 0 0
8787 0 0
8888 0 0
8989 6439.80i 0.813004i 0.913650 + 0.406502i 0.133252π0.133252\pi
−0.913650 + 0.406502i 0.866748π0.866748\pi
9090 0 0
9191 971.844 + 971.844i 0.117358 + 0.117358i
9292 0 0
9393 0 0
9494 0 0
9595 5614.33i 0.622087i
9696 0 0
9797 −413.032 −0.0438976 −0.0219488 0.999759i 0.506987π-0.506987\pi
−0.0219488 + 0.999759i 0.506987π0.506987\pi
9898 0 0
9999 0 0
100100 0 0
101101 −8460.63 + 8460.63i −0.829392 + 0.829392i −0.987433 0.158041i 0.949482π-0.949482\pi
0.158041 + 0.987433i 0.449482π0.449482\pi
102102 0 0
103103 −17007.9 −1.60316 −0.801578 0.597891i 0.796006π-0.796006\pi
−0.801578 + 0.597891i 0.796006π0.796006\pi
104104 0 0
105105 0 0
106106 0 0
107107 9368.65 + 9368.65i 0.818294 + 0.818294i 0.985861 0.167567i 0.0535909π-0.0535909\pi
−0.167567 + 0.985861i 0.553591π0.553591\pi
108108 0 0
109109 −8308.73 8308.73i −0.699329 0.699329i 0.264937 0.964266i 0.414649π-0.414649\pi
−0.964266 + 0.264937i 0.914649π0.914649\pi
110110 0 0
111111 0 0
112112 0 0
113113 −5814.63 −0.455371 −0.227685 0.973735i 0.573116π-0.573116\pi
−0.227685 + 0.973735i 0.573116π0.573116\pi
114114 0 0
115115 −3256.12 + 3256.12i −0.246209 + 0.246209i
116116 0 0
117117 0 0
118118 0 0
119119 −21840.1 −1.54227
120120 0 0
121121 442.428i 0.0302185i
122122 0 0
123123 0 0
124124 0 0
125125 9013.12 + 9013.12i 0.576840 + 0.576840i
126126 0 0
127127 20367.1i 1.26276i −0.775472 0.631382i 0.782488π-0.782488\pi
0.775472 0.631382i 0.217512π-0.217512\pi
128128 0 0
129129 0 0
130130 0 0
131131 4414.52 4414.52i 0.257242 0.257242i −0.566690 0.823931i 0.691776π-0.691776\pi
0.823931 + 0.566690i 0.191776π0.191776\pi
132132 0 0
133133 −17409.1 + 17409.1i −0.984174 + 0.984174i
134134 0 0
135135 0 0
136136 0 0
137137 11018.7i 0.587067i −0.955949 0.293533i 0.905169π-0.905169\pi
0.955949 0.293533i 0.0948312π-0.0948312\pi
138138 0 0
139139 14957.2 + 14957.2i 0.774140 + 0.774140i 0.978827 0.204688i 0.0656178π-0.0656178\pi
−0.204688 + 0.978827i 0.565618π0.565618\pi
140140 0 0
141141 0 0
142142 0 0
143143 3283.30i 0.160560i
144144 0 0
145145 16595.1 0.789302
146146 0 0
147147 0 0
148148 0 0
149149 −15393.9 + 15393.9i −0.693388 + 0.693388i −0.962976 0.269588i 0.913112π-0.913112\pi
0.269588 + 0.962976i 0.413112π0.413112\pi
150150 0 0
151151 16971.9 0.744347 0.372174 0.928163i 0.378613π-0.378613\pi
0.372174 + 0.928163i 0.378613π0.378613\pi
152152 0 0
153153 0 0
154154 0 0
155155 −12113.9 12113.9i −0.504222 0.504222i
156156 0 0
157157 1167.73 + 1167.73i 0.0473744 + 0.0473744i 0.730397 0.683023i 0.239335π-0.239335\pi
−0.683023 + 0.730397i 0.739335π0.739335\pi
158158 0 0
159159 0 0
160160 0 0
161161 −20193.3 −0.779032
162162 0 0
163163 −28076.2 + 28076.2i −1.05673 + 1.05673i −0.0584383 + 0.998291i 0.518612π0.518612\pi
−0.998291 + 0.0584383i 0.981388π0.981388\pi
164164 0 0
165165 0 0
166166 0 0
167167 −2929.82 −0.105053 −0.0525264 0.998620i 0.516727π-0.516727\pi
−0.0525264 + 0.998620i 0.516727π0.516727\pi
168168 0 0
169169 27801.8i 0.973417i
170170 0 0
171171 0 0
172172 0 0
173173 −8560.97 8560.97i −0.286043 0.286043i 0.549470 0.835513i 0.314829π-0.314829\pi
−0.835513 + 0.549470i 0.814829π0.814829\pi
174174 0 0
175175 24721.4i 0.807230i
176176 0 0
177177 0 0
178178 0 0
179179 −24420.1 + 24420.1i −0.762153 + 0.762153i −0.976711 0.214558i 0.931169π-0.931169\pi
0.214558 + 0.976711i 0.431169π0.431169\pi
180180 0 0
181181 −10946.5 + 10946.5i −0.334133 + 0.334133i −0.854154 0.520021i 0.825924π-0.825924\pi
0.520021 + 0.854154i 0.325924π0.325924\pi
182182 0 0
183183 0 0
184184 0 0
185185 6985.52i 0.204106i
186186 0 0
187187 36892.5 + 36892.5i 1.05501 + 1.05501i
188188 0 0
189189 0 0
190190 0 0
191191 22384.9i 0.613604i 0.951773 + 0.306802i 0.0992590π0.0992590\pi
−0.951773 + 0.306802i 0.900741π0.900741\pi
192192 0 0
193193 −30429.5 −0.816920 −0.408460 0.912776i 0.633934π-0.633934\pi
−0.408460 + 0.912776i 0.633934π0.633934\pi
194194 0 0
195195 0 0
196196 0 0
197197 −19093.9 + 19093.9i −0.491997 + 0.491997i −0.908935 0.416938i 0.863103π-0.863103\pi
0.416938 + 0.908935i 0.363103π0.363103\pi
198198 0 0
199199 −67963.8 −1.71621 −0.858107 0.513470i 0.828360π-0.828360\pi
−0.858107 + 0.513470i 0.828360π0.828360\pi
200200 0 0
201201 0 0
202202 0 0
203203 51458.4 + 51458.4i 1.24872 + 1.24872i
204204 0 0
205205 5604.72 + 5604.72i 0.133366 + 0.133366i
206206 0 0
207207 0 0
208208 0 0
209209 58815.1 1.34647
210210 0 0
211211 55219.8 55219.8i 1.24031 1.24031i 0.280438 0.959872i 0.409520π-0.409520\pi
0.959872 0.280438i 0.0904797π-0.0904797\pi
212212 0 0
213213 0 0
214214 0 0
215215 −14760.6 −0.319322
216216 0 0
217217 75126.4i 1.59541i
218218 0 0
219219 0 0
220220 0 0
221221 −8531.07 8531.07i −0.174670 0.174670i
222222 0 0
223223 40417.5i 0.812754i −0.913705 0.406377i 0.866792π-0.866792\pi
0.913705 0.406377i 0.133208π-0.133208\pi
224224 0 0
225225 0 0
226226 0 0
227227 −1672.85 + 1672.85i −0.0324643 + 0.0324643i −0.723153 0.690688i 0.757308π-0.757308\pi
0.690688 + 0.723153i 0.257308π0.257308\pi
228228 0 0
229229 −26519.0 + 26519.0i −0.505691 + 0.505691i −0.913201 0.407510i 0.866397π-0.866397\pi
0.407510 + 0.913201i 0.366397π0.366397\pi
230230 0 0
231231 0 0
232232 0 0
233233 24163.3i 0.445087i −0.974923 0.222543i 0.928564π-0.928564\pi
0.974923 0.222543i 0.0714359π-0.0714359\pi
234234 0 0
235235 −900.145 900.145i −0.0162996 0.0162996i
236236 0 0
237237 0 0
238238 0 0
239239 76356.4i 1.33675i −0.743825 0.668374i 0.766990π-0.766990\pi
0.743825 0.668374i 0.233010π-0.233010\pi
240240 0 0
241241 40548.1 0.698130 0.349065 0.937099i 0.386499π-0.386499\pi
0.349065 + 0.937099i 0.386499π0.386499\pi
242242 0 0
243243 0 0
244244 0 0
245245 699.586 699.586i 0.0116549 0.0116549i
246246 0 0
247247 −13600.5 −0.222926
248248 0 0
249249 0 0
250250 0 0
251251 −10536.0 10536.0i −0.167235 0.167235i 0.618528 0.785763i 0.287729π-0.287729\pi
−0.785763 + 0.618528i 0.787729π0.787729\pi
252252 0 0
253253 34110.7 + 34110.7i 0.532905 + 0.532905i
254254 0 0
255255 0 0
256256 0 0
257257 −37983.9 −0.575086 −0.287543 0.957768i 0.592838π-0.592838\pi
−0.287543 + 0.957768i 0.592838π0.592838\pi
258258 0 0
259259 −21660.9 + 21660.9i −0.322906 + 0.322906i
260260 0 0
261261 0 0
262262 0 0
263263 37545.0 0.542801 0.271400 0.962467i 0.412513π-0.412513\pi
0.271400 + 0.962467i 0.412513π0.412513\pi
264264 0 0
265265 16748.6i 0.238498i
266266 0 0
267267 0 0
268268 0 0
269269 −4676.63 4676.63i −0.0646291 0.0646291i 0.674053 0.738683i 0.264552π-0.264552\pi
−0.738683 + 0.674053i 0.764552π0.764552\pi
270270 0 0
271271 2746.12i 0.0373922i 0.999825 + 0.0186961i 0.00595149π0.00595149\pi
−0.999825 + 0.0186961i 0.994049π0.994049\pi
272272 0 0
273273 0 0
274274 0 0
275275 41759.7 41759.7i 0.552194 0.552194i
276276 0 0
277277 −33056.5 + 33056.5i −0.430822 + 0.430822i −0.888908 0.458086i 0.848535π-0.848535\pi
0.458086 + 0.888908i 0.348535π0.348535\pi
278278 0 0
279279 0 0
280280 0 0
281281 80033.0i 1.01358i −0.862071 0.506788i 0.830833π-0.830833\pi
0.862071 0.506788i 0.169167π-0.169167\pi
282282 0 0
283283 72284.3 + 72284.3i 0.902549 + 0.902549i 0.995656 0.0931068i 0.0296798π-0.0296798\pi
−0.0931068 + 0.995656i 0.529680π0.529680\pi
284284 0 0
285285 0 0
286286 0 0
287287 34758.5i 0.421985i
288288 0 0
289289 108196. 1.29544
290290 0 0
291291 0 0
292292 0 0
293293 84911.3 84911.3i 0.989077 0.989077i −0.0108641 0.999941i 0.503458π-0.503458\pi
0.999941 + 0.0108641i 0.00345823π0.00345823\pi
294294 0 0
295295 −27532.6 −0.316376
296296 0 0
297297 0 0
298298 0 0
299299 −7887.81 7887.81i −0.0882296 0.0882296i
300300 0 0
301301 −45770.2 45770.2i −0.505184 0.505184i
302302 0 0
303303 0 0
304304 0 0
305305 59698.7 0.641749
306306 0 0
307307 55472.5 55472.5i 0.588574 0.588574i −0.348671 0.937245i 0.613367π-0.613367\pi
0.937245 + 0.348671i 0.113367π0.113367\pi
308308 0 0
309309 0 0
310310 0 0
311311 −127048. −1.31355 −0.656777 0.754084i 0.728081π-0.728081\pi
−0.656777 + 0.754084i 0.728081π0.728081\pi
312312 0 0
313313 25469.3i 0.259974i 0.991516 + 0.129987i 0.0414935π0.0414935\pi
−0.991516 + 0.129987i 0.958507π0.958507\pi
314314 0 0
315315 0 0
316316 0 0
317317 94218.4 + 94218.4i 0.937599 + 0.937599i 0.998164 0.0605656i 0.0192904π-0.0192904\pi
−0.0605656 + 0.998164i 0.519290π0.519290\pi
318318 0 0
319319 173848.i 1.70840i
320320 0 0
321321 0 0
322322 0 0
323323 152821. 152821.i 1.46480 1.46480i
324324 0 0
325325 −9656.57 + 9656.57i −0.0914232 + 0.0914232i
326326 0 0
327327 0 0
328328 0 0
329329 5582.38i 0.0515737i
330330 0 0
331331 −65141.3 65141.3i −0.594567 0.594567i 0.344295 0.938862i 0.388118π-0.388118\pi
−0.938862 + 0.344295i 0.888118π0.888118\pi
332332 0 0
333333 0 0
334334 0 0
335335 29826.2i 0.265771i
336336 0 0
337337 135004. 1.18874 0.594369 0.804193i 0.297402π-0.297402\pi
0.594369 + 0.804193i 0.297402π0.297402\pi
338338 0 0
339339 0 0
340340 0 0
341341 −126904. + 126904.i −1.09136 + 1.09136i
342342 0 0
343343 −115422. −0.981075
344344 0 0
345345 0 0
346346 0 0
347347 10849.2 + 10849.2i 0.0901025 + 0.0901025i 0.750721 0.660619i 0.229706π-0.229706\pi
−0.660619 + 0.750721i 0.729706π0.729706\pi
348348 0 0
349349 −6073.15 6073.15i −0.0498612 0.0498612i 0.681737 0.731598i 0.261225π-0.261225\pi
−0.731598 + 0.681737i 0.761225π0.761225\pi
350350 0 0
351351 0 0
352352 0 0
353353 143445. 1.15116 0.575579 0.817746i 0.304777π-0.304777\pi
0.575579 + 0.817746i 0.304777π0.304777\pi
354354 0 0
355355 −9345.08 + 9345.08i −0.0741526 + 0.0741526i
356356 0 0
357357 0 0
358358 0 0
359359 124076. 0.962718 0.481359 0.876523i 0.340143π-0.340143\pi
0.481359 + 0.876523i 0.340143π0.340143\pi
360360 0 0
361361 113310.i 0.869472i
362362 0 0
363363 0 0
364364 0 0
365365 7281.26 + 7281.26i 0.0546538 + 0.0546538i
366366 0 0
367367 126240.i 0.937268i −0.883392 0.468634i 0.844746π-0.844746\pi
0.883392 0.468634i 0.155254π-0.155254\pi
368368 0 0
369369 0 0
370370 0 0
371371 −51934.3 + 51934.3i −0.377317 + 0.377317i
372372 0 0
373373 −95513.7 + 95513.7i −0.686512 + 0.686512i −0.961459 0.274948i 0.911339π-0.911339\pi
0.274948 + 0.961459i 0.411339π0.411339\pi
374374 0 0
375375 0 0
376376 0 0
377377 40200.9i 0.282848i
378378 0 0
379379 31220.0 + 31220.0i 0.217347 + 0.217347i 0.807380 0.590032i 0.200885π-0.200885\pi
−0.590032 + 0.807380i 0.700885π0.700885\pi
380380 0 0
381381 0 0
382382 0 0
383383 253102.i 1.72543i −0.505689 0.862716i 0.668762π-0.668762\pi
0.505689 0.862716i 0.331238π-0.331238\pi
384384 0 0
385385 −67604.7 −0.456095
386386 0 0
387387 0 0
388388 0 0
389389 43279.4 43279.4i 0.286011 0.286011i −0.549490 0.835500i 0.685178π-0.685178\pi
0.835500 + 0.549490i 0.185178π0.185178\pi
390390 0 0
391391 177261. 1.15947
392392 0 0
393393 0 0
394394 0 0
395395 47209.2 + 47209.2i 0.302575 + 0.302575i
396396 0 0
397397 198533. + 198533.i 1.25965 + 1.25965i 0.951258 + 0.308395i 0.0997920π0.0997920\pi
0.308395 + 0.951258i 0.400208π0.400208\pi
398398 0 0
399399 0 0
400400 0 0
401401 89330.8 0.555536 0.277768 0.960648i 0.410405π-0.410405\pi
0.277768 + 0.960648i 0.410405π0.410405\pi
402402 0 0
403403 29345.5 29345.5i 0.180689 0.180689i
404404 0 0
405405 0 0
406406 0 0
407407 73179.5 0.441775
408408 0 0
409409 26716.3i 0.159709i −0.996807 0.0798545i 0.974554π-0.974554\pi
0.996807 0.0798545i 0.0254456π-0.0254456\pi
410410 0 0
411411 0 0
412412 0 0
413413 −85373.9 85373.9i −0.500524 0.500524i
414414 0 0
415415 121611.i 0.706115i
416416 0 0
417417 0 0
418418 0 0
419419 −119011. + 119011.i −0.677889 + 0.677889i −0.959522 0.281633i 0.909124π-0.909124\pi
0.281633 + 0.959522i 0.409124π0.409124\pi
420420 0 0
421421 126967. 126967.i 0.716355 0.716355i −0.251502 0.967857i 0.580925π-0.580925\pi
0.967857 + 0.251502i 0.0809245π0.0809245\pi
422422 0 0
423423 0 0
424424 0 0
425425 217010.i 1.20144i
426426 0 0
427427 185115. + 185115.i 1.01528 + 1.01528i
428428 0 0
429429 0 0
430430 0 0
431431 82986.1i 0.446736i −0.974734 0.223368i 0.928295π-0.928295\pi
0.974734 0.223368i 0.0717051π-0.0717051\pi
432432 0 0
433433 −153228. −0.817265 −0.408633 0.912699i 0.633994π-0.633994\pi
−0.408633 + 0.912699i 0.633994π0.633994\pi
434434 0 0
435435 0 0
436436 0 0
437437 141298. 141298.i 0.739899 0.739899i
438438 0 0
439439 −48984.2 −0.254172 −0.127086 0.991892i 0.540562π-0.540562\pi
−0.127086 + 0.991892i 0.540562π0.540562\pi
440440 0 0
441441 0 0
442442 0 0
443443 5464.01 + 5464.01i 0.0278422 + 0.0278422i 0.720891 0.693049i 0.243733π-0.243733\pi
−0.693049 + 0.720891i 0.743733π0.743733\pi
444444 0 0
445445 51795.1 + 51795.1i 0.261559 + 0.261559i
446446 0 0
447447 0 0
448448 0 0
449449 −140068. −0.694776 −0.347388 0.937721i 0.612931π-0.612931\pi
−0.347388 + 0.937721i 0.612931π0.612931\pi
450450 0 0
451451 58714.4 58714.4i 0.288664 0.288664i
452452 0 0
453453 0 0
454454 0 0
455455 15633.0 0.0755127
456456 0 0
457457 219788.i 1.05238i −0.850368 0.526188i 0.823621π-0.823621\pi
0.850368 0.526188i 0.176379π-0.176379\pi
458458 0 0
459459 0 0
460460 0 0
461461 −124163. 124163.i −0.584239 0.584239i 0.351826 0.936065i 0.385561π-0.385561\pi
−0.936065 + 0.351826i 0.885561π0.885561\pi
462462 0 0
463463 236566.i 1.10354i 0.833995 + 0.551772i 0.186048π0.186048\pi
−0.833995 + 0.551772i 0.813952π0.813952\pi
464464 0 0
465465 0 0
466466 0 0
467467 73415.5 73415.5i 0.336631 0.336631i −0.518467 0.855098i 0.673497π-0.673497\pi
0.855098 + 0.518467i 0.173497π0.173497\pi
468468 0 0
469469 92485.8 92485.8i 0.420465 0.420465i
470470 0 0
471471 0 0
472472 0 0
473473 154631.i 0.691153i
474474 0 0
475475 −172982. 172982.i −0.766681 0.766681i
476476 0 0
477477 0 0
478478 0 0
479479 212004.i 0.924003i 0.886879 + 0.462002i 0.152869π0.152869\pi
−0.886879 + 0.462002i 0.847131π0.847131\pi
480480 0 0
481481 −16922.1 −0.0731417
482482 0 0
483483 0 0
484484 0 0
485485 −3322.01 + 3322.01i −0.0141227 + 0.0141227i
486486 0 0
487487 −26716.3 −0.112647 −0.0563234 0.998413i 0.517938π-0.517938\pi
−0.0563234 + 0.998413i 0.517938π0.517938\pi
488488 0 0
489489 0 0
490490 0 0
491491 99544.8 + 99544.8i 0.412910 + 0.412910i 0.882751 0.469841i 0.155689π-0.155689\pi
−0.469841 + 0.882751i 0.655689π0.655689\pi
492492 0 0
493493 −451714. 451714.i −1.85853 1.85853i
494494 0 0
495495 0 0
496496 0 0
497497 −57954.9 −0.234627
498498 0 0
499499 −189887. + 189887.i −0.762597 + 0.762597i −0.976791 0.214194i 0.931287π-0.931287\pi
0.214194 + 0.976791i 0.431287π0.431287\pi
500500 0 0
501501 0 0
502502 0 0
503503 188872. 0.746502 0.373251 0.927730i 0.378243π-0.378243\pi
0.373251 + 0.927730i 0.378243π0.378243\pi
504504 0 0
505505 136097.i 0.533662i
506506 0 0
507507 0 0
508508 0 0
509509 14343.5 + 14343.5i 0.0553629 + 0.0553629i 0.734246 0.678883i 0.237536π-0.237536\pi
−0.678883 + 0.734246i 0.737536π0.737536\pi
510510 0 0
511511 45155.8i 0.172931i
512512 0 0
513513 0 0
514514 0 0
515515 −136794. + 136794.i −0.515765 + 0.515765i
516516 0 0
517517 −9429.82 + 9429.82i −0.0352795 + 0.0352795i
518518 0 0
519519 0 0
520520 0 0
521521 65377.4i 0.240853i −0.992722 0.120427i 0.961574π-0.961574\pi
0.992722 0.120427i 0.0384262π-0.0384262\pi
522522 0 0
523523 143634. + 143634.i 0.525113 + 0.525113i 0.919111 0.393998i 0.128908π-0.128908\pi
−0.393998 + 0.919111i 0.628908π0.628908\pi
524524 0 0
525525 0 0
526526 0 0
527527 659477.i 2.37453i
528528 0 0
529529 −115946. −0.414327
530530 0 0
531531 0 0
532532 0 0
533533 −13577.2 + 13577.2i −0.0477921 + 0.0477921i
534534 0 0
535535 150704. 0.526521
536536 0 0
537537 0 0
538538 0 0
539539 −7328.78 7328.78i −0.0252263 0.0252263i
540540 0 0
541541 −275122. 275122.i −0.940007 0.940007i 0.0582928 0.998300i 0.481434π-0.481434\pi
−0.998300 + 0.0582928i 0.981434π0.981434\pi
542542 0 0
543543 0 0
544544 0 0
545545 −133654. −0.449975
546546 0 0
547547 1032.53 1032.53i 0.00345087 0.00345087i −0.705379 0.708830i 0.749223π-0.749223\pi
0.708830 + 0.705379i 0.249223π0.249223\pi
548548 0 0
549549 0 0
550550 0 0
551551 −720136. −2.37198
552552 0 0
553553 292775.i 0.957379i
554554 0 0
555555 0 0
556556 0 0
557557 223266. + 223266.i 0.719635 + 0.719635i 0.968530 0.248895i 0.0800674π-0.0800674\pi
−0.248895 + 0.968530i 0.580067π0.580067\pi
558558 0 0
559559 35757.1i 0.114430i
560560 0 0
561561 0 0
562562 0 0
563563 191551. 191551.i 0.604322 0.604322i −0.337134 0.941457i 0.609458π-0.609458\pi
0.941457 + 0.337134i 0.109458π0.109458\pi
564564 0 0
565565 −46766.9 + 46766.9i −0.146501 + 0.146501i
566566 0 0
567567 0 0
568568 0 0
569569 119746.i 0.369858i 0.982752 + 0.184929i 0.0592055π0.0592055\pi
−0.982752 + 0.184929i 0.940795π0.940795\pi
570570 0 0
571571 −375516. 375516.i −1.15175 1.15175i −0.986202 0.165544i 0.947062π-0.947062\pi
−0.165544 0.986202i 0.552938π-0.552938\pi
572572 0 0
573573 0 0
574574 0 0
575575 200647.i 0.606873i
576576 0 0
577577 185281. 0.556518 0.278259 0.960506i 0.410243π-0.410243\pi
0.278259 + 0.960506i 0.410243π0.410243\pi
578578 0 0
579579 0 0
580580 0 0
581581 −377093. + 377093.i −1.11711 + 1.11711i
582582 0 0
583583 175456. 0.516216
584584 0 0
585585 0 0
586586 0 0
587587 −483071. 483071.i −1.40196 1.40196i −0.793875 0.608081i 0.791940π-0.791940\pi
−0.608081 0.793875i 0.708060π-0.708060\pi
588588 0 0
589589 525679. + 525679.i 1.51527 + 1.51527i
590590 0 0
591591 0 0
592592 0 0
593593 −636299. −1.80947 −0.904736 0.425973i 0.859932π-0.859932\pi
−0.904736 + 0.425973i 0.859932π0.859932\pi
594594 0 0
595595 −175659. + 175659.i −0.496177 + 0.496177i
596596 0 0
597597 0 0
598598 0 0
599599 410280. 1.14347 0.571737 0.820437i 0.306270π-0.306270\pi
0.571737 + 0.820437i 0.306270π0.306270\pi
600600 0 0
601601 531872.i 1.47251i 0.676704 + 0.736255i 0.263408π0.263408\pi
−0.676704 + 0.736255i 0.736592π0.736592\pi
602602 0 0
603603 0 0
604604 0 0
605605 −3558.44 3558.44i −0.00972184 0.00972184i
606606 0 0
607607 505448.i 1.37182i 0.727684 + 0.685912i 0.240597π0.240597\pi
−0.727684 + 0.685912i 0.759403π0.759403\pi
608608 0 0
609609 0 0
610610 0 0
611611 2180.57 2180.57i 0.00584099 0.00584099i
612612 0 0
613613 −31334.4 + 31334.4i −0.0833873 + 0.0833873i −0.747570 0.664183i 0.768780π-0.768780\pi
0.664183 + 0.747570i 0.268780π0.268780\pi
614614 0 0
615615 0 0
616616 0 0
617617 481833.i 1.26569i 0.774280 + 0.632844i 0.218112π0.218112\pi
−0.774280 + 0.632844i 0.781888π0.781888\pi
618618 0 0
619619 −55035.5 55035.5i −0.143635 0.143635i 0.631632 0.775268i 0.282385π-0.282385\pi
−0.775268 + 0.631632i 0.782385π0.782385\pi
620620 0 0
621621 0 0
622622 0 0
623623 321215.i 0.827599i
624624 0 0
625625 −164779. −0.421834
626626 0 0
627627 0 0
628628 0 0
629629 190144. 190144.i 0.480597 0.480597i
630630 0 0
631631 188802. 0.474184 0.237092 0.971487i 0.423806π-0.423806\pi
0.237092 + 0.971487i 0.423806π0.423806\pi
632632 0 0
633633 0 0
634634 0 0
635635 −163812. 163812.i −0.406255 0.406255i
636636 0 0
637637 1694.72 + 1694.72i 0.00417656 + 0.00417656i
638638 0 0
639639 0 0
640640 0 0
641641 442081. 1.07593 0.537967 0.842966i 0.319193π-0.319193\pi
0.537967 + 0.842966i 0.319193π0.319193\pi
642642 0 0
643643 246339. 246339.i 0.595814 0.595814i −0.343382 0.939196i 0.611573π-0.611573\pi
0.939196 + 0.343382i 0.111573π0.111573\pi
644644 0 0
645645 0 0
646646 0 0
647647 −54549.4 −0.130311 −0.0651555 0.997875i 0.520754π-0.520754\pi
−0.0651555 + 0.997875i 0.520754π0.520754\pi
648648 0 0
649649 288429.i 0.684778i
650650 0 0
651651 0 0
652652 0 0
653653 −231745. 231745.i −0.543481 0.543481i 0.381066 0.924548i 0.375557π-0.375557\pi
−0.924548 + 0.381066i 0.875557π0.875557\pi
654654 0 0
655655 71011.8i 0.165519i
656656 0 0
657657 0 0
658658 0 0
659659 −479757. + 479757.i −1.10472 + 1.10472i −0.110883 + 0.993833i 0.535368π0.535368\pi
−0.993833 + 0.110883i 0.964632π0.964632\pi
660660 0 0
661661 515798. 515798.i 1.18053 1.18053i 0.200922 0.979607i 0.435606π-0.435606\pi
0.979607 0.200922i 0.0643937π-0.0643937\pi
662662 0 0
663663 0 0
664664 0 0
665665 280041.i 0.633254i
666666 0 0
667667 −417654. 417654.i −0.938782 0.938782i
668668 0 0
669669 0 0
670670 0 0
671671 625397.i 1.38903i
672672 0 0
673673 −505551. −1.11618 −0.558090 0.829780i 0.688466π-0.688466\pi
−0.558090 + 0.829780i 0.688466π0.688466\pi
674674 0 0
675675 0 0
676676 0 0
677677 460825. 460825.i 1.00545 1.00545i 0.00546007 0.999985i 0.498262π-0.498262\pi
0.999985 0.00546007i 0.00173800π-0.00173800\pi
678678 0 0
679679 −20601.9 −0.0446857
680680 0 0
681681 0 0
682682 0 0
683683 120242. + 120242.i 0.257761 + 0.257761i 0.824143 0.566382i 0.191657π-0.191657\pi
−0.566382 + 0.824143i 0.691657π0.691657\pi
684684 0 0
685685 −88622.7 88622.7i −0.188870 0.188870i
686686 0 0
687687 0 0
688688 0 0
689689 −40572.7 −0.0854664
690690 0 0
691691 −166965. + 166965.i −0.349678 + 0.349678i −0.859990 0.510311i 0.829530π-0.829530\pi
0.510311 + 0.859990i 0.329530π0.329530\pi
692692 0 0
693693 0 0
694694 0 0
695695 240600. 0.498111
696696 0 0
697697 305118.i 0.628062i
698698 0 0
699699 0 0
700700 0 0
701701 −39689.8 39689.8i −0.0807687 0.0807687i 0.665568 0.746337i 0.268189π-0.268189\pi
−0.746337 + 0.665568i 0.768189π0.768189\pi
702702 0 0
703703 303133.i 0.613371i
704704 0 0
705705 0 0
706706 0 0
707707 −422013. + 422013.i −0.844281 + 0.844281i
708708 0 0
709709 250742. 250742.i 0.498809 0.498809i −0.412258 0.911067i 0.635260π-0.635260\pi
0.911067 + 0.412258i 0.135260π0.135260\pi
710710 0 0
711711 0 0
712712 0 0
713713 609751.i 1.19943i
714714 0 0
715715 −26407.5 26407.5i −0.0516553 0.0516553i
716716 0 0
717717 0 0
718718 0 0
719719 133454.i 0.258152i 0.991635 + 0.129076i 0.0412011π0.0412011\pi
−0.991635 + 0.129076i 0.958799π0.958799\pi
720720 0 0
721721 −848347. −1.63194
722722 0 0
723723 0 0
724724 0 0
725725 −511309. + 511309.i −0.972763 + 0.972763i
726726 0 0
727727 −583370. −1.10376 −0.551881 0.833923i 0.686090π-0.686090\pi
−0.551881 + 0.833923i 0.686090π0.686090\pi
728728 0 0
729729 0 0
730730 0 0
731731 401781. + 401781.i 0.751891 + 0.751891i
732732 0 0
733733 534516. + 534516.i 0.994838 + 0.994838i 0.999987 0.00514857i 0.00163885π-0.00163885\pi
−0.00514857 + 0.999987i 0.501639π0.501639\pi
734734 0 0
735735 0 0
736736 0 0
737737 −312456. −0.575247
738738 0 0
739739 91929.4 91929.4i 0.168332 0.168332i −0.617914 0.786246i 0.712022π-0.712022\pi
0.786246 + 0.617914i 0.212022π0.212022\pi
740740 0 0
741741 0 0
742742 0 0
743743 83329.2 0.150945 0.0754727 0.997148i 0.475953π-0.475953\pi
0.0754727 + 0.997148i 0.475953π0.475953\pi
744744 0 0
745745 247625.i 0.446151i
746746 0 0
747747 0 0
748748 0 0
749749 467305. + 467305.i 0.832985 + 0.832985i
750750 0 0
751751 318689.i 0.565051i 0.959260 + 0.282525i 0.0911722π0.0911722\pi
−0.959260 + 0.282525i 0.908828π0.908828\pi
752752 0 0
753753 0 0
754754 0 0
755755 136504. 136504.i 0.239470 0.239470i
756756 0 0
757757 −428881. + 428881.i −0.748419 + 0.748419i −0.974182 0.225763i 0.927512π-0.927512\pi
0.225763 + 0.974182i 0.427512π0.427512\pi
758758 0 0
759759 0 0
760760 0 0
761761 718933.i 1.24142i −0.784040 0.620711i 0.786844π-0.786844\pi
0.784040 0.620711i 0.213156π-0.213156\pi
762762 0 0
763763 −414437. 414437.i −0.711884 0.711884i
764764 0 0
765765 0 0
766766 0 0
767767 66696.8i 0.113374i
768768 0 0
769769 421326. 0.712468 0.356234 0.934397i 0.384061π-0.384061\pi
0.356234 + 0.934397i 0.384061π0.384061\pi
770770 0 0
771771 0 0
772772 0 0
773773 −455325. + 455325.i −0.762013 + 0.762013i −0.976686 0.214673i 0.931132π-0.931132\pi
0.214673 + 0.976686i 0.431132π0.431132\pi
774774 0 0
775775 746482. 1.24284
776776 0 0
777777 0 0
778778 0 0
779779 −243214. 243214.i −0.400788 0.400788i
780780 0 0
781781 97898.1 + 97898.1i 0.160499 + 0.160499i
782782 0 0
783783 0 0
784784 0 0
785785 18784.0 0.0304825
786786 0 0
787787 −541211. + 541211.i −0.873811 + 0.873811i −0.992885 0.119074i 0.962007π-0.962007\pi
0.119074 + 0.992885i 0.462007π0.462007\pi
788788 0 0
789789 0 0
790790 0 0
791791 −290032. −0.463546
792792 0 0
793793 144618.i 0.229972i
794794 0 0
795795 0 0
796796 0 0
797797 −481291. 481291.i −0.757690 0.757690i 0.218212 0.975901i 0.429978π-0.429978\pi
−0.975901 + 0.218212i 0.929978π0.929978\pi
798798 0 0
799799 49003.4i 0.0767597i
800800 0 0
801801 0 0
802802 0 0
803803 76277.7 76277.7i 0.118295 0.118295i
804804 0 0
805805 −162414. + 162414.i −0.250629 + 0.250629i
806806 0 0
807807 0 0
808808 0 0
809809 34438.5i 0.0526195i 0.999654 + 0.0263097i 0.00837562π0.00837562\pi
−0.999654 + 0.0263097i 0.991624π0.991624\pi
810810 0 0
811811 −227480. 227480.i −0.345862 0.345862i 0.512704 0.858566i 0.328644π-0.328644\pi
−0.858566 + 0.512704i 0.828644π0.828644\pi
812812 0 0
813813 0 0
814814 0 0
815815 451633.i 0.679939i
816816 0 0
817817 640532. 0.959614
818818 0 0
819819 0 0
820820 0 0
821821 807677. 807677.i 1.19826 1.19826i 0.223573 0.974687i 0.428228π-0.428228\pi
0.974687 0.223573i 0.0717722π-0.0717722\pi
822822 0 0
823823 703593. 1.03878 0.519388 0.854539i 0.326160π-0.326160\pi
0.519388 + 0.854539i 0.326160π0.326160\pi
824824 0 0
825825 0 0
826826 0 0
827827 −775918. 775918.i −1.13450 1.13450i −0.989420 0.145081i 0.953656π-0.953656\pi
−0.145081 0.989420i 0.546344π-0.546344\pi
828828 0 0
829829 −804056. 804056.i −1.16998 1.16998i −0.982214 0.187763i 0.939876π-0.939876\pi
−0.187763 0.982214i 0.560124π-0.560124\pi
830830 0 0
831831 0 0
832832 0 0
833833 −38085.1 −0.0548864
834834 0 0
835835 −23564.4 + 23564.4i −0.0337974 + 0.0337974i
836836 0 0
837837 0 0
838838 0 0
839839 −248652. −0.353239 −0.176619 0.984279i 0.556516π-0.556516\pi
−0.176619 + 0.984279i 0.556516π0.556516\pi
840840 0 0
841841 1.42133e6i 2.00957i
842842 0 0
843843 0 0
844844 0 0
845845 −223609. 223609.i −0.313166 0.313166i
846846 0 0
847847 22068.2i 0.0307610i
848848 0 0
849849 0 0
850850 0 0
851851 175807. 175807.i 0.242760 0.242760i
852852 0 0
853853 779867. 779867.i 1.07182 1.07182i 0.0746081 0.997213i 0.476229π-0.476229\pi
0.997213 0.0746081i 0.0237706π-0.0237706\pi
854854 0 0
855855 0 0
856856 0 0
857857 481792.i 0.655992i −0.944679 0.327996i 0.893627π-0.893627\pi
0.944679 0.327996i 0.106373π-0.106373\pi
858858 0 0
859859 947889. + 947889.i 1.28461 + 1.28461i 0.938015 + 0.346594i 0.112662π0.112662\pi
0.346594 + 0.938015i 0.387338π0.387338\pi
860860 0 0
861861 0 0
862862 0 0
863863 1.00011e6i 1.34284i 0.741077 + 0.671421i 0.234316π0.234316\pi
−0.741077 + 0.671421i 0.765684π0.765684\pi
864864 0 0
865865 −137711. −0.184051
866866 0 0
867867 0 0
868868 0 0
869869 494559. 494559.i 0.654905 0.654905i
870870 0 0
871871 72252.8 0.0952398
872872 0 0
873873 0 0
874874 0 0
875875 449571. + 449571.i 0.587195 + 0.587195i
876876 0 0
877877 −747906. 747906.i −0.972406 0.972406i 0.0272234 0.999629i 0.491333π-0.491333\pi
−0.999629 + 0.0272234i 0.991333π0.991333\pi
878878 0 0
879879 0 0
880880 0 0
881881 53961.8 0.0695240 0.0347620 0.999396i 0.488933π-0.488933\pi
0.0347620 + 0.999396i 0.488933π0.488933\pi
882882 0 0
883883 629494. 629494.i 0.807366 0.807366i −0.176869 0.984234i 0.556597π-0.556597\pi
0.984234 + 0.176869i 0.0565968π0.0565968\pi
884884 0 0
885885 0 0
886886 0 0
887887 880807. 1.11952 0.559762 0.828653i 0.310893π-0.310893\pi
0.559762 + 0.828653i 0.310893π0.310893\pi
888888 0 0
889889 1.01590e6i 1.28543i
890890 0 0
891891 0 0
892892 0 0
893893 39061.4 + 39061.4i 0.0489829 + 0.0489829i
894894 0 0
895895 392821.i 0.490398i
896896 0 0
897897 0 0
898898 0 0
899899 1.55383e6 1.55383e6i 1.92257 1.92257i
900900 0 0
901901 455891. 455891.i 0.561580 0.561580i
902902 0 0
903903 0 0
904904 0 0
905905 176085.i 0.214994i
906906 0 0
907907 −662568. 662568.i −0.805408 0.805408i 0.178527 0.983935i 0.442867π-0.442867\pi
−0.983935 + 0.178527i 0.942867π0.942867\pi
908908 0 0
909909 0 0
910910 0 0
911911 817906.i 0.985522i −0.870165 0.492761i 0.835988π-0.835988\pi
0.870165 0.492761i 0.164012π-0.164012\pi
912912 0 0
913913 1.27398e6 1.52834
914914 0 0
915915 0 0
916916 0 0
917917 220195. 220195.i 0.261860 0.261860i
918918 0 0
919919 33891.9 0.0401296 0.0200648 0.999799i 0.493613π-0.493613\pi
0.0200648 + 0.999799i 0.493613π0.493613\pi
920920 0 0
921921 0 0
922922 0 0
923923 −22638.1 22638.1i −0.0265728 0.0265728i
924924 0 0
925925 −215230. 215230.i −0.251547 0.251547i
926926 0 0
927927 0 0
928928 0 0
929929 207783. 0.240757 0.120378 0.992728i 0.461589π-0.461589\pi
0.120378 + 0.992728i 0.461589π0.461589\pi
930930 0 0
931931 −30358.2 + 30358.2i −0.0350249 + 0.0350249i
932932 0 0
933933 0 0
934934 0 0
935935 593450. 0.678830
936936 0 0
937937 1.12361e6i 1.27979i −0.768464 0.639893i 0.778978π-0.778978\pi
0.768464 0.639893i 0.221022π-0.221022\pi
938938 0 0
939939 0 0
940940 0 0
941941 856765. + 856765.i 0.967570 + 0.967570i 0.999490 0.0319200i 0.0101622π-0.0101622\pi
−0.0319200 + 0.999490i 0.510162π0.510162\pi
942942 0 0
943943 282112.i 0.317247i
944944 0 0
945945 0 0
946946 0 0
947947 −246666. + 246666.i −0.275048 + 0.275048i −0.831129 0.556080i 0.812305π-0.812305\pi
0.556080 + 0.831129i 0.312305π0.312305\pi
948948 0 0
949949 −17638.6 + 17638.6i −0.0195853 + 0.0195853i
950950 0 0
951951 0 0
952952 0 0
953953 219446.i 0.241625i −0.992675 0.120812i 0.961450π-0.961450\pi
0.992675 0.120812i 0.0385500π-0.0385500\pi
954954 0 0
955955 180041. + 180041.i 0.197408 + 0.197408i
956956 0 0
957957 0 0
958958 0 0
959959 549607.i 0.597606i
960960 0 0
961961 −1.34498e6 −1.45636
962962 0 0
963963 0 0
964964 0 0
965965 −244743. + 244743.i −0.262819 + 0.262819i
966966 0 0
967967 −650799. −0.695975 −0.347988 0.937499i 0.613135π-0.613135\pi
−0.347988 + 0.937499i 0.613135π0.613135\pi
968968 0 0
969969 0 0
970970 0 0
971971 790825. + 790825.i 0.838768 + 0.838768i 0.988697 0.149929i 0.0479044π-0.0479044\pi
−0.149929 + 0.988697i 0.547904π0.547904\pi
972972 0 0
973973 746058. + 746058.i 0.788037 + 0.788037i
974974 0 0
975975 0 0
976976 0 0
977977 1.40812e6 1.47520 0.737600 0.675237i 0.235959π-0.235959\pi
0.737600 + 0.675237i 0.235959π0.235959\pi
978978 0 0
979979 542600. 542600.i 0.566128 0.566128i
980980 0 0
981981 0 0
982982 0 0
983983 −208227. −0.215491 −0.107746 0.994179i 0.534363π-0.534363\pi
−0.107746 + 0.994179i 0.534363π0.534363\pi
984984 0 0
985985 307144.i 0.316569i
986986 0 0
987987 0 0
988988 0 0
989989 371486. + 371486.i 0.379796 + 0.379796i
990990 0 0
991991 170063.i 0.173166i 0.996245 + 0.0865831i 0.0275948π0.0275948\pi
−0.996245 + 0.0865831i 0.972405π0.972405\pi
992992 0 0
993993 0 0
994994 0 0
995995 −546631. + 546631.i −0.552138 + 0.552138i
996996 0 0
997997 −917799. + 917799.i −0.923331 + 0.923331i −0.997263 0.0739326i 0.976445π-0.976445\pi
0.0739326 + 0.997263i 0.476445π0.476445\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.5.m.a.559.5 14
3.2 odd 2 64.5.f.a.47.4 14
4.3 odd 2 144.5.m.a.19.1 14
12.11 even 2 16.5.f.a.3.7 14
16.5 even 4 144.5.m.a.91.1 14
16.11 odd 4 inner 576.5.m.a.271.5 14
24.5 odd 2 128.5.f.a.95.4 14
24.11 even 2 128.5.f.b.95.4 14
48.5 odd 4 16.5.f.a.11.7 yes 14
48.11 even 4 64.5.f.a.15.4 14
48.29 odd 4 128.5.f.b.31.4 14
48.35 even 4 128.5.f.a.31.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
16.5.f.a.3.7 14 12.11 even 2
16.5.f.a.11.7 yes 14 48.5 odd 4
64.5.f.a.15.4 14 48.11 even 4
64.5.f.a.47.4 14 3.2 odd 2
128.5.f.a.31.4 14 48.35 even 4
128.5.f.a.95.4 14 24.5 odd 2
128.5.f.b.31.4 14 48.29 odd 4
128.5.f.b.95.4 14 24.11 even 2
144.5.m.a.19.1 14 4.3 odd 2
144.5.m.a.91.1 14 16.5 even 4
576.5.m.a.271.5 14 16.11 odd 4 inner
576.5.m.a.559.5 14 1.1 even 1 trivial