Properties

Label 585.2.a.h
Level $585$
Weight $2$
Character orbit 585.a
Self dual yes
Analytic conductor $4.671$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(1,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.67124851824\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - q^{4} + q^{5} - 4 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{4} + q^{5} - 4 q^{7} - 3 q^{8} + q^{10} - 2 q^{11} - q^{13} - 4 q^{14} - q^{16} - 2 q^{17} - 6 q^{19} - q^{20} - 2 q^{22} + 6 q^{23} + q^{25} - q^{26} + 4 q^{28} - 2 q^{29} - 10 q^{31} + 5 q^{32} - 2 q^{34} - 4 q^{35} - 2 q^{37} - 6 q^{38} - 3 q^{40} + 6 q^{41} + 10 q^{43} + 2 q^{44} + 6 q^{46} - 4 q^{47} + 9 q^{49} + q^{50} + q^{52} - 2 q^{53} - 2 q^{55} + 12 q^{56} - 2 q^{58} - 6 q^{59} + 2 q^{61} - 10 q^{62} + 7 q^{64} - q^{65} - 4 q^{67} + 2 q^{68} - 4 q^{70} - 6 q^{71} - 6 q^{73} - 2 q^{74} + 6 q^{76} + 8 q^{77} - 12 q^{79} - q^{80} + 6 q^{82} + 16 q^{83} - 2 q^{85} + 10 q^{86} + 6 q^{88} - 2 q^{89} + 4 q^{91} - 6 q^{92} - 4 q^{94} - 6 q^{95} - 2 q^{97} + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 −1.00000 1.00000 0 −4.00000 −3.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 585.2.a.h 1
3.b odd 2 1 65.2.a.a 1
4.b odd 2 1 9360.2.a.ca 1
5.b even 2 1 2925.2.a.f 1
5.c odd 4 2 2925.2.c.h 2
12.b even 2 1 1040.2.a.f 1
13.b even 2 1 7605.2.a.f 1
15.d odd 2 1 325.2.a.d 1
15.e even 4 2 325.2.b.b 2
21.c even 2 1 3185.2.a.e 1
24.f even 2 1 4160.2.a.f 1
24.h odd 2 1 4160.2.a.q 1
33.d even 2 1 7865.2.a.c 1
39.d odd 2 1 845.2.a.a 1
39.f even 4 2 845.2.c.a 2
39.h odd 6 2 845.2.e.a 2
39.i odd 6 2 845.2.e.b 2
39.k even 12 4 845.2.m.b 4
60.h even 2 1 5200.2.a.d 1
195.e odd 2 1 4225.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.a.a 1 3.b odd 2 1
325.2.a.d 1 15.d odd 2 1
325.2.b.b 2 15.e even 4 2
585.2.a.h 1 1.a even 1 1 trivial
845.2.a.a 1 39.d odd 2 1
845.2.c.a 2 39.f even 4 2
845.2.e.a 2 39.h odd 6 2
845.2.e.b 2 39.i odd 6 2
845.2.m.b 4 39.k even 12 4
1040.2.a.f 1 12.b even 2 1
2925.2.a.f 1 5.b even 2 1
2925.2.c.h 2 5.c odd 4 2
3185.2.a.e 1 21.c even 2 1
4160.2.a.f 1 24.f even 2 1
4160.2.a.q 1 24.h odd 2 1
4225.2.a.g 1 195.e odd 2 1
5200.2.a.d 1 60.h even 2 1
7605.2.a.f 1 13.b even 2 1
7865.2.a.c 1 33.d even 2 1
9360.2.a.ca 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(585))\):

\( T_{2} - 1 \) Copy content Toggle raw display
\( T_{7} + 4 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 1 \) Copy content Toggle raw display
$7$ \( T + 4 \) Copy content Toggle raw display
$11$ \( T + 2 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T + 6 \) Copy content Toggle raw display
$23$ \( T - 6 \) Copy content Toggle raw display
$29$ \( T + 2 \) Copy content Toggle raw display
$31$ \( T + 10 \) Copy content Toggle raw display
$37$ \( T + 2 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 10 \) Copy content Toggle raw display
$47$ \( T + 4 \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T + 6 \) Copy content Toggle raw display
$61$ \( T - 2 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T + 6 \) Copy content Toggle raw display
$73$ \( T + 6 \) Copy content Toggle raw display
$79$ \( T + 12 \) Copy content Toggle raw display
$83$ \( T - 16 \) Copy content Toggle raw display
$89$ \( T + 2 \) Copy content Toggle raw display
$97$ \( T + 2 \) Copy content Toggle raw display
show more
show less