Properties

Label 585.2.n.c.307.1
Level $585$
Weight $2$
Character 585.307
Analytic conductor $4.671$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(307,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 585.307
Dual form 585.2.n.c.343.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +1.00000 q^{4} +(2.00000 + 1.00000i) q^{5} -2.00000 q^{7} -3.00000i q^{8} +(1.00000 - 2.00000i) q^{10} +(1.00000 - 1.00000i) q^{11} +(-2.00000 - 3.00000i) q^{13} +2.00000i q^{14} -1.00000 q^{16} +(1.00000 - 1.00000i) q^{17} +(5.00000 - 5.00000i) q^{19} +(2.00000 + 1.00000i) q^{20} +(-1.00000 - 1.00000i) q^{22} +(3.00000 + 3.00000i) q^{23} +(3.00000 + 4.00000i) q^{25} +(-3.00000 + 2.00000i) q^{26} -2.00000 q^{28} +(5.00000 + 5.00000i) q^{31} -5.00000i q^{32} +(-1.00000 - 1.00000i) q^{34} +(-4.00000 - 2.00000i) q^{35} +(-5.00000 - 5.00000i) q^{38} +(3.00000 - 6.00000i) q^{40} +(7.00000 + 7.00000i) q^{41} +(1.00000 + 1.00000i) q^{43} +(1.00000 - 1.00000i) q^{44} +(3.00000 - 3.00000i) q^{46} -6.00000 q^{47} -3.00000 q^{49} +(4.00000 - 3.00000i) q^{50} +(-2.00000 - 3.00000i) q^{52} +(-5.00000 + 5.00000i) q^{53} +(3.00000 - 1.00000i) q^{55} +6.00000i q^{56} +(-7.00000 - 7.00000i) q^{59} -14.0000 q^{61} +(5.00000 - 5.00000i) q^{62} -7.00000 q^{64} +(-1.00000 - 8.00000i) q^{65} -4.00000i q^{67} +(1.00000 - 1.00000i) q^{68} +(-2.00000 + 4.00000i) q^{70} +(-1.00000 - 1.00000i) q^{71} +10.0000i q^{73} +(5.00000 - 5.00000i) q^{76} +(-2.00000 + 2.00000i) q^{77} -2.00000i q^{79} +(-2.00000 - 1.00000i) q^{80} +(7.00000 - 7.00000i) q^{82} -6.00000 q^{83} +(3.00000 - 1.00000i) q^{85} +(1.00000 - 1.00000i) q^{86} +(-3.00000 - 3.00000i) q^{88} +(5.00000 + 5.00000i) q^{89} +(4.00000 + 6.00000i) q^{91} +(3.00000 + 3.00000i) q^{92} +6.00000i q^{94} +(15.0000 - 5.00000i) q^{95} +2.00000i q^{97} +3.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} + 4 q^{5} - 4 q^{7} + 2 q^{10} + 2 q^{11} - 4 q^{13} - 2 q^{16} + 2 q^{17} + 10 q^{19} + 4 q^{20} - 2 q^{22} + 6 q^{23} + 6 q^{25} - 6 q^{26} - 4 q^{28} + 10 q^{31} - 2 q^{34} - 8 q^{35} - 10 q^{38}+ \cdots + 30 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i −0.935414 0.353553i \(-0.884973\pi\)
0.935414 0.353553i \(-0.115027\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 2.00000 + 1.00000i 0.894427 + 0.447214i
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 0 0
\(10\) 1.00000 2.00000i 0.316228 0.632456i
\(11\) 1.00000 1.00000i 0.301511 0.301511i −0.540094 0.841605i \(-0.681611\pi\)
0.841605 + 0.540094i \(0.181611\pi\)
\(12\) 0 0
\(13\) −2.00000 3.00000i −0.554700 0.832050i
\(14\) 2.00000i 0.534522i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 1.00000 1.00000i 0.242536 0.242536i −0.575363 0.817898i \(-0.695139\pi\)
0.817898 + 0.575363i \(0.195139\pi\)
\(18\) 0 0
\(19\) 5.00000 5.00000i 1.14708 1.14708i 0.159954 0.987124i \(-0.448865\pi\)
0.987124 0.159954i \(-0.0511347\pi\)
\(20\) 2.00000 + 1.00000i 0.447214 + 0.223607i
\(21\) 0 0
\(22\) −1.00000 1.00000i −0.213201 0.213201i
\(23\) 3.00000 + 3.00000i 0.625543 + 0.625543i 0.946943 0.321400i \(-0.104153\pi\)
−0.321400 + 0.946943i \(0.604153\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) −3.00000 + 2.00000i −0.588348 + 0.392232i
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 5.00000 + 5.00000i 0.898027 + 0.898027i 0.995261 0.0972349i \(-0.0309998\pi\)
−0.0972349 + 0.995261i \(0.531000\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 0 0
\(34\) −1.00000 1.00000i −0.171499 0.171499i
\(35\) −4.00000 2.00000i −0.676123 0.338062i
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) −5.00000 5.00000i −0.811107 0.811107i
\(39\) 0 0
\(40\) 3.00000 6.00000i 0.474342 0.948683i
\(41\) 7.00000 + 7.00000i 1.09322 + 1.09322i 0.995183 + 0.0980332i \(0.0312551\pi\)
0.0980332 + 0.995183i \(0.468745\pi\)
\(42\) 0 0
\(43\) 1.00000 + 1.00000i 0.152499 + 0.152499i 0.779233 0.626734i \(-0.215609\pi\)
−0.626734 + 0.779233i \(0.715609\pi\)
\(44\) 1.00000 1.00000i 0.150756 0.150756i
\(45\) 0 0
\(46\) 3.00000 3.00000i 0.442326 0.442326i
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 4.00000 3.00000i 0.565685 0.424264i
\(51\) 0 0
\(52\) −2.00000 3.00000i −0.277350 0.416025i
\(53\) −5.00000 + 5.00000i −0.686803 + 0.686803i −0.961524 0.274721i \(-0.911414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 3.00000 1.00000i 0.404520 0.134840i
\(56\) 6.00000i 0.801784i
\(57\) 0 0
\(58\) 0 0
\(59\) −7.00000 7.00000i −0.911322 0.911322i 0.0850540 0.996376i \(-0.472894\pi\)
−0.996376 + 0.0850540i \(0.972894\pi\)
\(60\) 0 0
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 5.00000 5.00000i 0.635001 0.635001i
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) −1.00000 8.00000i −0.124035 0.992278i
\(66\) 0 0
\(67\) 4.00000i 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 1.00000 1.00000i 0.121268 0.121268i
\(69\) 0 0
\(70\) −2.00000 + 4.00000i −0.239046 + 0.478091i
\(71\) −1.00000 1.00000i −0.118678 0.118678i 0.645273 0.763952i \(-0.276743\pi\)
−0.763952 + 0.645273i \(0.776743\pi\)
\(72\) 0 0
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 5.00000 5.00000i 0.573539 0.573539i
\(77\) −2.00000 + 2.00000i −0.227921 + 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i −0.993651 0.112509i \(-0.964111\pi\)
0.993651 0.112509i \(-0.0358886\pi\)
\(80\) −2.00000 1.00000i −0.223607 0.111803i
\(81\) 0 0
\(82\) 7.00000 7.00000i 0.773021 0.773021i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 3.00000 1.00000i 0.325396 0.108465i
\(86\) 1.00000 1.00000i 0.107833 0.107833i
\(87\) 0 0
\(88\) −3.00000 3.00000i −0.319801 0.319801i
\(89\) 5.00000 + 5.00000i 0.529999 + 0.529999i 0.920572 0.390573i \(-0.127723\pi\)
−0.390573 + 0.920572i \(0.627723\pi\)
\(90\) 0 0
\(91\) 4.00000 + 6.00000i 0.419314 + 0.628971i
\(92\) 3.00000 + 3.00000i 0.312772 + 0.312772i
\(93\) 0 0
\(94\) 6.00000i 0.618853i
\(95\) 15.0000 5.00000i 1.53897 0.512989i
\(96\) 0 0
\(97\) 2.00000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 3.00000i 0.303046i
\(99\) 0 0
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) 12.0000i 1.19404i 0.802225 + 0.597022i \(0.203650\pi\)
−0.802225 + 0.597022i \(0.796350\pi\)
\(102\) 0 0
\(103\) −7.00000 7.00000i −0.689730 0.689730i 0.272442 0.962172i \(-0.412169\pi\)
−0.962172 + 0.272442i \(0.912169\pi\)
\(104\) −9.00000 + 6.00000i −0.882523 + 0.588348i
\(105\) 0 0
\(106\) 5.00000 + 5.00000i 0.485643 + 0.485643i
\(107\) −7.00000 7.00000i −0.676716 0.676716i 0.282540 0.959256i \(-0.408823\pi\)
−0.959256 + 0.282540i \(0.908823\pi\)
\(108\) 0 0
\(109\) −9.00000 + 9.00000i −0.862044 + 0.862044i −0.991575 0.129532i \(-0.958653\pi\)
0.129532 + 0.991575i \(0.458653\pi\)
\(110\) −1.00000 3.00000i −0.0953463 0.286039i
\(111\) 0 0
\(112\) 2.00000 0.188982
\(113\) −5.00000 + 5.00000i −0.470360 + 0.470360i −0.902031 0.431671i \(-0.857924\pi\)
0.431671 + 0.902031i \(0.357924\pi\)
\(114\) 0 0
\(115\) 3.00000 + 9.00000i 0.279751 + 0.839254i
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 + 7.00000i −0.644402 + 0.644402i
\(119\) −2.00000 + 2.00000i −0.183340 + 0.183340i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 14.0000i 1.26750i
\(123\) 0 0
\(124\) 5.00000 + 5.00000i 0.449013 + 0.449013i
\(125\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(126\) 0 0
\(127\) −9.00000 + 9.00000i −0.798621 + 0.798621i −0.982878 0.184257i \(-0.941012\pi\)
0.184257 + 0.982878i \(0.441012\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 0 0
\(130\) −8.00000 + 1.00000i −0.701646 + 0.0877058i
\(131\) 20.0000 1.74741 0.873704 0.486458i \(-0.161711\pi\)
0.873704 + 0.486458i \(0.161711\pi\)
\(132\) 0 0
\(133\) −10.0000 + 10.0000i −0.867110 + 0.867110i
\(134\) −4.00000 −0.345547
\(135\) 0 0
\(136\) −3.00000 3.00000i −0.257248 0.257248i
\(137\) 16.0000 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(138\) 0 0
\(139\) 14.0000i 1.18746i −0.804663 0.593732i \(-0.797654\pi\)
0.804663 0.593732i \(-0.202346\pi\)
\(140\) −4.00000 2.00000i −0.338062 0.169031i
\(141\) 0 0
\(142\) −1.00000 + 1.00000i −0.0839181 + 0.0839181i
\(143\) −5.00000 1.00000i −0.418121 0.0836242i
\(144\) 0 0
\(145\) 0 0
\(146\) 10.0000 0.827606
\(147\) 0 0
\(148\) 0 0
\(149\) −3.00000 + 3.00000i −0.245770 + 0.245770i −0.819232 0.573462i \(-0.805600\pi\)
0.573462 + 0.819232i \(0.305600\pi\)
\(150\) 0 0
\(151\) 7.00000 7.00000i 0.569652 0.569652i −0.362379 0.932031i \(-0.618035\pi\)
0.932031 + 0.362379i \(0.118035\pi\)
\(152\) −15.0000 15.0000i −1.21666 1.21666i
\(153\) 0 0
\(154\) 2.00000 + 2.00000i 0.161165 + 0.161165i
\(155\) 5.00000 + 15.0000i 0.401610 + 1.20483i
\(156\) 0 0
\(157\) 13.0000 + 13.0000i 1.03751 + 1.03751i 0.999268 + 0.0382445i \(0.0121766\pi\)
0.0382445 + 0.999268i \(0.487823\pi\)
\(158\) −2.00000 −0.159111
\(159\) 0 0
\(160\) 5.00000 10.0000i 0.395285 0.790569i
\(161\) −6.00000 6.00000i −0.472866 0.472866i
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 7.00000 + 7.00000i 0.546608 + 0.546608i
\(165\) 0 0
\(166\) 6.00000i 0.465690i
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) −1.00000 3.00000i −0.0766965 0.230089i
\(171\) 0 0
\(172\) 1.00000 + 1.00000i 0.0762493 + 0.0762493i
\(173\) −11.0000 11.0000i −0.836315 0.836315i 0.152057 0.988372i \(-0.451410\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) −6.00000 8.00000i −0.453557 0.604743i
\(176\) −1.00000 + 1.00000i −0.0753778 + 0.0753778i
\(177\) 0 0
\(178\) 5.00000 5.00000i 0.374766 0.374766i
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) 8.00000i 0.594635i 0.954779 + 0.297318i \(0.0960920\pi\)
−0.954779 + 0.297318i \(0.903908\pi\)
\(182\) 6.00000 4.00000i 0.444750 0.296500i
\(183\) 0 0
\(184\) 9.00000 9.00000i 0.663489 0.663489i
\(185\) 0 0
\(186\) 0 0
\(187\) 2.00000i 0.146254i
\(188\) −6.00000 −0.437595
\(189\) 0 0
\(190\) −5.00000 15.0000i −0.362738 1.08821i
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 18.0000i 1.29567i −0.761781 0.647834i \(-0.775675\pi\)
0.761781 0.647834i \(-0.224325\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 6.00000i 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 12.0000 9.00000i 0.848528 0.636396i
\(201\) 0 0
\(202\) 12.0000 0.844317
\(203\) 0 0
\(204\) 0 0
\(205\) 7.00000 + 21.0000i 0.488901 + 1.46670i
\(206\) −7.00000 + 7.00000i −0.487713 + 0.487713i
\(207\) 0 0
\(208\) 2.00000 + 3.00000i 0.138675 + 0.208013i
\(209\) 10.0000i 0.691714i
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −5.00000 + 5.00000i −0.343401 + 0.343401i
\(213\) 0 0
\(214\) −7.00000 + 7.00000i −0.478510 + 0.478510i
\(215\) 1.00000 + 3.00000i 0.0681994 + 0.204598i
\(216\) 0 0
\(217\) −10.0000 10.0000i −0.678844 0.678844i
\(218\) 9.00000 + 9.00000i 0.609557 + 0.609557i
\(219\) 0 0
\(220\) 3.00000 1.00000i 0.202260 0.0674200i
\(221\) −5.00000 1.00000i −0.336336 0.0672673i
\(222\) 0 0
\(223\) 2.00000 0.133930 0.0669650 0.997755i \(-0.478668\pi\)
0.0669650 + 0.997755i \(0.478668\pi\)
\(224\) 10.0000i 0.668153i
\(225\) 0 0
\(226\) 5.00000 + 5.00000i 0.332595 + 0.332595i
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 0 0
\(229\) 3.00000 + 3.00000i 0.198246 + 0.198246i 0.799248 0.601002i \(-0.205232\pi\)
−0.601002 + 0.799248i \(0.705232\pi\)
\(230\) 9.00000 3.00000i 0.593442 0.197814i
\(231\) 0 0
\(232\) 0 0
\(233\) 1.00000 + 1.00000i 0.0655122 + 0.0655122i 0.739104 0.673592i \(-0.235249\pi\)
−0.673592 + 0.739104i \(0.735249\pi\)
\(234\) 0 0
\(235\) −12.0000 6.00000i −0.782794 0.391397i
\(236\) −7.00000 7.00000i −0.455661 0.455661i
\(237\) 0 0
\(238\) 2.00000 + 2.00000i 0.129641 + 0.129641i
\(239\) 3.00000 3.00000i 0.194054 0.194054i −0.603391 0.797445i \(-0.706184\pi\)
0.797445 + 0.603391i \(0.206184\pi\)
\(240\) 0 0
\(241\) 17.0000 17.0000i 1.09507 1.09507i 0.100088 0.994979i \(-0.468088\pi\)
0.994979 0.100088i \(-0.0319123\pi\)
\(242\) 9.00000 0.578542
\(243\) 0 0
\(244\) −14.0000 −0.896258
\(245\) −6.00000 3.00000i −0.383326 0.191663i
\(246\) 0 0
\(247\) −25.0000 5.00000i −1.59071 0.318142i
\(248\) 15.0000 15.0000i 0.952501 0.952501i
\(249\) 0 0
\(250\) 11.0000 2.00000i 0.695701 0.126491i
\(251\) 2.00000i 0.126239i 0.998006 + 0.0631194i \(0.0201049\pi\)
−0.998006 + 0.0631194i \(0.979895\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 9.00000 + 9.00000i 0.564710 + 0.564710i
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) −11.0000 + 11.0000i −0.686161 + 0.686161i −0.961381 0.275220i \(-0.911249\pi\)
0.275220 + 0.961381i \(0.411249\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1.00000 8.00000i −0.0620174 0.496139i
\(261\) 0 0
\(262\) 20.0000i 1.23560i
\(263\) −1.00000 + 1.00000i −0.0616626 + 0.0616626i −0.737266 0.675603i \(-0.763883\pi\)
0.675603 + 0.737266i \(0.263883\pi\)
\(264\) 0 0
\(265\) −15.0000 + 5.00000i −0.921443 + 0.307148i
\(266\) 10.0000 + 10.0000i 0.613139 + 0.613139i
\(267\) 0 0
\(268\) 4.00000i 0.244339i
\(269\) 12.0000i 0.731653i −0.930683 0.365826i \(-0.880786\pi\)
0.930683 0.365826i \(-0.119214\pi\)
\(270\) 0 0
\(271\) −9.00000 + 9.00000i −0.546711 + 0.546711i −0.925488 0.378777i \(-0.876345\pi\)
0.378777 + 0.925488i \(0.376345\pi\)
\(272\) −1.00000 + 1.00000i −0.0606339 + 0.0606339i
\(273\) 0 0
\(274\) 16.0000i 0.966595i
\(275\) 7.00000 + 1.00000i 0.422116 + 0.0603023i
\(276\) 0 0
\(277\) 15.0000 15.0000i 0.901263 0.901263i −0.0942828 0.995545i \(-0.530056\pi\)
0.995545 + 0.0942828i \(0.0300558\pi\)
\(278\) −14.0000 −0.839664
\(279\) 0 0
\(280\) −6.00000 + 12.0000i −0.358569 + 0.717137i
\(281\) −1.00000 + 1.00000i −0.0596550 + 0.0596550i −0.736305 0.676650i \(-0.763431\pi\)
0.676650 + 0.736305i \(0.263431\pi\)
\(282\) 0 0
\(283\) 9.00000 + 9.00000i 0.534994 + 0.534994i 0.922055 0.387060i \(-0.126509\pi\)
−0.387060 + 0.922055i \(0.626509\pi\)
\(284\) −1.00000 1.00000i −0.0593391 0.0593391i
\(285\) 0 0
\(286\) −1.00000 + 5.00000i −0.0591312 + 0.295656i
\(287\) −14.0000 14.0000i −0.826394 0.826394i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) 0 0
\(292\) 10.0000i 0.585206i
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 0 0
\(295\) −7.00000 21.0000i −0.407556 1.22267i
\(296\) 0 0
\(297\) 0 0
\(298\) 3.00000 + 3.00000i 0.173785 + 0.173785i
\(299\) 3.00000 15.0000i 0.173494 0.867472i
\(300\) 0 0
\(301\) −2.00000 2.00000i −0.115278 0.115278i
\(302\) −7.00000 7.00000i −0.402805 0.402805i
\(303\) 0 0
\(304\) −5.00000 + 5.00000i −0.286770 + 0.286770i
\(305\) −28.0000 14.0000i −1.60328 0.801638i
\(306\) 0 0
\(307\) 18.0000 1.02731 0.513657 0.857996i \(-0.328290\pi\)
0.513657 + 0.857996i \(0.328290\pi\)
\(308\) −2.00000 + 2.00000i −0.113961 + 0.113961i
\(309\) 0 0
\(310\) 15.0000 5.00000i 0.851943 0.283981i
\(311\) 6.00000i 0.340229i 0.985424 + 0.170114i \(0.0544137\pi\)
−0.985424 + 0.170114i \(0.945586\pi\)
\(312\) 0 0
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) 13.0000 13.0000i 0.733632 0.733632i
\(315\) 0 0
\(316\) 2.00000i 0.112509i
\(317\) 14.0000i 0.786318i 0.919470 + 0.393159i \(0.128618\pi\)
−0.919470 + 0.393159i \(0.871382\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −14.0000 7.00000i −0.782624 0.391312i
\(321\) 0 0
\(322\) −6.00000 + 6.00000i −0.334367 + 0.334367i
\(323\) 10.0000i 0.556415i
\(324\) 0 0
\(325\) 6.00000 17.0000i 0.332820 0.942990i
\(326\) −4.00000 −0.221540
\(327\) 0 0
\(328\) 21.0000 21.0000i 1.15953 1.15953i
\(329\) 12.0000 0.661581
\(330\) 0 0
\(331\) −3.00000 3.00000i −0.164895 0.164895i 0.619836 0.784731i \(-0.287199\pi\)
−0.784731 + 0.619836i \(0.787199\pi\)
\(332\) −6.00000 −0.329293
\(333\) 0 0
\(334\) 18.0000i 0.984916i
\(335\) 4.00000 8.00000i 0.218543 0.437087i
\(336\) 0 0
\(337\) −13.0000 + 13.0000i −0.708155 + 0.708155i −0.966147 0.257992i \(-0.916939\pi\)
0.257992 + 0.966147i \(0.416939\pi\)
\(338\) 12.0000 + 5.00000i 0.652714 + 0.271964i
\(339\) 0 0
\(340\) 3.00000 1.00000i 0.162698 0.0542326i
\(341\) 10.0000 0.541530
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 3.00000 3.00000i 0.161749 0.161749i
\(345\) 0 0
\(346\) −11.0000 + 11.0000i −0.591364 + 0.591364i
\(347\) −3.00000 3.00000i −0.161048 0.161048i 0.621983 0.783031i \(-0.286327\pi\)
−0.783031 + 0.621983i \(0.786327\pi\)
\(348\) 0 0
\(349\) −9.00000 9.00000i −0.481759 0.481759i 0.423934 0.905693i \(-0.360649\pi\)
−0.905693 + 0.423934i \(0.860649\pi\)
\(350\) −8.00000 + 6.00000i −0.427618 + 0.320713i
\(351\) 0 0
\(352\) −5.00000 5.00000i −0.266501 0.266501i
\(353\) 12.0000 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(354\) 0 0
\(355\) −1.00000 3.00000i −0.0530745 0.159223i
\(356\) 5.00000 + 5.00000i 0.264999 + 0.264999i
\(357\) 0 0
\(358\) 20.0000i 1.05703i
\(359\) 1.00000 + 1.00000i 0.0527780 + 0.0527780i 0.733003 0.680225i \(-0.238118\pi\)
−0.680225 + 0.733003i \(0.738118\pi\)
\(360\) 0 0
\(361\) 31.0000i 1.63158i
\(362\) 8.00000 0.420471
\(363\) 0 0
\(364\) 4.00000 + 6.00000i 0.209657 + 0.314485i
\(365\) −10.0000 + 20.0000i −0.523424 + 1.04685i
\(366\) 0 0
\(367\) −1.00000 1.00000i −0.0521996 0.0521996i 0.680525 0.732725i \(-0.261752\pi\)
−0.732725 + 0.680525i \(0.761752\pi\)
\(368\) −3.00000 3.00000i −0.156386 0.156386i
\(369\) 0 0
\(370\) 0 0
\(371\) 10.0000 10.0000i 0.519174 0.519174i
\(372\) 0 0
\(373\) −15.0000 + 15.0000i −0.776671 + 0.776671i −0.979263 0.202593i \(-0.935063\pi\)
0.202593 + 0.979263i \(0.435063\pi\)
\(374\) −2.00000 −0.103418
\(375\) 0 0
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) 0 0
\(379\) 1.00000 1.00000i 0.0513665 0.0513665i −0.680957 0.732323i \(-0.738436\pi\)
0.732323 + 0.680957i \(0.238436\pi\)
\(380\) 15.0000 5.00000i 0.769484 0.256495i
\(381\) 0 0
\(382\) 8.00000i 0.409316i
\(383\) 30.0000 1.53293 0.766464 0.642287i \(-0.222014\pi\)
0.766464 + 0.642287i \(0.222014\pi\)
\(384\) 0 0
\(385\) −6.00000 + 2.00000i −0.305788 + 0.101929i
\(386\) −18.0000 −0.916176
\(387\) 0 0
\(388\) 2.00000i 0.101535i
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 9.00000i 0.454569i
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 2.00000 4.00000i 0.100631 0.201262i
\(396\) 0 0
\(397\) 16.0000 0.803017 0.401508 0.915855i \(-0.368486\pi\)
0.401508 + 0.915855i \(0.368486\pi\)
\(398\) 8.00000i 0.401004i
\(399\) 0 0
\(400\) −3.00000 4.00000i −0.150000 0.200000i
\(401\) 11.0000 11.0000i 0.549314 0.549314i −0.376929 0.926242i \(-0.623020\pi\)
0.926242 + 0.376929i \(0.123020\pi\)
\(402\) 0 0
\(403\) 5.00000 25.0000i 0.249068 1.24534i
\(404\) 12.0000i 0.597022i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 7.00000 7.00000i 0.346128 0.346128i −0.512537 0.858665i \(-0.671294\pi\)
0.858665 + 0.512537i \(0.171294\pi\)
\(410\) 21.0000 7.00000i 1.03712 0.345705i
\(411\) 0 0
\(412\) −7.00000 7.00000i −0.344865 0.344865i
\(413\) 14.0000 + 14.0000i 0.688895 + 0.688895i
\(414\) 0 0
\(415\) −12.0000 6.00000i −0.589057 0.294528i
\(416\) −15.0000 + 10.0000i −0.735436 + 0.490290i
\(417\) 0 0
\(418\) −10.0000 −0.489116
\(419\) 38.0000i 1.85642i 0.372055 + 0.928211i \(0.378653\pi\)
−0.372055 + 0.928211i \(0.621347\pi\)
\(420\) 0 0
\(421\) −11.0000 11.0000i −0.536107 0.536107i 0.386276 0.922383i \(-0.373761\pi\)
−0.922383 + 0.386276i \(0.873761\pi\)
\(422\) 4.00000i 0.194717i
\(423\) 0 0
\(424\) 15.0000 + 15.0000i 0.728464 + 0.728464i
\(425\) 7.00000 + 1.00000i 0.339550 + 0.0485071i
\(426\) 0 0
\(427\) 28.0000 1.35501
\(428\) −7.00000 7.00000i −0.338358 0.338358i
\(429\) 0 0
\(430\) 3.00000 1.00000i 0.144673 0.0482243i
\(431\) −13.0000 13.0000i −0.626188 0.626188i 0.320919 0.947107i \(-0.396008\pi\)
−0.947107 + 0.320919i \(0.896008\pi\)
\(432\) 0 0
\(433\) −17.0000 17.0000i −0.816968 0.816968i 0.168700 0.985668i \(-0.446043\pi\)
−0.985668 + 0.168700i \(0.946043\pi\)
\(434\) −10.0000 + 10.0000i −0.480015 + 0.480015i
\(435\) 0 0
\(436\) −9.00000 + 9.00000i −0.431022 + 0.431022i
\(437\) 30.0000 1.43509
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) −3.00000 9.00000i −0.143019 0.429058i
\(441\) 0 0
\(442\) −1.00000 + 5.00000i −0.0475651 + 0.237826i
\(443\) −25.0000 + 25.0000i −1.18779 + 1.18779i −0.210108 + 0.977678i \(0.567381\pi\)
−0.977678 + 0.210108i \(0.932619\pi\)
\(444\) 0 0
\(445\) 5.00000 + 15.0000i 0.237023 + 0.711068i
\(446\) 2.00000i 0.0947027i
\(447\) 0 0
\(448\) 14.0000 0.661438
\(449\) −3.00000 3.00000i −0.141579 0.141579i 0.632765 0.774344i \(-0.281920\pi\)
−0.774344 + 0.632765i \(0.781920\pi\)
\(450\) 0 0
\(451\) 14.0000 0.659234
\(452\) −5.00000 + 5.00000i −0.235180 + 0.235180i
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 2.00000 + 16.0000i 0.0937614 + 0.750092i
\(456\) 0 0
\(457\) 2.00000i 0.0935561i 0.998905 + 0.0467780i \(0.0148953\pi\)
−0.998905 + 0.0467780i \(0.985105\pi\)
\(458\) 3.00000 3.00000i 0.140181 0.140181i
\(459\) 0 0
\(460\) 3.00000 + 9.00000i 0.139876 + 0.419627i
\(461\) −17.0000 17.0000i −0.791769 0.791769i 0.190013 0.981782i \(-0.439147\pi\)
−0.981782 + 0.190013i \(0.939147\pi\)
\(462\) 0 0
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 1.00000 1.00000i 0.0463241 0.0463241i
\(467\) 9.00000 9.00000i 0.416470 0.416470i −0.467515 0.883985i \(-0.654851\pi\)
0.883985 + 0.467515i \(0.154851\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) −6.00000 + 12.0000i −0.276759 + 0.553519i
\(471\) 0 0
\(472\) −21.0000 + 21.0000i −0.966603 + 0.966603i
\(473\) 2.00000 0.0919601
\(474\) 0 0
\(475\) 35.0000 + 5.00000i 1.60591 + 0.229416i
\(476\) −2.00000 + 2.00000i −0.0916698 + 0.0916698i
\(477\) 0 0
\(478\) −3.00000 3.00000i −0.137217 0.137217i
\(479\) −7.00000 7.00000i −0.319838 0.319838i 0.528867 0.848705i \(-0.322617\pi\)
−0.848705 + 0.528867i \(0.822617\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −17.0000 17.0000i −0.774329 0.774329i
\(483\) 0 0
\(484\) 9.00000i 0.409091i
\(485\) −2.00000 + 4.00000i −0.0908153 + 0.181631i
\(486\) 0 0
\(487\) 16.0000i 0.725029i 0.931978 + 0.362515i \(0.118082\pi\)
−0.931978 + 0.362515i \(0.881918\pi\)
\(488\) 42.0000i 1.90125i
\(489\) 0 0
\(490\) −3.00000 + 6.00000i −0.135526 + 0.271052i
\(491\) 22.0000i 0.992846i −0.868081 0.496423i \(-0.834646\pi\)
0.868081 0.496423i \(-0.165354\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −5.00000 + 25.0000i −0.224961 + 1.12480i
\(495\) 0 0
\(496\) −5.00000 5.00000i −0.224507 0.224507i
\(497\) 2.00000 + 2.00000i 0.0897123 + 0.0897123i
\(498\) 0 0
\(499\) −3.00000 + 3.00000i −0.134298 + 0.134298i −0.771060 0.636762i \(-0.780273\pi\)
0.636762 + 0.771060i \(0.280273\pi\)
\(500\) 2.00000 + 11.0000i 0.0894427 + 0.491935i
\(501\) 0 0
\(502\) 2.00000 0.0892644
\(503\) 3.00000 3.00000i 0.133763 0.133763i −0.637055 0.770818i \(-0.719848\pi\)
0.770818 + 0.637055i \(0.219848\pi\)
\(504\) 0 0
\(505\) −12.0000 + 24.0000i −0.533993 + 1.06799i
\(506\) 6.00000i 0.266733i
\(507\) 0 0
\(508\) −9.00000 + 9.00000i −0.399310 + 0.399310i
\(509\) 13.0000 13.0000i 0.576215 0.576215i −0.357643 0.933858i \(-0.616420\pi\)
0.933858 + 0.357643i \(0.116420\pi\)
\(510\) 0 0
\(511\) 20.0000i 0.884748i
\(512\) 11.0000i 0.486136i
\(513\) 0 0
\(514\) 11.0000 + 11.0000i 0.485189 + 0.485189i
\(515\) −7.00000 21.0000i −0.308457 0.925371i
\(516\) 0 0
\(517\) −6.00000 + 6.00000i −0.263880 + 0.263880i
\(518\) 0 0
\(519\) 0 0
\(520\) −24.0000 + 3.00000i −1.05247 + 0.131559i
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) 9.00000 9.00000i 0.393543 0.393543i −0.482405 0.875948i \(-0.660237\pi\)
0.875948 + 0.482405i \(0.160237\pi\)
\(524\) 20.0000 0.873704
\(525\) 0 0
\(526\) 1.00000 + 1.00000i 0.0436021 + 0.0436021i
\(527\) 10.0000 0.435607
\(528\) 0 0
\(529\) 5.00000i 0.217391i
\(530\) 5.00000 + 15.0000i 0.217186 + 0.651558i
\(531\) 0 0
\(532\) −10.0000 + 10.0000i −0.433555 + 0.433555i
\(533\) 7.00000 35.0000i 0.303204 1.51602i
\(534\) 0 0
\(535\) −7.00000 21.0000i −0.302636 0.907909i
\(536\) −12.0000 −0.518321
\(537\) 0 0
\(538\) −12.0000 −0.517357
\(539\) −3.00000 + 3.00000i −0.129219 + 0.129219i
\(540\) 0 0
\(541\) 9.00000 9.00000i 0.386940 0.386940i −0.486654 0.873595i \(-0.661783\pi\)
0.873595 + 0.486654i \(0.161783\pi\)
\(542\) 9.00000 + 9.00000i 0.386583 + 0.386583i
\(543\) 0 0
\(544\) −5.00000 5.00000i −0.214373 0.214373i
\(545\) −27.0000 + 9.00000i −1.15655 + 0.385518i
\(546\) 0 0
\(547\) −9.00000 9.00000i −0.384812 0.384812i 0.488020 0.872832i \(-0.337719\pi\)
−0.872832 + 0.488020i \(0.837719\pi\)
\(548\) 16.0000 0.683486
\(549\) 0 0
\(550\) 1.00000 7.00000i 0.0426401 0.298481i
\(551\) 0 0
\(552\) 0 0
\(553\) 4.00000i 0.170097i
\(554\) −15.0000 15.0000i −0.637289 0.637289i
\(555\) 0 0
\(556\) 14.0000i 0.593732i
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) 0 0
\(559\) 1.00000 5.00000i 0.0422955 0.211477i
\(560\) 4.00000 + 2.00000i 0.169031 + 0.0845154i
\(561\) 0 0
\(562\) 1.00000 + 1.00000i 0.0421825 + 0.0421825i
\(563\) 15.0000 + 15.0000i 0.632175 + 0.632175i 0.948613 0.316438i \(-0.102487\pi\)
−0.316438 + 0.948613i \(0.602487\pi\)
\(564\) 0 0
\(565\) −15.0000 + 5.00000i −0.631055 + 0.210352i
\(566\) 9.00000 9.00000i 0.378298 0.378298i
\(567\) 0 0
\(568\) −3.00000 + 3.00000i −0.125877 + 0.125877i
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 6.00000i 0.251092i 0.992088 + 0.125546i \(0.0400683\pi\)
−0.992088 + 0.125546i \(0.959932\pi\)
\(572\) −5.00000 1.00000i −0.209061 0.0418121i
\(573\) 0 0
\(574\) −14.0000 + 14.0000i −0.584349 + 0.584349i
\(575\) −3.00000 + 21.0000i −0.125109 + 0.875761i
\(576\) 0 0
\(577\) 46.0000i 1.91501i 0.288425 + 0.957503i \(0.406868\pi\)
−0.288425 + 0.957503i \(0.593132\pi\)
\(578\) 15.0000 0.623918
\(579\) 0 0
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 10.0000i 0.414158i
\(584\) 30.0000 1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 4.00000i 0.165098i 0.996587 + 0.0825488i \(0.0263060\pi\)
−0.996587 + 0.0825488i \(0.973694\pi\)
\(588\) 0 0
\(589\) 50.0000 2.06021
\(590\) −21.0000 + 7.00000i −0.864556 + 0.288185i
\(591\) 0 0
\(592\) 0 0
\(593\) 10.0000i 0.410651i 0.978694 + 0.205325i \(0.0658253\pi\)
−0.978694 + 0.205325i \(0.934175\pi\)
\(594\) 0 0
\(595\) −6.00000 + 2.00000i −0.245976 + 0.0819920i
\(596\) −3.00000 + 3.00000i −0.122885 + 0.122885i
\(597\) 0 0
\(598\) −15.0000 3.00000i −0.613396 0.122679i
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) −2.00000 + 2.00000i −0.0815139 + 0.0815139i
\(603\) 0 0
\(604\) 7.00000 7.00000i 0.284826 0.284826i
\(605\) −9.00000 + 18.0000i −0.365902 + 0.731804i
\(606\) 0 0
\(607\) −13.0000 13.0000i −0.527654 0.527654i 0.392218 0.919872i \(-0.371708\pi\)
−0.919872 + 0.392218i \(0.871708\pi\)
\(608\) −25.0000 25.0000i −1.01388 1.01388i
\(609\) 0 0
\(610\) −14.0000 + 28.0000i −0.566843 + 1.13369i
\(611\) 12.0000 + 18.0000i 0.485468 + 0.728202i
\(612\) 0 0
\(613\) −20.0000 −0.807792 −0.403896 0.914805i \(-0.632344\pi\)
−0.403896 + 0.914805i \(0.632344\pi\)
\(614\) 18.0000i 0.726421i
\(615\) 0 0
\(616\) 6.00000 + 6.00000i 0.241747 + 0.241747i
\(617\) 22.0000i 0.885687i 0.896599 + 0.442843i \(0.146030\pi\)
−0.896599 + 0.442843i \(0.853970\pi\)
\(618\) 0 0
\(619\) −25.0000 25.0000i −1.00483 1.00483i −0.999988 0.00484658i \(-0.998457\pi\)
−0.00484658 0.999988i \(-0.501543\pi\)
\(620\) 5.00000 + 15.0000i 0.200805 + 0.602414i
\(621\) 0 0
\(622\) 6.00000 0.240578
\(623\) −10.0000 10.0000i −0.400642 0.400642i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −9.00000 9.00000i −0.359712 0.359712i
\(627\) 0 0
\(628\) 13.0000 + 13.0000i 0.518756 + 0.518756i
\(629\) 0 0
\(630\) 0 0
\(631\) 11.0000 11.0000i 0.437903 0.437903i −0.453403 0.891306i \(-0.649790\pi\)
0.891306 + 0.453403i \(0.149790\pi\)
\(632\) −6.00000 −0.238667
\(633\) 0 0
\(634\) 14.0000 0.556011
\(635\) −27.0000 + 9.00000i −1.07146 + 0.357154i
\(636\) 0 0
\(637\) 6.00000 + 9.00000i 0.237729 + 0.356593i
\(638\) 0 0
\(639\) 0 0
\(640\) 3.00000 6.00000i 0.118585 0.237171i
\(641\) 24.0000i 0.947943i −0.880540 0.473972i \(-0.842820\pi\)
0.880540 0.473972i \(-0.157180\pi\)
\(642\) 0 0
\(643\) −34.0000 −1.34083 −0.670415 0.741987i \(-0.733884\pi\)
−0.670415 + 0.741987i \(0.733884\pi\)
\(644\) −6.00000 6.00000i −0.236433 0.236433i
\(645\) 0 0
\(646\) −10.0000 −0.393445
\(647\) 1.00000 1.00000i 0.0393141 0.0393141i −0.687176 0.726491i \(-0.741150\pi\)
0.726491 + 0.687176i \(0.241150\pi\)
\(648\) 0 0
\(649\) −14.0000 −0.549548
\(650\) −17.0000 6.00000i −0.666795 0.235339i
\(651\) 0 0
\(652\) 4.00000i 0.156652i
\(653\) −13.0000 + 13.0000i −0.508729 + 0.508729i −0.914136 0.405407i \(-0.867130\pi\)
0.405407 + 0.914136i \(0.367130\pi\)
\(654\) 0 0
\(655\) 40.0000 + 20.0000i 1.56293 + 0.781465i
\(656\) −7.00000 7.00000i −0.273304 0.273304i
\(657\) 0 0
\(658\) 12.0000i 0.467809i
\(659\) 26.0000i 1.01282i −0.862294 0.506408i \(-0.830973\pi\)
0.862294 0.506408i \(-0.169027\pi\)
\(660\) 0 0
\(661\) 17.0000 17.0000i 0.661223 0.661223i −0.294445 0.955668i \(-0.595135\pi\)
0.955668 + 0.294445i \(0.0951348\pi\)
\(662\) −3.00000 + 3.00000i −0.116598 + 0.116598i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) −30.0000 + 10.0000i −1.16335 + 0.387783i
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000 0.696441
\(669\) 0 0
\(670\) −8.00000 4.00000i −0.309067 0.154533i
\(671\) −14.0000 + 14.0000i −0.540464 + 0.540464i
\(672\) 0 0
\(673\) 15.0000 + 15.0000i 0.578208 + 0.578208i 0.934409 0.356202i \(-0.115928\pi\)
−0.356202 + 0.934409i \(0.615928\pi\)
\(674\) 13.0000 + 13.0000i 0.500741 + 0.500741i
\(675\) 0 0
\(676\) −5.00000 + 12.0000i −0.192308 + 0.461538i
\(677\) 23.0000 + 23.0000i 0.883962 + 0.883962i 0.993935 0.109973i \(-0.0350764\pi\)
−0.109973 + 0.993935i \(0.535076\pi\)
\(678\) 0 0
\(679\) 4.00000i 0.153506i
\(680\) −3.00000 9.00000i −0.115045 0.345134i
\(681\) 0 0
\(682\) 10.0000i 0.382920i
\(683\) 12.0000i 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 0 0
\(685\) 32.0000 + 16.0000i 1.22266 + 0.611329i
\(686\) 20.0000i 0.763604i
\(687\) 0 0
\(688\) −1.00000 1.00000i −0.0381246 0.0381246i
\(689\) 25.0000 + 5.00000i 0.952424 + 0.190485i
\(690\) 0 0
\(691\) −3.00000 3.00000i −0.114125 0.114125i 0.647738 0.761863i \(-0.275715\pi\)
−0.761863 + 0.647738i \(0.775715\pi\)
\(692\) −11.0000 11.0000i −0.418157 0.418157i
\(693\) 0 0
\(694\) −3.00000 + 3.00000i −0.113878 + 0.113878i
\(695\) 14.0000 28.0000i 0.531050 1.06210i
\(696\) 0 0
\(697\) 14.0000 0.530288
\(698\) −9.00000 + 9.00000i −0.340655 + 0.340655i
\(699\) 0 0
\(700\) −6.00000 8.00000i −0.226779 0.302372i
\(701\) 12.0000i 0.453234i 0.973984 + 0.226617i \(0.0727665\pi\)
−0.973984 + 0.226617i \(0.927233\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −7.00000 + 7.00000i −0.263822 + 0.263822i
\(705\) 0 0
\(706\) 12.0000i 0.451626i
\(707\) 24.0000i 0.902613i
\(708\) 0 0
\(709\) −29.0000 29.0000i −1.08912 1.08912i −0.995619 0.0934984i \(-0.970195\pi\)
−0.0934984 0.995619i \(-0.529805\pi\)
\(710\) −3.00000 + 1.00000i −0.112588 + 0.0375293i
\(711\) 0 0
\(712\) 15.0000 15.0000i 0.562149 0.562149i
\(713\) 30.0000i 1.12351i
\(714\) 0 0
\(715\) −9.00000 7.00000i −0.336581 0.261785i
\(716\) −20.0000 −0.747435
\(717\) 0 0
\(718\) 1.00000 1.00000i 0.0373197 0.0373197i
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) 14.0000 + 14.0000i 0.521387 + 0.521387i
\(722\) −31.0000 −1.15370
\(723\) 0 0
\(724\) 8.00000i 0.297318i
\(725\) 0 0
\(726\) 0 0
\(727\) 35.0000 35.0000i 1.29808 1.29808i 0.368418 0.929660i \(-0.379900\pi\)
0.929660 0.368418i \(-0.120100\pi\)
\(728\) 18.0000 12.0000i 0.667124 0.444750i
\(729\) 0 0
\(730\) 20.0000 + 10.0000i 0.740233 + 0.370117i
\(731\) 2.00000 0.0739727
\(732\) 0 0
\(733\) −4.00000 −0.147743 −0.0738717 0.997268i \(-0.523536\pi\)
−0.0738717 + 0.997268i \(0.523536\pi\)
\(734\) −1.00000 + 1.00000i −0.0369107 + 0.0369107i
\(735\) 0 0
\(736\) 15.0000 15.0000i 0.552907 0.552907i
\(737\) −4.00000 4.00000i −0.147342 0.147342i
\(738\) 0 0
\(739\) 3.00000 + 3.00000i 0.110357 + 0.110357i 0.760129 0.649772i \(-0.225136\pi\)
−0.649772 + 0.760129i \(0.725136\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −10.0000 10.0000i −0.367112 0.367112i
\(743\) −34.0000 −1.24734 −0.623670 0.781688i \(-0.714359\pi\)
−0.623670 + 0.781688i \(0.714359\pi\)
\(744\) 0 0
\(745\) −9.00000 + 3.00000i −0.329734 + 0.109911i
\(746\) 15.0000 + 15.0000i 0.549189 + 0.549189i
\(747\) 0 0
\(748\) 2.00000i 0.0731272i
\(749\) 14.0000 + 14.0000i 0.511549 + 0.511549i
\(750\) 0 0
\(751\) 50.0000i 1.82453i 0.409605 + 0.912263i \(0.365667\pi\)
−0.409605 + 0.912263i \(0.634333\pi\)
\(752\) 6.00000 0.218797
\(753\) 0 0
\(754\) 0 0
\(755\) 21.0000 7.00000i 0.764268 0.254756i
\(756\) 0 0
\(757\) −35.0000 35.0000i −1.27210 1.27210i −0.944986 0.327111i \(-0.893925\pi\)
−0.327111 0.944986i \(-0.606075\pi\)
\(758\) −1.00000 1.00000i −0.0363216 0.0363216i
\(759\) 0 0
\(760\) −15.0000 45.0000i −0.544107 1.63232i
\(761\) 7.00000 7.00000i 0.253750 0.253750i −0.568756 0.822506i \(-0.692575\pi\)
0.822506 + 0.568756i \(0.192575\pi\)
\(762\) 0 0
\(763\) 18.0000 18.0000i 0.651644 0.651644i
\(764\) −8.00000 −0.289430
\(765\) 0 0
\(766\) 30.0000i 1.08394i
\(767\) −7.00000 + 35.0000i −0.252755 + 1.26378i
\(768\) 0 0
\(769\) 15.0000 15.0000i 0.540914 0.540914i −0.382883 0.923797i \(-0.625069\pi\)
0.923797 + 0.382883i \(0.125069\pi\)
\(770\) 2.00000 + 6.00000i 0.0720750 + 0.216225i
\(771\) 0 0
\(772\) 18.0000i 0.647834i
\(773\) 32.0000 1.15096 0.575480 0.817816i \(-0.304815\pi\)
0.575480 + 0.817816i \(0.304815\pi\)
\(774\) 0 0
\(775\) −5.00000 + 35.0000i −0.179605 + 1.25724i
\(776\) 6.00000 0.215387
\(777\) 0 0
\(778\) 18.0000i 0.645331i
\(779\) 70.0000 2.50801
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) 6.00000i 0.214560i
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) 13.0000 + 39.0000i 0.463990 + 1.39197i
\(786\) 0 0
\(787\) −22.0000 −0.784215 −0.392108 0.919919i \(-0.628254\pi\)
−0.392108 + 0.919919i \(0.628254\pi\)
\(788\) 6.00000i 0.213741i
\(789\) 0 0
\(790\) −4.00000 2.00000i −0.142314 0.0711568i
\(791\) 10.0000 10.0000i 0.355559 0.355559i
\(792\) 0 0
\(793\) 28.0000 + 42.0000i 0.994309 + 1.49146i
\(794\) 16.0000i 0.567819i
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) 17.0000 17.0000i 0.602171 0.602171i −0.338717 0.940888i \(-0.609993\pi\)
0.940888 + 0.338717i \(0.109993\pi\)
\(798\) 0 0
\(799\) −6.00000 + 6.00000i −0.212265 + 0.212265i
\(800\) 20.0000 15.0000i 0.707107 0.530330i
\(801\) 0 0
\(802\) −11.0000 11.0000i −0.388424 0.388424i
\(803\) 10.0000 + 10.0000i 0.352892 + 0.352892i
\(804\) 0 0
\(805\) −6.00000 18.0000i −0.211472 0.634417i
\(806\) −25.0000 5.00000i −0.880587 0.176117i
\(807\) 0 0
\(808\) 36.0000 1.26648
\(809\) 28.0000i 0.984428i −0.870474 0.492214i \(-0.836188\pi\)
0.870474 0.492214i \(-0.163812\pi\)
\(810\) 0 0
\(811\) −27.0000 27.0000i −0.948098 0.948098i 0.0506198 0.998718i \(-0.483880\pi\)
−0.998718 + 0.0506198i \(0.983880\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.00000 8.00000i 0.140114 0.280228i
\(816\) 0 0
\(817\) 10.0000 0.349856
\(818\) −7.00000 7.00000i −0.244749 0.244749i
\(819\) 0 0
\(820\) 7.00000 + 21.0000i 0.244451 + 0.733352i
\(821\) −9.00000 9.00000i −0.314102 0.314102i 0.532394 0.846496i \(-0.321292\pi\)
−0.846496 + 0.532394i \(0.821292\pi\)
\(822\) 0 0
\(823\) 9.00000 + 9.00000i 0.313720 + 0.313720i 0.846349 0.532629i \(-0.178796\pi\)
−0.532629 + 0.846349i \(0.678796\pi\)
\(824\) −21.0000 + 21.0000i −0.731570 + 0.731570i
\(825\) 0 0
\(826\) 14.0000 14.0000i 0.487122 0.487122i
\(827\) 46.0000 1.59958 0.799788 0.600282i \(-0.204945\pi\)
0.799788 + 0.600282i \(0.204945\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) −6.00000 + 12.0000i −0.208263 + 0.416526i
\(831\) 0 0
\(832\) 14.0000 + 21.0000i 0.485363 + 0.728044i
\(833\) −3.00000 + 3.00000i −0.103944 + 0.103944i
\(834\) 0 0
\(835\) 36.0000 + 18.0000i 1.24583 + 0.622916i
\(836\) 10.0000i 0.345857i
\(837\) 0 0
\(838\) 38.0000 1.31269
\(839\) −35.0000 35.0000i −1.20833 1.20833i −0.971566 0.236768i \(-0.923912\pi\)
−0.236768 0.971566i \(-0.576088\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) −11.0000 + 11.0000i −0.379085 + 0.379085i
\(843\) 0 0
\(844\) 4.00000 0.137686
\(845\) −22.0000 + 19.0000i −0.756823 + 0.653620i
\(846\) 0 0
\(847\) 18.0000i 0.618487i
\(848\) 5.00000 5.00000i 0.171701 0.171701i
\(849\) 0 0
\(850\) 1.00000 7.00000i 0.0342997 0.240098i
\(851\) 0 0
\(852\) 0 0
\(853\) 26.0000i 0.890223i −0.895475 0.445112i \(-0.853164\pi\)
0.895475 0.445112i \(-0.146836\pi\)
\(854\) 28.0000i 0.958140i
\(855\) 0 0
\(856\) −21.0000 + 21.0000i −0.717765 + 0.717765i
\(857\) −3.00000 + 3.00000i −0.102478 + 0.102478i −0.756487 0.654009i \(-0.773086\pi\)
0.654009 + 0.756487i \(0.273086\pi\)
\(858\) 0 0
\(859\) 30.0000i 1.02359i −0.859109 0.511793i \(-0.828981\pi\)
0.859109 0.511793i \(-0.171019\pi\)
\(860\) 1.00000 + 3.00000i 0.0340997 + 0.102299i
\(861\) 0 0
\(862\) −13.0000 + 13.0000i −0.442782 + 0.442782i
\(863\) 30.0000 1.02121 0.510606 0.859815i \(-0.329421\pi\)
0.510606 + 0.859815i \(0.329421\pi\)
\(864\) 0 0
\(865\) −11.0000 33.0000i −0.374011 1.12203i
\(866\) −17.0000 + 17.0000i −0.577684 + 0.577684i
\(867\) 0 0
\(868\) −10.0000 10.0000i −0.339422 0.339422i
\(869\) −2.00000 2.00000i −0.0678454 0.0678454i
\(870\) 0 0
\(871\) −12.0000 + 8.00000i −0.406604 + 0.271070i
\(872\) 27.0000 + 27.0000i 0.914335 + 0.914335i
\(873\) 0 0
\(874\) 30.0000i 1.01477i
\(875\) −4.00000 22.0000i −0.135225 0.743736i
\(876\) 0 0
\(877\) 38.0000i 1.28317i 0.767052 + 0.641584i \(0.221723\pi\)
−0.767052 + 0.641584i \(0.778277\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −3.00000 + 1.00000i −0.101130 + 0.0337100i
\(881\) 52.0000i 1.75192i −0.482380 0.875962i \(-0.660227\pi\)
0.482380 0.875962i \(-0.339773\pi\)
\(882\) 0 0
\(883\) −39.0000 39.0000i −1.31245 1.31245i −0.919601 0.392853i \(-0.871488\pi\)
−0.392853 0.919601i \(-0.628512\pi\)
\(884\) −5.00000 1.00000i −0.168168 0.0336336i
\(885\) 0 0
\(886\) 25.0000 + 25.0000i 0.839891 + 0.839891i
\(887\) 1.00000 + 1.00000i 0.0335767 + 0.0335767i 0.723696 0.690119i \(-0.242442\pi\)
−0.690119 + 0.723696i \(0.742442\pi\)
\(888\) 0 0
\(889\) 18.0000 18.0000i 0.603701 0.603701i
\(890\) 15.0000 5.00000i 0.502801 0.167600i
\(891\) 0 0
\(892\) 2.00000 0.0669650
\(893\) −30.0000 + 30.0000i −1.00391 + 1.00391i
\(894\) 0 0
\(895\) −40.0000 20.0000i −1.33705 0.668526i
\(896\) 6.00000i 0.200446i
\(897\) 0 0
\(898\) −3.00000 + 3.00000i −0.100111 + 0.100111i
\(899\) 0 0
\(900\) 0 0
\(901\) 10.0000i 0.333148i
\(902\) 14.0000i 0.466149i
\(903\) 0 0
\(904\) 15.0000 + 15.0000i 0.498893 + 0.498893i
\(905\) −8.00000 + 16.0000i −0.265929 + 0.531858i
\(906\) 0 0
\(907\) 39.0000 39.0000i 1.29497 1.29497i 0.363303 0.931671i \(-0.381649\pi\)
0.931671 0.363303i \(-0.118351\pi\)
\(908\) 12.0000i 0.398234i
\(909\) 0 0
\(910\) 16.0000 2.00000i 0.530395 0.0662994i
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) −6.00000 + 6.00000i −0.198571 + 0.198571i
\(914\) 2.00000 0.0661541
\(915\) 0 0
\(916\) 3.00000 + 3.00000i 0.0991228 + 0.0991228i
\(917\) −40.0000 −1.32092
\(918\) 0 0
\(919\) 10.0000i 0.329870i −0.986304 0.164935i \(-0.947259\pi\)
0.986304 0.164935i \(-0.0527414\pi\)
\(920\) 27.0000 9.00000i 0.890164 0.296721i
\(921\) 0 0
\(922\) −17.0000 + 17.0000i −0.559865 + 0.559865i
\(923\) −1.00000 + 5.00000i −0.0329154 + 0.164577i
\(924\) 0 0
\(925\) 0 0
\(926\) 24.0000 0.788689
\(927\) 0 0
\(928\) 0 0
\(929\) −19.0000 + 19.0000i −0.623370 + 0.623370i −0.946392 0.323022i \(-0.895301\pi\)
0.323022 + 0.946392i \(0.395301\pi\)
\(930\) 0 0
\(931\) −15.0000 + 15.0000i −0.491605 + 0.491605i
\(932\) 1.00000 + 1.00000i 0.0327561 + 0.0327561i
\(933\) 0 0
\(934\) −9.00000 9.00000i −0.294489 0.294489i
\(935\) 2.00000 4.00000i 0.0654070 0.130814i
\(936\) 0 0
\(937\) −7.00000 7.00000i −0.228680 0.228680i 0.583461 0.812141i \(-0.301698\pi\)
−0.812141 + 0.583461i \(0.801698\pi\)
\(938\) 8.00000 0.261209
\(939\) 0 0
\(940\) −12.0000 6.00000i −0.391397 0.195698i
\(941\) −21.0000 21.0000i −0.684580 0.684580i 0.276448 0.961029i \(-0.410843\pi\)
−0.961029 + 0.276448i \(0.910843\pi\)
\(942\) 0 0
\(943\) 42.0000i 1.36771i
\(944\) 7.00000 + 7.00000i 0.227831 + 0.227831i
\(945\) 0 0
\(946\) 2.00000i 0.0650256i
\(947\) −18.0000 −0.584921 −0.292461 0.956278i \(-0.594474\pi\)
−0.292461 + 0.956278i \(0.594474\pi\)
\(948\) 0 0
\(949\) 30.0000 20.0000i 0.973841 0.649227i
\(950\) 5.00000 35.0000i 0.162221 1.13555i
\(951\) 0 0
\(952\) 6.00000 + 6.00000i 0.194461 + 0.194461i
\(953\) 13.0000 + 13.0000i 0.421111 + 0.421111i 0.885586 0.464475i \(-0.153757\pi\)
−0.464475 + 0.885586i \(0.653757\pi\)
\(954\) 0 0
\(955\) −16.0000 8.00000i −0.517748 0.258874i
\(956\) 3.00000 3.00000i 0.0970269 0.0970269i
\(957\) 0 0
\(958\) −7.00000 + 7.00000i −0.226160 + 0.226160i
\(959\) −32.0000 −1.03333
\(960\) 0 0
\(961\) 19.0000i 0.612903i
\(962\) 0 0
\(963\) 0 0
\(964\) 17.0000 17.0000i 0.547533 0.547533i
\(965\) 18.0000 36.0000i 0.579441 1.15888i
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 27.0000 0.867813
\(969\) 0 0
\(970\) 4.00000 + 2.00000i 0.128432 + 0.0642161i
\(971\) 60.0000 1.92549 0.962746 0.270408i \(-0.0871586\pi\)
0.962746 + 0.270408i \(0.0871586\pi\)
\(972\) 0 0
\(973\) 28.0000i 0.897639i
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) 62.0000i 1.98356i −0.127971 0.991778i \(-0.540847\pi\)
0.127971 0.991778i \(-0.459153\pi\)
\(978\) 0 0
\(979\) 10.0000 0.319601
\(980\) −6.00000 3.00000i −0.191663 0.0958315i
\(981\) 0 0
\(982\) −22.0000 −0.702048
\(983\) 24.0000i 0.765481i −0.923856 0.382741i \(-0.874980\pi\)
0.923856 0.382741i \(-0.125020\pi\)
\(984\) 0 0
\(985\) 6.00000 12.0000i 0.191176 0.382352i
\(986\) 0 0
\(987\) 0 0
\(988\) −25.0000 5.00000i −0.795356 0.159071i
\(989\) 6.00000i 0.190789i
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 25.0000 25.0000i 0.793751 0.793751i
\(993\) 0 0
\(994\) 2.00000 2.00000i 0.0634361 0.0634361i
\(995\) 16.0000 + 8.00000i 0.507234 + 0.253617i
\(996\) 0 0
\(997\) 9.00000 + 9.00000i 0.285033 + 0.285033i 0.835112 0.550079i \(-0.185403\pi\)
−0.550079 + 0.835112i \(0.685403\pi\)
\(998\) 3.00000 + 3.00000i 0.0949633 + 0.0949633i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.n.c.307.1 2
3.2 odd 2 65.2.f.a.47.1 yes 2
5.3 odd 4 585.2.w.b.73.1 2
12.11 even 2 1040.2.cd.b.177.1 2
13.5 odd 4 585.2.w.b.577.1 2
15.2 even 4 325.2.k.a.268.1 2
15.8 even 4 65.2.k.a.8.1 yes 2
15.14 odd 2 325.2.f.a.307.1 2
39.2 even 12 845.2.o.a.357.1 4
39.5 even 4 65.2.k.a.57.1 yes 2
39.8 even 4 845.2.k.a.577.1 2
39.11 even 12 845.2.o.b.357.1 4
39.17 odd 6 845.2.t.b.427.1 4
39.20 even 12 845.2.o.b.587.1 4
39.23 odd 6 845.2.t.b.657.1 4
39.29 odd 6 845.2.t.a.657.1 4
39.32 even 12 845.2.o.a.587.1 4
39.35 odd 6 845.2.t.a.427.1 4
39.38 odd 2 845.2.f.a.437.1 2
60.23 odd 4 1040.2.bg.a.593.1 2
65.18 even 4 inner 585.2.n.c.343.1 2
156.83 odd 4 1040.2.bg.a.577.1 2
195.8 odd 4 845.2.f.a.408.1 2
195.23 even 12 845.2.o.b.488.1 4
195.38 even 4 845.2.k.a.268.1 2
195.44 even 4 325.2.k.a.57.1 2
195.68 even 12 845.2.o.a.488.1 4
195.83 odd 4 65.2.f.a.18.1 2
195.98 odd 12 845.2.t.b.418.1 4
195.113 even 12 845.2.o.a.258.1 4
195.122 odd 4 325.2.f.a.18.1 2
195.128 odd 12 845.2.t.b.188.1 4
195.158 odd 12 845.2.t.a.188.1 4
195.173 even 12 845.2.o.b.258.1 4
195.188 odd 12 845.2.t.a.418.1 4
780.83 even 4 1040.2.cd.b.993.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.f.a.18.1 2 195.83 odd 4
65.2.f.a.47.1 yes 2 3.2 odd 2
65.2.k.a.8.1 yes 2 15.8 even 4
65.2.k.a.57.1 yes 2 39.5 even 4
325.2.f.a.18.1 2 195.122 odd 4
325.2.f.a.307.1 2 15.14 odd 2
325.2.k.a.57.1 2 195.44 even 4
325.2.k.a.268.1 2 15.2 even 4
585.2.n.c.307.1 2 1.1 even 1 trivial
585.2.n.c.343.1 2 65.18 even 4 inner
585.2.w.b.73.1 2 5.3 odd 4
585.2.w.b.577.1 2 13.5 odd 4
845.2.f.a.408.1 2 195.8 odd 4
845.2.f.a.437.1 2 39.38 odd 2
845.2.k.a.268.1 2 195.38 even 4
845.2.k.a.577.1 2 39.8 even 4
845.2.o.a.258.1 4 195.113 even 12
845.2.o.a.357.1 4 39.2 even 12
845.2.o.a.488.1 4 195.68 even 12
845.2.o.a.587.1 4 39.32 even 12
845.2.o.b.258.1 4 195.173 even 12
845.2.o.b.357.1 4 39.11 even 12
845.2.o.b.488.1 4 195.23 even 12
845.2.o.b.587.1 4 39.20 even 12
845.2.t.a.188.1 4 195.158 odd 12
845.2.t.a.418.1 4 195.188 odd 12
845.2.t.a.427.1 4 39.35 odd 6
845.2.t.a.657.1 4 39.29 odd 6
845.2.t.b.188.1 4 195.128 odd 12
845.2.t.b.418.1 4 195.98 odd 12
845.2.t.b.427.1 4 39.17 odd 6
845.2.t.b.657.1 4 39.23 odd 6
1040.2.bg.a.577.1 2 156.83 odd 4
1040.2.bg.a.593.1 2 60.23 odd 4
1040.2.cd.b.177.1 2 12.11 even 2
1040.2.cd.b.993.1 2 780.83 even 4