Properties

Label 845.2.k.a.577.1
Level $845$
Weight $2$
Character 845.577
Analytic conductor $6.747$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(268,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.268");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 845.577
Dual form 845.2.k.a.268.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(1.00000 - 1.00000i) q^{3} -1.00000 q^{4} +(1.00000 - 2.00000i) q^{5} +(-1.00000 + 1.00000i) q^{6} +2.00000i q^{7} +3.00000 q^{8} +1.00000i q^{9} +(-1.00000 + 2.00000i) q^{10} +(1.00000 + 1.00000i) q^{11} +(-1.00000 + 1.00000i) q^{12} -2.00000i q^{14} +(-1.00000 - 3.00000i) q^{15} -1.00000 q^{16} +(1.00000 - 1.00000i) q^{17} -1.00000i q^{18} +(5.00000 + 5.00000i) q^{19} +(-1.00000 + 2.00000i) q^{20} +(2.00000 + 2.00000i) q^{21} +(-1.00000 - 1.00000i) q^{22} +(3.00000 + 3.00000i) q^{23} +(3.00000 - 3.00000i) q^{24} +(-3.00000 - 4.00000i) q^{25} +(4.00000 + 4.00000i) q^{27} -2.00000i q^{28} +(1.00000 + 3.00000i) q^{30} +(-5.00000 + 5.00000i) q^{31} -5.00000 q^{32} +2.00000 q^{33} +(-1.00000 + 1.00000i) q^{34} +(4.00000 + 2.00000i) q^{35} -1.00000i q^{36} +(-5.00000 - 5.00000i) q^{38} +(3.00000 - 6.00000i) q^{40} +(7.00000 - 7.00000i) q^{41} +(-2.00000 - 2.00000i) q^{42} +(-1.00000 - 1.00000i) q^{43} +(-1.00000 - 1.00000i) q^{44} +(2.00000 + 1.00000i) q^{45} +(-3.00000 - 3.00000i) q^{46} -6.00000i q^{47} +(-1.00000 + 1.00000i) q^{48} +3.00000 q^{49} +(3.00000 + 4.00000i) q^{50} -2.00000i q^{51} +(5.00000 - 5.00000i) q^{53} +(-4.00000 - 4.00000i) q^{54} +(3.00000 - 1.00000i) q^{55} +6.00000i q^{56} +10.0000 q^{57} +(7.00000 - 7.00000i) q^{59} +(1.00000 + 3.00000i) q^{60} -14.0000 q^{61} +(5.00000 - 5.00000i) q^{62} -2.00000 q^{63} +7.00000 q^{64} -2.00000 q^{66} +4.00000 q^{67} +(-1.00000 + 1.00000i) q^{68} +6.00000 q^{69} +(-4.00000 - 2.00000i) q^{70} +(-1.00000 + 1.00000i) q^{71} +3.00000i q^{72} +10.0000 q^{73} +(-7.00000 - 1.00000i) q^{75} +(-5.00000 - 5.00000i) q^{76} +(-2.00000 + 2.00000i) q^{77} -2.00000i q^{79} +(-1.00000 + 2.00000i) q^{80} +5.00000 q^{81} +(-7.00000 + 7.00000i) q^{82} +6.00000i q^{83} +(-2.00000 - 2.00000i) q^{84} +(-1.00000 - 3.00000i) q^{85} +(1.00000 + 1.00000i) q^{86} +(3.00000 + 3.00000i) q^{88} +(-5.00000 + 5.00000i) q^{89} +(-2.00000 - 1.00000i) q^{90} +(-3.00000 - 3.00000i) q^{92} +10.0000i q^{93} +6.00000i q^{94} +(15.0000 - 5.00000i) q^{95} +(-5.00000 + 5.00000i) q^{96} -2.00000 q^{97} -3.00000 q^{98} +(-1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} - 2 q^{4} + 2 q^{5} - 2 q^{6} + 6 q^{8} - 2 q^{10} + 2 q^{11} - 2 q^{12} - 2 q^{15} - 2 q^{16} + 2 q^{17} + 10 q^{19} - 2 q^{20} + 4 q^{21} - 2 q^{22} + 6 q^{23} + 6 q^{24} - 6 q^{25}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 1.00000 1.00000i 0.577350 0.577350i −0.356822 0.934172i \(-0.616140\pi\)
0.934172 + 0.356822i \(0.116140\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) −1.00000 + 1.00000i −0.408248 + 0.408248i
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 3.00000 1.06066
\(9\) 1.00000i 0.333333i
\(10\) −1.00000 + 2.00000i −0.316228 + 0.632456i
\(11\) 1.00000 + 1.00000i 0.301511 + 0.301511i 0.841605 0.540094i \(-0.181611\pi\)
−0.540094 + 0.841605i \(0.681611\pi\)
\(12\) −1.00000 + 1.00000i −0.288675 + 0.288675i
\(13\) 0 0
\(14\) 2.00000i 0.534522i
\(15\) −1.00000 3.00000i −0.258199 0.774597i
\(16\) −1.00000 −0.250000
\(17\) 1.00000 1.00000i 0.242536 0.242536i −0.575363 0.817898i \(-0.695139\pi\)
0.817898 + 0.575363i \(0.195139\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 5.00000 + 5.00000i 1.14708 + 1.14708i 0.987124 + 0.159954i \(0.0511347\pi\)
0.159954 + 0.987124i \(0.448865\pi\)
\(20\) −1.00000 + 2.00000i −0.223607 + 0.447214i
\(21\) 2.00000 + 2.00000i 0.436436 + 0.436436i
\(22\) −1.00000 1.00000i −0.213201 0.213201i
\(23\) 3.00000 + 3.00000i 0.625543 + 0.625543i 0.946943 0.321400i \(-0.104153\pi\)
−0.321400 + 0.946943i \(0.604153\pi\)
\(24\) 3.00000 3.00000i 0.612372 0.612372i
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 0 0
\(27\) 4.00000 + 4.00000i 0.769800 + 0.769800i
\(28\) 2.00000i 0.377964i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 1.00000 + 3.00000i 0.182574 + 0.547723i
\(31\) −5.00000 + 5.00000i −0.898027 + 0.898027i −0.995261 0.0972349i \(-0.969000\pi\)
0.0972349 + 0.995261i \(0.469000\pi\)
\(32\) −5.00000 −0.883883
\(33\) 2.00000 0.348155
\(34\) −1.00000 + 1.00000i −0.171499 + 0.171499i
\(35\) 4.00000 + 2.00000i 0.676123 + 0.338062i
\(36\) 1.00000i 0.166667i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) −5.00000 5.00000i −0.811107 0.811107i
\(39\) 0 0
\(40\) 3.00000 6.00000i 0.474342 0.948683i
\(41\) 7.00000 7.00000i 1.09322 1.09322i 0.0980332 0.995183i \(-0.468745\pi\)
0.995183 0.0980332i \(-0.0312551\pi\)
\(42\) −2.00000 2.00000i −0.308607 0.308607i
\(43\) −1.00000 1.00000i −0.152499 0.152499i 0.626734 0.779233i \(-0.284391\pi\)
−0.779233 + 0.626734i \(0.784391\pi\)
\(44\) −1.00000 1.00000i −0.150756 0.150756i
\(45\) 2.00000 + 1.00000i 0.298142 + 0.149071i
\(46\) −3.00000 3.00000i −0.442326 0.442326i
\(47\) 6.00000i 0.875190i −0.899172 0.437595i \(-0.855830\pi\)
0.899172 0.437595i \(-0.144170\pi\)
\(48\) −1.00000 + 1.00000i −0.144338 + 0.144338i
\(49\) 3.00000 0.428571
\(50\) 3.00000 + 4.00000i 0.424264 + 0.565685i
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 5.00000 5.00000i 0.686803 0.686803i −0.274721 0.961524i \(-0.588586\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) −4.00000 4.00000i −0.544331 0.544331i
\(55\) 3.00000 1.00000i 0.404520 0.134840i
\(56\) 6.00000i 0.801784i
\(57\) 10.0000 1.32453
\(58\) 0 0
\(59\) 7.00000 7.00000i 0.911322 0.911322i −0.0850540 0.996376i \(-0.527106\pi\)
0.996376 + 0.0850540i \(0.0271063\pi\)
\(60\) 1.00000 + 3.00000i 0.129099 + 0.387298i
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 5.00000 5.00000i 0.635001 0.635001i
\(63\) −2.00000 −0.251976
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) −1.00000 + 1.00000i −0.121268 + 0.121268i
\(69\) 6.00000 0.722315
\(70\) −4.00000 2.00000i −0.478091 0.239046i
\(71\) −1.00000 + 1.00000i −0.118678 + 0.118678i −0.763952 0.645273i \(-0.776743\pi\)
0.645273 + 0.763952i \(0.276743\pi\)
\(72\) 3.00000i 0.353553i
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) −7.00000 1.00000i −0.808290 0.115470i
\(76\) −5.00000 5.00000i −0.573539 0.573539i
\(77\) −2.00000 + 2.00000i −0.227921 + 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i −0.993651 0.112509i \(-0.964111\pi\)
0.993651 0.112509i \(-0.0358886\pi\)
\(80\) −1.00000 + 2.00000i −0.111803 + 0.223607i
\(81\) 5.00000 0.555556
\(82\) −7.00000 + 7.00000i −0.773021 + 0.773021i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) −2.00000 2.00000i −0.218218 0.218218i
\(85\) −1.00000 3.00000i −0.108465 0.325396i
\(86\) 1.00000 + 1.00000i 0.107833 + 0.107833i
\(87\) 0 0
\(88\) 3.00000 + 3.00000i 0.319801 + 0.319801i
\(89\) −5.00000 + 5.00000i −0.529999 + 0.529999i −0.920572 0.390573i \(-0.872277\pi\)
0.390573 + 0.920572i \(0.372277\pi\)
\(90\) −2.00000 1.00000i −0.210819 0.105409i
\(91\) 0 0
\(92\) −3.00000 3.00000i −0.312772 0.312772i
\(93\) 10.0000i 1.03695i
\(94\) 6.00000i 0.618853i
\(95\) 15.0000 5.00000i 1.53897 0.512989i
\(96\) −5.00000 + 5.00000i −0.510310 + 0.510310i
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) −3.00000 −0.303046
\(99\) −1.00000 + 1.00000i −0.100504 + 0.100504i
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) 12.0000i 1.19404i 0.802225 + 0.597022i \(0.203650\pi\)
−0.802225 + 0.597022i \(0.796350\pi\)
\(102\) 2.00000i 0.198030i
\(103\) 7.00000 + 7.00000i 0.689730 + 0.689730i 0.962172 0.272442i \(-0.0878312\pi\)
−0.272442 + 0.962172i \(0.587831\pi\)
\(104\) 0 0
\(105\) 6.00000 2.00000i 0.585540 0.195180i
\(106\) −5.00000 + 5.00000i −0.485643 + 0.485643i
\(107\) 7.00000 + 7.00000i 0.676716 + 0.676716i 0.959256 0.282540i \(-0.0911770\pi\)
−0.282540 + 0.959256i \(0.591177\pi\)
\(108\) −4.00000 4.00000i −0.384900 0.384900i
\(109\) −9.00000 9.00000i −0.862044 0.862044i 0.129532 0.991575i \(-0.458653\pi\)
−0.991575 + 0.129532i \(0.958653\pi\)
\(110\) −3.00000 + 1.00000i −0.286039 + 0.0953463i
\(111\) 0 0
\(112\) 2.00000i 0.188982i
\(113\) 5.00000 5.00000i 0.470360 0.470360i −0.431671 0.902031i \(-0.642076\pi\)
0.902031 + 0.431671i \(0.142076\pi\)
\(114\) −10.0000 −0.936586
\(115\) 9.00000 3.00000i 0.839254 0.279751i
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 + 7.00000i −0.644402 + 0.644402i
\(119\) 2.00000 + 2.00000i 0.183340 + 0.183340i
\(120\) −3.00000 9.00000i −0.273861 0.821584i
\(121\) 9.00000i 0.818182i
\(122\) 14.0000 1.26750
\(123\) 14.0000i 1.26234i
\(124\) 5.00000 5.00000i 0.449013 0.449013i
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 2.00000 0.178174
\(127\) 9.00000 9.00000i 0.798621 0.798621i −0.184257 0.982878i \(-0.558988\pi\)
0.982878 + 0.184257i \(0.0589879\pi\)
\(128\) 3.00000 0.265165
\(129\) −2.00000 −0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) −2.00000 −0.174078
\(133\) −10.0000 + 10.0000i −0.867110 + 0.867110i
\(134\) −4.00000 −0.345547
\(135\) 12.0000 4.00000i 1.03280 0.344265i
\(136\) 3.00000 3.00000i 0.257248 0.257248i
\(137\) 16.0000i 1.36697i 0.729964 + 0.683486i \(0.239537\pi\)
−0.729964 + 0.683486i \(0.760463\pi\)
\(138\) −6.00000 −0.510754
\(139\) 14.0000i 1.18746i −0.804663 0.593732i \(-0.797654\pi\)
0.804663 0.593732i \(-0.202346\pi\)
\(140\) −4.00000 2.00000i −0.338062 0.169031i
\(141\) −6.00000 6.00000i −0.505291 0.505291i
\(142\) 1.00000 1.00000i 0.0839181 0.0839181i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) −10.0000 −0.827606
\(147\) 3.00000 3.00000i 0.247436 0.247436i
\(148\) 0 0
\(149\) 3.00000 + 3.00000i 0.245770 + 0.245770i 0.819232 0.573462i \(-0.194400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 7.00000 + 1.00000i 0.571548 + 0.0816497i
\(151\) −7.00000 7.00000i −0.569652 0.569652i 0.362379 0.932031i \(-0.381965\pi\)
−0.932031 + 0.362379i \(0.881965\pi\)
\(152\) 15.0000 + 15.0000i 1.21666 + 1.21666i
\(153\) 1.00000 + 1.00000i 0.0808452 + 0.0808452i
\(154\) 2.00000 2.00000i 0.161165 0.161165i
\(155\) 5.00000 + 15.0000i 0.401610 + 1.20483i
\(156\) 0 0
\(157\) 13.0000 + 13.0000i 1.03751 + 1.03751i 0.999268 + 0.0382445i \(0.0121766\pi\)
0.0382445 + 0.999268i \(0.487823\pi\)
\(158\) 2.00000i 0.159111i
\(159\) 10.0000i 0.793052i
\(160\) −5.00000 + 10.0000i −0.395285 + 0.790569i
\(161\) −6.00000 + 6.00000i −0.472866 + 0.472866i
\(162\) −5.00000 −0.392837
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −7.00000 + 7.00000i −0.546608 + 0.546608i
\(165\) 2.00000 4.00000i 0.155700 0.311400i
\(166\) 6.00000i 0.465690i
\(167\) 18.0000i 1.39288i 0.717614 + 0.696441i \(0.245234\pi\)
−0.717614 + 0.696441i \(0.754766\pi\)
\(168\) 6.00000 + 6.00000i 0.462910 + 0.462910i
\(169\) 0 0
\(170\) 1.00000 + 3.00000i 0.0766965 + 0.230089i
\(171\) −5.00000 + 5.00000i −0.382360 + 0.382360i
\(172\) 1.00000 + 1.00000i 0.0762493 + 0.0762493i
\(173\) −11.0000 11.0000i −0.836315 0.836315i 0.152057 0.988372i \(-0.451410\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 8.00000 6.00000i 0.604743 0.453557i
\(176\) −1.00000 1.00000i −0.0753778 0.0753778i
\(177\) 14.0000i 1.05230i
\(178\) 5.00000 5.00000i 0.374766 0.374766i
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) −2.00000 1.00000i −0.149071 0.0745356i
\(181\) 8.00000i 0.594635i −0.954779 0.297318i \(-0.903908\pi\)
0.954779 0.297318i \(-0.0960920\pi\)
\(182\) 0 0
\(183\) −14.0000 + 14.0000i −1.03491 + 1.03491i
\(184\) 9.00000 + 9.00000i 0.663489 + 0.663489i
\(185\) 0 0
\(186\) 10.0000i 0.733236i
\(187\) 2.00000 0.146254
\(188\) 6.00000i 0.437595i
\(189\) −8.00000 + 8.00000i −0.581914 + 0.581914i
\(190\) −15.0000 + 5.00000i −1.08821 + 0.362738i
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 7.00000 7.00000i 0.505181 0.505181i
\(193\) −18.0000 −1.29567 −0.647834 0.761781i \(-0.724325\pi\)
−0.647834 + 0.761781i \(0.724325\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 1.00000 1.00000i 0.0710669 0.0710669i
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) −9.00000 12.0000i −0.636396 0.848528i
\(201\) 4.00000 4.00000i 0.282138 0.282138i
\(202\) 12.0000i 0.844317i
\(203\) 0 0
\(204\) 2.00000i 0.140028i
\(205\) −7.00000 21.0000i −0.488901 1.46670i
\(206\) −7.00000 7.00000i −0.487713 0.487713i
\(207\) −3.00000 + 3.00000i −0.208514 + 0.208514i
\(208\) 0 0
\(209\) 10.0000i 0.691714i
\(210\) −6.00000 + 2.00000i −0.414039 + 0.138013i
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) −5.00000 + 5.00000i −0.343401 + 0.343401i
\(213\) 2.00000i 0.137038i
\(214\) −7.00000 7.00000i −0.478510 0.478510i
\(215\) −3.00000 + 1.00000i −0.204598 + 0.0681994i
\(216\) 12.0000 + 12.0000i 0.816497 + 0.816497i
\(217\) −10.0000 10.0000i −0.678844 0.678844i
\(218\) 9.00000 + 9.00000i 0.609557 + 0.609557i
\(219\) 10.0000 10.0000i 0.675737 0.675737i
\(220\) −3.00000 + 1.00000i −0.202260 + 0.0674200i
\(221\) 0 0
\(222\) 0 0
\(223\) 2.00000i 0.133930i 0.997755 + 0.0669650i \(0.0213316\pi\)
−0.997755 + 0.0669650i \(0.978668\pi\)
\(224\) 10.0000i 0.668153i
\(225\) 4.00000 3.00000i 0.266667 0.200000i
\(226\) −5.00000 + 5.00000i −0.332595 + 0.332595i
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) −10.0000 −0.662266
\(229\) 3.00000 3.00000i 0.198246 0.198246i −0.601002 0.799248i \(-0.705232\pi\)
0.799248 + 0.601002i \(0.205232\pi\)
\(230\) −9.00000 + 3.00000i −0.593442 + 0.197814i
\(231\) 4.00000i 0.263181i
\(232\) 0 0
\(233\) 1.00000 + 1.00000i 0.0655122 + 0.0655122i 0.739104 0.673592i \(-0.235249\pi\)
−0.673592 + 0.739104i \(0.735249\pi\)
\(234\) 0 0
\(235\) −12.0000 6.00000i −0.782794 0.391397i
\(236\) −7.00000 + 7.00000i −0.455661 + 0.455661i
\(237\) −2.00000 2.00000i −0.129914 0.129914i
\(238\) −2.00000 2.00000i −0.129641 0.129641i
\(239\) −3.00000 3.00000i −0.194054 0.194054i 0.603391 0.797445i \(-0.293816\pi\)
−0.797445 + 0.603391i \(0.793816\pi\)
\(240\) 1.00000 + 3.00000i 0.0645497 + 0.193649i
\(241\) −17.0000 17.0000i −1.09507 1.09507i −0.994979 0.100088i \(-0.968088\pi\)
−0.100088 0.994979i \(-0.531912\pi\)
\(242\) 9.00000i 0.578542i
\(243\) −7.00000 + 7.00000i −0.449050 + 0.449050i
\(244\) 14.0000 0.896258
\(245\) 3.00000 6.00000i 0.191663 0.383326i
\(246\) 14.0000i 0.892607i
\(247\) 0 0
\(248\) −15.0000 + 15.0000i −0.952501 + 0.952501i
\(249\) 6.00000 + 6.00000i 0.380235 + 0.380235i
\(250\) 11.0000 2.00000i 0.695701 0.126491i
\(251\) 2.00000i 0.126239i 0.998006 + 0.0631194i \(0.0201049\pi\)
−0.998006 + 0.0631194i \(0.979895\pi\)
\(252\) 2.00000 0.125988
\(253\) 6.00000i 0.377217i
\(254\) −9.00000 + 9.00000i −0.564710 + 0.564710i
\(255\) −4.00000 2.00000i −0.250490 0.125245i
\(256\) −17.0000 −1.06250
\(257\) −11.0000 + 11.0000i −0.686161 + 0.686161i −0.961381 0.275220i \(-0.911249\pi\)
0.275220 + 0.961381i \(0.411249\pi\)
\(258\) 2.00000 0.124515
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 20.0000 1.23560
\(263\) 1.00000 1.00000i 0.0616626 0.0616626i −0.675603 0.737266i \(-0.736117\pi\)
0.737266 + 0.675603i \(0.236117\pi\)
\(264\) 6.00000 0.369274
\(265\) −5.00000 15.0000i −0.307148 0.921443i
\(266\) 10.0000 10.0000i 0.613139 0.613139i
\(267\) 10.0000i 0.611990i
\(268\) −4.00000 −0.244339
\(269\) 12.0000i 0.731653i 0.930683 + 0.365826i \(0.119214\pi\)
−0.930683 + 0.365826i \(0.880786\pi\)
\(270\) −12.0000 + 4.00000i −0.730297 + 0.243432i
\(271\) 9.00000 + 9.00000i 0.546711 + 0.546711i 0.925488 0.378777i \(-0.123655\pi\)
−0.378777 + 0.925488i \(0.623655\pi\)
\(272\) −1.00000 + 1.00000i −0.0606339 + 0.0606339i
\(273\) 0 0
\(274\) 16.0000i 0.966595i
\(275\) 1.00000 7.00000i 0.0603023 0.422116i
\(276\) −6.00000 −0.361158
\(277\) −15.0000 + 15.0000i −0.901263 + 0.901263i −0.995545 0.0942828i \(-0.969944\pi\)
0.0942828 + 0.995545i \(0.469944\pi\)
\(278\) 14.0000i 0.839664i
\(279\) −5.00000 5.00000i −0.299342 0.299342i
\(280\) 12.0000 + 6.00000i 0.717137 + 0.358569i
\(281\) −1.00000 1.00000i −0.0596550 0.0596550i 0.676650 0.736305i \(-0.263431\pi\)
−0.736305 + 0.676650i \(0.763431\pi\)
\(282\) 6.00000 + 6.00000i 0.357295 + 0.357295i
\(283\) −9.00000 9.00000i −0.534994 0.534994i 0.387060 0.922055i \(-0.373491\pi\)
−0.922055 + 0.387060i \(0.873491\pi\)
\(284\) 1.00000 1.00000i 0.0593391 0.0593391i
\(285\) 10.0000 20.0000i 0.592349 1.18470i
\(286\) 0 0
\(287\) 14.0000 + 14.0000i 0.826394 + 0.826394i
\(288\) 5.00000i 0.294628i
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) −2.00000 + 2.00000i −0.117242 + 0.117242i
\(292\) −10.0000 −0.585206
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) −3.00000 + 3.00000i −0.174964 + 0.174964i
\(295\) −7.00000 21.0000i −0.407556 1.22267i
\(296\) 0 0
\(297\) 8.00000i 0.464207i
\(298\) −3.00000 3.00000i −0.173785 0.173785i
\(299\) 0 0
\(300\) 7.00000 + 1.00000i 0.404145 + 0.0577350i
\(301\) 2.00000 2.00000i 0.115278 0.115278i
\(302\) 7.00000 + 7.00000i 0.402805 + 0.402805i
\(303\) 12.0000 + 12.0000i 0.689382 + 0.689382i
\(304\) −5.00000 5.00000i −0.286770 0.286770i
\(305\) −14.0000 + 28.0000i −0.801638 + 1.60328i
\(306\) −1.00000 1.00000i −0.0571662 0.0571662i
\(307\) 18.0000i 1.02731i −0.857996 0.513657i \(-0.828290\pi\)
0.857996 0.513657i \(-0.171710\pi\)
\(308\) 2.00000 2.00000i 0.113961 0.113961i
\(309\) 14.0000 0.796432
\(310\) −5.00000 15.0000i −0.283981 0.851943i
\(311\) 6.00000i 0.340229i 0.985424 + 0.170114i \(0.0544137\pi\)
−0.985424 + 0.170114i \(0.945586\pi\)
\(312\) 0 0
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) −13.0000 13.0000i −0.733632 0.733632i
\(315\) −2.00000 + 4.00000i −0.112687 + 0.225374i
\(316\) 2.00000i 0.112509i
\(317\) 14.0000 0.786318 0.393159 0.919470i \(-0.371382\pi\)
0.393159 + 0.919470i \(0.371382\pi\)
\(318\) 10.0000i 0.560772i
\(319\) 0 0
\(320\) 7.00000 14.0000i 0.391312 0.782624i
\(321\) 14.0000 0.781404
\(322\) 6.00000 6.00000i 0.334367 0.334367i
\(323\) 10.0000 0.556415
\(324\) −5.00000 −0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) −18.0000 −0.995402
\(328\) 21.0000 21.0000i 1.15953 1.15953i
\(329\) 12.0000 0.661581
\(330\) −2.00000 + 4.00000i −0.110096 + 0.220193i
\(331\) 3.00000 3.00000i 0.164895 0.164895i −0.619836 0.784731i \(-0.712801\pi\)
0.784731 + 0.619836i \(0.212801\pi\)
\(332\) 6.00000i 0.329293i
\(333\) 0 0
\(334\) 18.0000i 0.984916i
\(335\) 4.00000 8.00000i 0.218543 0.437087i
\(336\) −2.00000 2.00000i −0.109109 0.109109i
\(337\) 13.0000 13.0000i 0.708155 0.708155i −0.257992 0.966147i \(-0.583061\pi\)
0.966147 + 0.257992i \(0.0830608\pi\)
\(338\) 0 0
\(339\) 10.0000i 0.543125i
\(340\) 1.00000 + 3.00000i 0.0542326 + 0.162698i
\(341\) −10.0000 −0.541530
\(342\) 5.00000 5.00000i 0.270369 0.270369i
\(343\) 20.0000i 1.07990i
\(344\) −3.00000 3.00000i −0.161749 0.161749i
\(345\) 6.00000 12.0000i 0.323029 0.646058i
\(346\) 11.0000 + 11.0000i 0.591364 + 0.591364i
\(347\) 3.00000 + 3.00000i 0.161048 + 0.161048i 0.783031 0.621983i \(-0.213673\pi\)
−0.621983 + 0.783031i \(0.713673\pi\)
\(348\) 0 0
\(349\) −9.00000 + 9.00000i −0.481759 + 0.481759i −0.905693 0.423934i \(-0.860649\pi\)
0.423934 + 0.905693i \(0.360649\pi\)
\(350\) −8.00000 + 6.00000i −0.427618 + 0.320713i
\(351\) 0 0
\(352\) −5.00000 5.00000i −0.266501 0.266501i
\(353\) 12.0000i 0.638696i −0.947638 0.319348i \(-0.896536\pi\)
0.947638 0.319348i \(-0.103464\pi\)
\(354\) 14.0000i 0.744092i
\(355\) 1.00000 + 3.00000i 0.0530745 + 0.159223i
\(356\) 5.00000 5.00000i 0.264999 0.264999i
\(357\) 4.00000 0.211702
\(358\) 20.0000 1.05703
\(359\) −1.00000 + 1.00000i −0.0527780 + 0.0527780i −0.733003 0.680225i \(-0.761882\pi\)
0.680225 + 0.733003i \(0.261882\pi\)
\(360\) 6.00000 + 3.00000i 0.316228 + 0.158114i
\(361\) 31.0000i 1.63158i
\(362\) 8.00000i 0.420471i
\(363\) −9.00000 9.00000i −0.472377 0.472377i
\(364\) 0 0
\(365\) 10.0000 20.0000i 0.523424 1.04685i
\(366\) 14.0000 14.0000i 0.731792 0.731792i
\(367\) −1.00000 1.00000i −0.0521996 0.0521996i 0.680525 0.732725i \(-0.261752\pi\)
−0.732725 + 0.680525i \(0.761752\pi\)
\(368\) −3.00000 3.00000i −0.156386 0.156386i
\(369\) 7.00000 + 7.00000i 0.364405 + 0.364405i
\(370\) 0 0
\(371\) 10.0000 + 10.0000i 0.519174 + 0.519174i
\(372\) 10.0000i 0.518476i
\(373\) −15.0000 + 15.0000i −0.776671 + 0.776671i −0.979263 0.202593i \(-0.935063\pi\)
0.202593 + 0.979263i \(0.435063\pi\)
\(374\) −2.00000 −0.103418
\(375\) −9.00000 + 13.0000i −0.464758 + 0.671317i
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) 8.00000 8.00000i 0.411476 0.411476i
\(379\) 1.00000 + 1.00000i 0.0513665 + 0.0513665i 0.732323 0.680957i \(-0.238436\pi\)
−0.680957 + 0.732323i \(0.738436\pi\)
\(380\) −15.0000 + 5.00000i −0.769484 + 0.256495i
\(381\) 18.0000i 0.922168i
\(382\) −8.00000 −0.409316
\(383\) 30.0000i 1.53293i −0.642287 0.766464i \(-0.722014\pi\)
0.642287 0.766464i \(-0.277986\pi\)
\(384\) 3.00000 3.00000i 0.153093 0.153093i
\(385\) 2.00000 + 6.00000i 0.101929 + 0.305788i
\(386\) 18.0000 0.916176
\(387\) 1.00000 1.00000i 0.0508329 0.0508329i
\(388\) 2.00000 0.101535
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 9.00000 0.454569
\(393\) −20.0000 + 20.0000i −1.00887 + 1.00887i
\(394\) 6.00000 0.302276
\(395\) −4.00000 2.00000i −0.201262 0.100631i
\(396\) 1.00000 1.00000i 0.0502519 0.0502519i
\(397\) 16.0000i 0.803017i −0.915855 0.401508i \(-0.868486\pi\)
0.915855 0.401508i \(-0.131514\pi\)
\(398\) 8.00000 0.401004
\(399\) 20.0000i 1.00125i
\(400\) 3.00000 + 4.00000i 0.150000 + 0.200000i
\(401\) 11.0000 + 11.0000i 0.549314 + 0.549314i 0.926242 0.376929i \(-0.123020\pi\)
−0.376929 + 0.926242i \(0.623020\pi\)
\(402\) −4.00000 + 4.00000i −0.199502 + 0.199502i
\(403\) 0 0
\(404\) 12.0000i 0.597022i
\(405\) 5.00000 10.0000i 0.248452 0.496904i
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000i 0.297044i
\(409\) 7.00000 + 7.00000i 0.346128 + 0.346128i 0.858665 0.512537i \(-0.171294\pi\)
−0.512537 + 0.858665i \(0.671294\pi\)
\(410\) 7.00000 + 21.0000i 0.345705 + 1.03712i
\(411\) 16.0000 + 16.0000i 0.789222 + 0.789222i
\(412\) −7.00000 7.00000i −0.344865 0.344865i
\(413\) 14.0000 + 14.0000i 0.688895 + 0.688895i
\(414\) 3.00000 3.00000i 0.147442 0.147442i
\(415\) 12.0000 + 6.00000i 0.589057 + 0.294528i
\(416\) 0 0
\(417\) −14.0000 14.0000i −0.685583 0.685583i
\(418\) 10.0000i 0.489116i
\(419\) 38.0000i 1.85642i −0.372055 0.928211i \(-0.621347\pi\)
0.372055 0.928211i \(-0.378653\pi\)
\(420\) −6.00000 + 2.00000i −0.292770 + 0.0975900i
\(421\) 11.0000 11.0000i 0.536107 0.536107i −0.386276 0.922383i \(-0.626239\pi\)
0.922383 + 0.386276i \(0.126239\pi\)
\(422\) −4.00000 −0.194717
\(423\) 6.00000 0.291730
\(424\) 15.0000 15.0000i 0.728464 0.728464i
\(425\) −7.00000 1.00000i −0.339550 0.0485071i
\(426\) 2.00000i 0.0969003i
\(427\) 28.0000i 1.35501i
\(428\) −7.00000 7.00000i −0.338358 0.338358i
\(429\) 0 0
\(430\) 3.00000 1.00000i 0.144673 0.0482243i
\(431\) −13.0000 + 13.0000i −0.626188 + 0.626188i −0.947107 0.320919i \(-0.896008\pi\)
0.320919 + 0.947107i \(0.396008\pi\)
\(432\) −4.00000 4.00000i −0.192450 0.192450i
\(433\) 17.0000 + 17.0000i 0.816968 + 0.816968i 0.985668 0.168700i \(-0.0539568\pi\)
−0.168700 + 0.985668i \(0.553957\pi\)
\(434\) 10.0000 + 10.0000i 0.480015 + 0.480015i
\(435\) 0 0
\(436\) 9.00000 + 9.00000i 0.431022 + 0.431022i
\(437\) 30.0000i 1.43509i
\(438\) −10.0000 + 10.0000i −0.477818 + 0.477818i
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 9.00000 3.00000i 0.429058 0.143019i
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) 25.0000 25.0000i 1.18779 1.18779i 0.210108 0.977678i \(-0.432619\pi\)
0.977678 0.210108i \(-0.0673814\pi\)
\(444\) 0 0
\(445\) 5.00000 + 15.0000i 0.237023 + 0.711068i
\(446\) 2.00000i 0.0947027i
\(447\) 6.00000 0.283790
\(448\) 14.0000i 0.661438i
\(449\) 3.00000 3.00000i 0.141579 0.141579i −0.632765 0.774344i \(-0.718080\pi\)
0.774344 + 0.632765i \(0.218080\pi\)
\(450\) −4.00000 + 3.00000i −0.188562 + 0.141421i
\(451\) 14.0000 0.659234
\(452\) −5.00000 + 5.00000i −0.235180 + 0.235180i
\(453\) −14.0000 −0.657777
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) −3.00000 + 3.00000i −0.140181 + 0.140181i
\(459\) 8.00000 0.373408
\(460\) −9.00000 + 3.00000i −0.419627 + 0.139876i
\(461\) −17.0000 + 17.0000i −0.791769 + 0.791769i −0.981782 0.190013i \(-0.939147\pi\)
0.190013 + 0.981782i \(0.439147\pi\)
\(462\) 4.00000i 0.186097i
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 0 0
\(465\) 20.0000 + 10.0000i 0.927478 + 0.463739i
\(466\) −1.00000 1.00000i −0.0463241 0.0463241i
\(467\) 9.00000 9.00000i 0.416470 0.416470i −0.467515 0.883985i \(-0.654851\pi\)
0.883985 + 0.467515i \(0.154851\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) 12.0000 + 6.00000i 0.553519 + 0.276759i
\(471\) 26.0000 1.19802
\(472\) 21.0000 21.0000i 0.966603 0.966603i
\(473\) 2.00000i 0.0919601i
\(474\) 2.00000 + 2.00000i 0.0918630 + 0.0918630i
\(475\) 5.00000 35.0000i 0.229416 1.60591i
\(476\) −2.00000 2.00000i −0.0916698 0.0916698i
\(477\) 5.00000 + 5.00000i 0.228934 + 0.228934i
\(478\) 3.00000 + 3.00000i 0.137217 + 0.137217i
\(479\) 7.00000 7.00000i 0.319838 0.319838i −0.528867 0.848705i \(-0.677383\pi\)
0.848705 + 0.528867i \(0.177383\pi\)
\(480\) 5.00000 + 15.0000i 0.228218 + 0.684653i
\(481\) 0 0
\(482\) 17.0000 + 17.0000i 0.774329 + 0.774329i
\(483\) 12.0000i 0.546019i
\(484\) 9.00000i 0.409091i
\(485\) −2.00000 + 4.00000i −0.0908153 + 0.181631i
\(486\) 7.00000 7.00000i 0.317526 0.317526i
\(487\) −16.0000 −0.725029 −0.362515 0.931978i \(-0.618082\pi\)
−0.362515 + 0.931978i \(0.618082\pi\)
\(488\) −42.0000 −1.90125
\(489\) −4.00000 + 4.00000i −0.180886 + 0.180886i
\(490\) −3.00000 + 6.00000i −0.135526 + 0.271052i
\(491\) 22.0000i 0.992846i −0.868081 0.496423i \(-0.834646\pi\)
0.868081 0.496423i \(-0.165354\pi\)
\(492\) 14.0000i 0.631169i
\(493\) 0 0
\(494\) 0 0
\(495\) 1.00000 + 3.00000i 0.0449467 + 0.134840i
\(496\) 5.00000 5.00000i 0.224507 0.224507i
\(497\) −2.00000 2.00000i −0.0897123 0.0897123i
\(498\) −6.00000 6.00000i −0.268866 0.268866i
\(499\) −3.00000 3.00000i −0.134298 0.134298i 0.636762 0.771060i \(-0.280273\pi\)
−0.771060 + 0.636762i \(0.780273\pi\)
\(500\) 11.0000 2.00000i 0.491935 0.0894427i
\(501\) 18.0000 + 18.0000i 0.804181 + 0.804181i
\(502\) 2.00000i 0.0892644i
\(503\) −3.00000 + 3.00000i −0.133763 + 0.133763i −0.770818 0.637055i \(-0.780152\pi\)
0.637055 + 0.770818i \(0.280152\pi\)
\(504\) −6.00000 −0.267261
\(505\) 24.0000 + 12.0000i 1.06799 + 0.533993i
\(506\) 6.00000i 0.266733i
\(507\) 0 0
\(508\) −9.00000 + 9.00000i −0.399310 + 0.399310i
\(509\) −13.0000 13.0000i −0.576215 0.576215i 0.357643 0.933858i \(-0.383580\pi\)
−0.933858 + 0.357643i \(0.883580\pi\)
\(510\) 4.00000 + 2.00000i 0.177123 + 0.0885615i
\(511\) 20.0000i 0.884748i
\(512\) 11.0000 0.486136
\(513\) 40.0000i 1.76604i
\(514\) 11.0000 11.0000i 0.485189 0.485189i
\(515\) 21.0000 7.00000i 0.925371 0.308457i
\(516\) 2.00000 0.0880451
\(517\) 6.00000 6.00000i 0.263880 0.263880i
\(518\) 0 0
\(519\) −22.0000 −0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 9.00000 9.00000i 0.393543 0.393543i −0.482405 0.875948i \(-0.660237\pi\)
0.875948 + 0.482405i \(0.160237\pi\)
\(524\) 20.0000 0.873704
\(525\) 2.00000 14.0000i 0.0872872 0.611010i
\(526\) −1.00000 + 1.00000i −0.0436021 + 0.0436021i
\(527\) 10.0000i 0.435607i
\(528\) −2.00000 −0.0870388
\(529\) 5.00000i 0.217391i
\(530\) 5.00000 + 15.0000i 0.217186 + 0.651558i
\(531\) 7.00000 + 7.00000i 0.303774 + 0.303774i
\(532\) 10.0000 10.0000i 0.433555 0.433555i
\(533\) 0 0
\(534\) 10.0000i 0.432742i
\(535\) 21.0000 7.00000i 0.907909 0.302636i
\(536\) 12.0000 0.518321
\(537\) −20.0000 + 20.0000i −0.863064 + 0.863064i
\(538\) 12.0000i 0.517357i
\(539\) 3.00000 + 3.00000i 0.129219 + 0.129219i
\(540\) −12.0000 + 4.00000i −0.516398 + 0.172133i
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) −9.00000 9.00000i −0.386583 0.386583i
\(543\) −8.00000 8.00000i −0.343313 0.343313i
\(544\) −5.00000 + 5.00000i −0.214373 + 0.214373i
\(545\) −27.0000 + 9.00000i −1.15655 + 0.385518i
\(546\) 0 0
\(547\) −9.00000 9.00000i −0.384812 0.384812i 0.488020 0.872832i \(-0.337719\pi\)
−0.872832 + 0.488020i \(0.837719\pi\)
\(548\) 16.0000i 0.683486i
\(549\) 14.0000i 0.597505i
\(550\) −1.00000 + 7.00000i −0.0426401 + 0.298481i
\(551\) 0 0
\(552\) 18.0000 0.766131
\(553\) 4.00000 0.170097
\(554\) 15.0000 15.0000i 0.637289 0.637289i
\(555\) 0 0
\(556\) 14.0000i 0.593732i
\(557\) 24.0000i 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(558\) 5.00000 + 5.00000i 0.211667 + 0.211667i
\(559\) 0 0
\(560\) −4.00000 2.00000i −0.169031 0.0845154i
\(561\) 2.00000 2.00000i 0.0844401 0.0844401i
\(562\) 1.00000 + 1.00000i 0.0421825 + 0.0421825i
\(563\) 15.0000 + 15.0000i 0.632175 + 0.632175i 0.948613 0.316438i \(-0.102487\pi\)
−0.316438 + 0.948613i \(0.602487\pi\)
\(564\) 6.00000 + 6.00000i 0.252646 + 0.252646i
\(565\) −5.00000 15.0000i −0.210352 0.631055i
\(566\) 9.00000 + 9.00000i 0.378298 + 0.378298i
\(567\) 10.0000i 0.419961i
\(568\) −3.00000 + 3.00000i −0.125877 + 0.125877i
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) −10.0000 + 20.0000i −0.418854 + 0.837708i
\(571\) 6.00000i 0.251092i −0.992088 0.125546i \(-0.959932\pi\)
0.992088 0.125546i \(-0.0400683\pi\)
\(572\) 0 0
\(573\) 8.00000 8.00000i 0.334205 0.334205i
\(574\) −14.0000 14.0000i −0.584349 0.584349i
\(575\) 3.00000 21.0000i 0.125109 0.875761i
\(576\) 7.00000i 0.291667i
\(577\) −46.0000 −1.91501 −0.957503 0.288425i \(-0.906868\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) 15.0000i 0.623918i
\(579\) −18.0000 + 18.0000i −0.748054 + 0.748054i
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 2.00000 2.00000i 0.0829027 0.0829027i
\(583\) 10.0000 0.414158
\(584\) 30.0000 1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 4.00000 0.165098 0.0825488 0.996587i \(-0.473694\pi\)
0.0825488 + 0.996587i \(0.473694\pi\)
\(588\) −3.00000 + 3.00000i −0.123718 + 0.123718i
\(589\) −50.0000 −2.06021
\(590\) 7.00000 + 21.0000i 0.288185 + 0.864556i
\(591\) −6.00000 + 6.00000i −0.246807 + 0.246807i
\(592\) 0 0
\(593\) −10.0000 −0.410651 −0.205325 0.978694i \(-0.565825\pi\)
−0.205325 + 0.978694i \(0.565825\pi\)
\(594\) 8.00000i 0.328244i
\(595\) 6.00000 2.00000i 0.245976 0.0819920i
\(596\) −3.00000 3.00000i −0.122885 0.122885i
\(597\) −8.00000 + 8.00000i −0.327418 + 0.327418i
\(598\) 0 0
\(599\) 30.0000i 1.22577i 0.790173 + 0.612883i \(0.209990\pi\)
−0.790173 + 0.612883i \(0.790010\pi\)
\(600\) −21.0000 3.00000i −0.857321 0.122474i
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) −2.00000 + 2.00000i −0.0815139 + 0.0815139i
\(603\) 4.00000i 0.162893i
\(604\) 7.00000 + 7.00000i 0.284826 + 0.284826i
\(605\) −18.0000 9.00000i −0.731804 0.365902i
\(606\) −12.0000 12.0000i −0.487467 0.487467i
\(607\) −13.0000 13.0000i −0.527654 0.527654i 0.392218 0.919872i \(-0.371708\pi\)
−0.919872 + 0.392218i \(0.871708\pi\)
\(608\) −25.0000 25.0000i −1.01388 1.01388i
\(609\) 0 0
\(610\) 14.0000 28.0000i 0.566843 1.13369i
\(611\) 0 0
\(612\) −1.00000 1.00000i −0.0404226 0.0404226i
\(613\) 20.0000i 0.807792i −0.914805 0.403896i \(-0.867656\pi\)
0.914805 0.403896i \(-0.132344\pi\)
\(614\) 18.0000i 0.726421i
\(615\) −28.0000 14.0000i −1.12907 0.564534i
\(616\) −6.00000 + 6.00000i −0.241747 + 0.241747i
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) −14.0000 −0.563163
\(619\) −25.0000 + 25.0000i −1.00483 + 1.00483i −0.00484658 + 0.999988i \(0.501543\pi\)
−0.999988 + 0.00484658i \(0.998457\pi\)
\(620\) −5.00000 15.0000i −0.200805 0.602414i
\(621\) 24.0000i 0.963087i
\(622\) 6.00000i 0.240578i
\(623\) −10.0000 10.0000i −0.400642 0.400642i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −9.00000 + 9.00000i −0.359712 + 0.359712i
\(627\) 10.0000 + 10.0000i 0.399362 + 0.399362i
\(628\) −13.0000 13.0000i −0.518756 0.518756i
\(629\) 0 0
\(630\) 2.00000 4.00000i 0.0796819 0.159364i
\(631\) −11.0000 11.0000i −0.437903 0.437903i 0.453403 0.891306i \(-0.350210\pi\)
−0.891306 + 0.453403i \(0.850210\pi\)
\(632\) 6.00000i 0.238667i
\(633\) 4.00000 4.00000i 0.158986 0.158986i
\(634\) −14.0000 −0.556011
\(635\) −9.00000 27.0000i −0.357154 1.07146i
\(636\) 10.0000i 0.396526i
\(637\) 0 0
\(638\) 0 0
\(639\) −1.00000 1.00000i −0.0395594 0.0395594i
\(640\) 3.00000 6.00000i 0.118585 0.237171i
\(641\) 24.0000i 0.947943i −0.880540 0.473972i \(-0.842820\pi\)
0.880540 0.473972i \(-0.157180\pi\)
\(642\) −14.0000 −0.552536
\(643\) 34.0000i 1.34083i −0.741987 0.670415i \(-0.766116\pi\)
0.741987 0.670415i \(-0.233884\pi\)
\(644\) 6.00000 6.00000i 0.236433 0.236433i
\(645\) −2.00000 + 4.00000i −0.0787499 + 0.157500i
\(646\) −10.0000 −0.393445
\(647\) 1.00000 1.00000i 0.0393141 0.0393141i −0.687176 0.726491i \(-0.741150\pi\)
0.726491 + 0.687176i \(0.241150\pi\)
\(648\) 15.0000 0.589256
\(649\) 14.0000 0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 4.00000 0.156652
\(653\) 13.0000 13.0000i 0.508729 0.508729i −0.405407 0.914136i \(-0.632870\pi\)
0.914136 + 0.405407i \(0.132870\pi\)
\(654\) 18.0000 0.703856
\(655\) −20.0000 + 40.0000i −0.781465 + 1.56293i
\(656\) −7.00000 + 7.00000i −0.273304 + 0.273304i
\(657\) 10.0000i 0.390137i
\(658\) −12.0000 −0.467809
\(659\) 26.0000i 1.01282i 0.862294 + 0.506408i \(0.169027\pi\)
−0.862294 + 0.506408i \(0.830973\pi\)
\(660\) −2.00000 + 4.00000i −0.0778499 + 0.155700i
\(661\) −17.0000 17.0000i −0.661223 0.661223i 0.294445 0.955668i \(-0.404865\pi\)
−0.955668 + 0.294445i \(0.904865\pi\)
\(662\) −3.00000 + 3.00000i −0.116598 + 0.116598i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) 10.0000 + 30.0000i 0.387783 + 1.16335i
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000i 0.696441i
\(669\) 2.00000 + 2.00000i 0.0773245 + 0.0773245i
\(670\) −4.00000 + 8.00000i −0.154533 + 0.309067i
\(671\) −14.0000 14.0000i −0.540464 0.540464i
\(672\) −10.0000 10.0000i −0.385758 0.385758i
\(673\) −15.0000 15.0000i −0.578208 0.578208i 0.356202 0.934409i \(-0.384072\pi\)
−0.934409 + 0.356202i \(0.884072\pi\)
\(674\) −13.0000 + 13.0000i −0.500741 + 0.500741i
\(675\) 4.00000 28.0000i 0.153960 1.07772i
\(676\) 0 0
\(677\) −23.0000 23.0000i −0.883962 0.883962i 0.109973 0.993935i \(-0.464924\pi\)
−0.993935 + 0.109973i \(0.964924\pi\)
\(678\) 10.0000i 0.384048i
\(679\) 4.00000i 0.153506i
\(680\) −3.00000 9.00000i −0.115045 0.345134i
\(681\) 12.0000 12.0000i 0.459841 0.459841i
\(682\) 10.0000 0.382920
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 5.00000 5.00000i 0.191180 0.191180i
\(685\) 32.0000 + 16.0000i 1.22266 + 0.611329i
\(686\) 20.0000i 0.763604i
\(687\) 6.00000i 0.228914i
\(688\) 1.00000 + 1.00000i 0.0381246 + 0.0381246i
\(689\) 0 0
\(690\) −6.00000 + 12.0000i −0.228416 + 0.456832i
\(691\) 3.00000 3.00000i 0.114125 0.114125i −0.647738 0.761863i \(-0.724285\pi\)
0.761863 + 0.647738i \(0.224285\pi\)
\(692\) 11.0000 + 11.0000i 0.418157 + 0.418157i
\(693\) −2.00000 2.00000i −0.0759737 0.0759737i
\(694\) −3.00000 3.00000i −0.113878 0.113878i
\(695\) −28.0000 14.0000i −1.06210 0.531050i
\(696\) 0 0
\(697\) 14.0000i 0.530288i
\(698\) 9.00000 9.00000i 0.340655 0.340655i
\(699\) 2.00000 0.0756469
\(700\) −8.00000 + 6.00000i −0.302372 + 0.226779i
\(701\) 12.0000i 0.453234i 0.973984 + 0.226617i \(0.0727665\pi\)
−0.973984 + 0.226617i \(0.927233\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 7.00000 + 7.00000i 0.263822 + 0.263822i
\(705\) −18.0000 + 6.00000i −0.677919 + 0.225973i
\(706\) 12.0000i 0.451626i
\(707\) −24.0000 −0.902613
\(708\) 14.0000i 0.526152i
\(709\) −29.0000 + 29.0000i −1.08912 + 1.08912i −0.0934984 + 0.995619i \(0.529805\pi\)
−0.995619 + 0.0934984i \(0.970195\pi\)
\(710\) −1.00000 3.00000i −0.0375293 0.112588i
\(711\) 2.00000 0.0750059
\(712\) −15.0000 + 15.0000i −0.562149 + 0.562149i
\(713\) −30.0000 −1.12351
\(714\) −4.00000 −0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) −6.00000 −0.224074
\(718\) 1.00000 1.00000i 0.0373197 0.0373197i
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) −2.00000 1.00000i −0.0745356 0.0372678i
\(721\) −14.0000 + 14.0000i −0.521387 + 0.521387i
\(722\) 31.0000i 1.15370i
\(723\) −34.0000 −1.26447
\(724\) 8.00000i 0.297318i
\(725\) 0 0
\(726\) 9.00000 + 9.00000i 0.334021 + 0.334021i
\(727\) −35.0000 + 35.0000i −1.29808 + 1.29808i −0.368418 + 0.929660i \(0.620100\pi\)
−0.929660 + 0.368418i \(0.879900\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) −10.0000 + 20.0000i −0.370117 + 0.740233i
\(731\) −2.00000 −0.0739727
\(732\) 14.0000 14.0000i 0.517455 0.517455i
\(733\) 4.00000i 0.147743i −0.997268 0.0738717i \(-0.976464\pi\)
0.997268 0.0738717i \(-0.0235355\pi\)
\(734\) 1.00000 + 1.00000i 0.0369107 + 0.0369107i
\(735\) −3.00000 9.00000i −0.110657 0.331970i
\(736\) −15.0000 15.0000i −0.552907 0.552907i
\(737\) 4.00000 + 4.00000i 0.147342 + 0.147342i
\(738\) −7.00000 7.00000i −0.257674 0.257674i
\(739\) 3.00000 3.00000i 0.110357 0.110357i −0.649772 0.760129i \(-0.725136\pi\)
0.760129 + 0.649772i \(0.225136\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −10.0000 10.0000i −0.367112 0.367112i
\(743\) 34.0000i 1.24734i 0.781688 + 0.623670i \(0.214359\pi\)
−0.781688 + 0.623670i \(0.785641\pi\)
\(744\) 30.0000i 1.09985i
\(745\) 9.00000 3.00000i 0.329734 0.109911i
\(746\) 15.0000 15.0000i 0.549189 0.549189i
\(747\) −6.00000 −0.219529
\(748\) −2.00000 −0.0731272
\(749\) −14.0000 + 14.0000i −0.511549 + 0.511549i
\(750\) 9.00000 13.0000i 0.328634 0.474693i
\(751\) 50.0000i 1.82453i −0.409605 0.912263i \(-0.634333\pi\)
0.409605 0.912263i \(-0.365667\pi\)
\(752\) 6.00000i 0.218797i
\(753\) 2.00000 + 2.00000i 0.0728841 + 0.0728841i
\(754\) 0 0
\(755\) −21.0000 + 7.00000i −0.764268 + 0.254756i
\(756\) 8.00000 8.00000i 0.290957 0.290957i
\(757\) −35.0000 35.0000i −1.27210 1.27210i −0.944986 0.327111i \(-0.893925\pi\)
−0.327111 0.944986i \(-0.606075\pi\)
\(758\) −1.00000 1.00000i −0.0363216 0.0363216i
\(759\) 6.00000 + 6.00000i 0.217786 + 0.217786i
\(760\) 45.0000 15.0000i 1.63232 0.544107i
\(761\) 7.00000 + 7.00000i 0.253750 + 0.253750i 0.822506 0.568756i \(-0.192575\pi\)
−0.568756 + 0.822506i \(0.692575\pi\)
\(762\) 18.0000i 0.652071i
\(763\) 18.0000 18.0000i 0.651644 0.651644i
\(764\) −8.00000 −0.289430
\(765\) 3.00000 1.00000i 0.108465 0.0361551i
\(766\) 30.0000i 1.08394i
\(767\) 0 0
\(768\) −17.0000 + 17.0000i −0.613435 + 0.613435i
\(769\) 15.0000 + 15.0000i 0.540914 + 0.540914i 0.923797 0.382883i \(-0.125069\pi\)
−0.382883 + 0.923797i \(0.625069\pi\)
\(770\) −2.00000 6.00000i −0.0720750 0.216225i
\(771\) 22.0000i 0.792311i
\(772\) 18.0000 0.647834
\(773\) 32.0000i 1.15096i −0.817816 0.575480i \(-0.804815\pi\)
0.817816 0.575480i \(-0.195185\pi\)
\(774\) −1.00000 + 1.00000i −0.0359443 + 0.0359443i
\(775\) 35.0000 + 5.00000i 1.25724 + 0.179605i
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) 18.0000 0.645331
\(779\) 70.0000 2.50801
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) −6.00000 −0.214560
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 39.0000 13.0000i 1.39197 0.463990i
\(786\) 20.0000 20.0000i 0.713376 0.713376i
\(787\) 22.0000i 0.784215i 0.919919 + 0.392108i \(0.128254\pi\)
−0.919919 + 0.392108i \(0.871746\pi\)
\(788\) 6.00000 0.213741
\(789\) 2.00000i 0.0712019i
\(790\) 4.00000 + 2.00000i 0.142314 + 0.0711568i
\(791\) 10.0000 + 10.0000i 0.355559 + 0.355559i
\(792\) −3.00000 + 3.00000i −0.106600 + 0.106600i
\(793\) 0 0
\(794\) 16.0000i 0.567819i
\(795\) −20.0000 10.0000i −0.709327 0.354663i
\(796\) 8.00000 0.283552
\(797\) 17.0000 17.0000i 0.602171 0.602171i −0.338717 0.940888i \(-0.609993\pi\)
0.940888 + 0.338717i \(0.109993\pi\)
\(798\) 20.0000i 0.707992i
\(799\) −6.00000 6.00000i −0.212265 0.212265i
\(800\) 15.0000 + 20.0000i 0.530330 + 0.707107i
\(801\) −5.00000 5.00000i −0.176666 0.176666i
\(802\) −11.0000 11.0000i −0.388424 0.388424i
\(803\) 10.0000 + 10.0000i 0.352892 + 0.352892i
\(804\) −4.00000 + 4.00000i −0.141069 + 0.141069i
\(805\) 6.00000 + 18.0000i 0.211472 + 0.634417i
\(806\) 0 0
\(807\) 12.0000 + 12.0000i 0.422420 + 0.422420i
\(808\) 36.0000i 1.26648i
\(809\) 28.0000i 0.984428i 0.870474 + 0.492214i \(0.163812\pi\)
−0.870474 + 0.492214i \(0.836188\pi\)
\(810\) −5.00000 + 10.0000i −0.175682 + 0.351364i
\(811\) 27.0000 27.0000i 0.948098 0.948098i −0.0506198 0.998718i \(-0.516120\pi\)
0.998718 + 0.0506198i \(0.0161197\pi\)
\(812\) 0 0
\(813\) 18.0000 0.631288
\(814\) 0 0
\(815\) −4.00000 + 8.00000i −0.140114 + 0.280228i
\(816\) 2.00000i 0.0700140i
\(817\) 10.0000i 0.349856i
\(818\) −7.00000 7.00000i −0.244749 0.244749i
\(819\) 0 0
\(820\) 7.00000 + 21.0000i 0.244451 + 0.733352i
\(821\) −9.00000 + 9.00000i −0.314102 + 0.314102i −0.846496 0.532394i \(-0.821292\pi\)
0.532394 + 0.846496i \(0.321292\pi\)
\(822\) −16.0000 16.0000i −0.558064 0.558064i
\(823\) −9.00000 9.00000i −0.313720 0.313720i 0.532629 0.846349i \(-0.321204\pi\)
−0.846349 + 0.532629i \(0.821204\pi\)
\(824\) 21.0000 + 21.0000i 0.731570 + 0.731570i
\(825\) −6.00000 8.00000i −0.208893 0.278524i
\(826\) −14.0000 14.0000i −0.487122 0.487122i
\(827\) 46.0000i 1.59958i 0.600282 + 0.799788i \(0.295055\pi\)
−0.600282 + 0.799788i \(0.704945\pi\)
\(828\) 3.00000 3.00000i 0.104257 0.104257i
\(829\) 34.0000 1.18087 0.590434 0.807086i \(-0.298956\pi\)
0.590434 + 0.807086i \(0.298956\pi\)
\(830\) −12.0000 6.00000i −0.416526 0.208263i
\(831\) 30.0000i 1.04069i
\(832\) 0 0
\(833\) 3.00000 3.00000i 0.103944 0.103944i
\(834\) 14.0000 + 14.0000i 0.484780 + 0.484780i
\(835\) 36.0000 + 18.0000i 1.24583 + 0.622916i
\(836\) 10.0000i 0.345857i
\(837\) −40.0000 −1.38260
\(838\) 38.0000i 1.31269i
\(839\) 35.0000 35.0000i 1.20833 1.20833i 0.236768 0.971566i \(-0.423912\pi\)
0.971566 0.236768i \(-0.0760881\pi\)
\(840\) 18.0000 6.00000i 0.621059 0.207020i
\(841\) 29.0000 1.00000
\(842\) −11.0000 + 11.0000i −0.379085 + 0.379085i
\(843\) −2.00000 −0.0688837
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) 18.0000 0.618487
\(848\) −5.00000 + 5.00000i −0.171701 + 0.171701i
\(849\) −18.0000 −0.617758
\(850\) 7.00000 + 1.00000i 0.240098 + 0.0342997i
\(851\) 0 0
\(852\) 2.00000i 0.0685189i
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 28.0000i 0.958140i
\(855\) 5.00000 + 15.0000i 0.170996 + 0.512989i
\(856\) 21.0000 + 21.0000i 0.717765 + 0.717765i
\(857\) −3.00000 + 3.00000i −0.102478 + 0.102478i −0.756487 0.654009i \(-0.773086\pi\)
0.654009 + 0.756487i \(0.273086\pi\)
\(858\) 0 0
\(859\) 30.0000i 1.02359i −0.859109 0.511793i \(-0.828981\pi\)
0.859109 0.511793i \(-0.171019\pi\)
\(860\) 3.00000 1.00000i 0.102299 0.0340997i
\(861\) 28.0000 0.954237
\(862\) 13.0000 13.0000i 0.442782 0.442782i
\(863\) 30.0000i 1.02121i −0.859815 0.510606i \(-0.829421\pi\)
0.859815 0.510606i \(-0.170579\pi\)
\(864\) −20.0000 20.0000i −0.680414 0.680414i
\(865\) −33.0000 + 11.0000i −1.12203 + 0.374011i
\(866\) −17.0000 17.0000i −0.577684 0.577684i
\(867\) 15.0000 + 15.0000i 0.509427 + 0.509427i
\(868\) 10.0000 + 10.0000i 0.339422 + 0.339422i
\(869\) 2.00000 2.00000i 0.0678454 0.0678454i
\(870\) 0 0
\(871\) 0 0
\(872\) −27.0000 27.0000i −0.914335 0.914335i
\(873\) 2.00000i 0.0676897i
\(874\) 30.0000i 1.01477i
\(875\) −4.00000 22.0000i −0.135225 0.743736i
\(876\) −10.0000 + 10.0000i −0.337869 + 0.337869i
\(877\) −38.0000 −1.28317 −0.641584 0.767052i \(-0.721723\pi\)
−0.641584 + 0.767052i \(0.721723\pi\)
\(878\) 0 0
\(879\) 6.00000 6.00000i 0.202375 0.202375i
\(880\) −3.00000 + 1.00000i −0.101130 + 0.0337100i
\(881\) 52.0000i 1.75192i −0.482380 0.875962i \(-0.660227\pi\)
0.482380 0.875962i \(-0.339773\pi\)
\(882\) 3.00000i 0.101015i
\(883\) 39.0000 + 39.0000i 1.31245 + 1.31245i 0.919601 + 0.392853i \(0.128512\pi\)
0.392853 + 0.919601i \(0.371488\pi\)
\(884\) 0 0
\(885\) −28.0000 14.0000i −0.941210 0.470605i
\(886\) −25.0000 + 25.0000i −0.839891 + 0.839891i
\(887\) −1.00000 1.00000i −0.0335767 0.0335767i 0.690119 0.723696i \(-0.257558\pi\)
−0.723696 + 0.690119i \(0.757558\pi\)
\(888\) 0 0
\(889\) 18.0000 + 18.0000i 0.603701 + 0.603701i
\(890\) −5.00000 15.0000i −0.167600 0.502801i
\(891\) 5.00000 + 5.00000i 0.167506 + 0.167506i
\(892\) 2.00000i 0.0669650i
\(893\) 30.0000 30.0000i 1.00391 1.00391i
\(894\) −6.00000 −0.200670
\(895\) −20.0000 + 40.0000i −0.668526 + 1.33705i
\(896\) 6.00000i 0.200446i
\(897\) 0 0
\(898\) −3.00000 + 3.00000i −0.100111 + 0.100111i
\(899\) 0 0
\(900\) −4.00000 + 3.00000i −0.133333 + 0.100000i
\(901\) 10.0000i 0.333148i
\(902\) −14.0000 −0.466149
\(903\) 4.00000i 0.133112i
\(904\) 15.0000 15.0000i 0.498893 0.498893i
\(905\) −16.0000 8.00000i −0.531858 0.265929i
\(906\) 14.0000 0.465119
\(907\) −39.0000 + 39.0000i −1.29497 + 1.29497i −0.363303 + 0.931671i \(0.618351\pi\)
−0.931671 + 0.363303i \(0.881649\pi\)
\(908\) −12.0000 −0.398234
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) −10.0000 −0.331133
\(913\) −6.00000 + 6.00000i −0.198571 + 0.198571i
\(914\) 2.00000 0.0661541
\(915\) 14.0000 + 42.0000i 0.462826 + 1.38848i
\(916\) −3.00000 + 3.00000i −0.0991228 + 0.0991228i
\(917\) 40.0000i 1.32092i
\(918\) −8.00000 −0.264039
\(919\) 10.0000i 0.329870i −0.986304 0.164935i \(-0.947259\pi\)
0.986304 0.164935i \(-0.0527414\pi\)
\(920\) 27.0000 9.00000i 0.890164 0.296721i
\(921\) −18.0000 18.0000i −0.593120 0.593120i
\(922\) 17.0000 17.0000i 0.559865 0.559865i
\(923\) 0 0
\(924\) 4.00000i 0.131590i
\(925\) 0 0
\(926\) −24.0000 −0.788689
\(927\) −7.00000 + 7.00000i −0.229910 + 0.229910i
\(928\) 0 0
\(929\) 19.0000 + 19.0000i 0.623370 + 0.623370i 0.946392 0.323022i \(-0.104699\pi\)
−0.323022 + 0.946392i \(0.604699\pi\)
\(930\) −20.0000 10.0000i −0.655826 0.327913i
\(931\) 15.0000 + 15.0000i 0.491605 + 0.491605i
\(932\) −1.00000 1.00000i −0.0327561 0.0327561i
\(933\) 6.00000 + 6.00000i 0.196431 + 0.196431i
\(934\) −9.00000 + 9.00000i −0.294489 + 0.294489i
\(935\) 2.00000 4.00000i 0.0654070 0.130814i
\(936\) 0 0
\(937\) −7.00000 7.00000i −0.228680 0.228680i 0.583461 0.812141i \(-0.301698\pi\)
−0.812141 + 0.583461i \(0.801698\pi\)
\(938\) 8.00000i 0.261209i
\(939\) 18.0000i 0.587408i
\(940\) 12.0000 + 6.00000i 0.391397 + 0.195698i
\(941\) −21.0000 + 21.0000i −0.684580 + 0.684580i −0.961029 0.276448i \(-0.910843\pi\)
0.276448 + 0.961029i \(0.410843\pi\)
\(942\) −26.0000 −0.847126
\(943\) 42.0000 1.36771
\(944\) −7.00000 + 7.00000i −0.227831 + 0.227831i
\(945\) 8.00000 + 24.0000i 0.260240 + 0.780720i
\(946\) 2.00000i 0.0650256i
\(947\) 18.0000i 0.584921i −0.956278 0.292461i \(-0.905526\pi\)
0.956278 0.292461i \(-0.0944741\pi\)
\(948\) 2.00000 + 2.00000i 0.0649570 + 0.0649570i
\(949\) 0 0
\(950\) −5.00000 + 35.0000i −0.162221 + 1.13555i
\(951\) 14.0000 14.0000i 0.453981 0.453981i
\(952\) 6.00000 + 6.00000i 0.194461 + 0.194461i
\(953\) 13.0000 + 13.0000i 0.421111 + 0.421111i 0.885586 0.464475i \(-0.153757\pi\)
−0.464475 + 0.885586i \(0.653757\pi\)
\(954\) −5.00000 5.00000i −0.161881 0.161881i
\(955\) 8.00000 16.0000i 0.258874 0.517748i
\(956\) 3.00000 + 3.00000i 0.0970269 + 0.0970269i
\(957\) 0 0
\(958\) −7.00000 + 7.00000i −0.226160 + 0.226160i
\(959\) −32.0000 −1.03333
\(960\) −7.00000 21.0000i −0.225924 0.677772i
\(961\) 19.0000i 0.612903i
\(962\) 0 0
\(963\) −7.00000 + 7.00000i −0.225572 + 0.225572i
\(964\) 17.0000 + 17.0000i 0.547533 + 0.547533i
\(965\) −18.0000 + 36.0000i −0.579441 + 1.15888i
\(966\) 12.0000i 0.386094i
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 27.0000i 0.867813i
\(969\) 10.0000 10.0000i 0.321246 0.321246i
\(970\) 2.00000 4.00000i 0.0642161 0.128432i
\(971\) −60.0000 −1.92549 −0.962746 0.270408i \(-0.912841\pi\)
−0.962746 + 0.270408i \(0.912841\pi\)
\(972\) 7.00000 7.00000i 0.224525 0.224525i
\(973\) 28.0000 0.897639
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) −62.0000 −1.98356 −0.991778 0.127971i \(-0.959153\pi\)
−0.991778 + 0.127971i \(0.959153\pi\)
\(978\) 4.00000 4.00000i 0.127906 0.127906i
\(979\) −10.0000 −0.319601
\(980\) −3.00000 + 6.00000i −0.0958315 + 0.191663i
\(981\) 9.00000 9.00000i 0.287348 0.287348i
\(982\) 22.0000i 0.702048i
\(983\) 24.0000 0.765481 0.382741 0.923856i \(-0.374980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(984\) 42.0000i 1.33891i
\(985\) −6.00000 + 12.0000i −0.191176 + 0.382352i
\(986\) 0 0
\(987\) 12.0000 12.0000i 0.381964 0.381964i
\(988\) 0 0
\(989\) 6.00000i 0.190789i
\(990\) −1.00000 3.00000i −0.0317821 0.0953463i
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 25.0000 25.0000i 0.793751 0.793751i
\(993\) 6.00000i 0.190404i
\(994\) 2.00000 + 2.00000i 0.0634361 + 0.0634361i
\(995\) −8.00000 + 16.0000i −0.253617 + 0.507234i
\(996\) −6.00000 6.00000i −0.190117 0.190117i
\(997\) 9.00000 + 9.00000i 0.285033 + 0.285033i 0.835112 0.550079i \(-0.185403\pi\)
−0.550079 + 0.835112i \(0.685403\pi\)
\(998\) 3.00000 + 3.00000i 0.0949633 + 0.0949633i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.k.a.577.1 2
5.3 odd 4 845.2.f.a.408.1 2
13.2 odd 12 845.2.t.a.657.1 4
13.3 even 3 845.2.o.b.357.1 4
13.4 even 6 845.2.o.a.587.1 4
13.5 odd 4 65.2.f.a.47.1 yes 2
13.6 odd 12 845.2.t.a.427.1 4
13.7 odd 12 845.2.t.b.427.1 4
13.8 odd 4 845.2.f.a.437.1 2
13.9 even 3 845.2.o.b.587.1 4
13.10 even 6 845.2.o.a.357.1 4
13.11 odd 12 845.2.t.b.657.1 4
13.12 even 2 65.2.k.a.57.1 yes 2
39.5 even 4 585.2.n.c.307.1 2
39.38 odd 2 585.2.w.b.577.1 2
52.31 even 4 1040.2.cd.b.177.1 2
52.51 odd 2 1040.2.bg.a.577.1 2
65.3 odd 12 845.2.t.b.188.1 4
65.8 even 4 inner 845.2.k.a.268.1 2
65.12 odd 4 325.2.f.a.18.1 2
65.18 even 4 65.2.k.a.8.1 yes 2
65.23 odd 12 845.2.t.a.188.1 4
65.28 even 12 845.2.o.a.488.1 4
65.33 even 12 845.2.o.b.258.1 4
65.38 odd 4 65.2.f.a.18.1 2
65.43 odd 12 845.2.t.a.418.1 4
65.44 odd 4 325.2.f.a.307.1 2
65.48 odd 12 845.2.t.b.418.1 4
65.57 even 4 325.2.k.a.268.1 2
65.58 even 12 845.2.o.a.258.1 4
65.63 even 12 845.2.o.b.488.1 4
65.64 even 2 325.2.k.a.57.1 2
195.38 even 4 585.2.n.c.343.1 2
195.83 odd 4 585.2.w.b.73.1 2
260.83 odd 4 1040.2.bg.a.593.1 2
260.103 even 4 1040.2.cd.b.993.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.f.a.18.1 2 65.38 odd 4
65.2.f.a.47.1 yes 2 13.5 odd 4
65.2.k.a.8.1 yes 2 65.18 even 4
65.2.k.a.57.1 yes 2 13.12 even 2
325.2.f.a.18.1 2 65.12 odd 4
325.2.f.a.307.1 2 65.44 odd 4
325.2.k.a.57.1 2 65.64 even 2
325.2.k.a.268.1 2 65.57 even 4
585.2.n.c.307.1 2 39.5 even 4
585.2.n.c.343.1 2 195.38 even 4
585.2.w.b.73.1 2 195.83 odd 4
585.2.w.b.577.1 2 39.38 odd 2
845.2.f.a.408.1 2 5.3 odd 4
845.2.f.a.437.1 2 13.8 odd 4
845.2.k.a.268.1 2 65.8 even 4 inner
845.2.k.a.577.1 2 1.1 even 1 trivial
845.2.o.a.258.1 4 65.58 even 12
845.2.o.a.357.1 4 13.10 even 6
845.2.o.a.488.1 4 65.28 even 12
845.2.o.a.587.1 4 13.4 even 6
845.2.o.b.258.1 4 65.33 even 12
845.2.o.b.357.1 4 13.3 even 3
845.2.o.b.488.1 4 65.63 even 12
845.2.o.b.587.1 4 13.9 even 3
845.2.t.a.188.1 4 65.23 odd 12
845.2.t.a.418.1 4 65.43 odd 12
845.2.t.a.427.1 4 13.6 odd 12
845.2.t.a.657.1 4 13.2 odd 12
845.2.t.b.188.1 4 65.3 odd 12
845.2.t.b.418.1 4 65.48 odd 12
845.2.t.b.427.1 4 13.7 odd 12
845.2.t.b.657.1 4 13.11 odd 12
1040.2.bg.a.577.1 2 52.51 odd 2
1040.2.bg.a.593.1 2 260.83 odd 4
1040.2.cd.b.177.1 2 52.31 even 4
1040.2.cd.b.993.1 2 260.103 even 4