Properties

Label 845.2.f.a.437.1
Level $845$
Weight $2$
Character 845.437
Analytic conductor $6.747$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(408,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.408");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 437.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 845.437
Dual form 845.2.f.a.408.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(1.00000 - 1.00000i) q^{3} +1.00000 q^{4} +(2.00000 + 1.00000i) q^{5} +(-1.00000 - 1.00000i) q^{6} +2.00000 q^{7} -3.00000i q^{8} +1.00000i q^{9} +(1.00000 - 2.00000i) q^{10} +(1.00000 - 1.00000i) q^{11} +(1.00000 - 1.00000i) q^{12} -2.00000i q^{14} +(3.00000 - 1.00000i) q^{15} -1.00000 q^{16} +(-1.00000 + 1.00000i) q^{17} +1.00000 q^{18} +(-5.00000 + 5.00000i) q^{19} +(2.00000 + 1.00000i) q^{20} +(2.00000 - 2.00000i) q^{21} +(-1.00000 - 1.00000i) q^{22} +(-3.00000 - 3.00000i) q^{23} +(-3.00000 - 3.00000i) q^{24} +(3.00000 + 4.00000i) q^{25} +(4.00000 + 4.00000i) q^{27} +2.00000 q^{28} +(-1.00000 - 3.00000i) q^{30} +(-5.00000 - 5.00000i) q^{31} -5.00000i q^{32} -2.00000i q^{33} +(1.00000 + 1.00000i) q^{34} +(4.00000 + 2.00000i) q^{35} +1.00000i q^{36} +(5.00000 + 5.00000i) q^{38} +(3.00000 - 6.00000i) q^{40} +(7.00000 + 7.00000i) q^{41} +(-2.00000 - 2.00000i) q^{42} +(1.00000 + 1.00000i) q^{43} +(1.00000 - 1.00000i) q^{44} +(-1.00000 + 2.00000i) q^{45} +(-3.00000 + 3.00000i) q^{46} -6.00000 q^{47} +(-1.00000 + 1.00000i) q^{48} -3.00000 q^{49} +(4.00000 - 3.00000i) q^{50} +2.00000i q^{51} +(5.00000 - 5.00000i) q^{53} +(4.00000 - 4.00000i) q^{54} +(3.00000 - 1.00000i) q^{55} -6.00000i q^{56} +10.0000i q^{57} +(-7.00000 - 7.00000i) q^{59} +(3.00000 - 1.00000i) q^{60} -14.0000 q^{61} +(-5.00000 + 5.00000i) q^{62} +2.00000i q^{63} -7.00000 q^{64} -2.00000 q^{66} +4.00000i q^{67} +(-1.00000 + 1.00000i) q^{68} -6.00000 q^{69} +(2.00000 - 4.00000i) q^{70} +(-1.00000 - 1.00000i) q^{71} +3.00000 q^{72} -10.0000i q^{73} +(7.00000 + 1.00000i) q^{75} +(-5.00000 + 5.00000i) q^{76} +(2.00000 - 2.00000i) q^{77} -2.00000i q^{79} +(-2.00000 - 1.00000i) q^{80} +5.00000 q^{81} +(7.00000 - 7.00000i) q^{82} -6.00000 q^{83} +(2.00000 - 2.00000i) q^{84} +(-3.00000 + 1.00000i) q^{85} +(1.00000 - 1.00000i) q^{86} +(-3.00000 - 3.00000i) q^{88} +(5.00000 + 5.00000i) q^{89} +(2.00000 + 1.00000i) q^{90} +(-3.00000 - 3.00000i) q^{92} -10.0000 q^{93} +6.00000i q^{94} +(-15.0000 + 5.00000i) q^{95} +(-5.00000 - 5.00000i) q^{96} -2.00000i q^{97} +3.00000i q^{98} +(1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{4} + 4 q^{5} - 2 q^{6} + 4 q^{7} + 2 q^{10} + 2 q^{11} + 2 q^{12} + 6 q^{15} - 2 q^{16} - 2 q^{17} + 2 q^{18} - 10 q^{19} + 4 q^{20} + 4 q^{21} - 2 q^{22} - 6 q^{23} - 6 q^{24} + 6 q^{25}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i −0.935414 0.353553i \(-0.884973\pi\)
0.935414 0.353553i \(-0.115027\pi\)
\(3\) 1.00000 1.00000i 0.577350 0.577350i −0.356822 0.934172i \(-0.616140\pi\)
0.934172 + 0.356822i \(0.116140\pi\)
\(4\) 1.00000 0.500000
\(5\) 2.00000 + 1.00000i 0.894427 + 0.447214i
\(6\) −1.00000 1.00000i −0.408248 0.408248i
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 1.00000i 0.333333i
\(10\) 1.00000 2.00000i 0.316228 0.632456i
\(11\) 1.00000 1.00000i 0.301511 0.301511i −0.540094 0.841605i \(-0.681611\pi\)
0.841605 + 0.540094i \(0.181611\pi\)
\(12\) 1.00000 1.00000i 0.288675 0.288675i
\(13\) 0 0
\(14\) 2.00000i 0.534522i
\(15\) 3.00000 1.00000i 0.774597 0.258199i
\(16\) −1.00000 −0.250000
\(17\) −1.00000 + 1.00000i −0.242536 + 0.242536i −0.817898 0.575363i \(-0.804861\pi\)
0.575363 + 0.817898i \(0.304861\pi\)
\(18\) 1.00000 0.235702
\(19\) −5.00000 + 5.00000i −1.14708 + 1.14708i −0.159954 + 0.987124i \(0.551135\pi\)
−0.987124 + 0.159954i \(0.948865\pi\)
\(20\) 2.00000 + 1.00000i 0.447214 + 0.223607i
\(21\) 2.00000 2.00000i 0.436436 0.436436i
\(22\) −1.00000 1.00000i −0.213201 0.213201i
\(23\) −3.00000 3.00000i −0.625543 0.625543i 0.321400 0.946943i \(-0.395847\pi\)
−0.946943 + 0.321400i \(0.895847\pi\)
\(24\) −3.00000 3.00000i −0.612372 0.612372i
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 4.00000 + 4.00000i 0.769800 + 0.769800i
\(28\) 2.00000 0.377964
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −1.00000 3.00000i −0.182574 0.547723i
\(31\) −5.00000 5.00000i −0.898027 0.898027i 0.0972349 0.995261i \(-0.469000\pi\)
−0.995261 + 0.0972349i \(0.969000\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 2.00000i 0.348155i
\(34\) 1.00000 + 1.00000i 0.171499 + 0.171499i
\(35\) 4.00000 + 2.00000i 0.676123 + 0.338062i
\(36\) 1.00000i 0.166667i
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 5.00000 + 5.00000i 0.811107 + 0.811107i
\(39\) 0 0
\(40\) 3.00000 6.00000i 0.474342 0.948683i
\(41\) 7.00000 + 7.00000i 1.09322 + 1.09322i 0.995183 + 0.0980332i \(0.0312551\pi\)
0.0980332 + 0.995183i \(0.468745\pi\)
\(42\) −2.00000 2.00000i −0.308607 0.308607i
\(43\) 1.00000 + 1.00000i 0.152499 + 0.152499i 0.779233 0.626734i \(-0.215609\pi\)
−0.626734 + 0.779233i \(0.715609\pi\)
\(44\) 1.00000 1.00000i 0.150756 0.150756i
\(45\) −1.00000 + 2.00000i −0.149071 + 0.298142i
\(46\) −3.00000 + 3.00000i −0.442326 + 0.442326i
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) −1.00000 + 1.00000i −0.144338 + 0.144338i
\(49\) −3.00000 −0.428571
\(50\) 4.00000 3.00000i 0.565685 0.424264i
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 5.00000 5.00000i 0.686803 0.686803i −0.274721 0.961524i \(-0.588586\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) 4.00000 4.00000i 0.544331 0.544331i
\(55\) 3.00000 1.00000i 0.404520 0.134840i
\(56\) 6.00000i 0.801784i
\(57\) 10.0000i 1.32453i
\(58\) 0 0
\(59\) −7.00000 7.00000i −0.911322 0.911322i 0.0850540 0.996376i \(-0.472894\pi\)
−0.996376 + 0.0850540i \(0.972894\pi\)
\(60\) 3.00000 1.00000i 0.387298 0.129099i
\(61\) −14.0000 −1.79252 −0.896258 0.443533i \(-0.853725\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) −5.00000 + 5.00000i −0.635001 + 0.635001i
\(63\) 2.00000i 0.251976i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) 4.00000i 0.488678i 0.969690 + 0.244339i \(0.0785709\pi\)
−0.969690 + 0.244339i \(0.921429\pi\)
\(68\) −1.00000 + 1.00000i −0.121268 + 0.121268i
\(69\) −6.00000 −0.722315
\(70\) 2.00000 4.00000i 0.239046 0.478091i
\(71\) −1.00000 1.00000i −0.118678 0.118678i 0.645273 0.763952i \(-0.276743\pi\)
−0.763952 + 0.645273i \(0.776743\pi\)
\(72\) 3.00000 0.353553
\(73\) 10.0000i 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) 0 0
\(75\) 7.00000 + 1.00000i 0.808290 + 0.115470i
\(76\) −5.00000 + 5.00000i −0.573539 + 0.573539i
\(77\) 2.00000 2.00000i 0.227921 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i −0.993651 0.112509i \(-0.964111\pi\)
0.993651 0.112509i \(-0.0358886\pi\)
\(80\) −2.00000 1.00000i −0.223607 0.111803i
\(81\) 5.00000 0.555556
\(82\) 7.00000 7.00000i 0.773021 0.773021i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 2.00000 2.00000i 0.218218 0.218218i
\(85\) −3.00000 + 1.00000i −0.325396 + 0.108465i
\(86\) 1.00000 1.00000i 0.107833 0.107833i
\(87\) 0 0
\(88\) −3.00000 3.00000i −0.319801 0.319801i
\(89\) 5.00000 + 5.00000i 0.529999 + 0.529999i 0.920572 0.390573i \(-0.127723\pi\)
−0.390573 + 0.920572i \(0.627723\pi\)
\(90\) 2.00000 + 1.00000i 0.210819 + 0.105409i
\(91\) 0 0
\(92\) −3.00000 3.00000i −0.312772 0.312772i
\(93\) −10.0000 −1.03695
\(94\) 6.00000i 0.618853i
\(95\) −15.0000 + 5.00000i −1.53897 + 0.512989i
\(96\) −5.00000 5.00000i −0.510310 0.510310i
\(97\) 2.00000i 0.203069i −0.994832 0.101535i \(-0.967625\pi\)
0.994832 0.101535i \(-0.0323753\pi\)
\(98\) 3.00000i 0.303046i
\(99\) 1.00000 + 1.00000i 0.100504 + 0.100504i
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) 12.0000i 1.19404i −0.802225 0.597022i \(-0.796350\pi\)
0.802225 0.597022i \(-0.203650\pi\)
\(102\) 2.00000 0.198030
\(103\) −7.00000 7.00000i −0.689730 0.689730i 0.272442 0.962172i \(-0.412169\pi\)
−0.962172 + 0.272442i \(0.912169\pi\)
\(104\) 0 0
\(105\) 6.00000 2.00000i 0.585540 0.195180i
\(106\) −5.00000 5.00000i −0.485643 0.485643i
\(107\) 7.00000 + 7.00000i 0.676716 + 0.676716i 0.959256 0.282540i \(-0.0911770\pi\)
−0.282540 + 0.959256i \(0.591177\pi\)
\(108\) 4.00000 + 4.00000i 0.384900 + 0.384900i
\(109\) 9.00000 9.00000i 0.862044 0.862044i −0.129532 0.991575i \(-0.541347\pi\)
0.991575 + 0.129532i \(0.0413474\pi\)
\(110\) −1.00000 3.00000i −0.0953463 0.286039i
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) 5.00000 5.00000i 0.470360 0.470360i −0.431671 0.902031i \(-0.642076\pi\)
0.902031 + 0.431671i \(0.142076\pi\)
\(114\) 10.0000 0.936586
\(115\) −3.00000 9.00000i −0.279751 0.839254i
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 + 7.00000i −0.644402 + 0.644402i
\(119\) −2.00000 + 2.00000i −0.183340 + 0.183340i
\(120\) −3.00000 9.00000i −0.273861 0.821584i
\(121\) 9.00000i 0.818182i
\(122\) 14.0000i 1.26750i
\(123\) 14.0000 1.26234
\(124\) −5.00000 5.00000i −0.449013 0.449013i
\(125\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(126\) 2.00000 0.178174
\(127\) −9.00000 + 9.00000i −0.798621 + 0.798621i −0.982878 0.184257i \(-0.941012\pi\)
0.184257 + 0.982878i \(0.441012\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 2.00000i 0.174078i
\(133\) −10.0000 + 10.0000i −0.867110 + 0.867110i
\(134\) 4.00000 0.345547
\(135\) 4.00000 + 12.0000i 0.344265 + 1.03280i
\(136\) 3.00000 + 3.00000i 0.257248 + 0.257248i
\(137\) 16.0000 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(138\) 6.00000i 0.510754i
\(139\) 14.0000i 1.18746i −0.804663 0.593732i \(-0.797654\pi\)
0.804663 0.593732i \(-0.202346\pi\)
\(140\) 4.00000 + 2.00000i 0.338062 + 0.169031i
\(141\) −6.00000 + 6.00000i −0.505291 + 0.505291i
\(142\) −1.00000 + 1.00000i −0.0839181 + 0.0839181i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) −10.0000 −0.827606
\(147\) −3.00000 + 3.00000i −0.247436 + 0.247436i
\(148\) 0 0
\(149\) −3.00000 + 3.00000i −0.245770 + 0.245770i −0.819232 0.573462i \(-0.805600\pi\)
0.573462 + 0.819232i \(0.305600\pi\)
\(150\) 1.00000 7.00000i 0.0816497 0.571548i
\(151\) −7.00000 + 7.00000i −0.569652 + 0.569652i −0.932031 0.362379i \(-0.881965\pi\)
0.362379 + 0.932031i \(0.381965\pi\)
\(152\) 15.0000 + 15.0000i 1.21666 + 1.21666i
\(153\) −1.00000 1.00000i −0.0808452 0.0808452i
\(154\) −2.00000 2.00000i −0.161165 0.161165i
\(155\) −5.00000 15.0000i −0.401610 1.20483i
\(156\) 0 0
\(157\) 13.0000 + 13.0000i 1.03751 + 1.03751i 0.999268 + 0.0382445i \(0.0121766\pi\)
0.0382445 + 0.999268i \(0.487823\pi\)
\(158\) −2.00000 −0.159111
\(159\) 10.0000i 0.793052i
\(160\) 5.00000 10.0000i 0.395285 0.790569i
\(161\) −6.00000 6.00000i −0.472866 0.472866i
\(162\) 5.00000i 0.392837i
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 7.00000 + 7.00000i 0.546608 + 0.546608i
\(165\) 2.00000 4.00000i 0.155700 0.311400i
\(166\) 6.00000i 0.465690i
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) −6.00000 6.00000i −0.462910 0.462910i
\(169\) 0 0
\(170\) 1.00000 + 3.00000i 0.0766965 + 0.230089i
\(171\) −5.00000 5.00000i −0.382360 0.382360i
\(172\) 1.00000 + 1.00000i 0.0762493 + 0.0762493i
\(173\) 11.0000 + 11.0000i 0.836315 + 0.836315i 0.988372 0.152057i \(-0.0485898\pi\)
−0.152057 + 0.988372i \(0.548590\pi\)
\(174\) 0 0
\(175\) 6.00000 + 8.00000i 0.453557 + 0.604743i
\(176\) −1.00000 + 1.00000i −0.0753778 + 0.0753778i
\(177\) −14.0000 −1.05230
\(178\) 5.00000 5.00000i 0.374766 0.374766i
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) −1.00000 + 2.00000i −0.0745356 + 0.149071i
\(181\) 8.00000i 0.594635i 0.954779 + 0.297318i \(0.0960920\pi\)
−0.954779 + 0.297318i \(0.903908\pi\)
\(182\) 0 0
\(183\) −14.0000 + 14.0000i −1.03491 + 1.03491i
\(184\) −9.00000 + 9.00000i −0.663489 + 0.663489i
\(185\) 0 0
\(186\) 10.0000i 0.733236i
\(187\) 2.00000i 0.146254i
\(188\) −6.00000 −0.437595
\(189\) 8.00000 + 8.00000i 0.581914 + 0.581914i
\(190\) 5.00000 + 15.0000i 0.362738 + 1.08821i
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) −7.00000 + 7.00000i −0.505181 + 0.505181i
\(193\) 18.0000i 1.29567i 0.761781 + 0.647834i \(0.224325\pi\)
−0.761781 + 0.647834i \(0.775675\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 6.00000i 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 1.00000 1.00000i 0.0710669 0.0710669i
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 12.0000 9.00000i 0.848528 0.636396i
\(201\) 4.00000 + 4.00000i 0.282138 + 0.282138i
\(202\) −12.0000 −0.844317
\(203\) 0 0
\(204\) 2.00000i 0.140028i
\(205\) 7.00000 + 21.0000i 0.488901 + 1.46670i
\(206\) −7.00000 + 7.00000i −0.487713 + 0.487713i
\(207\) 3.00000 3.00000i 0.208514 0.208514i
\(208\) 0 0
\(209\) 10.0000i 0.691714i
\(210\) −2.00000 6.00000i −0.138013 0.414039i
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 5.00000 5.00000i 0.343401 0.343401i
\(213\) −2.00000 −0.137038
\(214\) 7.00000 7.00000i 0.478510 0.478510i
\(215\) 1.00000 + 3.00000i 0.0681994 + 0.204598i
\(216\) 12.0000 12.0000i 0.816497 0.816497i
\(217\) −10.0000 10.0000i −0.678844 0.678844i
\(218\) −9.00000 9.00000i −0.609557 0.609557i
\(219\) −10.0000 10.0000i −0.675737 0.675737i
\(220\) 3.00000 1.00000i 0.202260 0.0674200i
\(221\) 0 0
\(222\) 0 0
\(223\) −2.00000 −0.133930 −0.0669650 0.997755i \(-0.521332\pi\)
−0.0669650 + 0.997755i \(0.521332\pi\)
\(224\) 10.0000i 0.668153i
\(225\) −4.00000 + 3.00000i −0.266667 + 0.200000i
\(226\) −5.00000 5.00000i −0.332595 0.332595i
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 10.0000i 0.662266i
\(229\) −3.00000 3.00000i −0.198246 0.198246i 0.601002 0.799248i \(-0.294768\pi\)
−0.799248 + 0.601002i \(0.794768\pi\)
\(230\) −9.00000 + 3.00000i −0.593442 + 0.197814i
\(231\) 4.00000i 0.263181i
\(232\) 0 0
\(233\) −1.00000 1.00000i −0.0655122 0.0655122i 0.673592 0.739104i \(-0.264751\pi\)
−0.739104 + 0.673592i \(0.764751\pi\)
\(234\) 0 0
\(235\) −12.0000 6.00000i −0.782794 0.391397i
\(236\) −7.00000 7.00000i −0.455661 0.455661i
\(237\) −2.00000 2.00000i −0.129914 0.129914i
\(238\) 2.00000 + 2.00000i 0.129641 + 0.129641i
\(239\) 3.00000 3.00000i 0.194054 0.194054i −0.603391 0.797445i \(-0.706184\pi\)
0.797445 + 0.603391i \(0.206184\pi\)
\(240\) −3.00000 + 1.00000i −0.193649 + 0.0645497i
\(241\) −17.0000 + 17.0000i −1.09507 + 1.09507i −0.100088 + 0.994979i \(0.531912\pi\)
−0.994979 + 0.100088i \(0.968088\pi\)
\(242\) 9.00000 0.578542
\(243\) −7.00000 + 7.00000i −0.449050 + 0.449050i
\(244\) −14.0000 −0.896258
\(245\) −6.00000 3.00000i −0.383326 0.191663i
\(246\) 14.0000i 0.892607i
\(247\) 0 0
\(248\) −15.0000 + 15.0000i −0.952501 + 0.952501i
\(249\) −6.00000 + 6.00000i −0.380235 + 0.380235i
\(250\) 11.0000 2.00000i 0.695701 0.126491i
\(251\) 2.00000i 0.126239i −0.998006 0.0631194i \(-0.979895\pi\)
0.998006 0.0631194i \(-0.0201049\pi\)
\(252\) 2.00000i 0.125988i
\(253\) −6.00000 −0.377217
\(254\) 9.00000 + 9.00000i 0.564710 + 0.564710i
\(255\) −2.00000 + 4.00000i −0.125245 + 0.250490i
\(256\) −17.0000 −1.06250
\(257\) 11.0000 11.0000i 0.686161 0.686161i −0.275220 0.961381i \(-0.588751\pi\)
0.961381 + 0.275220i \(0.0887507\pi\)
\(258\) 2.00000i 0.124515i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 20.0000i 1.23560i
\(263\) 1.00000 1.00000i 0.0616626 0.0616626i −0.675603 0.737266i \(-0.736117\pi\)
0.737266 + 0.675603i \(0.236117\pi\)
\(264\) −6.00000 −0.369274
\(265\) 15.0000 5.00000i 0.921443 0.307148i
\(266\) 10.0000 + 10.0000i 0.613139 + 0.613139i
\(267\) 10.0000 0.611990
\(268\) 4.00000i 0.244339i
\(269\) 12.0000i 0.731653i 0.930683 + 0.365826i \(0.119214\pi\)
−0.930683 + 0.365826i \(0.880786\pi\)
\(270\) 12.0000 4.00000i 0.730297 0.243432i
\(271\) 9.00000 9.00000i 0.546711 0.546711i −0.378777 0.925488i \(-0.623655\pi\)
0.925488 + 0.378777i \(0.123655\pi\)
\(272\) 1.00000 1.00000i 0.0606339 0.0606339i
\(273\) 0 0
\(274\) 16.0000i 0.966595i
\(275\) 7.00000 + 1.00000i 0.422116 + 0.0603023i
\(276\) −6.00000 −0.361158
\(277\) 15.0000 15.0000i 0.901263 0.901263i −0.0942828 0.995545i \(-0.530056\pi\)
0.995545 + 0.0942828i \(0.0300558\pi\)
\(278\) −14.0000 −0.839664
\(279\) 5.00000 5.00000i 0.299342 0.299342i
\(280\) 6.00000 12.0000i 0.358569 0.717137i
\(281\) −1.00000 + 1.00000i −0.0596550 + 0.0596550i −0.736305 0.676650i \(-0.763431\pi\)
0.676650 + 0.736305i \(0.263431\pi\)
\(282\) 6.00000 + 6.00000i 0.357295 + 0.357295i
\(283\) 9.00000 + 9.00000i 0.534994 + 0.534994i 0.922055 0.387060i \(-0.126509\pi\)
−0.387060 + 0.922055i \(0.626509\pi\)
\(284\) −1.00000 1.00000i −0.0593391 0.0593391i
\(285\) −10.0000 + 20.0000i −0.592349 + 1.18470i
\(286\) 0 0
\(287\) 14.0000 + 14.0000i 0.826394 + 0.826394i
\(288\) 5.00000 0.294628
\(289\) 15.0000i 0.882353i
\(290\) 0 0
\(291\) −2.00000 2.00000i −0.117242 0.117242i
\(292\) 10.0000i 0.585206i
\(293\) 6.00000i 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 3.00000 + 3.00000i 0.174964 + 0.174964i
\(295\) −7.00000 21.0000i −0.407556 1.22267i
\(296\) 0 0
\(297\) 8.00000 0.464207
\(298\) 3.00000 + 3.00000i 0.173785 + 0.173785i
\(299\) 0 0
\(300\) 7.00000 + 1.00000i 0.404145 + 0.0577350i
\(301\) 2.00000 + 2.00000i 0.115278 + 0.115278i
\(302\) 7.00000 + 7.00000i 0.402805 + 0.402805i
\(303\) −12.0000 12.0000i −0.689382 0.689382i
\(304\) 5.00000 5.00000i 0.286770 0.286770i
\(305\) −28.0000 14.0000i −1.60328 0.801638i
\(306\) −1.00000 + 1.00000i −0.0571662 + 0.0571662i
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) 2.00000 2.00000i 0.113961 0.113961i
\(309\) −14.0000 −0.796432
\(310\) −15.0000 + 5.00000i −0.851943 + 0.283981i
\(311\) 6.00000i 0.340229i −0.985424 0.170114i \(-0.945586\pi\)
0.985424 0.170114i \(-0.0544137\pi\)
\(312\) 0 0
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) 13.0000 13.0000i 0.733632 0.733632i
\(315\) −2.00000 + 4.00000i −0.112687 + 0.225374i
\(316\) 2.00000i 0.112509i
\(317\) 14.0000i 0.786318i 0.919470 + 0.393159i \(0.128618\pi\)
−0.919470 + 0.393159i \(0.871382\pi\)
\(318\) −10.0000 −0.560772
\(319\) 0 0
\(320\) −14.0000 7.00000i −0.782624 0.391312i
\(321\) 14.0000 0.781404
\(322\) −6.00000 + 6.00000i −0.334367 + 0.334367i
\(323\) 10.0000i 0.556415i
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) 18.0000i 0.995402i
\(328\) 21.0000 21.0000i 1.15953 1.15953i
\(329\) −12.0000 −0.661581
\(330\) −4.00000 2.00000i −0.220193 0.110096i
\(331\) 3.00000 + 3.00000i 0.164895 + 0.164895i 0.784731 0.619836i \(-0.212801\pi\)
−0.619836 + 0.784731i \(0.712801\pi\)
\(332\) −6.00000 −0.329293
\(333\) 0 0
\(334\) 18.0000i 0.984916i
\(335\) −4.00000 + 8.00000i −0.218543 + 0.437087i
\(336\) −2.00000 + 2.00000i −0.109109 + 0.109109i
\(337\) −13.0000 + 13.0000i −0.708155 + 0.708155i −0.966147 0.257992i \(-0.916939\pi\)
0.257992 + 0.966147i \(0.416939\pi\)
\(338\) 0 0
\(339\) 10.0000i 0.543125i
\(340\) −3.00000 + 1.00000i −0.162698 + 0.0542326i
\(341\) −10.0000 −0.541530
\(342\) −5.00000 + 5.00000i −0.270369 + 0.270369i
\(343\) −20.0000 −1.07990
\(344\) 3.00000 3.00000i 0.161749 0.161749i
\(345\) −12.0000 6.00000i −0.646058 0.323029i
\(346\) 11.0000 11.0000i 0.591364 0.591364i
\(347\) 3.00000 + 3.00000i 0.161048 + 0.161048i 0.783031 0.621983i \(-0.213673\pi\)
−0.621983 + 0.783031i \(0.713673\pi\)
\(348\) 0 0
\(349\) 9.00000 + 9.00000i 0.481759 + 0.481759i 0.905693 0.423934i \(-0.139351\pi\)
−0.423934 + 0.905693i \(0.639351\pi\)
\(350\) 8.00000 6.00000i 0.427618 0.320713i
\(351\) 0 0
\(352\) −5.00000 5.00000i −0.266501 0.266501i
\(353\) 12.0000 0.638696 0.319348 0.947638i \(-0.396536\pi\)
0.319348 + 0.947638i \(0.396536\pi\)
\(354\) 14.0000i 0.744092i
\(355\) −1.00000 3.00000i −0.0530745 0.159223i
\(356\) 5.00000 + 5.00000i 0.264999 + 0.264999i
\(357\) 4.00000i 0.211702i
\(358\) 20.0000i 1.05703i
\(359\) 1.00000 + 1.00000i 0.0527780 + 0.0527780i 0.733003 0.680225i \(-0.238118\pi\)
−0.680225 + 0.733003i \(0.738118\pi\)
\(360\) 6.00000 + 3.00000i 0.316228 + 0.158114i
\(361\) 31.0000i 1.63158i
\(362\) 8.00000 0.420471
\(363\) 9.00000 + 9.00000i 0.472377 + 0.472377i
\(364\) 0 0
\(365\) 10.0000 20.0000i 0.523424 1.04685i
\(366\) 14.0000 + 14.0000i 0.731792 + 0.731792i
\(367\) −1.00000 1.00000i −0.0521996 0.0521996i 0.680525 0.732725i \(-0.261752\pi\)
−0.732725 + 0.680525i \(0.761752\pi\)
\(368\) 3.00000 + 3.00000i 0.156386 + 0.156386i
\(369\) −7.00000 + 7.00000i −0.364405 + 0.364405i
\(370\) 0 0
\(371\) 10.0000 10.0000i 0.519174 0.519174i
\(372\) −10.0000 −0.518476
\(373\) −15.0000 + 15.0000i −0.776671 + 0.776671i −0.979263 0.202593i \(-0.935063\pi\)
0.202593 + 0.979263i \(0.435063\pi\)
\(374\) 2.00000 0.103418
\(375\) 13.0000 + 9.00000i 0.671317 + 0.464758i
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) 8.00000 8.00000i 0.411476 0.411476i
\(379\) −1.00000 + 1.00000i −0.0513665 + 0.0513665i −0.732323 0.680957i \(-0.761564\pi\)
0.680957 + 0.732323i \(0.261564\pi\)
\(380\) −15.0000 + 5.00000i −0.769484 + 0.256495i
\(381\) 18.0000i 0.922168i
\(382\) 8.00000i 0.409316i
\(383\) 30.0000 1.53293 0.766464 0.642287i \(-0.222014\pi\)
0.766464 + 0.642287i \(0.222014\pi\)
\(384\) −3.00000 3.00000i −0.153093 0.153093i
\(385\) 6.00000 2.00000i 0.305788 0.101929i
\(386\) 18.0000 0.916176
\(387\) −1.00000 + 1.00000i −0.0508329 + 0.0508329i
\(388\) 2.00000i 0.101535i
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 9.00000i 0.454569i
\(393\) −20.0000 + 20.0000i −1.00887 + 1.00887i
\(394\) −6.00000 −0.302276
\(395\) 2.00000 4.00000i 0.100631 0.201262i
\(396\) 1.00000 + 1.00000i 0.0502519 + 0.0502519i
\(397\) −16.0000 −0.803017 −0.401508 0.915855i \(-0.631514\pi\)
−0.401508 + 0.915855i \(0.631514\pi\)
\(398\) 8.00000i 0.401004i
\(399\) 20.0000i 1.00125i
\(400\) −3.00000 4.00000i −0.150000 0.200000i
\(401\) 11.0000 11.0000i 0.549314 0.549314i −0.376929 0.926242i \(-0.623020\pi\)
0.926242 + 0.376929i \(0.123020\pi\)
\(402\) 4.00000 4.00000i 0.199502 0.199502i
\(403\) 0 0
\(404\) 12.0000i 0.597022i
\(405\) 10.0000 + 5.00000i 0.496904 + 0.248452i
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000 0.297044
\(409\) −7.00000 + 7.00000i −0.346128 + 0.346128i −0.858665 0.512537i \(-0.828706\pi\)
0.512537 + 0.858665i \(0.328706\pi\)
\(410\) 21.0000 7.00000i 1.03712 0.345705i
\(411\) 16.0000 16.0000i 0.789222 0.789222i
\(412\) −7.00000 7.00000i −0.344865 0.344865i
\(413\) −14.0000 14.0000i −0.688895 0.688895i
\(414\) −3.00000 3.00000i −0.147442 0.147442i
\(415\) −12.0000 6.00000i −0.589057 0.294528i
\(416\) 0 0
\(417\) −14.0000 14.0000i −0.685583 0.685583i
\(418\) 10.0000 0.489116
\(419\) 38.0000i 1.85642i −0.372055 0.928211i \(-0.621347\pi\)
0.372055 0.928211i \(-0.378653\pi\)
\(420\) 6.00000 2.00000i 0.292770 0.0975900i
\(421\) 11.0000 + 11.0000i 0.536107 + 0.536107i 0.922383 0.386276i \(-0.126239\pi\)
−0.386276 + 0.922383i \(0.626239\pi\)
\(422\) 4.00000i 0.194717i
\(423\) 6.00000i 0.291730i
\(424\) −15.0000 15.0000i −0.728464 0.728464i
\(425\) −7.00000 1.00000i −0.339550 0.0485071i
\(426\) 2.00000i 0.0969003i
\(427\) −28.0000 −1.35501
\(428\) 7.00000 + 7.00000i 0.338358 + 0.338358i
\(429\) 0 0
\(430\) 3.00000 1.00000i 0.144673 0.0482243i
\(431\) −13.0000 13.0000i −0.626188 0.626188i 0.320919 0.947107i \(-0.396008\pi\)
−0.947107 + 0.320919i \(0.896008\pi\)
\(432\) −4.00000 4.00000i −0.192450 0.192450i
\(433\) −17.0000 17.0000i −0.816968 0.816968i 0.168700 0.985668i \(-0.446043\pi\)
−0.985668 + 0.168700i \(0.946043\pi\)
\(434\) −10.0000 + 10.0000i −0.480015 + 0.480015i
\(435\) 0 0
\(436\) 9.00000 9.00000i 0.431022 0.431022i
\(437\) 30.0000 1.43509
\(438\) −10.0000 + 10.0000i −0.477818 + 0.477818i
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) −3.00000 9.00000i −0.143019 0.429058i
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) 25.0000 25.0000i 1.18779 1.18779i 0.210108 0.977678i \(-0.432619\pi\)
0.977678 0.210108i \(-0.0673814\pi\)
\(444\) 0 0
\(445\) 5.00000 + 15.0000i 0.237023 + 0.711068i
\(446\) 2.00000i 0.0947027i
\(447\) 6.00000i 0.283790i
\(448\) −14.0000 −0.661438
\(449\) −3.00000 3.00000i −0.141579 0.141579i 0.632765 0.774344i \(-0.281920\pi\)
−0.774344 + 0.632765i \(0.781920\pi\)
\(450\) 3.00000 + 4.00000i 0.141421 + 0.188562i
\(451\) 14.0000 0.659234
\(452\) 5.00000 5.00000i 0.235180 0.235180i
\(453\) 14.0000i 0.657777i
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) 2.00000i 0.0935561i −0.998905 0.0467780i \(-0.985105\pi\)
0.998905 0.0467780i \(-0.0148953\pi\)
\(458\) −3.00000 + 3.00000i −0.140181 + 0.140181i
\(459\) −8.00000 −0.373408
\(460\) −3.00000 9.00000i −0.139876 0.419627i
\(461\) −17.0000 17.0000i −0.791769 0.791769i 0.190013 0.981782i \(-0.439147\pi\)
−0.981782 + 0.190013i \(0.939147\pi\)
\(462\) −4.00000 −0.186097
\(463\) 24.0000i 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) 0 0
\(465\) −20.0000 10.0000i −0.927478 0.463739i
\(466\) −1.00000 + 1.00000i −0.0463241 + 0.0463241i
\(467\) −9.00000 + 9.00000i −0.416470 + 0.416470i −0.883985 0.467515i \(-0.845149\pi\)
0.467515 + 0.883985i \(0.345149\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) −6.00000 + 12.0000i −0.276759 + 0.553519i
\(471\) 26.0000 1.19802
\(472\) −21.0000 + 21.0000i −0.966603 + 0.966603i
\(473\) 2.00000 0.0919601
\(474\) −2.00000 + 2.00000i −0.0918630 + 0.0918630i
\(475\) −35.0000 5.00000i −1.60591 0.229416i
\(476\) −2.00000 + 2.00000i −0.0916698 + 0.0916698i
\(477\) 5.00000 + 5.00000i 0.228934 + 0.228934i
\(478\) −3.00000 3.00000i −0.137217 0.137217i
\(479\) −7.00000 7.00000i −0.319838 0.319838i 0.528867 0.848705i \(-0.322617\pi\)
−0.848705 + 0.528867i \(0.822617\pi\)
\(480\) −5.00000 15.0000i −0.228218 0.684653i
\(481\) 0 0
\(482\) 17.0000 + 17.0000i 0.774329 + 0.774329i
\(483\) −12.0000 −0.546019
\(484\) 9.00000i 0.409091i
\(485\) 2.00000 4.00000i 0.0908153 0.181631i
\(486\) 7.00000 + 7.00000i 0.317526 + 0.317526i
\(487\) 16.0000i 0.725029i −0.931978 0.362515i \(-0.881918\pi\)
0.931978 0.362515i \(-0.118082\pi\)
\(488\) 42.0000i 1.90125i
\(489\) 4.00000 + 4.00000i 0.180886 + 0.180886i
\(490\) −3.00000 + 6.00000i −0.135526 + 0.271052i
\(491\) 22.0000i 0.992846i 0.868081 + 0.496423i \(0.165354\pi\)
−0.868081 + 0.496423i \(0.834646\pi\)
\(492\) 14.0000 0.631169
\(493\) 0 0
\(494\) 0 0
\(495\) 1.00000 + 3.00000i 0.0449467 + 0.134840i
\(496\) 5.00000 + 5.00000i 0.224507 + 0.224507i
\(497\) −2.00000 2.00000i −0.0897123 0.0897123i
\(498\) 6.00000 + 6.00000i 0.268866 + 0.268866i
\(499\) 3.00000 3.00000i 0.134298 0.134298i −0.636762 0.771060i \(-0.719727\pi\)
0.771060 + 0.636762i \(0.219727\pi\)
\(500\) 2.00000 + 11.0000i 0.0894427 + 0.491935i
\(501\) 18.0000 18.0000i 0.804181 0.804181i
\(502\) −2.00000 −0.0892644
\(503\) −3.00000 + 3.00000i −0.133763 + 0.133763i −0.770818 0.637055i \(-0.780152\pi\)
0.637055 + 0.770818i \(0.280152\pi\)
\(504\) 6.00000 0.267261
\(505\) 12.0000 24.0000i 0.533993 1.06799i
\(506\) 6.00000i 0.266733i
\(507\) 0 0
\(508\) −9.00000 + 9.00000i −0.399310 + 0.399310i
\(509\) 13.0000 13.0000i 0.576215 0.576215i −0.357643 0.933858i \(-0.616420\pi\)
0.933858 + 0.357643i \(0.116420\pi\)
\(510\) 4.00000 + 2.00000i 0.177123 + 0.0885615i
\(511\) 20.0000i 0.884748i
\(512\) 11.0000i 0.486136i
\(513\) −40.0000 −1.76604
\(514\) −11.0000 11.0000i −0.485189 0.485189i
\(515\) −7.00000 21.0000i −0.308457 0.925371i
\(516\) 2.00000 0.0880451
\(517\) −6.00000 + 6.00000i −0.263880 + 0.263880i
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 9.00000 9.00000i 0.393543 0.393543i −0.482405 0.875948i \(-0.660237\pi\)
0.875948 + 0.482405i \(0.160237\pi\)
\(524\) −20.0000 −0.873704
\(525\) 14.0000 + 2.00000i 0.611010 + 0.0872872i
\(526\) −1.00000 1.00000i −0.0436021 0.0436021i
\(527\) 10.0000 0.435607
\(528\) 2.00000i 0.0870388i
\(529\) 5.00000i 0.217391i
\(530\) −5.00000 15.0000i −0.217186 0.651558i
\(531\) 7.00000 7.00000i 0.303774 0.303774i
\(532\) −10.0000 + 10.0000i −0.433555 + 0.433555i
\(533\) 0 0
\(534\) 10.0000i 0.432742i
\(535\) 7.00000 + 21.0000i 0.302636 + 0.907909i
\(536\) 12.0000 0.518321
\(537\) 20.0000 20.0000i 0.863064 0.863064i
\(538\) 12.0000 0.517357
\(539\) −3.00000 + 3.00000i −0.129219 + 0.129219i
\(540\) 4.00000 + 12.0000i 0.172133 + 0.516398i
\(541\) −9.00000 + 9.00000i −0.386940 + 0.386940i −0.873595 0.486654i \(-0.838217\pi\)
0.486654 + 0.873595i \(0.338217\pi\)
\(542\) −9.00000 9.00000i −0.386583 0.386583i
\(543\) 8.00000 + 8.00000i 0.343313 + 0.343313i
\(544\) 5.00000 + 5.00000i 0.214373 + 0.214373i
\(545\) 27.0000 9.00000i 1.15655 0.385518i
\(546\) 0 0
\(547\) −9.00000 9.00000i −0.384812 0.384812i 0.488020 0.872832i \(-0.337719\pi\)
−0.872832 + 0.488020i \(0.837719\pi\)
\(548\) 16.0000 0.683486
\(549\) 14.0000i 0.597505i
\(550\) 1.00000 7.00000i 0.0426401 0.298481i
\(551\) 0 0
\(552\) 18.0000i 0.766131i
\(553\) 4.00000i 0.170097i
\(554\) −15.0000 15.0000i −0.637289 0.637289i
\(555\) 0 0
\(556\) 14.0000i 0.593732i
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) −5.00000 5.00000i −0.211667 0.211667i
\(559\) 0 0
\(560\) −4.00000 2.00000i −0.169031 0.0845154i
\(561\) 2.00000 + 2.00000i 0.0844401 + 0.0844401i
\(562\) 1.00000 + 1.00000i 0.0421825 + 0.0421825i
\(563\) −15.0000 15.0000i −0.632175 0.632175i 0.316438 0.948613i \(-0.397513\pi\)
−0.948613 + 0.316438i \(0.897513\pi\)
\(564\) −6.00000 + 6.00000i −0.252646 + 0.252646i
\(565\) 15.0000 5.00000i 0.631055 0.210352i
\(566\) 9.00000 9.00000i 0.378298 0.378298i
\(567\) 10.0000 0.419961
\(568\) −3.00000 + 3.00000i −0.125877 + 0.125877i
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 20.0000 + 10.0000i 0.837708 + 0.418854i
\(571\) 6.00000i 0.251092i 0.992088 + 0.125546i \(0.0400683\pi\)
−0.992088 + 0.125546i \(0.959932\pi\)
\(572\) 0 0
\(573\) 8.00000 8.00000i 0.334205 0.334205i
\(574\) 14.0000 14.0000i 0.584349 0.584349i
\(575\) 3.00000 21.0000i 0.125109 0.875761i
\(576\) 7.00000i 0.291667i
\(577\) 46.0000i 1.91501i −0.288425 0.957503i \(-0.593132\pi\)
0.288425 0.957503i \(-0.406868\pi\)
\(578\) 15.0000 0.623918
\(579\) 18.0000 + 18.0000i 0.748054 + 0.748054i
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) −2.00000 + 2.00000i −0.0829027 + 0.0829027i
\(583\) 10.0000i 0.414158i
\(584\) −30.0000 −1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 4.00000i 0.165098i 0.996587 + 0.0825488i \(0.0263060\pi\)
−0.996587 + 0.0825488i \(0.973694\pi\)
\(588\) −3.00000 + 3.00000i −0.123718 + 0.123718i
\(589\) 50.0000 2.06021
\(590\) −21.0000 + 7.00000i −0.864556 + 0.288185i
\(591\) −6.00000 6.00000i −0.246807 0.246807i
\(592\) 0 0
\(593\) 10.0000i 0.410651i 0.978694 + 0.205325i \(0.0658253\pi\)
−0.978694 + 0.205325i \(0.934175\pi\)
\(594\) 8.00000i 0.328244i
\(595\) −6.00000 + 2.00000i −0.245976 + 0.0819920i
\(596\) −3.00000 + 3.00000i −0.122885 + 0.122885i
\(597\) 8.00000 8.00000i 0.327418 0.327418i
\(598\) 0 0
\(599\) 30.0000i 1.22577i 0.790173 + 0.612883i \(0.209990\pi\)
−0.790173 + 0.612883i \(0.790010\pi\)
\(600\) 3.00000 21.0000i 0.122474 0.857321i
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 2.00000 2.00000i 0.0815139 0.0815139i
\(603\) −4.00000 −0.162893
\(604\) −7.00000 + 7.00000i −0.284826 + 0.284826i
\(605\) −9.00000 + 18.0000i −0.365902 + 0.731804i
\(606\) −12.0000 + 12.0000i −0.487467 + 0.487467i
\(607\) −13.0000 13.0000i −0.527654 0.527654i 0.392218 0.919872i \(-0.371708\pi\)
−0.919872 + 0.392218i \(0.871708\pi\)
\(608\) 25.0000 + 25.0000i 1.01388 + 1.01388i
\(609\) 0 0
\(610\) −14.0000 + 28.0000i −0.566843 + 1.13369i
\(611\) 0 0
\(612\) −1.00000 1.00000i −0.0404226 0.0404226i
\(613\) 20.0000 0.807792 0.403896 0.914805i \(-0.367656\pi\)
0.403896 + 0.914805i \(0.367656\pi\)
\(614\) 18.0000i 0.726421i
\(615\) 28.0000 + 14.0000i 1.12907 + 0.564534i
\(616\) −6.00000 6.00000i −0.241747 0.241747i
\(617\) 22.0000i 0.885687i 0.896599 + 0.442843i \(0.146030\pi\)
−0.896599 + 0.442843i \(0.853970\pi\)
\(618\) 14.0000i 0.563163i
\(619\) 25.0000 + 25.0000i 1.00483 + 1.00483i 0.999988 + 0.00484658i \(0.00154272\pi\)
0.00484658 + 0.999988i \(0.498457\pi\)
\(620\) −5.00000 15.0000i −0.200805 0.602414i
\(621\) 24.0000i 0.963087i
\(622\) −6.00000 −0.240578
\(623\) 10.0000 + 10.0000i 0.400642 + 0.400642i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −9.00000 9.00000i −0.359712 0.359712i
\(627\) 10.0000 + 10.0000i 0.399362 + 0.399362i
\(628\) 13.0000 + 13.0000i 0.518756 + 0.518756i
\(629\) 0 0
\(630\) 4.00000 + 2.00000i 0.159364 + 0.0796819i
\(631\) −11.0000 + 11.0000i −0.437903 + 0.437903i −0.891306 0.453403i \(-0.850210\pi\)
0.453403 + 0.891306i \(0.350210\pi\)
\(632\) −6.00000 −0.238667
\(633\) 4.00000 4.00000i 0.158986 0.158986i
\(634\) 14.0000 0.556011
\(635\) −27.0000 + 9.00000i −1.07146 + 0.357154i
\(636\) 10.0000i 0.396526i
\(637\) 0 0
\(638\) 0 0
\(639\) 1.00000 1.00000i 0.0395594 0.0395594i
\(640\) 3.00000 6.00000i 0.118585 0.237171i
\(641\) 24.0000i 0.947943i 0.880540 + 0.473972i \(0.157180\pi\)
−0.880540 + 0.473972i \(0.842820\pi\)
\(642\) 14.0000i 0.552536i
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) −6.00000 6.00000i −0.236433 0.236433i
\(645\) 4.00000 + 2.00000i 0.157500 + 0.0787499i
\(646\) −10.0000 −0.393445
\(647\) −1.00000 + 1.00000i −0.0393141 + 0.0393141i −0.726491 0.687176i \(-0.758850\pi\)
0.687176 + 0.726491i \(0.258850\pi\)
\(648\) 15.0000i 0.589256i
\(649\) −14.0000 −0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 4.00000i 0.156652i
\(653\) 13.0000 13.0000i 0.508729 0.508729i −0.405407 0.914136i \(-0.632870\pi\)
0.914136 + 0.405407i \(0.132870\pi\)
\(654\) −18.0000 −0.703856
\(655\) −40.0000 20.0000i −1.56293 0.781465i
\(656\) −7.00000 7.00000i −0.273304 0.273304i
\(657\) 10.0000 0.390137
\(658\) 12.0000i 0.467809i
\(659\) 26.0000i 1.01282i 0.862294 + 0.506408i \(0.169027\pi\)
−0.862294 + 0.506408i \(0.830973\pi\)
\(660\) 2.00000 4.00000i 0.0778499 0.155700i
\(661\) −17.0000 + 17.0000i −0.661223 + 0.661223i −0.955668 0.294445i \(-0.904865\pi\)
0.294445 + 0.955668i \(0.404865\pi\)
\(662\) 3.00000 3.00000i 0.116598 0.116598i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) −30.0000 + 10.0000i −1.16335 + 0.387783i
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000 0.696441
\(669\) −2.00000 + 2.00000i −0.0773245 + 0.0773245i
\(670\) 8.00000 + 4.00000i 0.309067 + 0.154533i
\(671\) −14.0000 + 14.0000i −0.540464 + 0.540464i
\(672\) −10.0000 10.0000i −0.385758 0.385758i
\(673\) 15.0000 + 15.0000i 0.578208 + 0.578208i 0.934409 0.356202i \(-0.115928\pi\)
−0.356202 + 0.934409i \(0.615928\pi\)
\(674\) 13.0000 + 13.0000i 0.500741 + 0.500741i
\(675\) −4.00000 + 28.0000i −0.153960 + 1.07772i
\(676\) 0 0
\(677\) −23.0000 23.0000i −0.883962 0.883962i 0.109973 0.993935i \(-0.464924\pi\)
−0.993935 + 0.109973i \(0.964924\pi\)
\(678\) −10.0000 −0.384048
\(679\) 4.00000i 0.153506i
\(680\) 3.00000 + 9.00000i 0.115045 + 0.345134i
\(681\) 12.0000 + 12.0000i 0.459841 + 0.459841i
\(682\) 10.0000i 0.382920i
\(683\) 12.0000i 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) −5.00000 5.00000i −0.191180 0.191180i
\(685\) 32.0000 + 16.0000i 1.22266 + 0.611329i
\(686\) 20.0000i 0.763604i
\(687\) −6.00000 −0.228914
\(688\) −1.00000 1.00000i −0.0381246 0.0381246i
\(689\) 0 0
\(690\) −6.00000 + 12.0000i −0.228416 + 0.456832i
\(691\) 3.00000 + 3.00000i 0.114125 + 0.114125i 0.761863 0.647738i \(-0.224285\pi\)
−0.647738 + 0.761863i \(0.724285\pi\)
\(692\) 11.0000 + 11.0000i 0.418157 + 0.418157i
\(693\) 2.00000 + 2.00000i 0.0759737 + 0.0759737i
\(694\) 3.00000 3.00000i 0.113878 0.113878i
\(695\) 14.0000 28.0000i 0.531050 1.06210i
\(696\) 0 0
\(697\) −14.0000 −0.530288
\(698\) 9.00000 9.00000i 0.340655 0.340655i
\(699\) −2.00000 −0.0756469
\(700\) 6.00000 + 8.00000i 0.226779 + 0.302372i
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −7.00000 + 7.00000i −0.263822 + 0.263822i
\(705\) −18.0000 + 6.00000i −0.677919 + 0.225973i
\(706\) 12.0000i 0.451626i
\(707\) 24.0000i 0.902613i
\(708\) −14.0000 −0.526152
\(709\) 29.0000 + 29.0000i 1.08912 + 1.08912i 0.995619 + 0.0934984i \(0.0298050\pi\)
0.0934984 + 0.995619i \(0.470195\pi\)
\(710\) −3.00000 + 1.00000i −0.112588 + 0.0375293i
\(711\) 2.00000 0.0750059
\(712\) 15.0000 15.0000i 0.562149 0.562149i
\(713\) 30.0000i 1.12351i
\(714\) 4.00000 0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) 6.00000i 0.224074i
\(718\) 1.00000 1.00000i 0.0373197 0.0373197i
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 1.00000 2.00000i 0.0372678 0.0745356i
\(721\) −14.0000 14.0000i −0.521387 0.521387i
\(722\) −31.0000 −1.15370
\(723\) 34.0000i 1.26447i
\(724\) 8.00000i 0.297318i
\(725\) 0 0
\(726\) 9.00000 9.00000i 0.334021 0.334021i
\(727\) 35.0000 35.0000i 1.29808 1.29808i 0.368418 0.929660i \(-0.379900\pi\)
0.929660 0.368418i \(-0.120100\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) −20.0000 10.0000i −0.740233 0.370117i
\(731\) −2.00000 −0.0739727
\(732\) −14.0000 + 14.0000i −0.517455 + 0.517455i
\(733\) 4.00000 0.147743 0.0738717 0.997268i \(-0.476464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) −1.00000 + 1.00000i −0.0369107 + 0.0369107i
\(735\) −9.00000 + 3.00000i −0.331970 + 0.110657i
\(736\) −15.0000 + 15.0000i −0.552907 + 0.552907i
\(737\) 4.00000 + 4.00000i 0.147342 + 0.147342i
\(738\) 7.00000 + 7.00000i 0.257674 + 0.257674i
\(739\) −3.00000 3.00000i −0.110357 0.110357i 0.649772 0.760129i \(-0.274864\pi\)
−0.760129 + 0.649772i \(0.774864\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −10.0000 10.0000i −0.367112 0.367112i
\(743\) −34.0000 −1.24734 −0.623670 0.781688i \(-0.714359\pi\)
−0.623670 + 0.781688i \(0.714359\pi\)
\(744\) 30.0000i 1.09985i
\(745\) −9.00000 + 3.00000i −0.329734 + 0.109911i
\(746\) 15.0000 + 15.0000i 0.549189 + 0.549189i
\(747\) 6.00000i 0.219529i
\(748\) 2.00000i 0.0731272i
\(749\) 14.0000 + 14.0000i 0.511549 + 0.511549i
\(750\) 9.00000 13.0000i 0.328634 0.474693i
\(751\) 50.0000i 1.82453i 0.409605 + 0.912263i \(0.365667\pi\)
−0.409605 + 0.912263i \(0.634333\pi\)
\(752\) 6.00000 0.218797
\(753\) −2.00000 2.00000i −0.0728841 0.0728841i
\(754\) 0 0
\(755\) −21.0000 + 7.00000i −0.764268 + 0.254756i
\(756\) 8.00000 + 8.00000i 0.290957 + 0.290957i
\(757\) −35.0000 35.0000i −1.27210 1.27210i −0.944986 0.327111i \(-0.893925\pi\)
−0.327111 0.944986i \(-0.606075\pi\)
\(758\) 1.00000 + 1.00000i 0.0363216 + 0.0363216i
\(759\) −6.00000 + 6.00000i −0.217786 + 0.217786i
\(760\) 15.0000 + 45.0000i 0.544107 + 1.63232i
\(761\) 7.00000 7.00000i 0.253750 0.253750i −0.568756 0.822506i \(-0.692575\pi\)
0.822506 + 0.568756i \(0.192575\pi\)
\(762\) 18.0000 0.652071
\(763\) 18.0000 18.0000i 0.651644 0.651644i
\(764\) 8.00000 0.289430
\(765\) −1.00000 3.00000i −0.0361551 0.108465i
\(766\) 30.0000i 1.08394i
\(767\) 0 0
\(768\) −17.0000 + 17.0000i −0.613435 + 0.613435i
\(769\) −15.0000 + 15.0000i −0.540914 + 0.540914i −0.923797 0.382883i \(-0.874931\pi\)
0.382883 + 0.923797i \(0.374931\pi\)
\(770\) −2.00000 6.00000i −0.0720750 0.216225i
\(771\) 22.0000i 0.792311i
\(772\) 18.0000i 0.647834i
\(773\) 32.0000 1.15096 0.575480 0.817816i \(-0.304815\pi\)
0.575480 + 0.817816i \(0.304815\pi\)
\(774\) 1.00000 + 1.00000i 0.0359443 + 0.0359443i
\(775\) 5.00000 35.0000i 0.179605 1.25724i
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) 18.0000i 0.645331i
\(779\) −70.0000 −2.50801
\(780\) 0 0
\(781\) −2.00000 −0.0715656
\(782\) 6.00000i 0.214560i
\(783\) 0 0
\(784\) 3.00000 0.107143
\(785\) 13.0000 + 39.0000i 0.463990 + 1.39197i
\(786\) 20.0000 + 20.0000i 0.713376 + 0.713376i
\(787\) 22.0000 0.784215 0.392108 0.919919i \(-0.371746\pi\)
0.392108 + 0.919919i \(0.371746\pi\)
\(788\) 6.00000i 0.213741i
\(789\) 2.00000i 0.0712019i
\(790\) −4.00000 2.00000i −0.142314 0.0711568i
\(791\) 10.0000 10.0000i 0.355559 0.355559i
\(792\) 3.00000 3.00000i 0.106600 0.106600i
\(793\) 0 0
\(794\) 16.0000i 0.567819i
\(795\) 10.0000 20.0000i 0.354663 0.709327i
\(796\) 8.00000 0.283552
\(797\) −17.0000 + 17.0000i −0.602171 + 0.602171i −0.940888 0.338717i \(-0.890007\pi\)
0.338717 + 0.940888i \(0.390007\pi\)
\(798\) 20.0000 0.707992
\(799\) 6.00000 6.00000i 0.212265 0.212265i
\(800\) 20.0000 15.0000i 0.707107 0.530330i
\(801\) −5.00000 + 5.00000i −0.176666 + 0.176666i
\(802\) −11.0000 11.0000i −0.388424 0.388424i
\(803\) −10.0000 10.0000i −0.352892 0.352892i
\(804\) 4.00000 + 4.00000i 0.141069 + 0.141069i
\(805\) −6.00000 18.0000i −0.211472 0.634417i
\(806\) 0 0
\(807\) 12.0000 + 12.0000i 0.422420 + 0.422420i
\(808\) −36.0000 −1.26648
\(809\) 28.0000i 0.984428i 0.870474 + 0.492214i \(0.163812\pi\)
−0.870474 + 0.492214i \(0.836188\pi\)
\(810\) 5.00000 10.0000i 0.175682 0.351364i
\(811\) 27.0000 + 27.0000i 0.948098 + 0.948098i 0.998718 0.0506198i \(-0.0161197\pi\)
−0.0506198 + 0.998718i \(0.516120\pi\)
\(812\) 0 0
\(813\) 18.0000i 0.631288i
\(814\) 0 0
\(815\) −4.00000 + 8.00000i −0.140114 + 0.280228i
\(816\) 2.00000i 0.0700140i
\(817\) −10.0000 −0.349856
\(818\) 7.00000 + 7.00000i 0.244749 + 0.244749i
\(819\) 0 0
\(820\) 7.00000 + 21.0000i 0.244451 + 0.733352i
\(821\) −9.00000 9.00000i −0.314102 0.314102i 0.532394 0.846496i \(-0.321292\pi\)
−0.846496 + 0.532394i \(0.821292\pi\)
\(822\) −16.0000 16.0000i −0.558064 0.558064i
\(823\) 9.00000 + 9.00000i 0.313720 + 0.313720i 0.846349 0.532629i \(-0.178796\pi\)
−0.532629 + 0.846349i \(0.678796\pi\)
\(824\) −21.0000 + 21.0000i −0.731570 + 0.731570i
\(825\) 8.00000 6.00000i 0.278524 0.208893i
\(826\) −14.0000 + 14.0000i −0.487122 + 0.487122i
\(827\) 46.0000 1.59958 0.799788 0.600282i \(-0.204945\pi\)
0.799788 + 0.600282i \(0.204945\pi\)
\(828\) 3.00000 3.00000i 0.104257 0.104257i
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) −6.00000 + 12.0000i −0.208263 + 0.416526i
\(831\) 30.0000i 1.04069i
\(832\) 0 0
\(833\) 3.00000 3.00000i 0.103944 0.103944i
\(834\) −14.0000 + 14.0000i −0.484780 + 0.484780i
\(835\) 36.0000 + 18.0000i 1.24583 + 0.622916i
\(836\) 10.0000i 0.345857i
\(837\) 40.0000i 1.38260i
\(838\) −38.0000 −1.31269
\(839\) −35.0000 35.0000i −1.20833 1.20833i −0.971566 0.236768i \(-0.923912\pi\)
−0.236768 0.971566i \(-0.576088\pi\)
\(840\) −6.00000 18.0000i −0.207020 0.621059i
\(841\) 29.0000 1.00000
\(842\) 11.0000 11.0000i 0.379085 0.379085i
\(843\) 2.00000i 0.0688837i
\(844\) 4.00000 0.137686
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) 18.0000i 0.618487i
\(848\) −5.00000 + 5.00000i −0.171701 + 0.171701i
\(849\) 18.0000 0.617758
\(850\) −1.00000 + 7.00000i −0.0342997 + 0.240098i
\(851\) 0 0
\(852\) −2.00000 −0.0685189
\(853\) 26.0000i 0.890223i 0.895475 + 0.445112i \(0.146836\pi\)
−0.895475 + 0.445112i \(0.853164\pi\)
\(854\) 28.0000i 0.958140i
\(855\) −5.00000 15.0000i −0.170996 0.512989i
\(856\) 21.0000 21.0000i 0.717765 0.717765i
\(857\) 3.00000 3.00000i 0.102478 0.102478i −0.654009 0.756487i \(-0.726914\pi\)
0.756487 + 0.654009i \(0.226914\pi\)
\(858\) 0 0
\(859\) 30.0000i 1.02359i −0.859109 0.511793i \(-0.828981\pi\)
0.859109 0.511793i \(-0.171019\pi\)
\(860\) 1.00000 + 3.00000i 0.0340997 + 0.102299i
\(861\) 28.0000 0.954237
\(862\) −13.0000 + 13.0000i −0.442782 + 0.442782i
\(863\) 30.0000 1.02121 0.510606 0.859815i \(-0.329421\pi\)
0.510606 + 0.859815i \(0.329421\pi\)
\(864\) 20.0000 20.0000i 0.680414 0.680414i
\(865\) 11.0000 + 33.0000i 0.374011 + 1.12203i
\(866\) −17.0000 + 17.0000i −0.577684 + 0.577684i
\(867\) 15.0000 + 15.0000i 0.509427 + 0.509427i
\(868\) −10.0000 10.0000i −0.339422 0.339422i
\(869\) −2.00000 2.00000i −0.0678454 0.0678454i
\(870\) 0 0
\(871\) 0 0
\(872\) −27.0000 27.0000i −0.914335 0.914335i
\(873\) 2.00000 0.0676897
\(874\) 30.0000i 1.01477i
\(875\) 4.00000 + 22.0000i 0.135225 + 0.743736i
\(876\) −10.0000 10.0000i −0.337869 0.337869i
\(877\) 38.0000i 1.28317i −0.767052 0.641584i \(-0.778277\pi\)
0.767052 0.641584i \(-0.221723\pi\)
\(878\) 0 0
\(879\) −6.00000 6.00000i −0.202375 0.202375i
\(880\) −3.00000 + 1.00000i −0.101130 + 0.0337100i
\(881\) 52.0000i 1.75192i 0.482380 + 0.875962i \(0.339773\pi\)
−0.482380 + 0.875962i \(0.660227\pi\)
\(882\) −3.00000 −0.101015
\(883\) −39.0000 39.0000i −1.31245 1.31245i −0.919601 0.392853i \(-0.871488\pi\)
−0.392853 0.919601i \(-0.628512\pi\)
\(884\) 0 0
\(885\) −28.0000 14.0000i −0.941210 0.470605i
\(886\) −25.0000 25.0000i −0.839891 0.839891i
\(887\) −1.00000 1.00000i −0.0335767 0.0335767i 0.690119 0.723696i \(-0.257558\pi\)
−0.723696 + 0.690119i \(0.757558\pi\)
\(888\) 0 0
\(889\) −18.0000 + 18.0000i −0.603701 + 0.603701i
\(890\) 15.0000 5.00000i 0.502801 0.167600i
\(891\) 5.00000 5.00000i 0.167506 0.167506i
\(892\) −2.00000 −0.0669650
\(893\) 30.0000 30.0000i 1.00391 1.00391i
\(894\) 6.00000 0.200670
\(895\) 40.0000 + 20.0000i 1.33705 + 0.668526i
\(896\) 6.00000i 0.200446i
\(897\) 0 0
\(898\) −3.00000 + 3.00000i −0.100111 + 0.100111i
\(899\) 0 0
\(900\) −4.00000 + 3.00000i −0.133333 + 0.100000i
\(901\) 10.0000i 0.333148i
\(902\) 14.0000i 0.466149i
\(903\) 4.00000 0.133112
\(904\) −15.0000 15.0000i −0.498893 0.498893i
\(905\) −8.00000 + 16.0000i −0.265929 + 0.531858i
\(906\) 14.0000 0.465119
\(907\) 39.0000 39.0000i 1.29497 1.29497i 0.363303 0.931671i \(-0.381649\pi\)
0.931671 0.363303i \(-0.118351\pi\)
\(908\) 12.0000i 0.398234i
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 10.0000i 0.331133i
\(913\) −6.00000 + 6.00000i −0.198571 + 0.198571i
\(914\) −2.00000 −0.0661541
\(915\) −42.0000 + 14.0000i −1.38848 + 0.462826i
\(916\) −3.00000 3.00000i −0.0991228 0.0991228i
\(917\) −40.0000 −1.32092
\(918\) 8.00000i 0.264039i
\(919\) 10.0000i 0.329870i −0.986304 0.164935i \(-0.947259\pi\)
0.986304 0.164935i \(-0.0527414\pi\)
\(920\) −27.0000 + 9.00000i −0.890164 + 0.296721i
\(921\) −18.0000 + 18.0000i −0.593120 + 0.593120i
\(922\) −17.0000 + 17.0000i −0.559865 + 0.559865i
\(923\) 0 0
\(924\) 4.00000i 0.131590i
\(925\) 0 0
\(926\) −24.0000 −0.788689
\(927\) 7.00000 7.00000i 0.229910 0.229910i
\(928\) 0 0
\(929\) −19.0000 + 19.0000i −0.623370 + 0.623370i −0.946392 0.323022i \(-0.895301\pi\)
0.323022 + 0.946392i \(0.395301\pi\)
\(930\) −10.0000 + 20.0000i −0.327913 + 0.655826i
\(931\) 15.0000 15.0000i 0.491605 0.491605i
\(932\) −1.00000 1.00000i −0.0327561 0.0327561i
\(933\) −6.00000 6.00000i −0.196431 0.196431i
\(934\) 9.00000 + 9.00000i 0.294489 + 0.294489i
\(935\) −2.00000 + 4.00000i −0.0654070 + 0.130814i
\(936\) 0 0
\(937\) −7.00000 7.00000i −0.228680 0.228680i 0.583461 0.812141i \(-0.301698\pi\)
−0.812141 + 0.583461i \(0.801698\pi\)
\(938\) 8.00000 0.261209
\(939\) 18.0000i 0.587408i
\(940\) −12.0000 6.00000i −0.391397 0.195698i
\(941\) −21.0000 21.0000i −0.684580 0.684580i 0.276448 0.961029i \(-0.410843\pi\)
−0.961029 + 0.276448i \(0.910843\pi\)
\(942\) 26.0000i 0.847126i
\(943\) 42.0000i 1.36771i
\(944\) 7.00000 + 7.00000i 0.227831 + 0.227831i
\(945\) 8.00000 + 24.0000i 0.260240 + 0.780720i
\(946\) 2.00000i 0.0650256i
\(947\) −18.0000 −0.584921 −0.292461 0.956278i \(-0.594474\pi\)
−0.292461 + 0.956278i \(0.594474\pi\)
\(948\) −2.00000 2.00000i −0.0649570 0.0649570i
\(949\) 0 0
\(950\) −5.00000 + 35.0000i −0.162221 + 1.13555i
\(951\) 14.0000 + 14.0000i 0.453981 + 0.453981i
\(952\) 6.00000 + 6.00000i 0.194461 + 0.194461i
\(953\) −13.0000 13.0000i −0.421111 0.421111i 0.464475 0.885586i \(-0.346243\pi\)
−0.885586 + 0.464475i \(0.846243\pi\)
\(954\) 5.00000 5.00000i 0.161881 0.161881i
\(955\) 16.0000 + 8.00000i 0.517748 + 0.258874i
\(956\) 3.00000 3.00000i 0.0970269 0.0970269i
\(957\) 0 0
\(958\) −7.00000 + 7.00000i −0.226160 + 0.226160i
\(959\) 32.0000 1.03333
\(960\) −21.0000 + 7.00000i −0.677772 + 0.225924i
\(961\) 19.0000i 0.612903i
\(962\) 0 0
\(963\) −7.00000 + 7.00000i −0.225572 + 0.225572i
\(964\) −17.0000 + 17.0000i −0.547533 + 0.547533i
\(965\) −18.0000 + 36.0000i −0.579441 + 1.15888i
\(966\) 12.0000i 0.386094i
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 27.0000 0.867813
\(969\) −10.0000 10.0000i −0.321246 0.321246i
\(970\) −4.00000 2.00000i −0.128432 0.0642161i
\(971\) −60.0000 −1.92549 −0.962746 0.270408i \(-0.912841\pi\)
−0.962746 + 0.270408i \(0.912841\pi\)
\(972\) −7.00000 + 7.00000i −0.224525 + 0.224525i
\(973\) 28.0000i 0.897639i
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) 14.0000 0.448129
\(977\) 62.0000i 1.98356i −0.127971 0.991778i \(-0.540847\pi\)
0.127971 0.991778i \(-0.459153\pi\)
\(978\) 4.00000 4.00000i 0.127906 0.127906i
\(979\) 10.0000 0.319601
\(980\) −6.00000 3.00000i −0.191663 0.0958315i
\(981\) 9.00000 + 9.00000i 0.287348 + 0.287348i
\(982\) 22.0000 0.702048
\(983\) 24.0000i 0.765481i −0.923856 0.382741i \(-0.874980\pi\)
0.923856 0.382741i \(-0.125020\pi\)
\(984\) 42.0000i 1.33891i
\(985\) 6.00000 12.0000i 0.191176 0.382352i
\(986\) 0 0
\(987\) −12.0000 + 12.0000i −0.381964 + 0.381964i
\(988\) 0 0
\(989\) 6.00000i 0.190789i
\(990\) 3.00000 1.00000i 0.0953463 0.0317821i
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) −25.0000 + 25.0000i −0.793751 + 0.793751i
\(993\) 6.00000 0.190404
\(994\) −2.00000 + 2.00000i −0.0634361 + 0.0634361i
\(995\) 16.0000 + 8.00000i 0.507234 + 0.253617i
\(996\) −6.00000 + 6.00000i −0.190117 + 0.190117i
\(997\) 9.00000 + 9.00000i 0.285033 + 0.285033i 0.835112 0.550079i \(-0.185403\pi\)
−0.550079 + 0.835112i \(0.685403\pi\)
\(998\) −3.00000 3.00000i −0.0949633 0.0949633i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.f.a.437.1 2
5.3 odd 4 845.2.k.a.268.1 2
13.2 odd 12 845.2.o.b.357.1 4
13.3 even 3 845.2.t.b.657.1 4
13.4 even 6 845.2.t.a.427.1 4
13.5 odd 4 845.2.k.a.577.1 2
13.6 odd 12 845.2.o.b.587.1 4
13.7 odd 12 845.2.o.a.587.1 4
13.8 odd 4 65.2.k.a.57.1 yes 2
13.9 even 3 845.2.t.b.427.1 4
13.10 even 6 845.2.t.a.657.1 4
13.11 odd 12 845.2.o.a.357.1 4
13.12 even 2 65.2.f.a.47.1 yes 2
39.8 even 4 585.2.w.b.577.1 2
39.38 odd 2 585.2.n.c.307.1 2
52.47 even 4 1040.2.bg.a.577.1 2
52.51 odd 2 1040.2.cd.b.177.1 2
65.3 odd 12 845.2.o.b.488.1 4
65.8 even 4 65.2.f.a.18.1 2
65.12 odd 4 325.2.k.a.268.1 2
65.18 even 4 inner 845.2.f.a.408.1 2
65.23 odd 12 845.2.o.a.488.1 4
65.28 even 12 845.2.t.b.188.1 4
65.33 even 12 845.2.t.a.418.1 4
65.34 odd 4 325.2.k.a.57.1 2
65.38 odd 4 65.2.k.a.8.1 yes 2
65.43 odd 12 845.2.o.a.258.1 4
65.47 even 4 325.2.f.a.18.1 2
65.48 odd 12 845.2.o.b.258.1 4
65.58 even 12 845.2.t.b.418.1 4
65.63 even 12 845.2.t.a.188.1 4
65.64 even 2 325.2.f.a.307.1 2
195.8 odd 4 585.2.n.c.343.1 2
195.38 even 4 585.2.w.b.73.1 2
260.103 even 4 1040.2.bg.a.593.1 2
260.203 odd 4 1040.2.cd.b.993.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.f.a.18.1 2 65.8 even 4
65.2.f.a.47.1 yes 2 13.12 even 2
65.2.k.a.8.1 yes 2 65.38 odd 4
65.2.k.a.57.1 yes 2 13.8 odd 4
325.2.f.a.18.1 2 65.47 even 4
325.2.f.a.307.1 2 65.64 even 2
325.2.k.a.57.1 2 65.34 odd 4
325.2.k.a.268.1 2 65.12 odd 4
585.2.n.c.307.1 2 39.38 odd 2
585.2.n.c.343.1 2 195.8 odd 4
585.2.w.b.73.1 2 195.38 even 4
585.2.w.b.577.1 2 39.8 even 4
845.2.f.a.408.1 2 65.18 even 4 inner
845.2.f.a.437.1 2 1.1 even 1 trivial
845.2.k.a.268.1 2 5.3 odd 4
845.2.k.a.577.1 2 13.5 odd 4
845.2.o.a.258.1 4 65.43 odd 12
845.2.o.a.357.1 4 13.11 odd 12
845.2.o.a.488.1 4 65.23 odd 12
845.2.o.a.587.1 4 13.7 odd 12
845.2.o.b.258.1 4 65.48 odd 12
845.2.o.b.357.1 4 13.2 odd 12
845.2.o.b.488.1 4 65.3 odd 12
845.2.o.b.587.1 4 13.6 odd 12
845.2.t.a.188.1 4 65.63 even 12
845.2.t.a.418.1 4 65.33 even 12
845.2.t.a.427.1 4 13.4 even 6
845.2.t.a.657.1 4 13.10 even 6
845.2.t.b.188.1 4 65.28 even 12
845.2.t.b.418.1 4 65.58 even 12
845.2.t.b.427.1 4 13.9 even 3
845.2.t.b.657.1 4 13.3 even 3
1040.2.bg.a.577.1 2 52.47 even 4
1040.2.bg.a.593.1 2 260.103 even 4
1040.2.cd.b.177.1 2 52.51 odd 2
1040.2.cd.b.993.1 2 260.203 odd 4