Properties

Label 588.2.e.f.491.10
Level $588$
Weight $2$
Character 588.491
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(491,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.491");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 491.10
Character \(\chi\) \(=\) 588.491
Dual form 588.2.e.f.491.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.446802 - 1.34178i) q^{2} +(1.32740 - 1.11266i) q^{3} +(-1.60074 + 1.19902i) q^{4} +0.803124i q^{5} +(-2.08603 - 1.28394i) q^{6} +(2.32403 + 1.61211i) q^{8} +(0.523976 - 2.95389i) q^{9} +(1.07761 - 0.358837i) q^{10} +2.34545 q^{11} +(-0.790717 + 3.37265i) q^{12} +5.26858 q^{13} +(0.893604 + 1.06607i) q^{15} +(1.12471 - 3.83862i) q^{16} +1.18543i q^{17} +(-4.19757 + 0.616742i) q^{18} -7.12430i q^{19} +(-0.962960 - 1.28559i) q^{20} +(-1.04795 - 3.14708i) q^{22} -7.88711 q^{23} +(4.87864 - 0.445940i) q^{24} +4.35499 q^{25} +(-2.35401 - 7.06926i) q^{26} +(-2.59115 - 4.50399i) q^{27} +4.23132i q^{29} +(1.03116 - 1.67534i) q^{30} -4.89898i q^{31} +(-5.65310 + 0.205989i) q^{32} +(3.11335 - 2.60969i) q^{33} +(1.59058 - 0.529652i) q^{34} +(2.70302 + 5.35665i) q^{36} +1.04795 q^{37} +(-9.55923 + 3.18315i) q^{38} +(6.99351 - 5.86214i) q^{39} +(-1.29472 + 1.86648i) q^{40} -7.16942i q^{41} +7.94315i q^{43} +(-3.75445 + 2.81224i) q^{44} +(2.37234 + 0.420818i) q^{45} +(3.52398 + 10.5828i) q^{46} +6.09907 q^{47} +(-2.77814 - 6.34681i) q^{48} +(-1.94582 - 5.84343i) q^{50} +(1.31898 + 1.57354i) q^{51} +(-8.43361 + 6.31712i) q^{52} +8.72001i q^{53} +(-4.88563 + 5.48914i) q^{54} +1.88369i q^{55} +(-7.92692 - 9.45679i) q^{57} +(5.67750 - 1.89056i) q^{58} +0.662173 q^{59} +(-2.70866 - 0.635044i) q^{60} +0.958124 q^{61} +(-6.57334 + 2.18887i) q^{62} +(2.80221 + 7.49317i) q^{64} +4.23132i q^{65} +(-4.89268 - 3.01141i) q^{66} -8.42629i q^{67} +(-1.42135 - 1.89756i) q^{68} +(-10.4693 + 8.77567i) q^{69} -9.67432 q^{71} +(5.97972 - 6.02021i) q^{72} -1.41421 q^{73} +(-0.468227 - 1.40612i) q^{74} +(5.78081 - 4.84562i) q^{75} +(8.54216 + 11.4041i) q^{76} +(-10.9904 - 6.76452i) q^{78} +6.92820i q^{79} +(3.08289 + 0.903284i) q^{80} +(-8.45090 - 3.09553i) q^{81} +(-9.61978 + 3.20331i) q^{82} +5.18229 q^{83} -0.952047 q^{85} +(10.6579 - 3.54901i) q^{86} +(4.70802 + 5.61665i) q^{87} +(5.45090 + 3.78113i) q^{88} +16.3659i q^{89} +(-0.495321 - 3.37117i) q^{90} +(12.6252 - 9.45679i) q^{92} +(-5.45090 - 6.50290i) q^{93} +(-2.72508 - 8.18360i) q^{94} +5.72170 q^{95} +(-7.27473 + 6.56341i) q^{96} -4.37827 q^{97} +(1.22896 - 6.92820i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{16} - 12 q^{18} - 24 q^{25} - 48 q^{30} + 12 q^{36} + 72 q^{46} - 24 q^{57} + 72 q^{58} + 72 q^{60} - 48 q^{64} + 108 q^{72} - 24 q^{78} - 24 q^{81} - 48 q^{85} - 48 q^{88} + 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.446802 1.34178i −0.315937 0.948780i
\(3\) 1.32740 1.11266i 0.766374 0.642394i
\(4\) −1.60074 + 1.19902i −0.800368 + 0.599509i
\(5\) 0.803124i 0.359168i 0.983743 + 0.179584i \(0.0574752\pi\)
−0.983743 + 0.179584i \(0.942525\pi\)
\(6\) −2.08603 1.28394i −0.851617 0.524165i
\(7\) 0 0
\(8\) 2.32403 + 1.61211i 0.821668 + 0.569967i
\(9\) 0.523976 2.95389i 0.174659 0.984629i
\(10\) 1.07761 0.358837i 0.340771 0.113474i
\(11\) 2.34545 0.707181 0.353590 0.935400i \(-0.384961\pi\)
0.353590 + 0.935400i \(0.384961\pi\)
\(12\) −0.790717 + 3.37265i −0.228260 + 0.973600i
\(13\) 5.26858 1.46124 0.730621 0.682784i \(-0.239231\pi\)
0.730621 + 0.682784i \(0.239231\pi\)
\(14\) 0 0
\(15\) 0.893604 + 1.06607i 0.230727 + 0.275257i
\(16\) 1.12471 3.83862i 0.281178 0.959656i
\(17\) 1.18543i 0.287509i 0.989613 + 0.143754i \(0.0459176\pi\)
−0.989613 + 0.143754i \(0.954082\pi\)
\(18\) −4.19757 + 0.616742i −0.989378 + 0.145368i
\(19\) 7.12430i 1.63443i −0.576336 0.817213i \(-0.695518\pi\)
0.576336 0.817213i \(-0.304482\pi\)
\(20\) −0.962960 1.28559i −0.215324 0.287467i
\(21\) 0 0
\(22\) −1.04795 3.14708i −0.223424 0.670959i
\(23\) −7.88711 −1.64458 −0.822288 0.569071i \(-0.807303\pi\)
−0.822288 + 0.569071i \(0.807303\pi\)
\(24\) 4.87864 0.445940i 0.995848 0.0910271i
\(25\) 4.35499 0.870998
\(26\) −2.35401 7.06926i −0.461660 1.38640i
\(27\) −2.59115 4.50399i −0.498666 0.866794i
\(28\) 0 0
\(29\) 4.23132i 0.785737i 0.919595 + 0.392868i \(0.128517\pi\)
−0.919595 + 0.392868i \(0.871483\pi\)
\(30\) 1.03116 1.67534i 0.188263 0.305873i
\(31\) 4.89898i 0.879883i −0.898027 0.439941i \(-0.854999\pi\)
0.898027 0.439941i \(-0.145001\pi\)
\(32\) −5.65310 + 0.205989i −0.999337 + 0.0364141i
\(33\) 3.11335 2.60969i 0.541965 0.454289i
\(34\) 1.59058 0.529652i 0.272783 0.0908346i
\(35\) 0 0
\(36\) 2.70302 + 5.35665i 0.450503 + 0.892775i
\(37\) 1.04795 0.172282 0.0861412 0.996283i \(-0.472546\pi\)
0.0861412 + 0.996283i \(0.472546\pi\)
\(38\) −9.55923 + 3.18315i −1.55071 + 0.516375i
\(39\) 6.99351 5.86214i 1.11986 0.938693i
\(40\) −1.29472 + 1.86648i −0.204714 + 0.295117i
\(41\) 7.16942i 1.11968i −0.828602 0.559838i \(-0.810863\pi\)
0.828602 0.559838i \(-0.189137\pi\)
\(42\) 0 0
\(43\) 7.94315i 1.21132i 0.795724 + 0.605659i \(0.207091\pi\)
−0.795724 + 0.605659i \(0.792909\pi\)
\(44\) −3.75445 + 2.81224i −0.566005 + 0.423961i
\(45\) 2.37234 + 0.420818i 0.353647 + 0.0627318i
\(46\) 3.52398 + 10.5828i 0.519582 + 1.56034i
\(47\) 6.09907 0.889641 0.444821 0.895620i \(-0.353267\pi\)
0.444821 + 0.895620i \(0.353267\pi\)
\(48\) −2.77814 6.34681i −0.400990 0.916083i
\(49\) 0 0
\(50\) −1.94582 5.84343i −0.275180 0.826386i
\(51\) 1.31898 + 1.57354i 0.184694 + 0.220339i
\(52\) −8.43361 + 6.31712i −1.16953 + 0.876027i
\(53\) 8.72001i 1.19779i 0.800829 + 0.598893i \(0.204393\pi\)
−0.800829 + 0.598893i \(0.795607\pi\)
\(54\) −4.88563 + 5.48914i −0.664850 + 0.746977i
\(55\) 1.88369i 0.253997i
\(56\) 0 0
\(57\) −7.92692 9.45679i −1.04995 1.25258i
\(58\) 5.67750 1.89056i 0.745492 0.248243i
\(59\) 0.662173 0.0862076 0.0431038 0.999071i \(-0.486275\pi\)
0.0431038 + 0.999071i \(0.486275\pi\)
\(60\) −2.70866 0.635044i −0.349686 0.0819838i
\(61\) 0.958124 0.122675 0.0613376 0.998117i \(-0.480463\pi\)
0.0613376 + 0.998117i \(0.480463\pi\)
\(62\) −6.57334 + 2.18887i −0.834815 + 0.277987i
\(63\) 0 0
\(64\) 2.80221 + 7.49317i 0.350276 + 0.936647i
\(65\) 4.23132i 0.524831i
\(66\) −4.89268 3.01141i −0.602247 0.370679i
\(67\) 8.42629i 1.02943i −0.857360 0.514717i \(-0.827897\pi\)
0.857360 0.514717i \(-0.172103\pi\)
\(68\) −1.42135 1.89756i −0.172364 0.230113i
\(69\) −10.4693 + 8.77567i −1.26036 + 1.05647i
\(70\) 0 0
\(71\) −9.67432 −1.14813 −0.574065 0.818810i \(-0.694634\pi\)
−0.574065 + 0.818810i \(0.694634\pi\)
\(72\) 5.97972 6.02021i 0.704717 0.709488i
\(73\) −1.41421 −0.165521 −0.0827606 0.996569i \(-0.526374\pi\)
−0.0827606 + 0.996569i \(0.526374\pi\)
\(74\) −0.468227 1.40612i −0.0544303 0.163458i
\(75\) 5.78081 4.84562i 0.667511 0.559525i
\(76\) 8.54216 + 11.4041i 0.979853 + 1.30814i
\(77\) 0 0
\(78\) −10.9904 6.76452i −1.24442 0.765931i
\(79\) 6.92820i 0.779484i 0.920924 + 0.389742i \(0.127436\pi\)
−0.920924 + 0.389742i \(0.872564\pi\)
\(80\) 3.08289 + 0.903284i 0.344678 + 0.100990i
\(81\) −8.45090 3.09553i −0.938989 0.343948i
\(82\) −9.61978 + 3.20331i −1.06233 + 0.353747i
\(83\) 5.18229 0.568830 0.284415 0.958701i \(-0.408201\pi\)
0.284415 + 0.958701i \(0.408201\pi\)
\(84\) 0 0
\(85\) −0.952047 −0.103264
\(86\) 10.6579 3.54901i 1.14928 0.382700i
\(87\) 4.70802 + 5.61665i 0.504753 + 0.602169i
\(88\) 5.45090 + 3.78113i 0.581068 + 0.403069i
\(89\) 16.3659i 1.73478i 0.497626 + 0.867392i \(0.334205\pi\)
−0.497626 + 0.867392i \(0.665795\pi\)
\(90\) −0.495321 3.37117i −0.0522114 0.355353i
\(91\) 0 0
\(92\) 12.6252 9.45679i 1.31627 0.985938i
\(93\) −5.45090 6.50290i −0.565232 0.674319i
\(94\) −2.72508 8.18360i −0.281070 0.844074i
\(95\) 5.72170 0.587034
\(96\) −7.27473 + 6.56341i −0.742474 + 0.669875i
\(97\) −4.37827 −0.444546 −0.222273 0.974984i \(-0.571348\pi\)
−0.222273 + 0.974984i \(0.571348\pi\)
\(98\) 0 0
\(99\) 1.22896 6.92820i 0.123515 0.696311i
\(100\) −6.97119 + 5.22171i −0.697119 + 0.522171i
\(101\) 8.39337i 0.835171i −0.908638 0.417586i \(-0.862876\pi\)
0.908638 0.417586i \(-0.137124\pi\)
\(102\) 1.52202 2.47284i 0.150702 0.244848i
\(103\) 2.56695i 0.252929i 0.991971 + 0.126465i \(0.0403630\pi\)
−0.991971 + 0.126465i \(0.959637\pi\)
\(104\) 12.2443 + 8.49353i 1.20065 + 0.832859i
\(105\) 0 0
\(106\) 11.7003 3.89612i 1.13644 0.378424i
\(107\) 6.09990 0.589700 0.294850 0.955544i \(-0.404730\pi\)
0.294850 + 0.955544i \(0.404730\pi\)
\(108\) 9.54811 + 4.10288i 0.918767 + 0.394800i
\(109\) 5.45090 0.522101 0.261051 0.965325i \(-0.415931\pi\)
0.261051 + 0.965325i \(0.415931\pi\)
\(110\) 2.52749 0.841636i 0.240987 0.0802468i
\(111\) 1.39105 1.16601i 0.132033 0.110673i
\(112\) 0 0
\(113\) 7.09803i 0.667726i 0.942622 + 0.333863i \(0.108352\pi\)
−0.942622 + 0.333863i \(0.891648\pi\)
\(114\) −9.14715 + 14.8615i −0.856709 + 1.39190i
\(115\) 6.33433i 0.590679i
\(116\) −5.07343 6.77323i −0.471056 0.628879i
\(117\) 2.76061 15.5628i 0.255219 1.43878i
\(118\) −0.295860 0.888490i −0.0272361 0.0817921i
\(119\) 0 0
\(120\) 0.358145 + 3.91815i 0.0326940 + 0.357677i
\(121\) −5.49885 −0.499895
\(122\) −0.428092 1.28559i −0.0387576 0.116392i
\(123\) −7.97713 9.51669i −0.719274 0.858091i
\(124\) 5.87396 + 7.84197i 0.527498 + 0.704230i
\(125\) 7.51322i 0.672003i
\(126\) 0 0
\(127\) 4.16202i 0.369320i −0.982802 0.184660i \(-0.940882\pi\)
0.982802 0.184660i \(-0.0591184\pi\)
\(128\) 8.80214 7.10790i 0.778007 0.628256i
\(129\) 8.83802 + 10.5437i 0.778144 + 0.928323i
\(130\) 5.67750 1.89056i 0.497949 0.165813i
\(131\) −10.4919 −0.916680 −0.458340 0.888777i \(-0.651556\pi\)
−0.458340 + 0.888777i \(0.651556\pi\)
\(132\) −1.85459 + 7.91039i −0.161421 + 0.688511i
\(133\) 0 0
\(134\) −11.3062 + 3.76488i −0.976707 + 0.325236i
\(135\) 3.61727 2.08101i 0.311325 0.179105i
\(136\) −1.91104 + 2.75497i −0.163871 + 0.236237i
\(137\) 13.4920i 1.15270i −0.817203 0.576350i \(-0.804477\pi\)
0.817203 0.576350i \(-0.195523\pi\)
\(138\) 16.4527 + 10.1265i 1.40055 + 0.862029i
\(139\) 7.57264i 0.642303i 0.947028 + 0.321151i \(0.104070\pi\)
−0.947028 + 0.321151i \(0.895930\pi\)
\(140\) 0 0
\(141\) 8.09591 6.78619i 0.681798 0.571501i
\(142\) 4.32250 + 12.9808i 0.362736 + 1.08932i
\(143\) 12.3572 1.03336
\(144\) −10.7495 5.33362i −0.895795 0.444468i
\(145\) −3.39828 −0.282212
\(146\) 0.631873 + 1.89756i 0.0522942 + 0.157043i
\(147\) 0 0
\(148\) −1.67750 + 1.25651i −0.137889 + 0.103285i
\(149\) 16.1013i 1.31907i 0.751673 + 0.659536i \(0.229247\pi\)
−0.751673 + 0.659536i \(0.770753\pi\)
\(150\) −9.08463 5.59153i −0.741757 0.456547i
\(151\) 17.3844i 1.41472i 0.706853 + 0.707360i \(0.250114\pi\)
−0.706853 + 0.707360i \(0.749886\pi\)
\(152\) 11.4851 16.5571i 0.931568 1.34296i
\(153\) 3.50163 + 0.621137i 0.283090 + 0.0502160i
\(154\) 0 0
\(155\) 3.93449 0.316026
\(156\) −4.16595 + 17.7691i −0.333543 + 1.42266i
\(157\) −3.92218 −0.313024 −0.156512 0.987676i \(-0.550025\pi\)
−0.156512 + 0.987676i \(0.550025\pi\)
\(158\) 9.29611 3.09553i 0.739559 0.246267i
\(159\) 9.70241 + 11.5749i 0.769451 + 0.917952i
\(160\) −0.165435 4.54014i −0.0130788 0.358930i
\(161\) 0 0
\(162\) −0.377643 + 12.7223i −0.0296704 + 0.999560i
\(163\) 7.30910i 0.572493i 0.958156 + 0.286246i \(0.0924076\pi\)
−0.958156 + 0.286246i \(0.907592\pi\)
\(164\) 8.59627 + 11.4764i 0.671256 + 0.896153i
\(165\) 2.09591 + 2.50041i 0.163166 + 0.194656i
\(166\) −2.31546 6.95348i −0.179714 0.539695i
\(167\) 8.37196 0.647842 0.323921 0.946084i \(-0.394999\pi\)
0.323921 + 0.946084i \(0.394999\pi\)
\(168\) 0 0
\(169\) 14.7579 1.13523
\(170\) 0.425376 + 1.27744i 0.0326249 + 0.0979749i
\(171\) −21.0444 3.73296i −1.60930 0.285467i
\(172\) −9.52398 12.7149i −0.726196 0.969501i
\(173\) 12.7711i 0.970970i 0.874245 + 0.485485i \(0.161357\pi\)
−0.874245 + 0.485485i \(0.838643\pi\)
\(174\) 5.43275 8.82665i 0.411856 0.669147i
\(175\) 0 0
\(176\) 2.63796 9.00331i 0.198844 0.678650i
\(177\) 0.878968 0.736774i 0.0660673 0.0553793i
\(178\) 21.9594 7.31232i 1.64593 0.548082i
\(179\) −21.1177 −1.57841 −0.789206 0.614129i \(-0.789508\pi\)
−0.789206 + 0.614129i \(0.789508\pi\)
\(180\) −4.30205 + 2.17086i −0.320656 + 0.161806i
\(181\) 12.4075 0.922239 0.461120 0.887338i \(-0.347448\pi\)
0.461120 + 0.887338i \(0.347448\pi\)
\(182\) 0 0
\(183\) 1.27181 1.06607i 0.0940151 0.0788059i
\(184\) −18.3299 12.7149i −1.35130 0.937354i
\(185\) 0.841636i 0.0618783i
\(186\) −6.28998 + 10.2194i −0.461204 + 0.749323i
\(187\) 2.78037i 0.203321i
\(188\) −9.76301 + 7.31290i −0.712041 + 0.533348i
\(189\) 0 0
\(190\) −2.55646 7.67724i −0.185465 0.556966i
\(191\) 6.09990 0.441374 0.220687 0.975345i \(-0.429170\pi\)
0.220687 + 0.975345i \(0.429170\pi\)
\(192\) 12.0570 + 6.82852i 0.870139 + 0.492806i
\(193\) 0.645008 0.0464287 0.0232144 0.999731i \(-0.492610\pi\)
0.0232144 + 0.999731i \(0.492610\pi\)
\(194\) 1.95622 + 5.87467i 0.140448 + 0.421777i
\(195\) 4.70802 + 5.61665i 0.337149 + 0.402217i
\(196\) 0 0
\(197\) 14.9111i 1.06237i 0.847256 + 0.531185i \(0.178253\pi\)
−0.847256 + 0.531185i \(0.821747\pi\)
\(198\) −9.84521 + 1.44654i −0.699669 + 0.102801i
\(199\) 18.6992i 1.32555i 0.748817 + 0.662777i \(0.230622\pi\)
−0.748817 + 0.662777i \(0.769378\pi\)
\(200\) 10.1211 + 7.02072i 0.715671 + 0.496440i
\(201\) −9.37559 11.1850i −0.661303 0.788932i
\(202\) −11.2620 + 3.75017i −0.792394 + 0.263861i
\(203\) 0 0
\(204\) −3.99804 0.937339i −0.279919 0.0656269i
\(205\) 5.75794 0.402152
\(206\) 3.44428 1.14692i 0.239974 0.0799096i
\(207\) −4.13266 + 23.2976i −0.287240 + 1.61930i
\(208\) 5.92564 20.2241i 0.410869 1.40229i
\(209\) 16.7097i 1.15583i
\(210\) 0 0
\(211\) 11.7243i 0.807132i −0.914950 0.403566i \(-0.867771\pi\)
0.914950 0.403566i \(-0.132229\pi\)
\(212\) −10.4555 13.9584i −0.718083 0.958670i
\(213\) −12.8417 + 10.7642i −0.879898 + 0.737553i
\(214\) −2.72545 8.18472i −0.186308 0.559496i
\(215\) −6.37933 −0.435067
\(216\) 1.23904 14.6446i 0.0843057 0.996440i
\(217\) 0 0
\(218\) −2.43547 7.31389i −0.164951 0.495359i
\(219\) −1.87723 + 1.57354i −0.126851 + 0.106330i
\(220\) −2.25858 3.01529i −0.152273 0.203291i
\(221\) 6.24553i 0.420120i
\(222\) −2.18606 1.34550i −0.146719 0.0903044i
\(223\) 0.683260i 0.0457545i 0.999738 + 0.0228772i \(0.00728269\pi\)
−0.999738 + 0.0228772i \(0.992717\pi\)
\(224\) 0 0
\(225\) 2.28191 12.8642i 0.152128 0.857610i
\(226\) 9.52398 3.17141i 0.633525 0.210959i
\(227\) −8.75387 −0.581015 −0.290507 0.956873i \(-0.593824\pi\)
−0.290507 + 0.956873i \(0.593824\pi\)
\(228\) 24.0278 + 5.63330i 1.59128 + 0.373075i
\(229\) −18.4985 −1.22242 −0.611209 0.791469i \(-0.709316\pi\)
−0.611209 + 0.791469i \(0.709316\pi\)
\(230\) −8.49926 + 2.83019i −0.560425 + 0.186617i
\(231\) 0 0
\(232\) −6.82135 + 9.83371i −0.447844 + 0.645615i
\(233\) 10.1391i 0.664234i −0.943238 0.332117i \(-0.892237\pi\)
0.943238 0.332117i \(-0.107763\pi\)
\(234\) −22.1153 + 3.24936i −1.44572 + 0.212417i
\(235\) 4.89831i 0.319531i
\(236\) −1.05996 + 0.793958i −0.0689978 + 0.0516822i
\(237\) 7.70873 + 9.19649i 0.500736 + 0.597376i
\(238\) 0 0
\(239\) 1.49470 0.0966841 0.0483421 0.998831i \(-0.484606\pi\)
0.0483421 + 0.998831i \(0.484606\pi\)
\(240\) 5.09727 2.23119i 0.329027 0.144023i
\(241\) −10.3337 −0.665653 −0.332827 0.942988i \(-0.608002\pi\)
−0.332827 + 0.942988i \(0.608002\pi\)
\(242\) 2.45690 + 7.37824i 0.157935 + 0.474291i
\(243\) −14.6620 + 5.29396i −0.940567 + 0.339608i
\(244\) −1.53370 + 1.14881i −0.0981853 + 0.0735449i
\(245\) 0 0
\(246\) −9.20508 + 14.9556i −0.586895 + 0.953535i
\(247\) 37.5349i 2.38829i
\(248\) 7.89769 11.3854i 0.501504 0.722971i
\(249\) 6.87897 5.76613i 0.435937 0.365413i
\(250\) 10.0811 3.35692i 0.637583 0.212310i
\(251\) −26.9555 −1.70142 −0.850709 0.525636i \(-0.823827\pi\)
−0.850709 + 0.525636i \(0.823827\pi\)
\(252\) 0 0
\(253\) −18.4989 −1.16301
\(254\) −5.58451 + 1.85960i −0.350403 + 0.116682i
\(255\) −1.26375 + 1.05930i −0.0791389 + 0.0663362i
\(256\) −13.4700 8.63469i −0.841878 0.539668i
\(257\) 2.79168i 0.174140i −0.996202 0.0870700i \(-0.972250\pi\)
0.996202 0.0870700i \(-0.0277504\pi\)
\(258\) 10.1985 16.5696i 0.634931 1.03158i
\(259\) 0 0
\(260\) −5.07343 6.77323i −0.314641 0.420058i
\(261\) 12.4989 + 2.21711i 0.773659 + 0.137236i
\(262\) 4.68779 + 14.0778i 0.289613 + 0.869728i
\(263\) 15.3103 0.944074 0.472037 0.881579i \(-0.343519\pi\)
0.472037 + 0.881579i \(0.343519\pi\)
\(264\) 11.4426 1.04593i 0.704245 0.0643726i
\(265\) −7.00325 −0.430206
\(266\) 0 0
\(267\) 18.2097 + 21.7241i 1.11442 + 1.32949i
\(268\) 10.1033 + 13.4883i 0.617155 + 0.823927i
\(269\) 30.6864i 1.87098i −0.353347 0.935492i \(-0.614956\pi\)
0.353347 0.935492i \(-0.385044\pi\)
\(270\) −4.40846 3.92377i −0.268290 0.238793i
\(271\) 19.6862i 1.19585i 0.801550 + 0.597927i \(0.204009\pi\)
−0.801550 + 0.597927i \(0.795991\pi\)
\(272\) 4.55042 + 1.33327i 0.275910 + 0.0808412i
\(273\) 0 0
\(274\) −18.1033 + 6.02825i −1.09366 + 0.364180i
\(275\) 10.2144 0.615953
\(276\) 6.23647 26.6005i 0.375391 1.60116i
\(277\) −13.1129 −0.787880 −0.393940 0.919136i \(-0.628888\pi\)
−0.393940 + 0.919136i \(0.628888\pi\)
\(278\) 10.1608 3.38347i 0.609404 0.202927i
\(279\) −14.4710 2.56695i −0.866358 0.153679i
\(280\) 0 0
\(281\) 2.86670i 0.171013i 0.996338 + 0.0855066i \(0.0272509\pi\)
−0.996338 + 0.0855066i \(0.972749\pi\)
\(282\) −12.7228 7.83082i −0.757634 0.466319i
\(283\) 1.99040i 0.118317i 0.998249 + 0.0591585i \(0.0188417\pi\)
−0.998249 + 0.0591585i \(0.981158\pi\)
\(284\) 15.4860 11.5997i 0.918927 0.688314i
\(285\) 7.59497 6.36630i 0.449887 0.377107i
\(286\) −5.52122 16.5806i −0.326477 0.980433i
\(287\) 0 0
\(288\) −2.35362 + 16.8066i −0.138689 + 0.990336i
\(289\) 15.5948 0.917339
\(290\) 1.51836 + 4.55973i 0.0891610 + 0.267757i
\(291\) −5.81171 + 4.87153i −0.340689 + 0.285574i
\(292\) 2.26378 1.69567i 0.132478 0.0992314i
\(293\) 16.7482i 0.978441i −0.872160 0.489221i \(-0.837281\pi\)
0.872160 0.489221i \(-0.162719\pi\)
\(294\) 0 0
\(295\) 0.531807i 0.0309630i
\(296\) 2.43547 + 1.68941i 0.141559 + 0.0981952i
\(297\) −6.07741 10.5639i −0.352647 0.612980i
\(298\) 21.6044 7.19411i 1.25151 0.416743i
\(299\) −41.5539 −2.40312
\(300\) −3.44356 + 14.6879i −0.198814 + 0.848004i
\(301\) 0 0
\(302\) 23.3260 7.76737i 1.34226 0.446962i
\(303\) −9.33896 11.1413i −0.536509 0.640054i
\(304\) −27.3475 8.01279i −1.56849 0.459565i
\(305\) 0.769492i 0.0440610i
\(306\) −0.731105 4.97593i −0.0417945 0.284455i
\(307\) 15.4869i 0.883885i −0.897043 0.441942i \(-0.854290\pi\)
0.897043 0.441942i \(-0.145710\pi\)
\(308\) 0 0
\(309\) 2.85614 + 3.40737i 0.162480 + 0.193838i
\(310\) −1.75794 5.27921i −0.0998441 0.299839i
\(311\) −10.8995 −0.618051 −0.309026 0.951054i \(-0.600003\pi\)
−0.309026 + 0.951054i \(0.600003\pi\)
\(312\) 25.7035 2.34947i 1.45517 0.133013i
\(313\) 33.8022 1.91062 0.955308 0.295613i \(-0.0955238\pi\)
0.955308 + 0.295613i \(0.0955238\pi\)
\(314\) 1.75244 + 5.26270i 0.0988958 + 0.296991i
\(315\) 0 0
\(316\) −8.30704 11.0902i −0.467307 0.623874i
\(317\) 9.28660i 0.521588i −0.965395 0.260794i \(-0.916016\pi\)
0.965395 0.260794i \(-0.0839843\pi\)
\(318\) 11.1959 18.1902i 0.627837 1.02005i
\(319\) 9.92437i 0.555658i
\(320\) −6.01795 + 2.25052i −0.336413 + 0.125808i
\(321\) 8.09701 6.78712i 0.451931 0.378820i
\(322\) 0 0
\(323\) 8.44536 0.469912
\(324\) 17.2393 5.17764i 0.957737 0.287647i
\(325\) 22.9446 1.27274
\(326\) 9.80719 3.26572i 0.543170 0.180871i
\(327\) 7.23552 6.06499i 0.400125 0.335395i
\(328\) 11.5579 16.6619i 0.638178 0.920002i
\(329\) 0 0
\(330\) 2.41854 3.92943i 0.133136 0.216308i
\(331\) 1.01495i 0.0557864i −0.999611 0.0278932i \(-0.991120\pi\)
0.999611 0.0278932i \(-0.00887984\pi\)
\(332\) −8.29548 + 6.21366i −0.455274 + 0.341019i
\(333\) 0.549103 3.09553i 0.0300906 0.169634i
\(334\) −3.74061 11.2333i −0.204677 0.614659i
\(335\) 6.76735 0.369740
\(336\) 0 0
\(337\) −12.6597 −0.689620 −0.344810 0.938673i \(-0.612057\pi\)
−0.344810 + 0.938673i \(0.612057\pi\)
\(338\) −6.59387 19.8019i −0.358659 1.07708i
\(339\) 7.89769 + 9.42191i 0.428944 + 0.511728i
\(340\) 1.52398 1.14152i 0.0826492 0.0619077i
\(341\) 11.4903i 0.622236i
\(342\) 4.39386 + 29.9048i 0.237593 + 1.61706i
\(343\) 0 0
\(344\) −12.8052 + 18.4601i −0.690411 + 0.995302i
\(345\) −7.04795 8.40818i −0.379449 0.452681i
\(346\) 17.1360 5.70616i 0.921237 0.306765i
\(347\) −25.6286 −1.37581 −0.687907 0.725799i \(-0.741470\pi\)
−0.687907 + 0.725799i \(0.741470\pi\)
\(348\) −14.2708 3.34578i −0.764994 0.179353i
\(349\) −28.1235 −1.50542 −0.752709 0.658354i \(-0.771253\pi\)
−0.752709 + 0.658354i \(0.771253\pi\)
\(350\) 0 0
\(351\) −13.6517 23.7297i −0.728672 1.26660i
\(352\) −13.2591 + 0.483138i −0.706712 + 0.0257513i
\(353\) 10.3049i 0.548474i 0.961662 + 0.274237i \(0.0884253\pi\)
−0.961662 + 0.274237i \(0.911575\pi\)
\(354\) −1.38131 0.850188i −0.0734159 0.0451870i
\(355\) 7.76968i 0.412372i
\(356\) −19.6230 26.1975i −1.04002 1.38847i
\(357\) 0 0
\(358\) 9.43543 + 28.3353i 0.498678 + 1.49757i
\(359\) −26.8394 −1.41653 −0.708265 0.705947i \(-0.750522\pi\)
−0.708265 + 0.705947i \(0.750522\pi\)
\(360\) 4.83497 + 4.80246i 0.254825 + 0.253112i
\(361\) −31.7556 −1.67135
\(362\) −5.54368 16.6481i −0.291369 0.875003i
\(363\) −7.29917 + 6.11835i −0.383107 + 0.321130i
\(364\) 0 0
\(365\) 1.13579i 0.0594499i
\(366\) −1.99867 1.23017i −0.104472 0.0643020i
\(367\) 13.3519i 0.696964i 0.937315 + 0.348482i \(0.113303\pi\)
−0.937315 + 0.348482i \(0.886697\pi\)
\(368\) −8.87073 + 30.2756i −0.462419 + 1.57823i
\(369\) −21.1777 3.75661i −1.10247 0.195561i
\(370\) 1.12929 0.376045i 0.0587089 0.0195496i
\(371\) 0 0
\(372\) 16.5225 + 3.87371i 0.856654 + 0.200842i
\(373\) −22.8059 −1.18084 −0.590422 0.807095i \(-0.701039\pi\)
−0.590422 + 0.807095i \(0.701039\pi\)
\(374\) 3.73064 1.24227i 0.192907 0.0642365i
\(375\) 8.35966 + 9.97304i 0.431691 + 0.515006i
\(376\) 14.1744 + 9.83237i 0.730990 + 0.507066i
\(377\) 22.2931i 1.14815i
\(378\) 0 0
\(379\) 1.98122i 0.101768i 0.998705 + 0.0508842i \(0.0162040\pi\)
−0.998705 + 0.0508842i \(0.983796\pi\)
\(380\) −9.15892 + 6.86041i −0.469843 + 0.351932i
\(381\) −4.63091 5.52466i −0.237249 0.283037i
\(382\) −2.72545 8.18472i −0.139446 0.418767i
\(383\) 28.8209 1.47268 0.736339 0.676613i \(-0.236553\pi\)
0.736339 + 0.676613i \(0.236553\pi\)
\(384\) 3.77527 19.2288i 0.192656 0.981266i
\(385\) 0 0
\(386\) −0.288191 0.865458i −0.0146685 0.0440506i
\(387\) 23.4632 + 4.16202i 1.19270 + 0.211567i
\(388\) 7.00846 5.24963i 0.355801 0.266509i
\(389\) 1.95975i 0.0993630i −0.998765 0.0496815i \(-0.984179\pi\)
0.998765 0.0496815i \(-0.0158206\pi\)
\(390\) 5.43275 8.82665i 0.275098 0.446955i
\(391\) 9.34962i 0.472831i
\(392\) 0 0
\(393\) −13.9269 + 11.6739i −0.702520 + 0.588870i
\(394\) 20.0074 6.66230i 1.00796 0.335642i
\(395\) −5.56421 −0.279966
\(396\) 6.33980 + 12.5638i 0.318587 + 0.631353i
\(397\) −4.56310 −0.229015 −0.114508 0.993422i \(-0.536529\pi\)
−0.114508 + 0.993422i \(0.536529\pi\)
\(398\) 25.0902 8.35485i 1.25766 0.418791i
\(399\) 0 0
\(400\) 4.89811 16.7172i 0.244906 0.835858i
\(401\) 26.7811i 1.33738i 0.743539 + 0.668692i \(0.233146\pi\)
−0.743539 + 0.668692i \(0.766854\pi\)
\(402\) −10.8188 + 17.5775i −0.539593 + 0.876684i
\(403\) 25.8107i 1.28572i
\(404\) 10.0638 + 13.4356i 0.500693 + 0.668444i
\(405\) 2.48610 6.78712i 0.123535 0.337255i
\(406\) 0 0
\(407\) 2.45792 0.121835
\(408\) 0.528631 + 5.78329i 0.0261711 + 0.286315i
\(409\) 18.0424 0.892142 0.446071 0.894998i \(-0.352823\pi\)
0.446071 + 0.894998i \(0.352823\pi\)
\(410\) −2.57266 7.72587i −0.127054 0.381554i
\(411\) −15.0120 17.9093i −0.740488 0.883399i
\(412\) −3.07782 4.10901i −0.151633 0.202436i
\(413\) 0 0
\(414\) 33.1067 4.86432i 1.62711 0.239068i
\(415\) 4.16202i 0.204306i
\(416\) −29.7838 + 1.08527i −1.46027 + 0.0532098i
\(417\) 8.42577 + 10.0519i 0.412612 + 0.492244i
\(418\) −22.4207 + 7.46593i −1.09663 + 0.365171i
\(419\) 17.5395 0.856861 0.428430 0.903575i \(-0.359067\pi\)
0.428430 + 0.903575i \(0.359067\pi\)
\(420\) 0 0
\(421\) 15.4006 0.750582 0.375291 0.926907i \(-0.377543\pi\)
0.375291 + 0.926907i \(0.377543\pi\)
\(422\) −15.7314 + 5.23843i −0.765791 + 0.255003i
\(423\) 3.19577 18.0160i 0.155384 0.875967i
\(424\) −14.0576 + 20.2656i −0.682698 + 0.984182i
\(425\) 5.16254i 0.250420i
\(426\) 20.1809 + 12.4212i 0.977767 + 0.601810i
\(427\) 0 0
\(428\) −9.76434 + 7.31389i −0.471977 + 0.353530i
\(429\) 16.4029 13.7494i 0.791942 0.663826i
\(430\) 2.85030 + 8.55965i 0.137454 + 0.412783i
\(431\) 9.00360 0.433688 0.216844 0.976206i \(-0.430424\pi\)
0.216844 + 0.976206i \(0.430424\pi\)
\(432\) −20.2034 + 4.88073i −0.972038 + 0.234824i
\(433\) −6.15889 −0.295977 −0.147989 0.988989i \(-0.547280\pi\)
−0.147989 + 0.988989i \(0.547280\pi\)
\(434\) 0 0
\(435\) −4.51087 + 3.78113i −0.216280 + 0.181291i
\(436\) −8.72545 + 6.53572i −0.417873 + 0.313004i
\(437\) 56.1901i 2.68794i
\(438\) 2.95009 + 1.81576i 0.140961 + 0.0867604i
\(439\) 29.2493i 1.39599i 0.716102 + 0.697996i \(0.245925\pi\)
−0.716102 + 0.697996i \(0.754075\pi\)
\(440\) −3.03671 + 4.37775i −0.144770 + 0.208701i
\(441\) 0 0
\(442\) 8.38012 2.79052i 0.398602 0.132731i
\(443\) −7.21640 −0.342861 −0.171431 0.985196i \(-0.554839\pi\)
−0.171431 + 0.985196i \(0.554839\pi\)
\(444\) −0.828634 + 3.53438i −0.0393252 + 0.167734i
\(445\) −13.1439 −0.623079
\(446\) 0.916783 0.305282i 0.0434109 0.0144555i
\(447\) 17.9153 + 21.3729i 0.847365 + 1.01090i
\(448\) 0 0
\(449\) 4.43423i 0.209264i 0.994511 + 0.104632i \(0.0333665\pi\)
−0.994511 + 0.104632i \(0.966634\pi\)
\(450\) −18.2804 + 2.68591i −0.861746 + 0.126615i
\(451\) 16.8155i 0.791813i
\(452\) −8.51066 11.3621i −0.400308 0.534427i
\(453\) 19.3429 + 23.0760i 0.908809 + 1.08421i
\(454\) 3.91125 + 11.7458i 0.183564 + 0.551256i
\(455\) 0 0
\(456\) −3.17701 34.7569i −0.148777 1.62764i
\(457\) 13.6620 0.639083 0.319541 0.947572i \(-0.396471\pi\)
0.319541 + 0.947572i \(0.396471\pi\)
\(458\) 8.26518 + 24.8209i 0.386207 + 1.15981i
\(459\) 5.33917 3.07162i 0.249211 0.143371i
\(460\) 7.59497 + 10.1396i 0.354117 + 0.472761i
\(461\) 5.25789i 0.244885i 0.992476 + 0.122442i \(0.0390726\pi\)
−0.992476 + 0.122442i \(0.960927\pi\)
\(462\) 0 0
\(463\) 15.8863i 0.738299i −0.929370 0.369149i \(-0.879649\pi\)
0.929370 0.369149i \(-0.120351\pi\)
\(464\) 16.2425 + 4.75902i 0.754037 + 0.220932i
\(465\) 5.22264 4.37775i 0.242194 0.203013i
\(466\) −13.6044 + 4.53017i −0.630212 + 0.209856i
\(467\) 27.0767 1.25296 0.626481 0.779437i \(-0.284495\pi\)
0.626481 + 0.779437i \(0.284495\pi\)
\(468\) 14.2411 + 28.2219i 0.658293 + 1.30456i
\(469\) 0 0
\(470\) 6.57245 2.18858i 0.303164 0.100951i
\(471\) −5.20630 + 4.36405i −0.239894 + 0.201085i
\(472\) 1.53891 + 1.06750i 0.0708340 + 0.0491355i
\(473\) 18.6303i 0.856621i
\(474\) 8.89537 14.4524i 0.408578 0.663822i
\(475\) 31.0263i 1.42358i
\(476\) 0 0
\(477\) 25.7579 + 4.56908i 1.17937 + 0.209204i
\(478\) −0.667835 2.00556i −0.0305461 0.0917320i
\(479\) 15.2605 0.697271 0.348635 0.937258i \(-0.386645\pi\)
0.348635 + 0.937258i \(0.386645\pi\)
\(480\) −5.27123 5.84251i −0.240598 0.266673i
\(481\) 5.52122 0.251746
\(482\) 4.61712 + 13.8655i 0.210304 + 0.631558i
\(483\) 0 0
\(484\) 8.80221 6.59322i 0.400100 0.299692i
\(485\) 3.51629i 0.159667i
\(486\) 13.6543 + 17.3078i 0.619373 + 0.785097i
\(487\) 6.06417i 0.274794i −0.990516 0.137397i \(-0.956126\pi\)
0.990516 0.137397i \(-0.0438736\pi\)
\(488\) 2.22671 + 1.54460i 0.100798 + 0.0699208i
\(489\) 8.13254 + 9.70209i 0.367766 + 0.438744i
\(490\) 0 0
\(491\) −4.03833 −0.182247 −0.0911235 0.995840i \(-0.529046\pi\)
−0.0911235 + 0.995840i \(0.529046\pi\)
\(492\) 24.1800 + 5.66898i 1.09012 + 0.255578i
\(493\) −5.01594 −0.225906
\(494\) −50.3636 + 16.7707i −2.26596 + 0.754549i
\(495\) 5.56421 + 0.987009i 0.250092 + 0.0443627i
\(496\) −18.8053 5.50994i −0.844384 0.247404i
\(497\) 0 0
\(498\) −10.8104 6.65373i −0.484426 0.298161i
\(499\) 38.5012i 1.72355i 0.507290 + 0.861776i \(0.330647\pi\)
−0.507290 + 0.861776i \(0.669353\pi\)
\(500\) −9.00848 12.0267i −0.402872 0.537849i
\(501\) 11.1129 9.31514i 0.496489 0.416170i
\(502\) 12.0438 + 36.1684i 0.537541 + 1.61427i
\(503\) −14.3498 −0.639827 −0.319914 0.947447i \(-0.603654\pi\)
−0.319914 + 0.947447i \(0.603654\pi\)
\(504\) 0 0
\(505\) 6.74091 0.299967
\(506\) 8.26532 + 24.8213i 0.367438 + 1.10344i
\(507\) 19.5897 16.4206i 0.870008 0.729263i
\(508\) 4.99034 + 6.66230i 0.221410 + 0.295592i
\(509\) 12.0835i 0.535593i −0.963476 0.267796i \(-0.913705\pi\)
0.963476 0.267796i \(-0.0862955\pi\)
\(510\) 1.98600 + 1.22237i 0.0879414 + 0.0541274i
\(511\) 0 0
\(512\) −5.56740 + 21.9318i −0.246047 + 0.969258i
\(513\) −32.0878 + 18.4601i −1.41671 + 0.815033i
\(514\) −3.74581 + 1.24733i −0.165221 + 0.0550172i
\(515\) −2.06158 −0.0908440
\(516\) −26.7895 6.28078i −1.17934 0.276496i
\(517\) 14.3051 0.629137
\(518\) 0 0
\(519\) 14.2099 + 16.9524i 0.623746 + 0.744126i
\(520\) −6.82135 + 9.83371i −0.299136 + 0.431237i
\(521\) 31.8700i 1.39625i −0.715976 0.698125i \(-0.754018\pi\)
0.715976 0.698125i \(-0.245982\pi\)
\(522\) −2.60964 17.7613i −0.114221 0.777391i
\(523\) 36.6085i 1.60078i −0.599481 0.800389i \(-0.704626\pi\)
0.599481 0.800389i \(-0.295374\pi\)
\(524\) 16.7947 12.5800i 0.733682 0.549558i
\(525\) 0 0
\(526\) −6.84068 20.5430i −0.298268 0.895719i
\(527\) 5.80740 0.252974
\(528\) −6.51599 14.8861i −0.283572 0.647836i
\(529\) 39.2065 1.70463
\(530\) 3.12907 + 9.39681i 0.135918 + 0.408171i
\(531\) 0.346963 1.95599i 0.0150569 0.0848825i
\(532\) 0 0
\(533\) 37.7727i 1.63612i
\(534\) 21.0128 34.1397i 0.909312 1.47737i
\(535\) 4.89898i 0.211801i
\(536\) 13.5841 19.5829i 0.586743 0.845853i
\(537\) −28.0316 + 23.4968i −1.20965 + 1.01396i
\(538\) −41.1744 + 13.7108i −1.77515 + 0.591113i
\(539\) 0 0
\(540\) −3.29512 + 7.66832i −0.141799 + 0.329992i
\(541\) −36.2065 −1.55664 −0.778320 0.627867i \(-0.783928\pi\)
−0.778320 + 0.627867i \(0.783928\pi\)
\(542\) 26.4146 8.79585i 1.13460 0.377814i
\(543\) 16.4697 13.8053i 0.706781 0.592442i
\(544\) −0.244186 6.70136i −0.0104694 0.287318i
\(545\) 4.37775i 0.187522i
\(546\) 0 0
\(547\) 31.3917i 1.34221i 0.741361 + 0.671106i \(0.234180\pi\)
−0.741361 + 0.671106i \(0.765820\pi\)
\(548\) 16.1771 + 21.5971i 0.691053 + 0.922584i
\(549\) 0.502034 2.83019i 0.0214263 0.120790i
\(550\) −4.56383 13.7055i −0.194602 0.584404i
\(551\) 30.1452 1.28423
\(552\) −38.4784 + 3.51718i −1.63775 + 0.149701i
\(553\) 0 0
\(554\) 5.85888 + 17.5946i 0.248920 + 0.747525i
\(555\) 0.936455 + 1.11719i 0.0397503 + 0.0474219i
\(556\) −9.07973 12.1218i −0.385066 0.514079i
\(557\) 35.2982i 1.49563i −0.663906 0.747816i \(-0.731102\pi\)
0.663906 0.747816i \(-0.268898\pi\)
\(558\) 3.02141 + 20.5638i 0.127906 + 0.870536i
\(559\) 41.8491i 1.77003i
\(560\) 0 0
\(561\) 3.09361 + 3.69066i 0.130612 + 0.155820i
\(562\) 3.84648 1.28085i 0.162254 0.0540293i
\(563\) −26.4463 −1.11458 −0.557290 0.830318i \(-0.688159\pi\)
−0.557290 + 0.830318i \(0.688159\pi\)
\(564\) −4.82264 + 20.5700i −0.203070 + 0.866155i
\(565\) −5.70060 −0.239826
\(566\) 2.67067 0.889314i 0.112257 0.0373807i
\(567\) 0 0
\(568\) −22.4834 15.5961i −0.943382 0.654396i
\(569\) 27.4048i 1.14887i −0.818551 0.574434i \(-0.805222\pi\)
0.818551 0.574434i \(-0.194778\pi\)
\(570\) −11.9356 7.34629i −0.499928 0.307702i
\(571\) 28.0937i 1.17569i −0.808975 0.587843i \(-0.799977\pi\)
0.808975 0.587843i \(-0.200023\pi\)
\(572\) −19.7806 + 14.8165i −0.827070 + 0.619509i
\(573\) 8.09701 6.78712i 0.338257 0.283536i
\(574\) 0 0
\(575\) −34.3483 −1.43242
\(576\) 23.6023 4.35116i 0.983428 0.181298i
\(577\) −22.8309 −0.950461 −0.475231 0.879861i \(-0.657635\pi\)
−0.475231 + 0.879861i \(0.657635\pi\)
\(578\) −6.96777 20.9247i −0.289821 0.870353i
\(579\) 0.856183 0.717675i 0.0355818 0.0298255i
\(580\) 5.43974 4.07459i 0.225873 0.169188i
\(581\) 0 0
\(582\) 9.13319 + 5.62142i 0.378583 + 0.233015i
\(583\) 20.4524i 0.847051i
\(584\) −3.28667 2.27987i −0.136003 0.0943415i
\(585\) 12.4989 + 2.21711i 0.516764 + 0.0916664i
\(586\) −22.4724 + 7.48314i −0.928326 + 0.309126i
\(587\) 28.4011 1.17224 0.586119 0.810225i \(-0.300655\pi\)
0.586119 + 0.810225i \(0.300655\pi\)
\(588\) 0 0
\(589\) −34.9018 −1.43810
\(590\) 0.713567 0.237612i 0.0293771 0.00978235i
\(591\) 16.5910 + 19.7930i 0.682461 + 0.814173i
\(592\) 1.17865 4.02270i 0.0484420 0.165332i
\(593\) 23.8791i 0.980598i −0.871554 0.490299i \(-0.836887\pi\)
0.871554 0.490299i \(-0.163113\pi\)
\(594\) −11.4590 + 12.8745i −0.470169 + 0.528247i
\(595\) 0 0
\(596\) −19.3058 25.7740i −0.790796 1.05574i
\(597\) 20.8059 + 24.8213i 0.851528 + 1.01587i
\(598\) 18.5664 + 55.7561i 0.759235 + 2.28004i
\(599\) 39.1249 1.59860 0.799300 0.600932i \(-0.205204\pi\)
0.799300 + 0.600932i \(0.205204\pi\)
\(600\) 21.2464 1.94207i 0.867382 0.0792845i
\(601\) −4.88356 −0.199204 −0.0996022 0.995027i \(-0.531757\pi\)
−0.0996022 + 0.995027i \(0.531757\pi\)
\(602\) 0 0
\(603\) −24.8903 4.41518i −1.01361 0.179800i
\(604\) −20.8442 27.8278i −0.848138 1.13230i
\(605\) 4.41626i 0.179546i
\(606\) −10.7765 + 17.5088i −0.437767 + 0.711246i
\(607\) 31.7259i 1.28771i −0.765145 0.643857i \(-0.777333\pi\)
0.765145 0.643857i \(-0.222667\pi\)
\(608\) 1.46753 + 40.2744i 0.0595161 + 1.63334i
\(609\) 0 0
\(610\) 1.03249 0.343811i 0.0418042 0.0139205i
\(611\) 32.1335 1.29998
\(612\) −6.34993 + 3.20424i −0.256681 + 0.129524i
\(613\) 32.9668 1.33152 0.665758 0.746168i \(-0.268108\pi\)
0.665758 + 0.746168i \(0.268108\pi\)
\(614\) −20.7800 + 6.91958i −0.838612 + 0.279252i
\(615\) 7.64308 6.40662i 0.308199 0.258340i
\(616\) 0 0
\(617\) 14.3990i 0.579680i −0.957075 0.289840i \(-0.906398\pi\)
0.957075 0.289840i \(-0.0936021\pi\)
\(618\) 3.29580 5.35473i 0.132577 0.215399i
\(619\) 24.6919i 0.992453i −0.868193 0.496226i \(-0.834719\pi\)
0.868193 0.496226i \(-0.165281\pi\)
\(620\) −6.29808 + 4.71752i −0.252937 + 0.189460i
\(621\) 20.4367 + 35.5235i 0.820095 + 1.42551i
\(622\) 4.86990 + 14.6246i 0.195265 + 0.586395i
\(623\) 0 0
\(624\) −14.6368 33.4387i −0.585943 1.33862i
\(625\) 15.7409 0.629637
\(626\) −15.1029 45.3551i −0.603634 1.81275i
\(627\) −18.5922 22.1805i −0.742502 0.885802i
\(628\) 6.27838 4.70277i 0.250535 0.187661i
\(629\) 1.24227i 0.0495327i
\(630\) 0 0
\(631\) 15.8863i 0.632423i −0.948689 0.316212i \(-0.897589\pi\)
0.948689 0.316212i \(-0.102411\pi\)
\(632\) −11.1690 + 16.1013i −0.444280 + 0.640477i
\(633\) −13.0451 15.5628i −0.518497 0.618565i
\(634\) −12.4606 + 4.14927i −0.494872 + 0.164789i
\(635\) 3.34262 0.132648
\(636\) −29.4096 6.89506i −1.16616 0.273407i
\(637\) 0 0
\(638\) 13.3163 4.43423i 0.527197 0.175553i
\(639\) −5.06912 + 28.5768i −0.200531 + 1.13048i
\(640\) 5.70853 + 7.06921i 0.225649 + 0.279435i
\(641\) 19.3998i 0.766245i 0.923698 + 0.383122i \(0.125151\pi\)
−0.923698 + 0.383122i \(0.874849\pi\)
\(642\) −12.7246 7.83189i −0.502198 0.309100i
\(643\) 37.0568i 1.46138i 0.682710 + 0.730690i \(0.260801\pi\)
−0.682710 + 0.730690i \(0.739199\pi\)
\(644\) 0 0
\(645\) −8.46792 + 7.09803i −0.333424 + 0.279485i
\(646\) −3.77340 11.3318i −0.148462 0.445843i
\(647\) 45.4057 1.78508 0.892542 0.450965i \(-0.148920\pi\)
0.892542 + 0.450965i \(0.148920\pi\)
\(648\) −14.6498 20.8179i −0.575498 0.817803i
\(649\) 1.55310 0.0609644
\(650\) −10.2517 30.7866i −0.402105 1.20755i
\(651\) 0 0
\(652\) −8.76374 11.6999i −0.343215 0.458205i
\(653\) 0.987349i 0.0386380i 0.999813 + 0.0193190i \(0.00614981\pi\)
−0.999813 + 0.0193190i \(0.993850\pi\)
\(654\) −11.3707 6.99861i −0.444630 0.273667i
\(655\) 8.42629i 0.329242i
\(656\) −27.5207 8.06354i −1.07450 0.314828i
\(657\) −0.741015 + 4.17743i −0.0289097 + 0.162977i
\(658\) 0 0
\(659\) 6.67629 0.260071 0.130036 0.991509i \(-0.458491\pi\)
0.130036 + 0.991509i \(0.458491\pi\)
\(660\) −6.35303 1.48946i −0.247291 0.0579773i
\(661\) 2.71141 0.105462 0.0527309 0.998609i \(-0.483207\pi\)
0.0527309 + 0.998609i \(0.483207\pi\)
\(662\) −1.36183 + 0.453479i −0.0529291 + 0.0176250i
\(663\) 6.94915 + 8.29031i 0.269883 + 0.321969i
\(664\) 12.0438 + 8.35442i 0.467390 + 0.324214i
\(665\) 0 0
\(666\) −4.39886 + 0.646317i −0.170452 + 0.0250443i
\(667\) 33.3729i 1.29220i
\(668\) −13.4013 + 10.0381i −0.518512 + 0.388387i
\(669\) 0.760236 + 0.906959i 0.0293924 + 0.0350651i
\(670\) −3.02367 9.08028i −0.116814 0.350802i
\(671\) 2.24723 0.0867535
\(672\) 0 0
\(673\) 37.2088 1.43430 0.717148 0.696921i \(-0.245447\pi\)
0.717148 + 0.696921i \(0.245447\pi\)
\(674\) 5.65639 + 16.9865i 0.217876 + 0.654297i
\(675\) −11.2844 19.6149i −0.434337 0.754976i
\(676\) −23.6236 + 17.6950i −0.908599 + 0.680578i
\(677\) 11.1282i 0.427691i 0.976867 + 0.213846i \(0.0685990\pi\)
−0.976867 + 0.213846i \(0.931401\pi\)
\(678\) 9.11341 14.8067i 0.349999 0.568647i
\(679\) 0 0
\(680\) −2.21258 1.53480i −0.0848487 0.0588570i
\(681\) −11.6199 + 9.74008i −0.445275 + 0.373241i
\(682\) −15.4175 + 5.13390i −0.590365 + 0.196587i
\(683\) 9.67432 0.370178 0.185089 0.982722i \(-0.440743\pi\)
0.185089 + 0.982722i \(0.440743\pi\)
\(684\) 38.1624 19.2571i 1.45918 0.736313i
\(685\) 10.8357 0.414013
\(686\) 0 0
\(687\) −24.5549 + 20.5826i −0.936829 + 0.785274i
\(688\) 30.4907 + 8.93376i 1.16245 + 0.340596i
\(689\) 45.9421i 1.75025i
\(690\) −8.13287 + 13.2136i −0.309613 + 0.503032i
\(691\) 8.32473i 0.316688i 0.987384 + 0.158344i \(0.0506154\pi\)
−0.987384 + 0.158344i \(0.949385\pi\)
\(692\) −15.3128 20.4432i −0.582105 0.777133i
\(693\) 0 0
\(694\) 11.4509 + 34.3879i 0.434670 + 1.30535i
\(695\) −6.08177 −0.230695
\(696\) 1.88692 + 20.6431i 0.0715234 + 0.782475i
\(697\) 8.49885 0.321917
\(698\) 12.5656 + 37.7355i 0.475617 + 1.42831i
\(699\) −11.2814 13.4586i −0.426700 0.509052i
\(700\) 0 0
\(701\) 34.0535i 1.28618i −0.765790 0.643091i \(-0.777652\pi\)
0.765790 0.643091i \(-0.222348\pi\)
\(702\) −25.7403 + 28.9199i −0.971507 + 1.09151i
\(703\) 7.46593i 0.281583i
\(704\) 6.57245 + 17.5749i 0.247708 + 0.662378i
\(705\) 5.45016 + 6.50202i 0.205265 + 0.244880i
\(706\) 13.8269 4.60425i 0.520382 0.173283i
\(707\) 0 0
\(708\) −0.523592 + 2.23328i −0.0196778 + 0.0839318i
\(709\) 9.64271 0.362140 0.181070 0.983470i \(-0.442044\pi\)
0.181070 + 0.983470i \(0.442044\pi\)
\(710\) −10.4252 + 3.47151i −0.391250 + 0.130283i
\(711\) 20.4651 + 3.63021i 0.767502 + 0.136144i
\(712\) −26.3836 + 38.0348i −0.988769 + 1.42542i
\(713\) 38.6388i 1.44703i
\(714\) 0 0
\(715\) 9.92437i 0.371150i
\(716\) 33.8039 25.3205i 1.26331 0.946272i
\(717\) 1.98406 1.66309i 0.0740962 0.0621093i
\(718\) 11.9919 + 36.0125i 0.447534 + 1.34398i
\(719\) 8.09170 0.301769 0.150885 0.988551i \(-0.451788\pi\)
0.150885 + 0.988551i \(0.451788\pi\)
\(720\) 4.28356 8.63321i 0.159639 0.321741i
\(721\) 0 0
\(722\) 14.1885 + 42.6090i 0.528040 + 1.58574i
\(723\) −13.7170 + 11.4979i −0.510139 + 0.427612i
\(724\) −19.8611 + 14.8768i −0.738131 + 0.552891i
\(725\) 18.4274i 0.684376i
\(726\) 11.4707 + 7.06017i 0.425719 + 0.262028i
\(727\) 36.9501i 1.37040i −0.728353 0.685202i \(-0.759714\pi\)
0.728353 0.685202i \(-0.240286\pi\)
\(728\) 0 0
\(729\) −13.5719 + 23.3410i −0.502664 + 0.864482i
\(730\) −1.52398 + 0.507473i −0.0564049 + 0.0187824i
\(731\) −9.41605 −0.348265
\(732\) −0.757605 + 3.23142i −0.0280019 + 0.119437i
\(733\) −37.9552 −1.40191 −0.700954 0.713207i \(-0.747242\pi\)
−0.700954 + 0.713207i \(0.747242\pi\)
\(734\) 17.9153 5.96566i 0.661266 0.220197i
\(735\) 0 0
\(736\) 44.5867 1.62466i 1.64349 0.0598857i
\(737\) 19.7635i 0.727996i
\(738\) 4.42169 + 30.0942i 0.162765 + 1.10778i
\(739\) 22.1318i 0.814131i −0.913399 0.407065i \(-0.866552\pi\)
0.913399 0.407065i \(-0.133448\pi\)
\(740\) −1.00914 1.34724i −0.0370966 0.0495254i
\(741\) −41.7636 49.8238i −1.53422 1.83032i
\(742\) 0 0
\(743\) 21.7884 0.799340 0.399670 0.916659i \(-0.369125\pi\)
0.399670 + 0.916659i \(0.369125\pi\)
\(744\) −2.18465 23.9004i −0.0800932 0.876230i
\(745\) −12.9314 −0.473769
\(746\) 10.1897 + 30.6004i 0.373072 + 1.12036i
\(747\) 2.71540 15.3079i 0.0993512 0.560087i
\(748\) −3.33371 4.45064i −0.121893 0.162731i
\(749\) 0 0
\(750\) 9.64649 15.6728i 0.352240 0.572289i
\(751\) 5.12830i 0.187134i 0.995613 + 0.0935671i \(0.0298270\pi\)
−0.995613 + 0.0935671i \(0.970173\pi\)
\(752\) 6.85971 23.4120i 0.250148 0.853749i
\(753\) −35.7808 + 29.9923i −1.30392 + 1.09298i
\(754\) 29.9123 9.96058i 1.08934 0.362743i
\(755\) −13.9618 −0.508122
\(756\) 0 0
\(757\) −30.4486 −1.10667 −0.553337 0.832958i \(-0.686646\pi\)
−0.553337 + 0.832958i \(0.686646\pi\)
\(758\) 2.65836 0.885213i 0.0965559 0.0321524i
\(759\) −24.5554 + 20.5829i −0.891303 + 0.747113i
\(760\) 13.2974 + 9.22400i 0.482347 + 0.334590i
\(761\) 42.7498i 1.54968i −0.632159 0.774839i \(-0.717831\pi\)
0.632159 0.774839i \(-0.282169\pi\)
\(762\) −5.34377 + 8.68209i −0.193584 + 0.314519i
\(763\) 0 0
\(764\) −9.76434 + 7.31389i −0.353261 + 0.264607i
\(765\) −0.498850 + 2.81224i −0.0180360 + 0.101677i
\(766\) −12.8772 38.6712i −0.465273 1.39725i
\(767\) 3.48871 0.125970
\(768\) −27.4876 + 3.52589i −0.991873 + 0.127230i
\(769\) 7.77655 0.280430 0.140215 0.990121i \(-0.455221\pi\)
0.140215 + 0.990121i \(0.455221\pi\)
\(770\) 0 0
\(771\) −3.10619 3.70567i −0.111867 0.133456i
\(772\) −1.03249 + 0.773376i −0.0371600 + 0.0278344i
\(773\) 1.20376i 0.0432963i −0.999766 0.0216482i \(-0.993109\pi\)
0.999766 0.0216482i \(-0.00689136\pi\)
\(774\) −4.89888 33.3420i −0.176086 1.19845i
\(775\) 21.3350i 0.766376i
\(776\) −10.1752 7.05825i −0.365269 0.253376i
\(777\) 0 0
\(778\) −2.62954 + 0.875618i −0.0942737 + 0.0313924i
\(779\) −51.0771 −1.83003
\(780\) −14.2708 3.34578i −0.510976 0.119798i
\(781\) −22.6907 −0.811936
\(782\) −12.5451 + 4.17743i −0.448612 + 0.149384i
\(783\) 19.0579 10.9640i 0.681072 0.391820i
\(784\) 0 0
\(785\) 3.15000i 0.112428i
\(786\) 21.8864 + 13.4709i 0.780661 + 0.480492i
\(787\) 22.5045i 0.802199i 0.916035 + 0.401099i \(0.131372\pi\)
−0.916035 + 0.401099i \(0.868628\pi\)
\(788\) −17.8787 23.8687i −0.636901 0.850288i
\(789\) 20.3229 17.0352i 0.723514 0.606468i
\(790\) 2.48610 + 7.46593i 0.0884514 + 0.265626i
\(791\) 0 0
\(792\) 14.0252 14.1201i 0.498362 0.501736i
\(793\) 5.04795 0.179258
\(794\) 2.03880 + 6.12267i 0.0723544 + 0.217285i
\(795\) −9.29611 + 7.79224i −0.329699 + 0.276362i
\(796\) −22.4207 29.9325i −0.794681 1.06093i
\(797\) 18.3911i 0.651447i −0.945465 0.325724i \(-0.894392\pi\)
0.945465 0.325724i \(-0.105608\pi\)
\(798\) 0 0
\(799\) 7.23003i 0.255780i
\(800\) −24.6192 + 0.897081i −0.870421 + 0.0317166i
\(801\) 48.3431 + 8.57535i 1.70812 + 0.302995i
\(802\) 35.9343 11.9658i 1.26888 0.422529i
\(803\) −3.31697 −0.117053
\(804\) 28.4189 + 6.66281i 1.00226 + 0.234979i
\(805\) 0 0
\(806\) −34.6322 + 11.5323i −1.21987 + 0.406206i
\(807\) −34.1436 40.7331i −1.20191 1.43387i
\(808\) 13.5310 19.5064i 0.476020 0.686233i
\(809\) 13.2891i 0.467220i −0.972330 0.233610i \(-0.924946\pi\)
0.972330 0.233610i \(-0.0750538\pi\)
\(810\) −10.2176 0.303294i −0.359010 0.0106567i
\(811\) 6.46254i 0.226930i −0.993542 0.113465i \(-0.963805\pi\)
0.993542 0.113465i \(-0.0361950\pi\)
\(812\) 0 0
\(813\) 21.9041 + 26.1315i 0.768210 + 0.916472i
\(814\) −1.09821 3.29799i −0.0384921 0.115594i
\(815\) −5.87011 −0.205621
\(816\) 7.52369 3.29329i 0.263382 0.115288i
\(817\) 56.5894 1.97981
\(818\) −8.06140 24.2090i −0.281860 0.846446i
\(819\) 0 0
\(820\) −9.21694 + 6.90387i −0.321869 + 0.241094i
\(821\) 27.9169i 0.974306i −0.873317 0.487153i \(-0.838035\pi\)
0.873317 0.487153i \(-0.161965\pi\)
\(822\) −17.3229 + 28.1447i −0.604204 + 0.981658i
\(823\) 44.9950i 1.56843i 0.620492 + 0.784213i \(0.286933\pi\)
−0.620492 + 0.784213i \(0.713067\pi\)
\(824\) −4.13820 + 5.96566i −0.144161 + 0.207824i
\(825\) 13.5586 11.3652i 0.472051 0.395685i
\(826\) 0 0
\(827\) 34.2989 1.19269 0.596344 0.802729i \(-0.296619\pi\)
0.596344 + 0.802729i \(0.296619\pi\)
\(828\) −21.3190 42.2485i −0.740886 1.46824i
\(829\) 23.0157 0.799368 0.399684 0.916653i \(-0.369120\pi\)
0.399684 + 0.916653i \(0.369120\pi\)
\(830\) 5.58451 1.85960i 0.193841 0.0645476i
\(831\) −17.4061 + 14.5902i −0.603811 + 0.506129i
\(832\) 14.7637 + 39.4784i 0.511838 + 1.36867i
\(833\) 0 0
\(834\) 9.72279 15.7967i 0.336673 0.546996i
\(835\) 6.72372i 0.232684i
\(836\) 20.0352 + 26.7478i 0.692933 + 0.925093i
\(837\) −22.0650 + 12.6940i −0.762677 + 0.438768i
\(838\) −7.83668 23.5341i −0.270714 0.812972i
\(839\) −46.9847 −1.62209 −0.811046 0.584983i \(-0.801101\pi\)
−0.811046 + 0.584983i \(0.801101\pi\)
\(840\) 0 0
\(841\) 11.0959 0.382617
\(842\) −6.88104 20.6642i −0.237136 0.712137i
\(843\) 3.18967 + 3.80526i 0.109858 + 0.131060i
\(844\) 14.0576 + 18.7675i 0.483883 + 0.646003i
\(845\) 11.8525i 0.407737i
\(846\) −25.6013 + 3.76156i −0.880191 + 0.129325i
\(847\) 0 0
\(848\) 33.4728 + 9.80751i 1.14946 + 0.336791i
\(849\) 2.21464 + 2.64205i 0.0760062 + 0.0906751i
\(850\) 6.92698 2.30663i 0.237593 0.0791168i
\(851\) −8.26532 −0.283332
\(852\) 7.64965 32.6281i 0.262073 1.11782i
\(853\) 12.7498 0.436545 0.218272 0.975888i \(-0.429958\pi\)
0.218272 + 0.975888i \(0.429958\pi\)
\(854\) 0 0
\(855\) 2.99803 16.9012i 0.102531 0.578010i
\(856\) 14.1763 + 9.83371i 0.484538 + 0.336109i
\(857\) 30.2271i 1.03254i −0.856426 0.516269i \(-0.827320\pi\)
0.856426 0.516269i \(-0.172680\pi\)
\(858\) −25.7775 15.8659i −0.880028 0.541652i
\(859\) 18.3576i 0.626353i −0.949695 0.313177i \(-0.898607\pi\)
0.949695 0.313177i \(-0.101393\pi\)
\(860\) 10.2116 7.64893i 0.348214 0.260826i
\(861\) 0 0
\(862\) −4.02283 12.0808i −0.137018 0.411475i
\(863\) 26.3936 0.898450 0.449225 0.893419i \(-0.351700\pi\)
0.449225 + 0.893419i \(0.351700\pi\)
\(864\) 15.5758 + 24.9278i 0.529899 + 0.848061i
\(865\) −10.2568 −0.348741
\(866\) 2.75180 + 8.26386i 0.0935101 + 0.280817i
\(867\) 20.7005 17.3517i 0.703025 0.589293i
\(868\) 0 0
\(869\) 16.2498i 0.551236i
\(870\) 7.08890 + 4.36317i 0.240336 + 0.147925i
\(871\) 44.3946i 1.50425i
\(872\) 12.6680 + 8.78744i 0.428994 + 0.297580i
\(873\) −2.29411 + 12.9329i −0.0776439 + 0.437713i
\(874\) 75.3947 25.1059i 2.55026 0.849218i
\(875\) 0 0
\(876\) 1.11824 4.76965i 0.0377819 0.161151i
\(877\) −0.937324 −0.0316512 −0.0158256 0.999875i \(-0.505038\pi\)
−0.0158256 + 0.999875i \(0.505038\pi\)
\(878\) 39.2460 13.0686i 1.32449 0.441045i
\(879\) −18.6351 22.2316i −0.628545 0.749852i
\(880\) 7.23077 + 2.11861i 0.243749 + 0.0714183i
\(881\) 37.1298i 1.25093i 0.780251 + 0.625467i \(0.215091\pi\)
−0.780251 + 0.625467i \(0.784909\pi\)
\(882\) 0 0
\(883\) 5.76235i 0.193918i −0.995288 0.0969592i \(-0.969088\pi\)
0.995288 0.0969592i \(-0.0309116\pi\)
\(884\) −7.48850 9.99745i −0.251866 0.336251i
\(885\) 0.591721 + 0.705920i 0.0198905 + 0.0237293i
\(886\) 3.22430 + 9.68280i 0.108322 + 0.325300i
\(887\) −26.1343 −0.877504 −0.438752 0.898608i \(-0.644579\pi\)
−0.438752 + 0.898608i \(0.644579\pi\)
\(888\) 5.11259 0.467324i 0.171567 0.0156824i
\(889\) 0 0
\(890\) 5.87270 + 17.6361i 0.196853 + 0.591165i
\(891\) −19.8212 7.26043i −0.664035 0.243234i
\(892\) −0.819241 1.09372i −0.0274302 0.0366204i
\(893\) 43.4516i 1.45405i
\(894\) 20.6731 33.5878i 0.691412 1.12334i
\(895\) 16.9601i 0.566915i
\(896\) 0 0
\(897\) −55.1586 + 46.2353i −1.84169 + 1.54375i
\(898\) 5.94975 1.98122i 0.198546 0.0661142i
\(899\) 20.7292 0.691356
\(900\) 11.7716 + 23.3282i 0.392387 + 0.777606i
\(901\) −10.3370 −0.344374
\(902\) −22.5627 + 7.51322i −0.751257 + 0.250163i
\(903\) 0 0
\(904\) −11.4428 + 16.4960i −0.380582 + 0.548649i
\(905\) 9.96473i 0.331239i
\(906\) 22.3204 36.2643i 0.741547 1.20480i
\(907\) 40.8329i 1.35584i 0.735138 + 0.677918i \(0.237117\pi\)
−0.735138 + 0.677918i \(0.762883\pi\)
\(908\) 14.0126 10.4960i 0.465026 0.348324i
\(909\) −24.7931 4.39793i −0.822334 0.145870i
\(910\) 0 0
\(911\) 4.31270 0.142886 0.0714430 0.997445i \(-0.477240\pi\)
0.0714430 + 0.997445i \(0.477240\pi\)
\(912\) −45.2165 + 19.7923i −1.49727 + 0.655388i
\(913\) 12.1548 0.402266
\(914\) −6.10422 18.3314i −0.201910 0.606349i
\(915\) 0.856183 + 1.02142i 0.0283045 + 0.0337672i
\(916\) 29.6113 22.1801i 0.978384 0.732850i
\(917\) 0 0
\(918\) −6.50699 5.79157i −0.214763 0.191150i
\(919\) 17.2821i 0.570085i −0.958515 0.285043i \(-0.907992\pi\)
0.958515 0.285043i \(-0.0920077\pi\)
\(920\) 10.2116 14.7212i 0.336667 0.485342i
\(921\) −17.2317 20.5573i −0.567803 0.677386i
\(922\) 7.05493 2.34924i 0.232342 0.0773680i
\(923\) −50.9699 −1.67770
\(924\) 0 0
\(925\) 4.56383 0.150058
\(926\) −21.3159 + 7.09803i −0.700483 + 0.233256i
\(927\) 7.58248 + 1.34502i 0.249041 + 0.0441763i
\(928\) −0.871607 23.9201i −0.0286119 0.785216i
\(929\) 23.1549i 0.759687i −0.925051 0.379843i \(-0.875978\pi\)
0.925051 0.379843i \(-0.124022\pi\)
\(930\) −8.20745 5.05163i −0.269133 0.165650i
\(931\) 0 0
\(932\) 12.1570 + 16.2300i 0.398214 + 0.531632i
\(933\) −14.4679 + 12.1274i −0.473658 + 0.397033i
\(934\) −12.0979 36.3310i −0.395857 1.18879i
\(935\) −2.23298 −0.0730263
\(936\) 31.5047 31.7179i 1.02976 1.03673i
\(937\) −3.10294 −0.101369 −0.0506843 0.998715i \(-0.516140\pi\)
−0.0506843 + 0.998715i \(0.516140\pi\)
\(938\) 0 0
\(939\) 44.8691 37.6104i 1.46425 1.22737i
\(940\) −5.87316 7.84091i −0.191562 0.255742i
\(941\) 23.6509i 0.770996i 0.922709 + 0.385498i \(0.125970\pi\)
−0.922709 + 0.385498i \(0.874030\pi\)
\(942\) 8.18178 + 5.03583i 0.266577 + 0.164076i
\(943\) 56.5461i 1.84139i
\(944\) 0.744755 2.54183i 0.0242397 0.0827296i
\(945\) 0 0
\(946\) 24.9977 8.32404i 0.812745 0.270638i
\(947\) 57.5371 1.86970 0.934852 0.355037i \(-0.115532\pi\)
0.934852 + 0.355037i \(0.115532\pi\)
\(948\) −23.3664 5.47825i −0.758906 0.177925i
\(949\) −7.45090 −0.241866
\(950\) −41.6304 + 13.8626i −1.35067 + 0.449762i
\(951\) −10.3328 12.3270i −0.335065 0.399731i
\(952\) 0 0
\(953\) 14.1961i 0.459855i −0.973208 0.229928i \(-0.926151\pi\)
0.973208 0.229928i \(-0.0738490\pi\)
\(954\) −5.37800 36.6029i −0.174119 1.18506i
\(955\) 4.89898i 0.158527i
\(956\) −2.39262 + 1.79217i −0.0773829 + 0.0579630i
\(957\) 11.0424 + 13.1736i 0.356952 + 0.425842i
\(958\) −6.81842 20.4762i −0.220293 0.661557i
\(959\) 0 0
\(960\) −5.48415 + 9.68327i −0.177000 + 0.312526i
\(961\) 7.00000 0.225806
\(962\) −2.46689 7.40826i −0.0795358 0.238852i
\(963\) 3.19621 18.0184i 0.102996 0.580636i
\(964\) 16.5415 12.3903i 0.532767 0.399065i
\(965\) 0.518021i 0.0166757i
\(966\) 0 0
\(967\) 31.5730i 1.01532i 0.861558 + 0.507660i \(0.169489\pi\)
−0.861558 + 0.507660i \(0.830511\pi\)
\(968\) −12.7795 8.86475i −0.410748 0.284924i
\(969\) 11.2104 9.39681i 0.360129 0.301869i
\(970\) −4.71809 + 1.57109i −0.151489 + 0.0504446i
\(971\) −29.3240 −0.941051 −0.470526 0.882386i \(-0.655936\pi\)
−0.470526 + 0.882386i \(0.655936\pi\)
\(972\) 17.1224 26.0542i 0.549202 0.835690i
\(973\) 0 0
\(974\) −8.13677 + 2.70948i −0.260719 + 0.0868174i
\(975\) 30.4567 25.5296i 0.975394 0.817600i
\(976\) 1.07761 3.67788i 0.0344936 0.117726i
\(977\) 11.8959i 0.380585i 0.981727 + 0.190292i \(0.0609436\pi\)
−0.981727 + 0.190292i \(0.939056\pi\)
\(978\) 9.38442 15.2470i 0.300081 0.487545i
\(979\) 38.3855i 1.22681i
\(980\) 0 0
\(981\) 2.85614 16.1013i 0.0911896 0.514076i
\(982\) 1.80433 + 5.41854i 0.0575785 + 0.172912i
\(983\) −14.9803 −0.477796 −0.238898 0.971045i \(-0.576786\pi\)
−0.238898 + 0.971045i \(0.576786\pi\)
\(984\) −3.19713 34.9770i −0.101921 1.11503i
\(985\) −11.9754 −0.381569
\(986\) 2.24113 + 6.73027i 0.0713721 + 0.214336i
\(987\) 0 0
\(988\) 45.0051 + 60.0835i 1.43180 + 1.91151i
\(989\) 62.6485i 1.99211i
\(990\) −1.16175 7.90693i −0.0369229 0.251299i
\(991\) 20.7846i 0.660245i 0.943938 + 0.330122i \(0.107090\pi\)
−0.943938 + 0.330122i \(0.892910\pi\)
\(992\) 1.00914 + 27.6944i 0.0320401 + 0.879299i
\(993\) −1.12929 1.34724i −0.0358369 0.0427533i
\(994\) 0 0
\(995\) −15.0178 −0.476096
\(996\) −4.09772 + 17.4781i −0.129841 + 0.553813i
\(997\) −19.6382 −0.621949 −0.310975 0.950418i \(-0.600655\pi\)
−0.310975 + 0.950418i \(0.600655\pi\)
\(998\) 51.6601 17.2024i 1.63527 0.544533i
\(999\) −2.71540 4.71997i −0.0859114 0.149333i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.e.f.491.10 yes 24
3.2 odd 2 inner 588.2.e.f.491.15 yes 24
4.3 odd 2 inner 588.2.e.f.491.13 yes 24
7.2 even 3 588.2.n.d.263.4 24
7.3 odd 6 588.2.n.h.275.12 24
7.4 even 3 588.2.n.h.275.11 24
7.5 odd 6 588.2.n.d.263.3 24
7.6 odd 2 inner 588.2.e.f.491.9 24
12.11 even 2 inner 588.2.e.f.491.12 yes 24
21.2 odd 6 588.2.n.d.263.10 24
21.5 even 6 588.2.n.d.263.9 24
21.11 odd 6 588.2.n.h.275.1 24
21.17 even 6 588.2.n.h.275.2 24
21.20 even 2 inner 588.2.e.f.491.16 yes 24
28.3 even 6 588.2.n.d.275.9 24
28.11 odd 6 588.2.n.d.275.10 24
28.19 even 6 588.2.n.h.263.2 24
28.23 odd 6 588.2.n.h.263.1 24
28.27 even 2 inner 588.2.e.f.491.14 yes 24
84.11 even 6 588.2.n.d.275.4 24
84.23 even 6 588.2.n.h.263.11 24
84.47 odd 6 588.2.n.h.263.12 24
84.59 odd 6 588.2.n.d.275.3 24
84.83 odd 2 inner 588.2.e.f.491.11 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.e.f.491.9 24 7.6 odd 2 inner
588.2.e.f.491.10 yes 24 1.1 even 1 trivial
588.2.e.f.491.11 yes 24 84.83 odd 2 inner
588.2.e.f.491.12 yes 24 12.11 even 2 inner
588.2.e.f.491.13 yes 24 4.3 odd 2 inner
588.2.e.f.491.14 yes 24 28.27 even 2 inner
588.2.e.f.491.15 yes 24 3.2 odd 2 inner
588.2.e.f.491.16 yes 24 21.20 even 2 inner
588.2.n.d.263.3 24 7.5 odd 6
588.2.n.d.263.4 24 7.2 even 3
588.2.n.d.263.9 24 21.5 even 6
588.2.n.d.263.10 24 21.2 odd 6
588.2.n.d.275.3 24 84.59 odd 6
588.2.n.d.275.4 24 84.11 even 6
588.2.n.d.275.9 24 28.3 even 6
588.2.n.d.275.10 24 28.11 odd 6
588.2.n.h.263.1 24 28.23 odd 6
588.2.n.h.263.2 24 28.19 even 6
588.2.n.h.263.11 24 84.23 even 6
588.2.n.h.263.12 24 84.47 odd 6
588.2.n.h.275.1 24 21.11 odd 6
588.2.n.h.275.2 24 21.17 even 6
588.2.n.h.275.11 24 7.4 even 3
588.2.n.h.275.12 24 7.3 odd 6