Properties

Label 588.2.n.d.275.9
Level $588$
Weight $2$
Character 588.275
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(263,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.263");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 275.9
Character \(\chi\) \(=\) 588.275
Dual form 588.2.n.d.263.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.938613 + 1.05783i) q^{2} +(-1.62729 - 0.593231i) q^{3} +(-0.238012 + 1.98579i) q^{4} +(0.695526 + 0.401562i) q^{5} +(-0.899858 - 2.27821i) q^{6} +(-2.32403 + 1.61211i) q^{8} +(2.29615 + 1.93072i) q^{9} +(0.228045 + 1.11266i) q^{10} +(1.17273 + 2.03122i) q^{11} +(1.56535 - 3.09026i) q^{12} -5.26858 q^{13} +(-0.893604 - 1.06607i) q^{15} +(-3.88670 - 0.945282i) q^{16} +(-1.02661 + 0.592715i) q^{17} +(0.112823 + 4.24114i) q^{18} +(6.16982 + 3.56215i) q^{19} +(-0.962960 + 1.28559i) q^{20} +(-1.04795 + 3.14708i) q^{22} +(-3.94356 + 6.83044i) q^{23} +(4.73822 - 1.24468i) q^{24} +(-2.17750 - 3.77153i) q^{25} +(-4.94516 - 5.57327i) q^{26} +(-2.59115 - 4.50399i) q^{27} +4.23132i q^{29} +(0.288969 - 1.94590i) q^{30} +(-4.24264 + 2.44949i) q^{31} +(-2.64816 - 4.99872i) q^{32} +(-0.703383 - 4.00109i) q^{33} +(-1.59058 - 0.529652i) q^{34} +(-4.38051 + 4.10014i) q^{36} +(-0.523976 + 0.907554i) q^{37} +(2.02292 + 9.87011i) q^{38} +(8.57351 + 3.12549i) q^{39} +(-2.26378 + 0.188022i) q^{40} +7.16942i q^{41} -7.94315i q^{43} +(-4.31270 + 1.84533i) q^{44} +(0.821730 + 2.26491i) q^{45} +(-10.9269 + 2.23952i) q^{46} +(-3.04954 + 5.28195i) q^{47} +(5.76402 + 3.84396i) q^{48} +(1.94582 - 5.84343i) q^{50} +(2.02221 - 0.355501i) q^{51} +(1.25398 - 10.4623i) q^{52} +(7.55175 - 4.36001i) q^{53} +(2.33238 - 6.96850i) q^{54} +1.88369i q^{55} +(-7.92692 - 9.45679i) q^{57} +(-4.47602 + 3.97157i) q^{58} +(-0.331087 - 0.573459i) q^{59} +(2.32967 - 1.52077i) q^{60} +(0.479062 - 0.829760i) q^{61} +(-6.57334 - 2.18887i) q^{62} +(2.80221 - 7.49317i) q^{64} +(-3.66443 - 2.11566i) q^{65} +(3.57227 - 4.49953i) q^{66} +(7.29738 - 4.21314i) q^{67} +(-0.932660 - 2.17971i) q^{68} +(10.4693 - 8.77567i) q^{69} +9.67432 q^{71} +(-8.44885 - 0.785398i) q^{72} +(-0.707107 - 1.22474i) q^{73} +(-1.45185 + 0.297563i) q^{74} +(1.30603 + 7.42914i) q^{75} +(-8.54216 + 11.4041i) q^{76} +(4.74097 + 12.0029i) q^{78} +(6.00000 + 3.46410i) q^{79} +(-2.32371 - 2.21822i) q^{80} +(1.54464 + 8.86646i) q^{81} +(-7.58404 + 6.72931i) q^{82} +5.18229 q^{83} -0.952047 q^{85} +(8.40251 - 7.45554i) q^{86} +(2.51015 - 6.88559i) q^{87} +(-6.00000 - 2.83005i) q^{88} +(14.1733 + 8.18296i) q^{89} +(-1.62461 + 2.99513i) q^{90} +(-12.6252 - 9.45679i) q^{92} +(8.35713 - 1.46917i) q^{93} +(-8.44975 + 1.73182i) q^{94} +(2.86085 + 4.95513i) q^{95} +(1.34393 + 9.70535i) q^{96} +4.37827 q^{97} +(-1.22896 + 6.92820i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 12 q^{4} - 36 q^{16} - 12 q^{18} + 12 q^{25} + 12 q^{30} + 12 q^{36} + 96 q^{39} - 96 q^{46} - 12 q^{51} - 24 q^{57} - 120 q^{58} - 84 q^{60} - 48 q^{64} + 48 q^{67} - 72 q^{72} - 24 q^{78} + 144 q^{79}+ \cdots - 24 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.938613 + 1.05783i 0.663700 + 0.747999i
\(3\) −1.62729 0.593231i −0.939517 0.342502i
\(4\) −0.238012 + 1.98579i −0.119006 + 0.992894i
\(5\) 0.695526 + 0.401562i 0.311049 + 0.179584i 0.647396 0.762154i \(-0.275858\pi\)
−0.336347 + 0.941738i \(0.609192\pi\)
\(6\) −0.899858 2.27821i −0.367365 0.930077i
\(7\) 0 0
\(8\) −2.32403 + 1.61211i −0.821668 + 0.569967i
\(9\) 2.29615 + 1.93072i 0.765384 + 0.643573i
\(10\) 0.228045 + 1.11266i 0.0721141 + 0.351854i
\(11\) 1.17273 + 2.03122i 0.353590 + 0.612436i 0.986876 0.161482i \(-0.0516274\pi\)
−0.633285 + 0.773918i \(0.718294\pi\)
\(12\) 1.56535 3.09026i 0.451876 0.892081i
\(13\) −5.26858 −1.46124 −0.730621 0.682784i \(-0.760769\pi\)
−0.730621 + 0.682784i \(0.760769\pi\)
\(14\) 0 0
\(15\) −0.893604 1.06607i −0.230727 0.275257i
\(16\) −3.88670 0.945282i −0.971675 0.236320i
\(17\) −1.02661 + 0.592715i −0.248990 + 0.143754i −0.619302 0.785153i \(-0.712584\pi\)
0.370312 + 0.928908i \(0.379251\pi\)
\(18\) 0.112823 + 4.24114i 0.0265927 + 0.999646i
\(19\) 6.16982 + 3.56215i 1.41545 + 0.817213i 0.995895 0.0905147i \(-0.0288512\pi\)
0.419560 + 0.907728i \(0.362185\pi\)
\(20\) −0.962960 + 1.28559i −0.215324 + 0.287467i
\(21\) 0 0
\(22\) −1.04795 + 3.14708i −0.223424 + 0.670959i
\(23\) −3.94356 + 6.83044i −0.822288 + 1.42425i 0.0816860 + 0.996658i \(0.473970\pi\)
−0.903974 + 0.427587i \(0.859364\pi\)
\(24\) 4.73822 1.24468i 0.967186 0.254070i
\(25\) −2.17750 3.77153i −0.435499 0.754307i
\(26\) −4.94516 5.57327i −0.969825 1.09301i
\(27\) −2.59115 4.50399i −0.498666 0.866794i
\(28\) 0 0
\(29\) 4.23132i 0.785737i 0.919595 + 0.392868i \(0.128517\pi\)
−0.919595 + 0.392868i \(0.871483\pi\)
\(30\) 0.288969 1.94590i 0.0527584 0.355272i
\(31\) −4.24264 + 2.44949i −0.762001 + 0.439941i −0.830014 0.557743i \(-0.811667\pi\)
0.0680129 + 0.997684i \(0.478334\pi\)
\(32\) −2.64816 4.99872i −0.468133 0.883658i
\(33\) −0.703383 4.00109i −0.122443 0.696500i
\(34\) −1.59058 0.529652i −0.272783 0.0908346i
\(35\) 0 0
\(36\) −4.38051 + 4.10014i −0.730085 + 0.683356i
\(37\) −0.523976 + 0.907554i −0.0861412 + 0.149201i −0.905877 0.423541i \(-0.860787\pi\)
0.819736 + 0.572742i \(0.194120\pi\)
\(38\) 2.02292 + 9.87011i 0.328162 + 1.60114i
\(39\) 8.57351 + 3.12549i 1.37286 + 0.500478i
\(40\) −2.26378 + 0.188022i −0.357935 + 0.0297289i
\(41\) 7.16942i 1.11968i 0.828602 + 0.559838i \(0.189137\pi\)
−0.828602 + 0.559838i \(0.810863\pi\)
\(42\) 0 0
\(43\) 7.94315i 1.21132i −0.795724 0.605659i \(-0.792909\pi\)
0.795724 0.605659i \(-0.207091\pi\)
\(44\) −4.31270 + 1.84533i −0.650164 + 0.278194i
\(45\) 0.821730 + 2.26491i 0.122496 + 0.337633i
\(46\) −10.9269 + 2.23952i −1.61109 + 0.330200i
\(47\) −3.04954 + 5.28195i −0.444821 + 0.770452i −0.998040 0.0625838i \(-0.980066\pi\)
0.553219 + 0.833036i \(0.313399\pi\)
\(48\) 5.76402 + 3.84396i 0.831965 + 0.554828i
\(49\) 0 0
\(50\) 1.94582 5.84343i 0.275180 0.826386i
\(51\) 2.02221 0.355501i 0.283167 0.0497801i
\(52\) 1.25398 10.4623i 0.173896 1.45086i
\(53\) 7.55175 4.36001i 1.03731 0.598893i 0.118242 0.992985i \(-0.462274\pi\)
0.919071 + 0.394092i \(0.128941\pi\)
\(54\) 2.33238 6.96850i 0.317397 0.948293i
\(55\) 1.88369i 0.253997i
\(56\) 0 0
\(57\) −7.92692 9.45679i −1.04995 1.25258i
\(58\) −4.47602 + 3.97157i −0.587731 + 0.521493i
\(59\) −0.331087 0.573459i −0.0431038 0.0746580i 0.843669 0.536864i \(-0.180391\pi\)
−0.886772 + 0.462206i \(0.847058\pi\)
\(60\) 2.32967 1.52077i 0.300759 0.196331i
\(61\) 0.479062 0.829760i 0.0613376 0.106240i −0.833726 0.552178i \(-0.813797\pi\)
0.895064 + 0.445939i \(0.147130\pi\)
\(62\) −6.57334 2.18887i −0.834815 0.277987i
\(63\) 0 0
\(64\) 2.80221 7.49317i 0.350276 0.936647i
\(65\) −3.66443 2.11566i −0.454517 0.262416i
\(66\) 3.57227 4.49953i 0.439716 0.553854i
\(67\) 7.29738 4.21314i 0.891517 0.514717i 0.0170783 0.999854i \(-0.494564\pi\)
0.874438 + 0.485137i \(0.161230\pi\)
\(68\) −0.932660 2.17971i −0.113102 0.264328i
\(69\) 10.4693 8.77567i 1.26036 1.05647i
\(70\) 0 0
\(71\) 9.67432 1.14813 0.574065 0.818810i \(-0.305366\pi\)
0.574065 + 0.818810i \(0.305366\pi\)
\(72\) −8.44885 0.785398i −0.995707 0.0925601i
\(73\) −0.707107 1.22474i −0.0827606 0.143346i 0.821674 0.569958i \(-0.193040\pi\)
−0.904435 + 0.426612i \(0.859707\pi\)
\(74\) −1.45185 + 0.297563i −0.168774 + 0.0345910i
\(75\) 1.30603 + 7.42914i 0.150807 + 0.857843i
\(76\) −8.54216 + 11.4041i −0.979853 + 1.30814i
\(77\) 0 0
\(78\) 4.74097 + 12.0029i 0.536810 + 1.35907i
\(79\) 6.00000 + 3.46410i 0.675053 + 0.389742i 0.797988 0.602673i \(-0.205898\pi\)
−0.122936 + 0.992415i \(0.539231\pi\)
\(80\) −2.32371 2.21822i −0.259799 0.248004i
\(81\) 1.54464 + 8.86646i 0.171626 + 0.985162i
\(82\) −7.58404 + 6.72931i −0.837517 + 0.743128i
\(83\) 5.18229 0.568830 0.284415 0.958701i \(-0.408201\pi\)
0.284415 + 0.958701i \(0.408201\pi\)
\(84\) 0 0
\(85\) −0.952047 −0.103264
\(86\) 8.40251 7.45554i 0.906066 0.803952i
\(87\) 2.51015 6.88559i 0.269117 0.738213i
\(88\) −6.00000 2.83005i −0.639602 0.301685i
\(89\) 14.1733 + 8.18296i 1.50237 + 0.867392i 0.999996 + 0.00273917i \(0.000871906\pi\)
0.502370 + 0.864653i \(0.332461\pi\)
\(90\) −1.62461 + 2.99513i −0.171249 + 0.315714i
\(91\) 0 0
\(92\) −12.6252 9.45679i −1.31627 0.985938i
\(93\) 8.35713 1.46917i 0.866594 0.152345i
\(94\) −8.44975 + 1.73182i −0.871525 + 0.178623i
\(95\) 2.86085 + 4.95513i 0.293517 + 0.508386i
\(96\) 1.34393 + 9.70535i 0.137164 + 0.990548i
\(97\) 4.37827 0.444546 0.222273 0.974984i \(-0.428652\pi\)
0.222273 + 0.974984i \(0.428652\pi\)
\(98\) 0 0
\(99\) −1.22896 + 6.92820i −0.123515 + 0.696311i
\(100\) 8.00773 3.42637i 0.800773 0.342637i
\(101\) 7.26887 4.19668i 0.723279 0.417586i −0.0926791 0.995696i \(-0.529543\pi\)
0.815959 + 0.578110i \(0.196210\pi\)
\(102\) 2.27414 + 1.80548i 0.225173 + 0.178769i
\(103\) −2.22304 1.28347i −0.219043 0.126465i 0.386464 0.922304i \(-0.373696\pi\)
−0.605507 + 0.795840i \(0.707030\pi\)
\(104\) 12.2443 8.49353i 1.20065 0.832859i
\(105\) 0 0
\(106\) 11.7003 + 3.89612i 1.13644 + 0.378424i
\(107\) 3.04995 5.28267i 0.294850 0.510695i −0.680100 0.733119i \(-0.738064\pi\)
0.974950 + 0.222424i \(0.0713970\pi\)
\(108\) 9.56070 4.07346i 0.919978 0.391969i
\(109\) −2.72545 4.72062i −0.261051 0.452153i 0.705471 0.708739i \(-0.250736\pi\)
−0.966521 + 0.256586i \(0.917402\pi\)
\(110\) −1.99262 + 1.76806i −0.189989 + 0.168577i
\(111\) 1.39105 1.16601i 0.132033 0.110673i
\(112\) 0 0
\(113\) 7.09803i 0.667726i 0.942622 + 0.333863i \(0.108352\pi\)
−0.942622 + 0.333863i \(0.891648\pi\)
\(114\) 2.56337 17.2616i 0.240082 1.61670i
\(115\) −5.48569 + 3.16716i −0.511543 + 0.295340i
\(116\) −8.40251 1.00710i −0.780153 0.0935073i
\(117\) −12.0975 10.1722i −1.11841 0.940416i
\(118\) 0.295860 0.888490i 0.0272361 0.0817921i
\(119\) 0 0
\(120\) 3.79537 + 1.03698i 0.346469 + 0.0946629i
\(121\) 2.74943 4.76214i 0.249948 0.432922i
\(122\) 1.32740 0.272057i 0.120177 0.0246308i
\(123\) 4.25313 11.6667i 0.383492 1.05195i
\(124\) −3.85437 9.00799i −0.346132 0.808941i
\(125\) 7.51322i 0.672003i
\(126\) 0 0
\(127\) 4.16202i 0.369320i 0.982802 + 0.184660i \(0.0591184\pi\)
−0.982802 + 0.184660i \(0.940882\pi\)
\(128\) 10.5567 4.06893i 0.933089 0.359646i
\(129\) −4.71212 + 12.9258i −0.414879 + 1.13805i
\(130\) −1.20147 5.86214i −0.105376 0.514143i
\(131\) 5.24594 9.08624i 0.458340 0.793869i −0.540533 0.841323i \(-0.681777\pi\)
0.998873 + 0.0474541i \(0.0151108\pi\)
\(132\) 8.11272 0.444463i 0.706122 0.0386855i
\(133\) 0 0
\(134\) 11.3062 + 3.76488i 0.976707 + 0.325236i
\(135\) 0.00642439 4.17315i 0.000552924 0.359168i
\(136\) 1.43035 3.03250i 0.122652 0.260034i
\(137\) −11.6844 + 6.74600i −0.998267 + 0.576350i −0.907735 0.419544i \(-0.862190\pi\)
−0.0905318 + 0.995894i \(0.528857\pi\)
\(138\) 19.1098 + 2.83784i 1.62674 + 0.241573i
\(139\) 7.57264i 0.642303i 0.947028 + 0.321151i \(0.104070\pi\)
−0.947028 + 0.321151i \(0.895930\pi\)
\(140\) 0 0
\(141\) 8.09591 6.78619i 0.681798 0.571501i
\(142\) 9.08044 + 10.2338i 0.762014 + 0.858801i
\(143\) −6.17860 10.7017i −0.516681 0.894917i
\(144\) −7.09939 9.67464i −0.591615 0.806220i
\(145\) −1.69914 + 2.94299i −0.141106 + 0.244402i
\(146\) 0.631873 1.89756i 0.0522942 0.157043i
\(147\) 0 0
\(148\) −1.67750 1.25651i −0.137889 0.103285i
\(149\) −13.9442 8.05067i −1.14235 0.659536i −0.195339 0.980736i \(-0.562581\pi\)
−0.947012 + 0.321199i \(0.895914\pi\)
\(150\) −6.63292 + 8.35464i −0.541576 + 0.682154i
\(151\) −15.0553 + 8.69219i −1.22518 + 0.707360i −0.966019 0.258473i \(-0.916781\pi\)
−0.259166 + 0.965833i \(0.583448\pi\)
\(152\) −20.0814 + 1.66790i −1.62882 + 0.135284i
\(153\) −3.50163 0.621137i −0.283090 0.0502160i
\(154\) 0 0
\(155\) −3.93449 −0.316026
\(156\) −8.24715 + 16.2813i −0.660300 + 1.30354i
\(157\) −1.96109 3.39671i −0.156512 0.271087i 0.777096 0.629381i \(-0.216692\pi\)
−0.933609 + 0.358295i \(0.883358\pi\)
\(158\) 1.96724 + 9.59843i 0.156506 + 0.763610i
\(159\) −14.8754 + 2.61506i −1.17970 + 0.207388i
\(160\) 0.165435 4.54014i 0.0130788 0.358930i
\(161\) 0 0
\(162\) −7.92940 + 9.95614i −0.622992 + 0.782228i
\(163\) 6.32987 + 3.65455i 0.495793 + 0.286246i 0.726975 0.686664i \(-0.240926\pi\)
−0.231181 + 0.972911i \(0.574259\pi\)
\(164\) −14.2370 1.70641i −1.11172 0.133248i
\(165\) 1.11746 3.06531i 0.0869944 0.238634i
\(166\) 4.86417 + 5.48199i 0.377532 + 0.425485i
\(167\) 8.37196 0.647842 0.323921 0.946084i \(-0.394999\pi\)
0.323921 + 0.946084i \(0.394999\pi\)
\(168\) 0 0
\(169\) 14.7579 1.13523
\(170\) −0.893604 1.00710i −0.0685363 0.0772414i
\(171\) 7.28935 + 20.0914i 0.557430 + 1.53643i
\(172\) 15.7734 + 1.89056i 1.20271 + 0.144154i
\(173\) 11.0601 + 6.38556i 0.840884 + 0.485485i 0.857565 0.514376i \(-0.171976\pi\)
−0.0166803 + 0.999861i \(0.505310\pi\)
\(174\) 9.63986 3.80759i 0.730796 0.288653i
\(175\) 0 0
\(176\) −2.63796 9.00331i −0.198844 0.678650i
\(177\) 0.198581 + 1.12960i 0.0149262 + 0.0849056i
\(178\) 4.64706 + 22.6736i 0.348312 + 1.69946i
\(179\) −10.5589 18.2885i −0.789206 1.36694i −0.926454 0.376408i \(-0.877159\pi\)
0.137248 0.990537i \(-0.456174\pi\)
\(180\) −4.69322 + 1.09270i −0.349812 + 0.0814453i
\(181\) −12.4075 −0.922239 −0.461120 0.887338i \(-0.652552\pi\)
−0.461120 + 0.887338i \(0.652552\pi\)
\(182\) 0 0
\(183\) −1.27181 + 1.06607i −0.0940151 + 0.0788059i
\(184\) −1.84648 22.2316i −0.136124 1.63893i
\(185\) −0.728878 + 0.420818i −0.0535882 + 0.0309392i
\(186\) 9.39823 + 7.46145i 0.689112 + 0.547100i
\(187\) −2.40787 1.39019i −0.176081 0.101660i
\(188\) −9.76301 7.31290i −0.712041 0.533348i
\(189\) 0 0
\(190\) −2.55646 + 7.67724i −0.185465 + 0.556966i
\(191\) 3.04995 5.28267i 0.220687 0.382241i −0.734330 0.678793i \(-0.762503\pi\)
0.955017 + 0.296552i \(0.0958368\pi\)
\(192\) −9.00519 + 10.5312i −0.649894 + 0.760025i
\(193\) −0.322504 0.558593i −0.0232144 0.0402084i 0.854185 0.519969i \(-0.174057\pi\)
−0.877399 + 0.479761i \(0.840723\pi\)
\(194\) 4.10950 + 4.63147i 0.295045 + 0.332520i
\(195\) 4.70802 + 5.61665i 0.337149 + 0.402217i
\(196\) 0 0
\(197\) 14.9111i 1.06237i 0.847256 + 0.531185i \(0.178253\pi\)
−0.847256 + 0.531185i \(0.821747\pi\)
\(198\) −8.48239 + 5.20287i −0.602817 + 0.369752i
\(199\) 16.1940 9.34962i 1.14796 0.662777i 0.199573 0.979883i \(-0.436044\pi\)
0.948390 + 0.317106i \(0.102711\pi\)
\(200\) 11.1407 + 5.25479i 0.787765 + 0.371570i
\(201\) −14.3743 + 2.52698i −1.01389 + 0.178239i
\(202\) 11.2620 + 3.75017i 0.792394 + 0.263861i
\(203\) 0 0
\(204\) 0.224639 + 4.10030i 0.0157278 + 0.287078i
\(205\) −2.87897 + 4.98652i −0.201076 + 0.348274i
\(206\) −0.728878 3.55629i −0.0507833 0.247778i
\(207\) −22.2427 + 8.06983i −1.54597 + 0.560892i
\(208\) 20.4774 + 4.98029i 1.41985 + 0.345321i
\(209\) 16.7097i 1.15583i
\(210\) 0 0
\(211\) 11.7243i 0.807132i 0.914950 + 0.403566i \(0.132229\pi\)
−0.914950 + 0.403566i \(0.867771\pi\)
\(212\) 6.86064 + 16.0339i 0.471191 + 1.10121i
\(213\) −15.7429 5.73911i −1.07869 0.393237i
\(214\) 8.45090 1.73205i 0.577691 0.118401i
\(215\) 3.18967 5.52466i 0.217533 0.376779i
\(216\) 13.2828 + 6.29020i 0.903782 + 0.427994i
\(217\) 0 0
\(218\) 2.43547 7.31389i 0.164951 0.495359i
\(219\) 0.424112 + 2.41249i 0.0286588 + 0.163021i
\(220\) −3.74061 0.448340i −0.252192 0.0302271i
\(221\) 5.40879 3.12277i 0.363835 0.210060i
\(222\) 2.53911 + 0.377060i 0.170414 + 0.0253066i
\(223\) 0.683260i 0.0457545i 0.999738 + 0.0228772i \(0.00728269\pi\)
−0.999738 + 0.0228772i \(0.992717\pi\)
\(224\) 0 0
\(225\) 2.28191 12.8642i 0.152128 0.857610i
\(226\) −7.50851 + 6.66230i −0.499459 + 0.443170i
\(227\) 4.37694 + 7.58108i 0.290507 + 0.503174i 0.973930 0.226850i \(-0.0728426\pi\)
−0.683422 + 0.730023i \(0.739509\pi\)
\(228\) 20.6659 13.4904i 1.36863 0.893420i
\(229\) −9.24927 + 16.0202i −0.611209 + 1.05864i 0.379828 + 0.925057i \(0.375983\pi\)
−0.991037 + 0.133588i \(0.957350\pi\)
\(230\) −8.49926 2.83019i −0.560425 0.186617i
\(231\) 0 0
\(232\) −6.82135 9.83371i −0.447844 0.645615i
\(233\) 8.78072 + 5.06955i 0.575244 + 0.332117i 0.759241 0.650810i \(-0.225570\pi\)
−0.183997 + 0.982927i \(0.558904\pi\)
\(234\) −0.594419 22.3448i −0.0388584 1.46072i
\(235\) −4.24206 + 2.44916i −0.276722 + 0.159765i
\(236\) 1.21757 0.520978i 0.0792571 0.0339128i
\(237\) −7.70873 9.19649i −0.500736 0.597376i
\(238\) 0 0
\(239\) −1.49470 −0.0966841 −0.0483421 0.998831i \(-0.515394\pi\)
−0.0483421 + 0.998831i \(0.515394\pi\)
\(240\) 2.46544 + 4.98819i 0.159143 + 0.321986i
\(241\) −5.16686 8.94926i −0.332827 0.576472i 0.650238 0.759730i \(-0.274669\pi\)
−0.983065 + 0.183258i \(0.941336\pi\)
\(242\) 7.61819 1.56138i 0.489716 0.100370i
\(243\) 2.74629 15.3446i 0.176174 0.984359i
\(244\) 1.53370 + 1.14881i 0.0981853 + 0.0735449i
\(245\) 0 0
\(246\) 16.3335 6.45146i 1.04138 0.411330i
\(247\) −32.5062 18.7675i −2.06832 1.19415i
\(248\) 5.91117 12.5323i 0.375360 0.795801i
\(249\) −8.43310 3.07430i −0.534426 0.194826i
\(250\) 7.94771 7.05200i 0.502658 0.446008i
\(251\) −26.9555 −1.70142 −0.850709 0.525636i \(-0.823827\pi\)
−0.850709 + 0.525636i \(0.823827\pi\)
\(252\) 0 0
\(253\) −18.4989 −1.16301
\(254\) −4.40272 + 3.90653i −0.276251 + 0.245117i
\(255\) 1.54926 + 0.564784i 0.0970183 + 0.0353682i
\(256\) 14.2129 + 7.34805i 0.888305 + 0.459253i
\(257\) −2.41766 1.39584i −0.150810 0.0870700i 0.422696 0.906271i \(-0.361084\pi\)
−0.573506 + 0.819201i \(0.694417\pi\)
\(258\) −18.0962 + 7.14771i −1.12662 + 0.444997i
\(259\) 0 0
\(260\) 5.07343 6.77323i 0.314641 0.420058i
\(261\) −8.16950 + 9.71577i −0.505679 + 0.601391i
\(262\) 14.5356 2.97914i 0.898013 0.184052i
\(263\) 7.65516 + 13.2591i 0.472037 + 0.817592i 0.999488 0.0319931i \(-0.0101855\pi\)
−0.527451 + 0.849586i \(0.676852\pi\)
\(264\) 8.08487 + 8.16471i 0.497589 + 0.502503i
\(265\) 7.00325 0.430206
\(266\) 0 0
\(267\) −18.2097 21.7241i −1.11442 1.32949i
\(268\) 6.62954 + 15.4938i 0.404964 + 0.946435i
\(269\) 26.5752 15.3432i 1.62032 0.935492i 0.633487 0.773754i \(-0.281623\pi\)
0.986834 0.161739i \(-0.0517102\pi\)
\(270\) 4.42052 3.91018i 0.269024 0.237966i
\(271\) −17.0488 9.84312i −1.03564 0.597927i −0.117045 0.993127i \(-0.537342\pi\)
−0.918595 + 0.395199i \(0.870675\pi\)
\(272\) 4.55042 1.33327i 0.275910 0.0808412i
\(273\) 0 0
\(274\) −18.1033 6.02825i −1.09366 0.364180i
\(275\) 5.10721 8.84595i 0.307977 0.533431i
\(276\) 14.9348 + 22.8786i 0.898969 + 1.37713i
\(277\) 6.55646 + 11.3561i 0.393940 + 0.682324i 0.992965 0.118406i \(-0.0377785\pi\)
−0.599025 + 0.800730i \(0.704445\pi\)
\(278\) −8.01057 + 7.10778i −0.480442 + 0.426296i
\(279\) −14.4710 2.56695i −0.866358 0.153679i
\(280\) 0 0
\(281\) 2.86670i 0.171013i 0.996338 + 0.0855066i \(0.0272509\pi\)
−0.996338 + 0.0855066i \(0.972749\pi\)
\(282\) 14.7776 + 2.19449i 0.879991 + 0.130680i
\(283\) 1.72374 0.995200i 0.102466 0.0591585i −0.447892 0.894088i \(-0.647825\pi\)
0.550357 + 0.834929i \(0.314492\pi\)
\(284\) −2.30260 + 19.2111i −0.136634 + 1.13997i
\(285\) −1.71589 9.76059i −0.101641 0.578167i
\(286\) 5.52122 16.5806i 0.326477 0.980433i
\(287\) 0 0
\(288\) 3.57056 16.5907i 0.210397 0.977616i
\(289\) −7.79738 + 13.5055i −0.458669 + 0.794439i
\(290\) −4.70802 + 0.964931i −0.276465 + 0.0566627i
\(291\) −7.12472 2.59733i −0.417659 0.152258i
\(292\) 2.60038 1.11266i 0.152176 0.0651135i
\(293\) 16.7482i 0.978441i 0.872160 + 0.489221i \(0.162719\pi\)
−0.872160 + 0.489221i \(0.837281\pi\)
\(294\) 0 0
\(295\) 0.531807i 0.0309630i
\(296\) −0.245340 2.95389i −0.0142601 0.171691i
\(297\) 6.10991 10.5451i 0.354533 0.611891i
\(298\) −4.57193 22.3070i −0.264845 1.29221i
\(299\) 20.7769 35.9867i 1.20156 2.08117i
\(300\) −15.0635 + 0.825270i −0.869694 + 0.0476470i
\(301\) 0 0
\(302\) −23.3260 7.76737i −1.34226 0.446962i
\(303\) −14.3182 + 2.51710i −0.822557 + 0.144604i
\(304\) −20.6130 19.6772i −1.18224 1.12857i
\(305\) 0.666400 0.384746i 0.0381579 0.0220305i
\(306\) −2.62961 4.28714i −0.150325 0.245079i
\(307\) 15.4869i 0.883885i −0.897043 0.441942i \(-0.854290\pi\)
0.897043 0.441942i \(-0.145710\pi\)
\(308\) 0 0
\(309\) 2.85614 + 3.40737i 0.162480 + 0.193838i
\(310\) −3.69296 4.16202i −0.209746 0.236387i
\(311\) 5.44973 + 9.43920i 0.309026 + 0.535248i 0.978149 0.207903i \(-0.0666638\pi\)
−0.669124 + 0.743151i \(0.733330\pi\)
\(312\) −24.9637 + 6.55772i −1.41329 + 0.371258i
\(313\) 16.9011 29.2736i 0.955308 1.65464i 0.221646 0.975127i \(-0.428857\pi\)
0.733662 0.679514i \(-0.237810\pi\)
\(314\) 1.75244 5.26270i 0.0988958 0.296991i
\(315\) 0 0
\(316\) −8.30704 + 11.0902i −0.467307 + 0.623874i
\(317\) 8.04243 + 4.64330i 0.451708 + 0.260794i 0.708551 0.705659i \(-0.249349\pi\)
−0.256843 + 0.966453i \(0.582682\pi\)
\(318\) −16.7285 13.2811i −0.938089 0.744768i
\(319\) −8.59476 + 4.96218i −0.481214 + 0.277829i
\(320\) 4.95798 4.08643i 0.277160 0.228439i
\(321\) −8.09701 + 6.78712i −0.451931 + 0.378820i
\(322\) 0 0
\(323\) −8.44536 −0.469912
\(324\) −17.9745 + 0.956999i −0.998586 + 0.0531666i
\(325\) 11.4723 + 19.8706i 0.636369 + 1.10222i
\(326\) 2.07540 + 10.1261i 0.114946 + 0.560835i
\(327\) 1.63468 + 9.29864i 0.0903981 + 0.514216i
\(328\) −11.5579 16.6619i −0.638178 0.920002i
\(329\) 0 0
\(330\) 4.29145 1.69505i 0.236236 0.0933096i
\(331\) −0.878968 0.507473i −0.0483125 0.0278932i 0.475649 0.879635i \(-0.342213\pi\)
−0.523962 + 0.851742i \(0.675547\pi\)
\(332\) −1.23345 + 10.2909i −0.0676942 + 0.564788i
\(333\) −2.95536 + 1.07223i −0.161953 + 0.0587579i
\(334\) 7.85803 + 8.85611i 0.429972 + 0.484585i
\(335\) 6.76735 0.369740
\(336\) 0 0
\(337\) −12.6597 −0.689620 −0.344810 0.938673i \(-0.612057\pi\)
−0.344810 + 0.938673i \(0.612057\pi\)
\(338\) 13.8520 + 15.6114i 0.753449 + 0.849148i
\(339\) 4.21077 11.5506i 0.228698 0.627340i
\(340\) 0.226598 1.89056i 0.0122890 0.102530i
\(341\) −9.95091 5.74516i −0.538872 0.311118i
\(342\) −14.4115 + 26.5690i −0.779283 + 1.43669i
\(343\) 0 0
\(344\) 12.8052 + 18.4601i 0.690411 + 0.995302i
\(345\) 10.8057 1.89962i 0.581758 0.102272i
\(346\) 3.62632 + 17.6933i 0.194952 + 0.951197i
\(347\) −12.8143 22.1950i −0.687907 1.19149i −0.972514 0.232846i \(-0.925196\pi\)
0.284607 0.958644i \(-0.408137\pi\)
\(348\) 13.0759 + 6.62348i 0.700941 + 0.355056i
\(349\) 28.1235 1.50542 0.752709 0.658354i \(-0.228747\pi\)
0.752709 + 0.658354i \(0.228747\pi\)
\(350\) 0 0
\(351\) 13.6517 + 23.7297i 0.728672 + 1.26660i
\(352\) 7.04795 11.2411i 0.375657 0.599155i
\(353\) −8.92430 + 5.15245i −0.474993 + 0.274237i −0.718327 0.695705i \(-0.755092\pi\)
0.243335 + 0.969942i \(0.421759\pi\)
\(354\) −1.00853 + 1.27032i −0.0536028 + 0.0675166i
\(355\) 6.72874 + 3.88484i 0.357124 + 0.206186i
\(356\) −19.6230 + 26.1975i −1.04002 + 1.38847i
\(357\) 0 0
\(358\) 9.43543 28.3353i 0.498678 1.49757i
\(359\) −13.4197 + 23.2436i −0.708265 + 1.22675i 0.257235 + 0.966349i \(0.417188\pi\)
−0.965500 + 0.260402i \(0.916145\pi\)
\(360\) −5.56101 3.93900i −0.293091 0.207604i
\(361\) 15.8778 + 27.5012i 0.835675 + 1.44743i
\(362\) −11.6458 13.1250i −0.612090 0.689834i
\(363\) −7.29917 + 6.11835i −0.383107 + 0.321130i
\(364\) 0 0
\(365\) 1.13579i 0.0594499i
\(366\) −2.32146 0.344739i −0.121345 0.0180198i
\(367\) 11.5631 6.67596i 0.603589 0.348482i −0.166863 0.985980i \(-0.553364\pi\)
0.770452 + 0.637498i \(0.220031\pi\)
\(368\) 21.7841 22.8201i 1.13558 1.18958i
\(369\) −13.8422 + 16.4621i −0.720594 + 0.856982i
\(370\) −1.12929 0.376045i −0.0587089 0.0195496i
\(371\) 0 0
\(372\) 0.928355 + 16.9452i 0.0481330 + 0.878565i
\(373\) 11.4029 19.7505i 0.590422 1.02264i −0.403753 0.914868i \(-0.632295\pi\)
0.994176 0.107773i \(-0.0343720\pi\)
\(374\) −0.789478 3.85197i −0.0408230 0.199180i
\(375\) −4.45708 + 12.2262i −0.230162 + 0.631358i
\(376\) −1.42788 17.1916i −0.0736371 0.886589i
\(377\) 22.2931i 1.14815i
\(378\) 0 0
\(379\) 1.98122i 0.101768i −0.998705 0.0508842i \(-0.983796\pi\)
0.998705 0.0508842i \(-0.0162040\pi\)
\(380\) −10.5208 + 4.50165i −0.539703 + 0.230930i
\(381\) 2.46904 6.77282i 0.126493 0.346982i
\(382\) 8.45090 1.73205i 0.432386 0.0886194i
\(383\) −14.4104 + 24.9596i −0.736339 + 1.27538i 0.217795 + 0.975995i \(0.430114\pi\)
−0.954134 + 0.299381i \(0.903220\pi\)
\(384\) −19.5926 + 0.358762i −0.999832 + 0.0183080i
\(385\) 0 0
\(386\) 0.288191 0.865458i 0.0146685 0.0440506i
\(387\) 15.3360 18.2387i 0.779573 0.927124i
\(388\) −1.04208 + 8.69432i −0.0529036 + 0.441387i
\(389\) −1.69719 + 0.979873i −0.0860509 + 0.0496815i −0.542408 0.840115i \(-0.682487\pi\)
0.456357 + 0.889797i \(0.349154\pi\)
\(390\) −1.52246 + 10.2522i −0.0770927 + 0.519138i
\(391\) 9.34962i 0.472831i
\(392\) 0 0
\(393\) −13.9269 + 11.6739i −0.702520 + 0.588870i
\(394\) −15.7734 + 13.9957i −0.794652 + 0.705095i
\(395\) 2.78210 + 4.81874i 0.139983 + 0.242457i
\(396\) −13.4654 4.08945i −0.676663 0.205503i
\(397\) −2.28155 + 3.95176i −0.114508 + 0.198333i −0.917583 0.397545i \(-0.869862\pi\)
0.803075 + 0.595878i \(0.203196\pi\)
\(398\) 25.0902 + 8.35485i 1.25766 + 0.418791i
\(399\) 0 0
\(400\) 4.89811 + 16.7172i 0.244906 + 0.835858i
\(401\) −23.1931 13.3905i −1.15821 0.668692i −0.207335 0.978270i \(-0.566479\pi\)
−0.950874 + 0.309578i \(0.899812\pi\)
\(402\) −16.1650 12.8338i −0.806239 0.640089i
\(403\) 22.3527 12.9053i 1.11347 0.642860i
\(404\) 6.60364 + 15.4333i 0.328544 + 0.767835i
\(405\) −2.48610 + 6.78712i −0.123535 + 0.337255i
\(406\) 0 0
\(407\) −2.45792 −0.121835
\(408\) −4.12658 + 4.08622i −0.204296 + 0.202298i
\(409\) 9.02122 + 15.6252i 0.446071 + 0.772617i 0.998126 0.0611902i \(-0.0194896\pi\)
−0.552055 + 0.833807i \(0.686156\pi\)
\(410\) −7.97713 + 1.63495i −0.393962 + 0.0807444i
\(411\) 23.0159 4.04614i 1.13529 0.199582i
\(412\) 3.07782 4.10901i 0.151633 0.202436i
\(413\) 0 0
\(414\) −29.4138 15.9545i −1.44561 0.784123i
\(415\) 3.60442 + 2.08101i 0.176934 + 0.102153i
\(416\) 13.9520 + 26.3362i 0.684055 + 1.29124i
\(417\) 4.49233 12.3229i 0.219990 0.603454i
\(418\) −17.6760 + 15.6839i −0.864564 + 0.767127i
\(419\) 17.5395 0.856861 0.428430 0.903575i \(-0.359067\pi\)
0.428430 + 0.903575i \(0.359067\pi\)
\(420\) 0 0
\(421\) 15.4006 0.750582 0.375291 0.926907i \(-0.377543\pi\)
0.375291 + 0.926907i \(0.377543\pi\)
\(422\) −12.4023 + 11.0046i −0.603734 + 0.535693i
\(423\) −17.2002 + 6.24037i −0.836301 + 0.303417i
\(424\) −10.5217 + 22.3070i −0.510978 + 1.08333i
\(425\) 4.47089 + 2.58127i 0.216870 + 0.125210i
\(426\) −8.70551 22.0402i −0.421784 1.06785i
\(427\) 0 0
\(428\) 9.76434 + 7.31389i 0.471977 + 0.353530i
\(429\) 3.70583 + 21.0801i 0.178919 + 1.01775i
\(430\) 8.83802 1.81139i 0.426207 0.0873532i
\(431\) 4.50180 + 7.79735i 0.216844 + 0.375585i 0.953841 0.300311i \(-0.0970903\pi\)
−0.736997 + 0.675896i \(0.763757\pi\)
\(432\) 5.81346 + 19.9550i 0.279700 + 0.960087i
\(433\) 6.15889 0.295977 0.147989 0.988989i \(-0.452720\pi\)
0.147989 + 0.988989i \(0.452720\pi\)
\(434\) 0 0
\(435\) 4.51087 3.78113i 0.216280 0.181291i
\(436\) 10.0228 4.28860i 0.480006 0.205387i
\(437\) −48.6621 + 28.0951i −2.32782 + 1.34397i
\(438\) −2.15393 + 2.71304i −0.102919 + 0.129634i
\(439\) −25.3306 14.6246i −1.20896 0.697996i −0.246432 0.969160i \(-0.579258\pi\)
−0.962533 + 0.271164i \(0.912591\pi\)
\(440\) −3.03671 4.37775i −0.144770 0.208701i
\(441\) 0 0
\(442\) 8.38012 + 2.79052i 0.398602 + 0.132731i
\(443\) −3.60820 + 6.24958i −0.171431 + 0.296927i −0.938920 0.344135i \(-0.888172\pi\)
0.767490 + 0.641061i \(0.221506\pi\)
\(444\) 1.98437 + 3.03986i 0.0941741 + 0.144265i
\(445\) 6.57193 + 11.3829i 0.311539 + 0.539602i
\(446\) −0.722774 + 0.641317i −0.0342243 + 0.0303672i
\(447\) 17.9153 + 21.3729i 0.847365 + 1.01090i
\(448\) 0 0
\(449\) 4.43423i 0.209264i 0.994511 + 0.104632i \(0.0333665\pi\)
−0.994511 + 0.104632i \(0.966634\pi\)
\(450\) 15.7499 9.66058i 0.742459 0.455404i
\(451\) −14.5627 + 8.40777i −0.685730 + 0.395907i
\(452\) −14.0952 1.68941i −0.662981 0.0794634i
\(453\) 29.6559 5.21344i 1.39335 0.244949i
\(454\) −3.91125 + 11.7458i −0.183564 + 0.551256i
\(455\) 0 0
\(456\) 33.6678 + 9.19877i 1.57664 + 0.430772i
\(457\) −6.83102 + 11.8317i −0.319541 + 0.553462i −0.980392 0.197055i \(-0.936862\pi\)
0.660851 + 0.750517i \(0.270196\pi\)
\(458\) −25.6281 + 5.25261i −1.19752 + 0.245438i
\(459\) 5.32969 + 3.08805i 0.248768 + 0.144138i
\(460\) −4.98366 11.6472i −0.232364 0.543055i
\(461\) 5.25789i 0.244885i −0.992476 0.122442i \(-0.960927\pi\)
0.992476 0.122442i \(-0.0390726\pi\)
\(462\) 0 0
\(463\) 15.8863i 0.738299i 0.929370 + 0.369149i \(0.120351\pi\)
−0.929370 + 0.369149i \(0.879649\pi\)
\(464\) 3.99979 16.4459i 0.185686 0.763481i
\(465\) 6.40256 + 2.33406i 0.296911 + 0.108240i
\(466\) 2.87897 + 14.0469i 0.133366 + 0.650708i
\(467\) −13.5384 + 23.4491i −0.626481 + 1.08510i 0.361771 + 0.932267i \(0.382172\pi\)
−0.988252 + 0.152830i \(0.951161\pi\)
\(468\) 23.0791 21.6019i 1.06683 0.998548i
\(469\) 0 0
\(470\) −6.57245 2.18858i −0.303164 0.100951i
\(471\) 1.17623 + 6.69082i 0.0541979 + 0.308297i
\(472\) 1.69393 + 0.798987i 0.0779696 + 0.0367763i
\(473\) 16.1343 9.31514i 0.741856 0.428311i
\(474\) 2.49281 16.7865i 0.114499 0.771029i
\(475\) 31.0263i 1.42358i
\(476\) 0 0
\(477\) 25.7579 + 4.56908i 1.17937 + 0.209204i
\(478\) −1.40294 1.58114i −0.0641692 0.0723196i
\(479\) −7.63026 13.2160i −0.348635 0.603854i 0.637372 0.770556i \(-0.280021\pi\)
−0.986007 + 0.166702i \(0.946688\pi\)
\(480\) −2.96257 + 7.28999i −0.135222 + 0.332741i
\(481\) 2.76061 4.78152i 0.125873 0.218019i
\(482\) 4.61712 13.8655i 0.210304 0.631558i
\(483\) 0 0
\(484\) 8.80221 + 6.59322i 0.400100 + 0.299692i
\(485\) 3.04520 + 1.75815i 0.138275 + 0.0798334i
\(486\) 18.8097 11.4976i 0.853227 0.521540i
\(487\) 5.25172 3.03208i 0.237978 0.137397i −0.376269 0.926511i \(-0.622793\pi\)
0.614247 + 0.789114i \(0.289460\pi\)
\(488\) 0.224310 + 2.70068i 0.0101540 + 0.122254i
\(489\) −8.13254 9.70209i −0.367766 0.438744i
\(490\) 0 0
\(491\) 4.03833 0.182247 0.0911235 0.995840i \(-0.470954\pi\)
0.0911235 + 0.995840i \(0.470954\pi\)
\(492\) 22.1554 + 11.2226i 0.998841 + 0.505955i
\(493\) −2.50797 4.34393i −0.112953 0.195641i
\(494\) −10.6579 52.0015i −0.479523 2.33966i
\(495\) −3.63688 + 4.32524i −0.163466 + 0.194405i
\(496\) 18.8053 5.50994i 0.844384 0.247404i
\(497\) 0 0
\(498\) −4.66333 11.8064i −0.208969 0.529056i
\(499\) 33.3430 + 19.2506i 1.49264 + 0.861776i 0.999964 0.00843800i \(-0.00268593\pi\)
0.492675 + 0.870214i \(0.336019\pi\)
\(500\) 14.9197 + 1.78823i 0.667227 + 0.0799723i
\(501\) −13.6236 4.96651i −0.608658 0.221887i
\(502\) −25.3008 28.5144i −1.12923 1.27266i
\(503\) −14.3498 −0.639827 −0.319914 0.947447i \(-0.603654\pi\)
−0.319914 + 0.947447i \(0.603654\pi\)
\(504\) 0 0
\(505\) 6.74091 0.299967
\(506\) −17.3633 19.5687i −0.771891 0.869933i
\(507\) −24.0155 8.75487i −1.06656 0.388817i
\(508\) −8.26489 0.990610i −0.366695 0.0439512i
\(509\) −10.4646 6.04176i −0.463837 0.267796i 0.249819 0.968292i \(-0.419629\pi\)
−0.713656 + 0.700496i \(0.752962\pi\)
\(510\) 0.856707 + 2.16897i 0.0379356 + 0.0960435i
\(511\) 0 0
\(512\) 5.56740 + 21.9318i 0.246047 + 0.969258i
\(513\) 0.0569891 37.0189i 0.00251613 1.63442i
\(514\) −0.792689 3.86763i −0.0349640 0.170594i
\(515\) −1.03079 1.78538i −0.0454220 0.0786732i
\(516\) −24.5464 12.4338i −1.08059 0.547366i
\(517\) −14.3051 −0.629137
\(518\) 0 0
\(519\) −14.2099 16.9524i −0.623746 0.744126i
\(520\) 11.9269 0.990610i 0.523030 0.0434411i
\(521\) 27.6002 15.9350i 1.20919 0.698125i 0.246606 0.969116i \(-0.420684\pi\)
0.962582 + 0.270990i \(0.0873512\pi\)
\(522\) −17.9456 + 0.477392i −0.785459 + 0.0208949i
\(523\) 31.7039 + 18.3043i 1.38631 + 0.800389i 0.992898 0.118971i \(-0.0379596\pi\)
0.393417 + 0.919360i \(0.371293\pi\)
\(524\) 16.7947 + 12.5800i 0.733682 + 0.549558i
\(525\) 0 0
\(526\) −6.84068 + 20.5430i −0.298268 + 0.895719i
\(527\) 2.90370 5.02935i 0.126487 0.219082i
\(528\) −1.04832 + 16.2159i −0.0456221 + 0.705708i
\(529\) −19.6033 33.9539i −0.852316 1.47625i
\(530\) 6.57334 + 7.40826i 0.285528 + 0.321794i
\(531\) 0.346963 1.95599i 0.0150569 0.0848825i
\(532\) 0 0
\(533\) 37.7727i 1.63612i
\(534\) 5.88857 39.6533i 0.254823 1.71597i
\(535\) 4.24264 2.44949i 0.183425 0.105901i
\(536\) −10.1673 + 21.5556i −0.439159 + 0.931061i
\(537\) 6.33303 + 36.0245i 0.273291 + 1.55457i
\(538\) 41.1744 + 13.7108i 1.77515 + 0.591113i
\(539\) 0 0
\(540\) 8.28546 + 1.00602i 0.356549 + 0.0432921i
\(541\) 18.1033 31.3558i 0.778320 1.34809i −0.154589 0.987979i \(-0.549405\pi\)
0.932909 0.360111i \(-0.117261\pi\)
\(542\) −5.58985 27.2736i −0.240105 1.17150i
\(543\) 20.1906 + 7.36050i 0.866460 + 0.315869i
\(544\) 5.68145 + 3.56215i 0.243590 + 0.152726i
\(545\) 4.37775i 0.187522i
\(546\) 0 0
\(547\) 31.3917i 1.34221i −0.741361 0.671106i \(-0.765820\pi\)
0.741361 0.671106i \(-0.234180\pi\)
\(548\) −10.6151 24.8084i −0.453454 1.05976i
\(549\) 2.70203 0.980320i 0.115320 0.0418391i
\(550\) 14.1512 2.90036i 0.603410 0.123672i
\(551\) −15.0726 + 26.1065i −0.642115 + 1.11218i
\(552\) −10.1837 + 37.2726i −0.433447 + 1.58643i
\(553\) 0 0
\(554\) −5.85888 + 17.5946i −0.248920 + 0.747525i
\(555\) 1.43574 0.252400i 0.0609437 0.0107138i
\(556\) −15.0376 1.80238i −0.637738 0.0764378i
\(557\) −30.5691 + 17.6491i −1.29526 + 0.747816i −0.979581 0.201051i \(-0.935564\pi\)
−0.315675 + 0.948867i \(0.602231\pi\)
\(558\) −10.8673 17.7173i −0.460049 0.750032i
\(559\) 41.8491i 1.77003i
\(560\) 0 0
\(561\) 3.09361 + 3.69066i 0.130612 + 0.155820i
\(562\) −3.03249 + 2.69073i −0.127918 + 0.113501i
\(563\) 13.2232 + 22.9032i 0.557290 + 0.965254i 0.997721 + 0.0674681i \(0.0214921\pi\)
−0.440432 + 0.897786i \(0.645175\pi\)
\(564\) 11.5490 + 17.6919i 0.486301 + 0.744965i
\(565\) −2.85030 + 4.93686i −0.119913 + 0.207695i
\(566\) 2.67067 + 0.889314i 0.112257 + 0.0373807i
\(567\) 0 0
\(568\) −22.4834 + 15.5961i −0.943382 + 0.654396i
\(569\) 23.7332 + 13.7024i 0.994948 + 0.574434i 0.906750 0.421669i \(-0.138556\pi\)
0.0881985 + 0.996103i \(0.471889\pi\)
\(570\) 8.71449 10.9765i 0.365010 0.459757i
\(571\) 24.3299 14.0469i 1.01817 0.587843i 0.104599 0.994514i \(-0.466644\pi\)
0.913574 + 0.406672i \(0.133311\pi\)
\(572\) 22.7218 9.72227i 0.950046 0.406509i
\(573\) −8.09701 + 6.78712i −0.338257 + 0.283536i
\(574\) 0 0
\(575\) 34.3483 1.43242
\(576\) 20.9015 11.7952i 0.870897 0.491466i
\(577\) −11.4154 19.7721i −0.475231 0.823124i 0.524367 0.851492i \(-0.324302\pi\)
−0.999598 + 0.0283688i \(0.990969\pi\)
\(578\) −21.6052 + 4.42809i −0.898658 + 0.184184i
\(579\) 0.193433 + 1.10031i 0.00803880 + 0.0457275i
\(580\) −5.43974 4.07459i −0.225873 0.169188i
\(581\) 0 0
\(582\) −3.93982 9.97464i −0.163311 0.413462i
\(583\) 17.7123 + 10.2262i 0.733568 + 0.423526i
\(584\) 3.61776 + 1.70641i 0.149704 + 0.0706116i
\(585\) −4.32935 11.9329i −0.178997 0.493364i
\(586\) −17.7168 + 15.7201i −0.731874 + 0.649391i
\(587\) 28.4011 1.17224 0.586119 0.810225i \(-0.300655\pi\)
0.586119 + 0.810225i \(0.300655\pi\)
\(588\) 0 0
\(589\) −34.9018 −1.43810
\(590\) 0.562562 0.499161i 0.0231603 0.0205501i
\(591\) 8.84572 24.2647i 0.363864 0.998115i
\(592\) 2.89443 3.03208i 0.118960 0.124618i
\(593\) −20.6799 11.9396i −0.849223 0.490299i 0.0111655 0.999938i \(-0.496446\pi\)
−0.860389 + 0.509638i \(0.829779\pi\)
\(594\) 16.8898 3.43456i 0.692998 0.140922i
\(595\) 0 0
\(596\) 19.3058 25.7740i 0.790796 1.05574i
\(597\) −31.8989 + 5.60775i −1.30553 + 0.229510i
\(598\) 57.5694 11.7991i 2.35419 0.482501i
\(599\) 19.5625 + 33.8832i 0.799300 + 1.38443i 0.920072 + 0.391749i \(0.128130\pi\)
−0.120772 + 0.992680i \(0.538537\pi\)
\(600\) −15.0118 15.1601i −0.612855 0.618907i
\(601\) 4.88356 0.199204 0.0996022 0.995027i \(-0.468243\pi\)
0.0996022 + 0.995027i \(0.468243\pi\)
\(602\) 0 0
\(603\) 24.8903 + 4.41518i 1.01361 + 0.179800i
\(604\) −13.6775 31.9655i −0.556529 1.30066i
\(605\) 3.82459 2.20813i 0.155492 0.0897732i
\(606\) −16.1019 12.7836i −0.654095 0.519299i
\(607\) 27.4754 + 15.8630i 1.11519 + 0.643857i 0.940170 0.340707i \(-0.110666\pi\)
0.175024 + 0.984564i \(0.444000\pi\)
\(608\) 1.46753 40.2744i 0.0595161 1.63334i
\(609\) 0 0
\(610\) 1.03249 + 0.343811i 0.0418042 + 0.0139205i
\(611\) 16.0667 27.8284i 0.649990 1.12582i
\(612\) 2.06687 6.80565i 0.0835485 0.275102i
\(613\) −16.4834 28.5501i −0.665758 1.15313i −0.979079 0.203479i \(-0.934775\pi\)
0.313322 0.949647i \(-0.398558\pi\)
\(614\) 16.3825 14.5362i 0.661145 0.586634i
\(615\) 7.64308 6.40662i 0.308199 0.258340i
\(616\) 0 0
\(617\) 14.3990i 0.579680i −0.957075 0.289840i \(-0.906398\pi\)
0.957075 0.289840i \(-0.0936021\pi\)
\(618\) −0.923606 + 6.21951i −0.0371529 + 0.250185i
\(619\) −21.3838 + 12.3460i −0.859489 + 0.496226i −0.863841 0.503764i \(-0.831948\pi\)
0.00435197 + 0.999991i \(0.498615\pi\)
\(620\) 0.936455 7.81306i 0.0376089 0.313780i
\(621\) 40.9826 + 0.0630910i 1.64457 + 0.00253175i
\(622\) −4.86990 + 14.6246i −0.195265 + 0.586395i
\(623\) 0 0
\(624\) −30.3682 20.2522i −1.21570 0.810738i
\(625\) −7.87046 + 13.6320i −0.314818 + 0.545281i
\(626\) 46.8301 9.59805i 1.87171 0.383615i
\(627\) 9.91272 27.1916i 0.395876 1.08593i
\(628\) 7.21190 3.08585i 0.287786 0.123139i
\(629\) 1.24227i 0.0495327i
\(630\) 0 0
\(631\) 15.8863i 0.632423i 0.948689 + 0.316212i \(0.102411\pi\)
−0.948689 + 0.316212i \(0.897589\pi\)
\(632\) −19.5287 + 1.62199i −0.776809 + 0.0645192i
\(633\) 6.95521 19.0788i 0.276445 0.758315i
\(634\) 2.63690 + 12.8658i 0.104725 + 0.510966i
\(635\) −1.67131 + 2.89479i −0.0663239 + 0.114876i
\(636\) −1.65244 30.1618i −0.0655235 1.19599i
\(637\) 0 0
\(638\) −13.3163 4.43423i −0.527197 0.175553i
\(639\) 22.2137 + 18.6784i 0.878761 + 0.738906i
\(640\) 8.97638 + 1.40913i 0.354823 + 0.0557006i
\(641\) 16.8007 9.69989i 0.663588 0.383122i −0.130055 0.991507i \(-0.541515\pi\)
0.793643 + 0.608384i \(0.208182\pi\)
\(642\) −14.7796 2.19479i −0.583303 0.0866213i
\(643\) 37.0568i 1.46138i 0.682710 + 0.730690i \(0.260801\pi\)
−0.682710 + 0.730690i \(0.739199\pi\)
\(644\) 0 0
\(645\) −8.46792 + 7.09803i −0.333424 + 0.279485i
\(646\) −7.92692 8.93376i −0.311881 0.351494i
\(647\) −22.7029 39.3225i −0.892542 1.54593i −0.836818 0.547481i \(-0.815587\pi\)
−0.0557235 0.998446i \(-0.517747\pi\)
\(648\) −17.8835 18.1158i −0.702529 0.711655i
\(649\) 0.776548 1.34502i 0.0304822 0.0527967i
\(650\) −10.2517 + 30.7866i −0.402105 + 1.20755i
\(651\) 0 0
\(652\) −8.76374 + 11.6999i −0.343215 + 0.458205i
\(653\) −0.855070 0.493675i −0.0334615 0.0193190i 0.483176 0.875523i \(-0.339483\pi\)
−0.516637 + 0.856204i \(0.672816\pi\)
\(654\) −8.30205 + 10.4570i −0.324636 + 0.408903i
\(655\) 7.29738 4.21314i 0.285132 0.164621i
\(656\) 6.77712 27.8654i 0.264602 1.08796i
\(657\) 0.741015 4.17743i 0.0289097 0.162977i
\(658\) 0 0
\(659\) −6.67629 −0.260071 −0.130036 0.991509i \(-0.541509\pi\)
−0.130036 + 0.991509i \(0.541509\pi\)
\(660\) 5.82109 + 2.94863i 0.226585 + 0.114775i
\(661\) 1.35571 + 2.34815i 0.0527309 + 0.0913326i 0.891186 0.453638i \(-0.149874\pi\)
−0.838455 + 0.544971i \(0.816541\pi\)
\(662\) −0.288191 1.40612i −0.0112009 0.0546504i
\(663\) −10.6542 + 1.87299i −0.413775 + 0.0727408i
\(664\) −12.0438 + 8.35442i −0.467390 + 0.324214i
\(665\) 0 0
\(666\) −3.90818 2.11986i −0.151439 0.0821431i
\(667\) −28.9018 16.6865i −1.11908 0.646102i
\(668\) −1.99262 + 16.6249i −0.0770970 + 0.643238i
\(669\) 0.405331 1.11186i 0.0156710 0.0429871i
\(670\) 6.35192 + 7.15871i 0.245396 + 0.276565i
\(671\) 2.24723 0.0867535
\(672\) 0 0
\(673\) 37.2088 1.43430 0.717148 0.696921i \(-0.245447\pi\)
0.717148 + 0.696921i \(0.245447\pi\)
\(674\) −11.8826 13.3919i −0.457700 0.515835i
\(675\) −11.3448 + 19.5800i −0.436660 + 0.753635i
\(676\) −3.51256 + 29.3061i −0.135099 + 1.12716i
\(677\) 9.63730 + 5.56410i 0.370392 + 0.213846i 0.673630 0.739069i \(-0.264734\pi\)
−0.303238 + 0.952915i \(0.598068\pi\)
\(678\) 16.1708 6.38722i 0.621037 0.245300i
\(679\) 0 0
\(680\) 2.21258 1.53480i 0.0848487 0.0588570i
\(681\) −2.62522 14.9332i −0.100599 0.572240i
\(682\) −3.26265 15.9189i −0.124933 0.609565i
\(683\) 4.83716 + 8.37821i 0.185089 + 0.320583i 0.943606 0.331069i \(-0.107409\pi\)
−0.758518 + 0.651652i \(0.774076\pi\)
\(684\) −41.6323 + 9.69309i −1.59185 + 0.370624i
\(685\) −10.8357 −0.414013
\(686\) 0 0
\(687\) 24.5549 20.5826i 0.936829 0.785274i
\(688\) −7.50851 + 30.8726i −0.286259 + 1.17701i
\(689\) −39.7870 + 22.9710i −1.51576 + 0.875127i
\(690\) 12.1518 + 9.64757i 0.462612 + 0.367277i
\(691\) −7.20943 4.16236i −0.274260 0.158344i 0.356562 0.934272i \(-0.383949\pi\)
−0.630822 + 0.775928i \(0.717282\pi\)
\(692\) −15.3128 + 20.4432i −0.582105 + 0.777133i
\(693\) 0 0
\(694\) 11.4509 34.3879i 0.434670 1.30535i
\(695\) −3.04088 + 5.26697i −0.115347 + 0.199787i
\(696\) 5.26666 + 20.0490i 0.199632 + 0.759954i
\(697\) −4.24943 7.36022i −0.160958 0.278788i
\(698\) 26.3971 + 29.7499i 0.999145 + 1.12605i
\(699\) −11.2814 13.4586i −0.426700 0.509052i
\(700\) 0 0
\(701\) 34.0535i 1.28618i −0.765790 0.643091i \(-0.777652\pi\)
0.765790 0.643091i \(-0.222348\pi\)
\(702\) −12.2883 + 36.7141i −0.463793 + 1.38568i
\(703\) −6.46568 + 3.73296i −0.243858 + 0.140791i
\(704\) 18.5065 3.09553i 0.697491 0.116667i
\(705\) 8.35599 1.46897i 0.314705 0.0553244i
\(706\) −13.8269 4.60425i −0.520382 0.173283i
\(707\) 0 0
\(708\) −2.29040 + 0.125482i −0.0860785 + 0.00471589i
\(709\) −4.82135 + 8.35083i −0.181070 + 0.313622i −0.942245 0.334924i \(-0.891289\pi\)
0.761175 + 0.648546i \(0.224623\pi\)
\(710\) 2.20618 + 10.7642i 0.0827964 + 0.403974i
\(711\) 7.08871 + 19.5384i 0.265847 + 0.732748i
\(712\) −46.1310 + 3.83148i −1.72883 + 0.143591i
\(713\) 38.6388i 1.44703i
\(714\) 0 0
\(715\) 9.92437i 0.371150i
\(716\) 38.8301 16.6148i 1.45115 0.620923i
\(717\) 2.43231 + 0.886703i 0.0908364 + 0.0331145i
\(718\) −37.1837 + 7.62097i −1.38768 + 0.284412i
\(719\) −4.04585 + 7.00762i −0.150885 + 0.261340i −0.931553 0.363606i \(-0.881546\pi\)
0.780668 + 0.624946i \(0.214879\pi\)
\(720\) −1.05284 9.57981i −0.0392369 0.357018i
\(721\) 0 0
\(722\) −14.1885 + 42.6090i −0.528040 + 1.58574i
\(723\) 3.09900 + 17.6282i 0.115253 + 0.655599i
\(724\) 2.95312 24.6386i 0.109752 0.915686i
\(725\) 15.9586 9.21369i 0.592687 0.342188i
\(726\) −13.3233 1.97852i −0.494473 0.0734299i
\(727\) 36.9501i 1.37040i −0.728353 0.685202i \(-0.759714\pi\)
0.728353 0.685202i \(-0.240286\pi\)
\(728\) 0 0
\(729\) −13.5719 + 23.3410i −0.502664 + 0.864482i
\(730\) 1.20147 1.06607i 0.0444685 0.0394569i
\(731\) 4.70802 + 8.15453i 0.174133 + 0.301606i
\(732\) −1.81427 2.77929i −0.0670575 0.102725i
\(733\) −18.9776 + 32.8702i −0.700954 + 1.21409i 0.267178 + 0.963647i \(0.413909\pi\)
−0.968132 + 0.250440i \(0.919425\pi\)
\(734\) 17.9153 + 5.96566i 0.661266 + 0.220197i
\(735\) 0 0
\(736\) 44.5867 + 1.62466i 1.64349 + 0.0598857i
\(737\) 17.1157 + 9.88173i 0.630463 + 0.363998i
\(738\) −30.4065 + 0.808878i −1.11928 + 0.0297752i
\(739\) 19.1667 11.0659i 0.705058 0.407065i −0.104171 0.994559i \(-0.533219\pi\)
0.809228 + 0.587494i \(0.199885\pi\)
\(740\) −0.662173 1.54756i −0.0243420 0.0568893i
\(741\) 41.7636 + 49.8238i 1.53422 + 1.83032i
\(742\) 0 0
\(743\) −21.7884 −0.799340 −0.399670 0.916659i \(-0.630875\pi\)
−0.399670 + 0.916659i \(0.630875\pi\)
\(744\) −17.0537 + 16.8870i −0.625220 + 0.619107i
\(745\) −6.46568 11.1989i −0.236884 0.410296i
\(746\) 31.5956 6.47567i 1.15680 0.237091i
\(747\) 11.8993 + 10.0056i 0.435374 + 0.366084i
\(748\) 3.33371 4.45064i 0.121893 0.162731i
\(749\) 0 0
\(750\) −17.1167 + 6.76083i −0.625014 + 0.246871i
\(751\) 4.44124 + 2.56415i 0.162063 + 0.0935671i 0.578838 0.815443i \(-0.303506\pi\)
−0.416775 + 0.909010i \(0.636840\pi\)
\(752\) 16.8456 17.6467i 0.614295 0.643509i
\(753\) 43.8645 + 15.9909i 1.59851 + 0.582740i
\(754\) 23.5823 20.9246i 0.858816 0.762027i
\(755\) −13.9618 −0.508122
\(756\) 0 0
\(757\) −30.4486 −1.10667 −0.553337 0.832958i \(-0.686646\pi\)
−0.553337 + 0.832958i \(0.686646\pi\)
\(758\) 2.09580 1.85960i 0.0761228 0.0675437i
\(759\) 30.1030 + 10.9741i 1.09267 + 0.398335i
\(760\) −14.6369 6.90387i −0.530936 0.250430i
\(761\) −37.0224 21.3749i −1.34206 0.774839i −0.354951 0.934885i \(-0.615502\pi\)
−0.987110 + 0.160046i \(0.948836\pi\)
\(762\) 9.48197 3.74523i 0.343496 0.135675i
\(763\) 0 0
\(764\) 9.76434 + 7.31389i 0.353261 + 0.264607i
\(765\) −2.18605 1.83814i −0.0790367 0.0664580i
\(766\) −39.9288 + 8.18360i −1.44269 + 0.295686i
\(767\) 1.74436 + 3.02131i 0.0629851 + 0.109093i
\(768\) −18.7694 20.3890i −0.677283 0.735723i
\(769\) −7.77655 −0.280430 −0.140215 0.990121i \(-0.544779\pi\)
−0.140215 + 0.990121i \(0.544779\pi\)
\(770\) 0 0
\(771\) 3.10619 + 3.70567i 0.111867 + 0.133456i
\(772\) 1.18601 0.507473i 0.0426853 0.0182643i
\(773\) 1.04249 0.601881i 0.0374957 0.0216482i −0.481135 0.876647i \(-0.659775\pi\)
0.518631 + 0.854998i \(0.326442\pi\)
\(774\) 33.6880 0.896173i 1.21089 0.0322123i
\(775\) 18.4767 + 10.6675i 0.663701 + 0.383188i
\(776\) −10.1752 + 7.05825i −0.365269 + 0.253376i
\(777\) 0 0
\(778\) −2.62954 0.875618i −0.0942737 0.0313924i
\(779\) −25.5386 + 44.2341i −0.915014 + 1.58485i
\(780\) −12.2740 + 8.01230i −0.439481 + 0.286886i
\(781\) 11.3453 + 19.6507i 0.405968 + 0.703157i
\(782\) 9.89031 8.77567i 0.353677 0.313817i
\(783\) 19.0579 10.9640i 0.681072 0.391820i
\(784\) 0 0
\(785\) 3.15000i 0.112428i
\(786\) −25.4210 3.77505i −0.906737 0.134652i
\(787\) 19.4895 11.2522i 0.694724 0.401099i −0.110655 0.993859i \(-0.535295\pi\)
0.805380 + 0.592760i \(0.201962\pi\)
\(788\) −29.6102 3.54901i −1.05482 0.126428i
\(789\) −4.59144 26.1177i −0.163460 0.929816i
\(790\) −2.48610 + 7.46593i −0.0884514 + 0.265626i
\(791\) 0 0
\(792\) −8.31288 18.0826i −0.295385 0.642536i
\(793\) −2.52398 + 4.37166i −0.0896290 + 0.155242i
\(794\) −6.32179 + 1.29568i −0.224352 + 0.0459819i
\(795\) −11.3963 4.15455i −0.404186 0.147347i
\(796\) 14.7120 + 34.3832i 0.521452 + 1.21868i
\(797\) 18.3911i 0.651447i 0.945465 + 0.325724i \(0.105608\pi\)
−0.945465 + 0.325724i \(0.894392\pi\)
\(798\) 0 0
\(799\) 7.23003i 0.255780i
\(800\) −13.0865 + 20.8723i −0.462678 + 0.737948i
\(801\) 16.7451 + 46.1540i 0.591658 + 1.63077i
\(802\) −7.60442 37.1029i −0.268521 1.31015i
\(803\) 1.65849 2.87258i 0.0585267 0.101371i
\(804\) −1.59678 29.1458i −0.0563140 1.02789i
\(805\) 0 0
\(806\) 34.6322 + 11.5323i 1.21987 + 0.406206i
\(807\) −52.3477 + 9.20262i −1.84273 + 0.323948i
\(808\) −10.1275 + 21.4714i −0.356286 + 0.755362i
\(809\) −11.5087 + 6.64455i −0.404624 + 0.233610i −0.688477 0.725258i \(-0.741721\pi\)
0.283853 + 0.958868i \(0.408387\pi\)
\(810\) −9.51311 + 3.74061i −0.334256 + 0.131431i
\(811\) 6.46254i 0.226930i −0.993542 0.113465i \(-0.963805\pi\)
0.993542 0.113465i \(-0.0361950\pi\)
\(812\) 0 0
\(813\) 21.9041 + 26.1315i 0.768210 + 0.916472i
\(814\) −2.30704 2.60007i −0.0808617 0.0911323i
\(815\) 2.93506 + 5.08367i 0.102811 + 0.178073i
\(816\) −8.19579 0.529836i −0.286910 0.0185480i
\(817\) 28.2947 49.0078i 0.989906 1.71457i
\(818\) −8.06140 + 24.2090i −0.281860 + 0.846446i
\(819\) 0 0
\(820\) −9.21694 6.90387i −0.321869 0.241094i
\(821\) 24.1767 + 13.9584i 0.843774 + 0.487153i 0.858545 0.512738i \(-0.171369\pi\)
−0.0147715 + 0.999891i \(0.504702\pi\)
\(822\) 25.8831 + 20.5491i 0.902778 + 0.716734i
\(823\) −38.9668 + 22.4975i −1.35830 + 0.784213i −0.989394 0.145256i \(-0.953600\pi\)
−0.368902 + 0.929468i \(0.620266\pi\)
\(824\) 7.23552 0.600958i 0.252061 0.0209354i
\(825\) −13.5586 + 11.3652i −0.472051 + 0.395685i
\(826\) 0 0
\(827\) −34.2989 −1.19269 −0.596344 0.802729i \(-0.703381\pi\)
−0.596344 + 0.802729i \(0.703381\pi\)
\(828\) −10.7309 46.0899i −0.372926 1.60174i
\(829\) 11.5078 + 19.9322i 0.399684 + 0.692273i 0.993687 0.112190i \(-0.0357865\pi\)
−0.594003 + 0.804463i \(0.702453\pi\)
\(830\) 1.18179 + 5.76613i 0.0410207 + 0.200145i
\(831\) −3.93246 22.3692i −0.136416 0.775980i
\(832\) −14.7637 + 39.4784i −0.511838 + 1.36867i
\(833\) 0 0
\(834\) 17.2521 6.81430i 0.597391 0.235960i
\(835\) 5.82291 + 3.36186i 0.201510 + 0.116342i
\(836\) −33.1819 3.97711i −1.14762 0.137551i
\(837\) 22.0258 + 12.7618i 0.761323 + 0.441114i
\(838\) 16.4628 + 18.5538i 0.568698 + 0.640931i
\(839\) −46.9847 −1.62209 −0.811046 0.584983i \(-0.801101\pi\)
−0.811046 + 0.584983i \(0.801101\pi\)
\(840\) 0 0
\(841\) 11.0959 0.382617
\(842\) 14.4552 + 16.2913i 0.498161 + 0.561434i
\(843\) 1.70062 4.66496i 0.0585724 0.160670i
\(844\) −23.2819 2.79052i −0.801396 0.0960535i
\(845\) 10.2645 + 5.92623i 0.353110 + 0.203868i
\(846\) −22.7456 12.3376i −0.782009 0.424175i
\(847\) 0 0
\(848\) −33.4728 + 9.80751i −1.14946 + 0.336791i
\(849\) −3.39541 + 0.596905i −0.116530 + 0.0204857i
\(850\) 1.46589 + 7.15226i 0.0502795 + 0.245320i
\(851\) −4.13266 7.15798i −0.141666 0.245372i
\(852\) 15.1437 29.8961i 0.518813 1.02422i
\(853\) −12.7498 −0.436545 −0.218272 0.975888i \(-0.570042\pi\)
−0.218272 + 0.975888i \(0.570042\pi\)
\(854\) 0 0
\(855\) −2.99803 + 16.9012i −0.102531 + 0.578010i
\(856\) 1.42807 + 17.1939i 0.0488105 + 0.587676i
\(857\) 26.1774 15.1136i 0.894204 0.516269i 0.0188889 0.999822i \(-0.493987\pi\)
0.875315 + 0.483553i \(0.160654\pi\)
\(858\) −18.8208 + 23.7061i −0.642531 + 0.809314i
\(859\) 15.8982 + 9.17880i 0.542438 + 0.313177i 0.746066 0.665872i \(-0.231940\pi\)
−0.203628 + 0.979048i \(0.565273\pi\)
\(860\) 10.2116 + 7.64893i 0.348214 + 0.260826i
\(861\) 0 0
\(862\) −4.02283 + 12.0808i −0.137018 + 0.411475i
\(863\) 13.1968 22.8576i 0.449225 0.778080i −0.549111 0.835749i \(-0.685034\pi\)
0.998336 + 0.0576693i \(0.0183669\pi\)
\(864\) −15.6525 + 24.8797i −0.532508 + 0.846425i
\(865\) 5.12839 + 8.88264i 0.174371 + 0.302019i
\(866\) 5.78081 + 6.51506i 0.196440 + 0.221391i
\(867\) 20.7005 17.3517i 0.703025 0.589293i
\(868\) 0 0
\(869\) 16.2498i 0.551236i
\(870\) 8.23375 + 1.22272i 0.279150 + 0.0414542i
\(871\) −38.4468 + 22.1973i −1.30272 + 0.752126i
\(872\) 13.9442 + 6.57712i 0.472209 + 0.222729i
\(873\) 10.0532 + 8.45322i 0.340249 + 0.286098i
\(874\) −75.3947 25.1059i −2.55026 0.849218i
\(875\) 0 0
\(876\) −4.89164 + 0.267993i −0.165273 + 0.00905464i
\(877\) 0.468662 0.811746i 0.0158256 0.0274107i −0.858004 0.513643i \(-0.828296\pi\)
0.873830 + 0.486232i \(0.161629\pi\)
\(878\) −8.30525 40.5224i −0.280289 1.36756i
\(879\) 9.93557 27.2542i 0.335118 0.919262i
\(880\) 1.78062 7.32134i 0.0600246 0.246802i
\(881\) 37.1298i 1.25093i −0.780251 0.625467i \(-0.784909\pi\)
0.780251 0.625467i \(-0.215091\pi\)
\(882\) 0 0
\(883\) 5.76235i 0.193918i 0.995288 + 0.0969592i \(0.0309116\pi\)
−0.995288 + 0.0969592i \(0.969088\pi\)
\(884\) 4.91379 + 11.4840i 0.165269 + 0.386247i
\(885\) −0.315485 + 0.865405i −0.0106049 + 0.0290903i
\(886\) −9.99770 + 2.04908i −0.335879 + 0.0688400i
\(887\) 13.0672 22.6330i 0.438752 0.759941i −0.558841 0.829275i \(-0.688754\pi\)
0.997594 + 0.0693335i \(0.0220873\pi\)
\(888\) −1.35310 + 4.95238i −0.0454070 + 0.166191i
\(889\) 0 0
\(890\) −5.87270 + 17.6361i −0.196853 + 0.591165i
\(891\) −16.1983 + 13.5354i −0.542664 + 0.453454i
\(892\) −1.35681 0.162624i −0.0454293 0.00544505i
\(893\) −37.6302 + 21.7258i −1.25925 + 0.727027i
\(894\) −5.79337 + 39.0122i −0.193759 + 1.30476i
\(895\) 16.9601i 0.566915i
\(896\) 0 0
\(897\) −55.1586 + 46.2353i −1.84169 + 1.54375i
\(898\) −4.69066 + 4.16202i −0.156529 + 0.138888i
\(899\) −10.3646 17.9520i −0.345678 0.598732i
\(900\) 25.0023 + 7.59321i 0.833412 + 0.253107i
\(901\) −5.16848 + 8.95207i −0.172187 + 0.298237i
\(902\) −22.5627 7.51322i −0.751257 0.250163i
\(903\) 0 0
\(904\) −11.4428 16.4960i −0.380582 0.548649i
\(905\) −8.62971 4.98237i −0.286861 0.165619i
\(906\) 33.3503 + 26.4775i 1.10799 + 0.879655i
\(907\) −35.3624 + 20.4165i −1.17419 + 0.677918i −0.954663 0.297689i \(-0.903784\pi\)
−0.219525 + 0.975607i \(0.570451\pi\)
\(908\) −16.0962 + 6.88728i −0.534170 + 0.228562i
\(909\) 24.7931 + 4.39793i 0.822334 + 0.145870i
\(910\) 0 0
\(911\) −4.31270 −0.142886 −0.0714430 0.997445i \(-0.522760\pi\)
−0.0714430 + 0.997445i \(0.522760\pi\)
\(912\) 21.8702 + 44.2489i 0.724196 + 1.46523i
\(913\) 6.07741 + 10.5264i 0.201133 + 0.348372i
\(914\) −18.9276 + 3.87930i −0.626069 + 0.128316i
\(915\) −1.31267 + 0.230765i −0.0433955 + 0.00762885i
\(916\) −29.6113 22.1801i −0.978384 0.732850i
\(917\) 0 0
\(918\) 1.73588 + 8.53639i 0.0572927 + 0.281743i
\(919\) −14.9668 8.64107i −0.493708 0.285043i 0.232403 0.972620i \(-0.425341\pi\)
−0.726112 + 0.687577i \(0.758674\pi\)
\(920\) 7.64308 16.2041i 0.251985 0.534234i
\(921\) −9.18732 + 25.2017i −0.302733 + 0.830425i
\(922\) 5.56196 4.93513i 0.183173 0.162530i
\(923\) −50.9699 −1.67770
\(924\) 0 0
\(925\) 4.56383 0.150058
\(926\) −16.8050 + 14.9111i −0.552247 + 0.490009i
\(927\) −2.62642 7.23913i −0.0862629 0.237764i
\(928\) 21.1512 11.2052i 0.694323 0.367829i
\(929\) −20.0527 11.5774i −0.657908 0.379843i 0.133571 0.991039i \(-0.457355\pi\)
−0.791479 + 0.611196i \(0.790689\pi\)
\(930\) 3.54048 + 8.96360i 0.116097 + 0.293928i
\(931\) 0 0
\(932\) −12.1570 + 16.2300i −0.398214 + 0.531632i
\(933\) −3.26866 18.5933i −0.107011 0.608717i
\(934\) −37.5125 + 7.68837i −1.22745 + 0.251571i
\(935\) −1.11649 1.93382i −0.0365132 0.0632426i
\(936\) 44.5135 + 4.13793i 1.45497 + 0.135253i
\(937\) 3.10294 0.101369 0.0506843 0.998715i \(-0.483860\pi\)
0.0506843 + 0.998715i \(0.483860\pi\)
\(938\) 0 0
\(939\) −44.8691 + 37.6104i −1.46425 + 1.22737i
\(940\) −3.85384 9.00676i −0.125698 0.293768i
\(941\) −20.4823 + 11.8254i −0.667703 + 0.385498i −0.795206 0.606340i \(-0.792637\pi\)
0.127503 + 0.991838i \(0.459304\pi\)
\(942\) −5.97372 + 7.52434i −0.194634 + 0.245156i
\(943\) −48.9703 28.2730i −1.59469 0.920696i
\(944\) 0.744755 + 2.54183i 0.0242397 + 0.0827296i
\(945\) 0 0
\(946\) 24.9977 + 8.32404i 0.812745 + 0.270638i
\(947\) 28.7686 49.8286i 0.934852 1.61921i 0.159955 0.987124i \(-0.448865\pi\)
0.774897 0.632087i \(-0.217802\pi\)
\(948\) 20.0970 13.1190i 0.652722 0.426086i
\(949\) 3.72545 + 6.45267i 0.120933 + 0.209462i
\(950\) 32.8205 29.1217i 1.06484 0.944831i
\(951\) −10.3328 12.3270i −0.335065 0.399731i
\(952\) 0 0
\(953\) 14.1961i 0.459855i −0.973208 0.229928i \(-0.926151\pi\)
0.973208 0.229928i \(-0.0738490\pi\)
\(954\) 19.3434 + 31.5361i 0.626266 + 1.02102i
\(955\) 4.24264 2.44949i 0.137289 0.0792636i
\(956\) 0.355756 2.96816i 0.0115060 0.0959970i
\(957\) 16.9299 2.97624i 0.547266 0.0962082i
\(958\) 6.81842 20.4762i 0.220293 0.661557i
\(959\) 0 0
\(960\) −10.4923 + 3.70859i −0.338637 + 0.119694i
\(961\) −3.50000 + 6.06218i −0.112903 + 0.195554i
\(962\) 7.64918 1.56774i 0.246620 0.0505458i
\(963\) 17.2025 6.24122i 0.554343 0.201120i
\(964\) 19.0011 8.13025i 0.611984 0.261858i
\(965\) 0.518021i 0.0166757i
\(966\) 0 0
\(967\) 31.5730i 1.01532i −0.861558 0.507660i \(-0.830511\pi\)
0.861558 0.507660i \(-0.169489\pi\)
\(968\) 1.28736 + 15.4997i 0.0413772 + 0.498180i
\(969\) 13.7431 + 5.01005i 0.441491 + 0.160946i
\(970\) 0.998442 + 4.87153i 0.0320580 + 0.156415i
\(971\) 14.6620 25.3953i 0.470526 0.814974i −0.528906 0.848680i \(-0.677398\pi\)
0.999432 + 0.0337060i \(0.0107310\pi\)
\(972\) 29.8175 + 9.10575i 0.956398 + 0.292067i
\(973\) 0 0
\(974\) 8.13677 + 2.70948i 0.260719 + 0.0868174i
\(975\) −6.88091 39.1410i −0.220366 1.25352i
\(976\) −2.64633 + 2.77218i −0.0847069 + 0.0887353i
\(977\) 10.3022 5.94797i 0.329596 0.190292i −0.326066 0.945347i \(-0.605723\pi\)
0.655662 + 0.755055i \(0.272390\pi\)
\(978\) 2.62986 17.7094i 0.0840938 0.566283i
\(979\) 38.3855i 1.22681i
\(980\) 0 0
\(981\) 2.85614 16.1013i 0.0911896 0.514076i
\(982\) 3.79042 + 4.27187i 0.120957 + 0.136321i
\(983\) 7.49013 + 12.9733i 0.238898 + 0.413783i 0.960398 0.278631i \(-0.0898805\pi\)
−0.721500 + 0.692414i \(0.756547\pi\)
\(984\) 8.92367 + 33.9703i 0.284476 + 1.08293i
\(985\) −5.98772 + 10.3710i −0.190785 + 0.330449i
\(986\) 2.24113 6.73027i 0.0713721 0.214336i
\(987\) 0 0
\(988\) 45.0051 60.0835i 1.43180 1.91151i
\(989\) 54.2552 + 31.3243i 1.72521 + 0.996053i
\(990\) −7.98899 + 0.212524i −0.253907 + 0.00675446i
\(991\) −18.0000 + 10.3923i −0.571789 + 0.330122i −0.757863 0.652413i \(-0.773757\pi\)
0.186075 + 0.982536i \(0.440423\pi\)
\(992\) 23.4795 + 14.7212i 0.745475 + 0.467397i
\(993\) 1.12929 + 1.34724i 0.0358369 + 0.0427533i
\(994\) 0 0
\(995\) 15.0178 0.476096
\(996\) 8.11208 16.0146i 0.257041 0.507443i
\(997\) −9.81912 17.0072i −0.310975 0.538624i 0.667599 0.744521i \(-0.267322\pi\)
−0.978574 + 0.205897i \(0.933989\pi\)
\(998\) 10.9323 + 53.3402i 0.346056 + 1.68845i
\(999\) 5.44532 + 0.00838284i 0.172282 + 0.000265221i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.n.d.275.9 24
3.2 odd 2 inner 588.2.n.d.275.3 24
4.3 odd 2 588.2.n.h.275.12 24
7.2 even 3 588.2.e.f.491.14 yes 24
7.3 odd 6 588.2.n.h.263.1 24
7.4 even 3 588.2.n.h.263.2 24
7.5 odd 6 588.2.e.f.491.13 yes 24
7.6 odd 2 inner 588.2.n.d.275.10 24
12.11 even 2 588.2.n.h.275.2 24
21.2 odd 6 588.2.e.f.491.11 yes 24
21.5 even 6 588.2.e.f.491.12 yes 24
21.11 odd 6 588.2.n.h.263.12 24
21.17 even 6 588.2.n.h.263.11 24
21.20 even 2 inner 588.2.n.d.275.4 24
28.3 even 6 inner 588.2.n.d.263.4 24
28.11 odd 6 inner 588.2.n.d.263.3 24
28.19 even 6 588.2.e.f.491.10 yes 24
28.23 odd 6 588.2.e.f.491.9 24
28.27 even 2 588.2.n.h.275.11 24
84.11 even 6 inner 588.2.n.d.263.9 24
84.23 even 6 588.2.e.f.491.16 yes 24
84.47 odd 6 588.2.e.f.491.15 yes 24
84.59 odd 6 inner 588.2.n.d.263.10 24
84.83 odd 2 588.2.n.h.275.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.e.f.491.9 24 28.23 odd 6
588.2.e.f.491.10 yes 24 28.19 even 6
588.2.e.f.491.11 yes 24 21.2 odd 6
588.2.e.f.491.12 yes 24 21.5 even 6
588.2.e.f.491.13 yes 24 7.5 odd 6
588.2.e.f.491.14 yes 24 7.2 even 3
588.2.e.f.491.15 yes 24 84.47 odd 6
588.2.e.f.491.16 yes 24 84.23 even 6
588.2.n.d.263.3 24 28.11 odd 6 inner
588.2.n.d.263.4 24 28.3 even 6 inner
588.2.n.d.263.9 24 84.11 even 6 inner
588.2.n.d.263.10 24 84.59 odd 6 inner
588.2.n.d.275.3 24 3.2 odd 2 inner
588.2.n.d.275.4 24 21.20 even 2 inner
588.2.n.d.275.9 24 1.1 even 1 trivial
588.2.n.d.275.10 24 7.6 odd 2 inner
588.2.n.h.263.1 24 7.3 odd 6
588.2.n.h.263.2 24 7.4 even 3
588.2.n.h.263.11 24 21.17 even 6
588.2.n.h.263.12 24 21.11 odd 6
588.2.n.h.275.1 24 84.83 odd 2
588.2.n.h.275.2 24 12.11 even 2
588.2.n.h.275.11 24 28.27 even 2
588.2.n.h.275.12 24 4.3 odd 2