Properties

Label 588.2.n.h.263.2
Level $588$
Weight $2$
Character 588.263
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(263,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.263");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 263.2
Character \(\chi\) \(=\) 588.263
Dual form 588.2.n.h.275.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38541 + 0.283947i) q^{2} +(0.299892 + 1.70589i) q^{3} +(1.83875 - 0.786769i) q^{4} +(-0.695526 + 0.401562i) q^{5} +(-0.899858 - 2.27821i) q^{6} +(-2.32403 + 1.61211i) q^{8} +(-2.82013 + 1.02317i) q^{9} +(0.849569 - 0.753822i) q^{10} +(1.17273 - 2.03122i) q^{11} +(1.89357 + 2.90076i) q^{12} -5.26858 q^{13} +(-0.893604 - 1.06607i) q^{15} +(2.76199 - 2.89334i) q^{16} +(1.02661 + 0.592715i) q^{17} +(3.61652 - 2.21828i) q^{18} +(-6.16982 + 3.56215i) q^{19} +(-0.962960 + 1.28559i) q^{20} +(-1.04795 + 3.14708i) q^{22} +(-3.94356 - 6.83044i) q^{23} +(-3.44704 - 3.48108i) q^{24} +(-2.17750 + 3.77153i) q^{25} +(7.29917 - 1.49600i) q^{26} +(-2.59115 - 4.50399i) q^{27} +4.23132i q^{29} +(1.54072 + 1.22321i) q^{30} +(4.24264 + 2.44949i) q^{31} +(-3.00494 + 4.79274i) q^{32} +(3.81673 + 1.39140i) q^{33} +(-1.59058 - 0.529652i) q^{34} +(-4.38051 + 4.10014i) q^{36} +(-0.523976 - 0.907554i) q^{37} +(7.53630 - 6.68696i) q^{38} +(-1.58001 - 8.98762i) q^{39} +(0.969059 - 2.05450i) q^{40} +7.16942i q^{41} -7.94315i q^{43} +(0.558245 - 4.65757i) q^{44} +(1.55061 - 1.84410i) q^{45} +(7.40294 + 8.34323i) q^{46} +(-3.04954 - 5.28195i) q^{47} +(5.76402 + 3.84396i) q^{48} +(1.94582 - 5.84343i) q^{50} +(-0.703234 + 1.92904i) q^{51} +(-9.68759 + 4.14516i) q^{52} +(-7.55175 - 4.36001i) q^{53} +(4.86871 + 5.50415i) q^{54} +1.88369i q^{55} +(-7.92692 - 9.45679i) q^{57} +(-1.20147 - 5.86214i) q^{58} +(-0.331087 + 0.573459i) q^{59} +(-2.48186 - 1.25717i) q^{60} +(0.479062 + 0.829760i) q^{61} +(-6.57334 - 2.18887i) q^{62} +(2.80221 - 7.49317i) q^{64} +(3.66443 - 2.11566i) q^{65} +(-5.68284 - 0.843910i) q^{66} +(-7.29738 - 4.21314i) q^{67} +(2.35401 + 0.282146i) q^{68} +(10.4693 - 8.77567i) q^{69} +9.67432 q^{71} +(4.90460 - 6.92422i) q^{72} +(-0.707107 + 1.22474i) q^{73} +(0.983622 + 1.10856i) q^{74} +(-7.08684 - 2.58352i) q^{75} +(-8.54216 + 11.4041i) q^{76} +(4.74097 + 12.0029i) q^{78} +(-6.00000 + 3.46410i) q^{79} +(-0.759178 + 3.12150i) q^{80} +(6.90626 - 5.77092i) q^{81} +(-2.03574 - 9.93263i) q^{82} +5.18229 q^{83} -0.952047 q^{85} +(2.25543 + 11.0046i) q^{86} +(-7.21818 + 1.26894i) q^{87} +(0.549103 + 6.61118i) q^{88} +(-14.1733 + 8.18296i) q^{89} +(-1.62461 + 2.99513i) q^{90} +(-12.6252 - 9.45679i) q^{92} +(-2.90623 + 7.97207i) q^{93} +(5.72467 + 6.45179i) q^{94} +(2.86085 - 4.95513i) q^{95} +(-9.07704 - 3.68880i) q^{96} +4.37827 q^{97} +(-1.22896 + 6.92820i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{4} + 60 q^{16} + 24 q^{18} + 12 q^{25} + 36 q^{30} + 12 q^{36} - 96 q^{39} + 24 q^{46} + 12 q^{51} - 24 q^{57} + 48 q^{58} + 12 q^{60} - 48 q^{64} - 48 q^{67} - 36 q^{72} - 24 q^{78} - 144 q^{79}+ \cdots - 24 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38541 + 0.283947i −0.979636 + 0.200781i
\(3\) 0.299892 + 1.70589i 0.173143 + 0.984897i
\(4\) 1.83875 0.786769i 0.919374 0.393385i
\(5\) −0.695526 + 0.401562i −0.311049 + 0.179584i −0.647396 0.762154i \(-0.724142\pi\)
0.336347 + 0.941738i \(0.390808\pi\)
\(6\) −0.899858 2.27821i −0.367365 0.930077i
\(7\) 0 0
\(8\) −2.32403 + 1.61211i −0.821668 + 0.569967i
\(9\) −2.82013 + 1.02317i −0.940043 + 0.341056i
\(10\) 0.849569 0.753822i 0.268657 0.238380i
\(11\) 1.17273 2.03122i 0.353590 0.612436i −0.633285 0.773918i \(-0.718294\pi\)
0.986876 + 0.161482i \(0.0516274\pi\)
\(12\) 1.89357 + 2.90076i 0.546626 + 0.837377i
\(13\) −5.26858 −1.46124 −0.730621 0.682784i \(-0.760769\pi\)
−0.730621 + 0.682784i \(0.760769\pi\)
\(14\) 0 0
\(15\) −0.893604 1.06607i −0.230727 0.275257i
\(16\) 2.76199 2.89334i 0.690497 0.723335i
\(17\) 1.02661 + 0.592715i 0.248990 + 0.143754i 0.619302 0.785153i \(-0.287416\pi\)
−0.370312 + 0.928908i \(0.620749\pi\)
\(18\) 3.61652 2.21828i 0.852423 0.522853i
\(19\) −6.16982 + 3.56215i −1.41545 + 0.817213i −0.995895 0.0905147i \(-0.971149\pi\)
−0.419560 + 0.907728i \(0.637815\pi\)
\(20\) −0.962960 + 1.28559i −0.215324 + 0.287467i
\(21\) 0 0
\(22\) −1.04795 + 3.14708i −0.223424 + 0.670959i
\(23\) −3.94356 6.83044i −0.822288 1.42425i −0.903974 0.427587i \(-0.859364\pi\)
0.0816860 0.996658i \(-0.473970\pi\)
\(24\) −3.44704 3.48108i −0.703624 0.710572i
\(25\) −2.17750 + 3.77153i −0.435499 + 0.754307i
\(26\) 7.29917 1.49600i 1.43148 0.293389i
\(27\) −2.59115 4.50399i −0.498666 0.866794i
\(28\) 0 0
\(29\) 4.23132i 0.785737i 0.919595 + 0.392868i \(0.128517\pi\)
−0.919595 + 0.392868i \(0.871483\pi\)
\(30\) 1.54072 + 1.22321i 0.281295 + 0.223326i
\(31\) 4.24264 + 2.44949i 0.762001 + 0.439941i 0.830014 0.557743i \(-0.188333\pi\)
−0.0680129 + 0.997684i \(0.521666\pi\)
\(32\) −3.00494 + 4.79274i −0.531204 + 0.847244i
\(33\) 3.81673 + 1.39140i 0.664408 + 0.242211i
\(34\) −1.59058 0.529652i −0.272783 0.0908346i
\(35\) 0 0
\(36\) −4.38051 + 4.10014i −0.730085 + 0.683356i
\(37\) −0.523976 0.907554i −0.0861412 0.149201i 0.819736 0.572742i \(-0.194120\pi\)
−0.905877 + 0.423541i \(0.860787\pi\)
\(38\) 7.53630 6.68696i 1.22255 1.08477i
\(39\) −1.58001 8.98762i −0.253003 1.43917i
\(40\) 0.969059 2.05450i 0.153222 0.324846i
\(41\) 7.16942i 1.11968i 0.828602 + 0.559838i \(0.189137\pi\)
−0.828602 + 0.559838i \(0.810863\pi\)
\(42\) 0 0
\(43\) 7.94315i 1.21132i −0.795724 0.605659i \(-0.792909\pi\)
0.795724 0.605659i \(-0.207091\pi\)
\(44\) 0.558245 4.65757i 0.0841587 0.702155i
\(45\) 1.55061 1.84410i 0.231151 0.274902i
\(46\) 7.40294 + 8.34323i 1.09150 + 1.23014i
\(47\) −3.04954 5.28195i −0.444821 0.770452i 0.553219 0.833036i \(-0.313399\pi\)
−0.998040 + 0.0625838i \(0.980066\pi\)
\(48\) 5.76402 + 3.84396i 0.831965 + 0.554828i
\(49\) 0 0
\(50\) 1.94582 5.84343i 0.275180 0.826386i
\(51\) −0.703234 + 1.92904i −0.0984725 + 0.270120i
\(52\) −9.68759 + 4.14516i −1.34343 + 0.574830i
\(53\) −7.55175 4.36001i −1.03731 0.598893i −0.118242 0.992985i \(-0.537726\pi\)
−0.919071 + 0.394092i \(0.871059\pi\)
\(54\) 4.86871 + 5.50415i 0.662547 + 0.749020i
\(55\) 1.88369i 0.253997i
\(56\) 0 0
\(57\) −7.92692 9.45679i −1.04995 1.25258i
\(58\) −1.20147 5.86214i −0.157761 0.769736i
\(59\) −0.331087 + 0.573459i −0.0431038 + 0.0746580i −0.886772 0.462206i \(-0.847058\pi\)
0.843669 + 0.536864i \(0.180391\pi\)
\(60\) −2.48186 1.25717i −0.320407 0.162300i
\(61\) 0.479062 + 0.829760i 0.0613376 + 0.106240i 0.895064 0.445939i \(-0.147130\pi\)
−0.833726 + 0.552178i \(0.813797\pi\)
\(62\) −6.57334 2.18887i −0.834815 0.277987i
\(63\) 0 0
\(64\) 2.80221 7.49317i 0.350276 0.936647i
\(65\) 3.66443 2.11566i 0.454517 0.262416i
\(66\) −5.68284 0.843910i −0.699510 0.103878i
\(67\) −7.29738 4.21314i −0.891517 0.514717i −0.0170783 0.999854i \(-0.505436\pi\)
−0.874438 + 0.485137i \(0.838770\pi\)
\(68\) 2.35401 + 0.282146i 0.285466 + 0.0342153i
\(69\) 10.4693 8.77567i 1.26036 1.05647i
\(70\) 0 0
\(71\) 9.67432 1.14813 0.574065 0.818810i \(-0.305366\pi\)
0.574065 + 0.818810i \(0.305366\pi\)
\(72\) 4.90460 6.92422i 0.578013 0.816028i
\(73\) −0.707107 + 1.22474i −0.0827606 + 0.143346i −0.904435 0.426612i \(-0.859707\pi\)
0.821674 + 0.569958i \(0.193040\pi\)
\(74\) 0.983622 + 1.10856i 0.114344 + 0.128867i
\(75\) −7.08684 2.58352i −0.818318 0.298319i
\(76\) −8.54216 + 11.4041i −0.979853 + 1.30814i
\(77\) 0 0
\(78\) 4.74097 + 12.0029i 0.536810 + 1.35907i
\(79\) −6.00000 + 3.46410i −0.675053 + 0.389742i −0.797988 0.602673i \(-0.794102\pi\)
0.122936 + 0.992415i \(0.460769\pi\)
\(80\) −0.759178 + 3.12150i −0.0848787 + 0.348995i
\(81\) 6.90626 5.77092i 0.767362 0.641214i
\(82\) −2.03574 9.93263i −0.224810 1.09688i
\(83\) 5.18229 0.568830 0.284415 0.958701i \(-0.408201\pi\)
0.284415 + 0.958701i \(0.408201\pi\)
\(84\) 0 0
\(85\) −0.952047 −0.103264
\(86\) 2.25543 + 11.0046i 0.243210 + 1.18665i
\(87\) −7.21818 + 1.26894i −0.773870 + 0.136045i
\(88\) 0.549103 + 6.61118i 0.0585345 + 0.704754i
\(89\) −14.1733 + 8.18296i −1.50237 + 0.867392i −0.502370 + 0.864653i \(0.667539\pi\)
−0.999996 + 0.00273917i \(0.999128\pi\)
\(90\) −1.62461 + 2.99513i −0.171249 + 0.315714i
\(91\) 0 0
\(92\) −12.6252 9.45679i −1.31627 0.985938i
\(93\) −2.90623 + 7.97207i −0.301362 + 0.826665i
\(94\) 5.72467 + 6.45179i 0.590455 + 0.665451i
\(95\) 2.86085 4.95513i 0.293517 0.508386i
\(96\) −9.07704 3.68880i −0.926422 0.376487i
\(97\) 4.37827 0.444546 0.222273 0.974984i \(-0.428652\pi\)
0.222273 + 0.974984i \(0.428652\pi\)
\(98\) 0 0
\(99\) −1.22896 + 6.92820i −0.123515 + 0.696311i
\(100\) −1.03654 + 8.64809i −0.103654 + 0.864809i
\(101\) −7.26887 4.19668i −0.723279 0.417586i 0.0926791 0.995696i \(-0.470457\pi\)
−0.815959 + 0.578110i \(0.803790\pi\)
\(102\) 0.426526 2.87220i 0.0422323 0.284390i
\(103\) 2.22304 1.28347i 0.219043 0.126465i −0.386464 0.922304i \(-0.626304\pi\)
0.605507 + 0.795840i \(0.292970\pi\)
\(104\) 12.2443 8.49353i 1.20065 0.832859i
\(105\) 0 0
\(106\) 11.7003 + 3.89612i 1.13644 + 0.378424i
\(107\) 3.04995 + 5.28267i 0.294850 + 0.510695i 0.974950 0.222424i \(-0.0713970\pi\)
−0.680100 + 0.733119i \(0.738064\pi\)
\(108\) −8.30807 6.24308i −0.799444 0.600740i
\(109\) −2.72545 + 4.72062i −0.261051 + 0.452153i −0.966521 0.256586i \(-0.917402\pi\)
0.705471 + 0.708739i \(0.250736\pi\)
\(110\) −0.534868 2.60969i −0.0509977 0.248824i
\(111\) 1.39105 1.16601i 0.132033 0.110673i
\(112\) 0 0
\(113\) 7.09803i 0.667726i 0.942622 + 0.333863i \(0.108352\pi\)
−0.942622 + 0.333863i \(0.891648\pi\)
\(114\) 13.6673 + 10.8507i 1.28006 + 1.01627i
\(115\) 5.48569 + 3.16716i 0.511543 + 0.295340i
\(116\) 3.32907 + 7.78034i 0.309097 + 0.722386i
\(117\) 14.8581 5.39064i 1.37363 0.498364i
\(118\) 0.295860 0.888490i 0.0272361 0.0817921i
\(119\) 0 0
\(120\) 3.79537 + 1.03698i 0.346469 + 0.0946629i
\(121\) 2.74943 + 4.76214i 0.249948 + 0.432922i
\(122\) −0.899307 1.01353i −0.0814195 0.0917610i
\(123\) −12.2303 + 2.15005i −1.10277 + 0.193864i
\(124\) 9.72833 + 1.16601i 0.873630 + 0.104711i
\(125\) 7.51322i 0.672003i
\(126\) 0 0
\(127\) 4.16202i 0.369320i 0.982802 + 0.184660i \(0.0591184\pi\)
−0.982802 + 0.184660i \(0.940882\pi\)
\(128\) −1.75456 + 11.1768i −0.155082 + 0.987902i
\(129\) 13.5501 2.38209i 1.19302 0.209731i
\(130\) −4.47602 + 3.97157i −0.392573 + 0.348330i
\(131\) 5.24594 + 9.08624i 0.458340 + 0.793869i 0.998873 0.0474541i \(-0.0151108\pi\)
−0.540533 + 0.841323i \(0.681777\pi\)
\(132\) 8.11272 0.444463i 0.706122 0.0386855i
\(133\) 0 0
\(134\) 11.3062 + 3.76488i 0.976707 + 0.325236i
\(135\) 3.61084 + 2.09214i 0.310772 + 0.180063i
\(136\) −3.34140 + 0.277525i −0.286522 + 0.0237976i
\(137\) 11.6844 + 6.74600i 0.998267 + 0.576350i 0.907735 0.419544i \(-0.137810\pi\)
0.0905318 + 0.995894i \(0.471143\pi\)
\(138\) −12.0126 + 15.1307i −1.02258 + 1.28801i
\(139\) 7.57264i 0.642303i 0.947028 + 0.321151i \(0.104070\pi\)
−0.947028 + 0.321151i \(0.895930\pi\)
\(140\) 0 0
\(141\) 8.09591 6.78619i 0.681798 0.571501i
\(142\) −13.4029 + 2.74700i −1.12475 + 0.230523i
\(143\) −6.17860 + 10.7017i −0.516681 + 0.894917i
\(144\) −4.82879 + 10.9856i −0.402400 + 0.915464i
\(145\) −1.69914 2.94299i −0.141106 0.244402i
\(146\) 0.631873 1.89756i 0.0522942 0.157043i
\(147\) 0 0
\(148\) −1.67750 1.25651i −0.137889 0.103285i
\(149\) 13.9442 8.05067i 1.14235 0.659536i 0.195339 0.980736i \(-0.437419\pi\)
0.947012 + 0.321199i \(0.104086\pi\)
\(150\) 10.5518 + 1.56696i 0.861550 + 0.127941i
\(151\) 15.0553 + 8.69219i 1.22518 + 0.707360i 0.966019 0.258473i \(-0.0832192\pi\)
0.259166 + 0.965833i \(0.416552\pi\)
\(152\) 8.59627 18.2250i 0.697249 1.47824i
\(153\) −3.50163 0.621137i −0.283090 0.0502160i
\(154\) 0 0
\(155\) −3.93449 −0.316026
\(156\) −9.97642 15.2829i −0.798753 1.22361i
\(157\) −1.96109 + 3.39671i −0.156512 + 0.271087i −0.933609 0.358295i \(-0.883358\pi\)
0.777096 + 0.629381i \(0.216692\pi\)
\(158\) 7.32887 6.50290i 0.583053 0.517343i
\(159\) 5.17299 14.1900i 0.410244 1.12534i
\(160\) 0.165435 4.54014i 0.0130788 0.358930i
\(161\) 0 0
\(162\) −7.92940 + 9.95614i −0.622992 + 0.782228i
\(163\) −6.32987 + 3.65455i −0.495793 + 0.286246i −0.726975 0.686664i \(-0.759074\pi\)
0.231181 + 0.972911i \(0.425741\pi\)
\(164\) 5.64068 + 13.1828i 0.440463 + 1.02940i
\(165\) −3.21337 + 0.564904i −0.250160 + 0.0439777i
\(166\) −7.17962 + 1.47150i −0.557247 + 0.114210i
\(167\) 8.37196 0.647842 0.323921 0.946084i \(-0.394999\pi\)
0.323921 + 0.946084i \(0.394999\pi\)
\(168\) 0 0
\(169\) 14.7579 1.13523
\(170\) 1.31898 0.270331i 0.101161 0.0207335i
\(171\) 13.7550 16.3585i 1.05187 1.25096i
\(172\) −6.24943 14.6054i −0.476514 1.11365i
\(173\) −11.0601 + 6.38556i −0.840884 + 0.485485i −0.857565 0.514376i \(-0.828024\pi\)
0.0166803 + 0.999861i \(0.494690\pi\)
\(174\) 9.63986 3.80759i 0.730796 0.288653i
\(175\) 0 0
\(176\) −2.63796 9.00331i −0.198844 0.678650i
\(177\) −1.07755 0.392822i −0.0809935 0.0295263i
\(178\) 17.3124 15.3613i 1.29762 1.15137i
\(179\) −10.5589 + 18.2885i −0.789206 + 1.36694i 0.137248 + 0.990537i \(0.456174\pi\)
−0.926454 + 0.376408i \(0.877159\pi\)
\(180\) 1.40030 4.61080i 0.104372 0.343669i
\(181\) −12.4075 −0.922239 −0.461120 0.887338i \(-0.652552\pi\)
−0.461120 + 0.887338i \(0.652552\pi\)
\(182\) 0 0
\(183\) −1.27181 + 1.06607i −0.0940151 + 0.0788059i
\(184\) 20.1763 + 9.51669i 1.48742 + 0.701579i
\(185\) 0.728878 + 0.420818i 0.0535882 + 0.0309392i
\(186\) 1.76269 11.8698i 0.129246 0.870338i
\(187\) 2.40787 1.39019i 0.176081 0.101660i
\(188\) −9.76301 7.31290i −0.712041 0.533348i
\(189\) 0 0
\(190\) −2.55646 + 7.67724i −0.185465 + 0.556966i
\(191\) 3.04995 + 5.28267i 0.220687 + 0.382241i 0.955017 0.296552i \(-0.0958368\pi\)
−0.734330 + 0.678793i \(0.762503\pi\)
\(192\) 13.6229 + 2.53312i 0.983148 + 0.182812i
\(193\) −0.322504 + 0.558593i −0.0232144 + 0.0402084i −0.877399 0.479761i \(-0.840723\pi\)
0.854185 + 0.519969i \(0.174057\pi\)
\(194\) −6.06572 + 1.24320i −0.435493 + 0.0892564i
\(195\) 4.70802 + 5.61665i 0.337149 + 0.402217i
\(196\) 0 0
\(197\) 14.9111i 1.06237i 0.847256 + 0.531185i \(0.178253\pi\)
−0.847256 + 0.531185i \(0.821747\pi\)
\(198\) −0.264622 9.94740i −0.0188059 0.706931i
\(199\) −16.1940 9.34962i −1.14796 0.662777i −0.199573 0.979883i \(-0.563956\pi\)
−0.948390 + 0.317106i \(0.897289\pi\)
\(200\) −1.01956 12.2755i −0.0720940 0.868010i
\(201\) 4.99874 13.7120i 0.352584 0.967171i
\(202\) 11.2620 + 3.75017i 0.792394 + 0.263861i
\(203\) 0 0
\(204\) 0.224639 + 4.10030i 0.0157278 + 0.287078i
\(205\) −2.87897 4.98652i −0.201076 0.348274i
\(206\) −2.71540 + 2.40937i −0.189191 + 0.167869i
\(207\) 18.1100 + 15.2278i 1.25873 + 1.05841i
\(208\) −14.5518 + 15.2438i −1.00898 + 1.05697i
\(209\) 16.7097i 1.15583i
\(210\) 0 0
\(211\) 11.7243i 0.807132i 0.914950 + 0.403566i \(0.132229\pi\)
−0.914950 + 0.403566i \(0.867771\pi\)
\(212\) −17.3161 2.07547i −1.18927 0.142544i
\(213\) 2.90125 + 16.5033i 0.198791 + 1.13079i
\(214\) −5.72545 6.45267i −0.391384 0.441095i
\(215\) 3.18967 + 5.52466i 0.217533 + 0.376779i
\(216\) 13.2828 + 6.29020i 0.903782 + 0.427994i
\(217\) 0 0
\(218\) 2.43547 7.31389i 0.164951 0.495359i
\(219\) −2.30134 0.838956i −0.155510 0.0566914i
\(220\) 1.48203 + 3.46363i 0.0999184 + 0.233518i
\(221\) −5.40879 3.12277i −0.363835 0.210060i
\(222\) −1.59610 + 2.01040i −0.107123 + 0.134929i
\(223\) 0.683260i 0.0457545i 0.999738 + 0.0228772i \(0.00728269\pi\)
−0.999738 + 0.0228772i \(0.992717\pi\)
\(224\) 0 0
\(225\) 2.28191 12.8642i 0.152128 0.857610i
\(226\) −2.01546 9.83371i −0.134067 0.654129i
\(227\) 4.37694 7.58108i 0.290507 0.503174i −0.683422 0.730023i \(-0.739509\pi\)
0.973930 + 0.226850i \(0.0728426\pi\)
\(228\) −22.0159 11.1520i −1.45804 0.738559i
\(229\) −9.24927 16.0202i −0.611209 1.05864i −0.991037 0.133588i \(-0.957350\pi\)
0.379828 0.925057i \(-0.375983\pi\)
\(230\) −8.49926 2.83019i −0.560425 0.186617i
\(231\) 0 0
\(232\) −6.82135 9.83371i −0.447844 0.645615i
\(233\) −8.78072 + 5.06955i −0.575244 + 0.332117i −0.759241 0.650810i \(-0.774430\pi\)
0.183997 + 0.982927i \(0.441096\pi\)
\(234\) −19.0539 + 11.6872i −1.24560 + 0.764015i
\(235\) 4.24206 + 2.44916i 0.276722 + 0.159765i
\(236\) −0.157605 + 1.31494i −0.0102592 + 0.0855950i
\(237\) −7.70873 9.19649i −0.500736 0.597376i
\(238\) 0 0
\(239\) −1.49470 −0.0966841 −0.0483421 0.998831i \(-0.515394\pi\)
−0.0483421 + 0.998831i \(0.515394\pi\)
\(240\) −5.55262 0.358961i −0.358420 0.0231709i
\(241\) −5.16686 + 8.94926i −0.332827 + 0.576472i −0.983065 0.183258i \(-0.941336\pi\)
0.650238 + 0.759730i \(0.274669\pi\)
\(242\) −5.16129 5.81685i −0.331780 0.373921i
\(243\) 11.9157 + 10.0507i 0.764393 + 0.644751i
\(244\) 1.53370 + 1.14881i 0.0981853 + 0.0735449i
\(245\) 0 0
\(246\) 16.3335 6.45146i 1.04138 0.411330i
\(247\) 32.5062 18.7675i 2.06832 1.19415i
\(248\) −13.8089 + 1.14692i −0.876863 + 0.0728294i
\(249\) 1.55413 + 8.84042i 0.0984889 + 0.560239i
\(250\) 2.13336 + 10.4089i 0.134925 + 0.658318i
\(251\) −26.9555 −1.70142 −0.850709 0.525636i \(-0.823827\pi\)
−0.850709 + 0.525636i \(0.823827\pi\)
\(252\) 0 0
\(253\) −18.4989 −1.16301
\(254\) −1.18179 5.76613i −0.0741524 0.361799i
\(255\) −0.285511 1.62409i −0.0178794 0.101704i
\(256\) −0.742842 15.9827i −0.0464276 0.998922i
\(257\) 2.41766 1.39584i 0.150810 0.0870700i −0.422696 0.906271i \(-0.638916\pi\)
0.573506 + 0.819201i \(0.305583\pi\)
\(258\) −18.0962 + 7.14771i −1.12662 + 0.444997i
\(259\) 0 0
\(260\) 5.07343 6.77323i 0.314641 0.420058i
\(261\) −4.32935 11.9329i −0.267980 0.738627i
\(262\) −9.84782 11.0986i −0.608400 0.685676i
\(263\) 7.65516 13.2591i 0.472037 0.817592i −0.527451 0.849586i \(-0.676852\pi\)
0.999488 + 0.0319931i \(0.0101855\pi\)
\(264\) −11.1133 + 2.91935i −0.683975 + 0.179674i
\(265\) 7.00325 0.430206
\(266\) 0 0
\(267\) −18.2097 21.7241i −1.11442 1.32949i
\(268\) −16.7328 2.00556i −1.02212 0.122509i
\(269\) −26.5752 15.3432i −1.62032 0.935492i −0.986834 0.161739i \(-0.948290\pi\)
−0.633487 0.773754i \(-0.718377\pi\)
\(270\) −5.59657 1.87319i −0.340596 0.113999i
\(271\) 17.0488 9.84312i 1.03564 0.597927i 0.117045 0.993127i \(-0.462658\pi\)
0.918595 + 0.395199i \(0.129325\pi\)
\(272\) 4.55042 1.33327i 0.275910 0.0808412i
\(273\) 0 0
\(274\) −18.1033 6.02825i −1.09366 0.364180i
\(275\) 5.10721 + 8.84595i 0.307977 + 0.533431i
\(276\) 12.3461 24.3732i 0.743145 1.46709i
\(277\) 6.55646 11.3561i 0.393940 0.682324i −0.599025 0.800730i \(-0.704445\pi\)
0.992965 + 0.118406i \(0.0377785\pi\)
\(278\) −2.15023 10.4912i −0.128962 0.629223i
\(279\) −14.4710 2.56695i −0.866358 0.153679i
\(280\) 0 0
\(281\) 2.86670i 0.171013i 0.996338 + 0.0855066i \(0.0272509\pi\)
−0.996338 + 0.0855066i \(0.972749\pi\)
\(282\) −9.28927 + 11.7005i −0.553168 + 0.696755i
\(283\) −1.72374 0.995200i −0.102466 0.0591585i 0.447892 0.894088i \(-0.352175\pi\)
−0.550357 + 0.834929i \(0.685508\pi\)
\(284\) 17.7886 7.61146i 1.05556 0.451657i
\(285\) 9.31086 + 3.39429i 0.551528 + 0.201060i
\(286\) 5.52122 16.5806i 0.326477 0.980433i
\(287\) 0 0
\(288\) 3.57056 16.5907i 0.210397 0.977616i
\(289\) −7.79738 13.5055i −0.458669 0.794439i
\(290\) 3.18967 + 3.59480i 0.187304 + 0.211094i
\(291\) 1.31301 + 7.46886i 0.0769700 + 0.437832i
\(292\) −0.336600 + 2.80833i −0.0196980 + 0.164345i
\(293\) 16.7482i 0.978441i 0.872160 + 0.489221i \(0.162719\pi\)
−0.872160 + 0.489221i \(0.837281\pi\)
\(294\) 0 0
\(295\) 0.531807i 0.0309630i
\(296\) 2.68081 + 1.26447i 0.155819 + 0.0734960i
\(297\) −12.1873 0.0187619i −0.707180 0.00108867i
\(298\) −17.0325 + 15.1129i −0.986666 + 0.875468i
\(299\) 20.7769 + 35.9867i 1.20156 + 2.08117i
\(300\) −15.0635 + 0.825270i −0.869694 + 0.0476470i
\(301\) 0 0
\(302\) −23.3260 7.76737i −1.34226 0.446962i
\(303\) 4.97921 13.6585i 0.286048 0.784657i
\(304\) −6.73447 + 27.6900i −0.386248 + 1.58813i
\(305\) −0.666400 0.384746i −0.0381579 0.0220305i
\(306\) 5.02757 0.133744i 0.287407 0.00764565i
\(307\) 15.4869i 0.883885i −0.897043 0.441942i \(-0.854290\pi\)
0.897043 0.441942i \(-0.145710\pi\)
\(308\) 0 0
\(309\) 2.85614 + 3.40737i 0.162480 + 0.193838i
\(310\) 5.45090 1.11719i 0.309590 0.0634519i
\(311\) 5.44973 9.43920i 0.309026 0.535248i −0.669124 0.743151i \(-0.733330\pi\)
0.978149 + 0.207903i \(0.0666638\pi\)
\(312\) 18.1610 + 18.3403i 1.02816 + 1.03832i
\(313\) 16.9011 + 29.2736i 0.955308 + 1.65464i 0.733662 + 0.679514i \(0.237810\pi\)
0.221646 + 0.975127i \(0.428857\pi\)
\(314\) 1.75244 5.26270i 0.0988958 0.296991i
\(315\) 0 0
\(316\) −8.30704 + 11.0902i −0.467307 + 0.623874i
\(317\) −8.04243 + 4.64330i −0.451708 + 0.260794i −0.708551 0.705659i \(-0.750651\pi\)
0.256843 + 0.966453i \(0.417318\pi\)
\(318\) −3.13752 + 21.1279i −0.175943 + 1.18479i
\(319\) 8.59476 + 4.96218i 0.481214 + 0.277829i
\(320\) 1.05996 + 6.33695i 0.0592538 + 0.354247i
\(321\) −8.09701 + 6.78712i −0.451931 + 0.378820i
\(322\) 0 0
\(323\) −8.44536 −0.469912
\(324\) 8.15849 16.0449i 0.453249 0.891384i
\(325\) 11.4723 19.8706i 0.636369 1.10222i
\(326\) 7.73179 6.86041i 0.428224 0.379963i
\(327\) −8.87020 3.23364i −0.490523 0.178821i
\(328\) −11.5579 16.6619i −0.638178 0.920002i
\(329\) 0 0
\(330\) 4.29145 1.69505i 0.236236 0.0933096i
\(331\) 0.878968 0.507473i 0.0483125 0.0278932i −0.475649 0.879635i \(-0.657787\pi\)
0.523962 + 0.851742i \(0.324453\pi\)
\(332\) 9.52893 4.07727i 0.522968 0.223769i
\(333\) 2.40626 + 2.02330i 0.131862 + 0.110876i
\(334\) −11.5986 + 2.37719i −0.634649 + 0.130074i
\(335\) 6.76735 0.369740
\(336\) 0 0
\(337\) −12.6597 −0.689620 −0.344810 0.938673i \(-0.612057\pi\)
−0.344810 + 0.938673i \(0.612057\pi\)
\(338\) −20.4459 + 4.19047i −1.11211 + 0.227932i
\(339\) −12.1085 + 2.12864i −0.657641 + 0.115612i
\(340\) −1.75057 + 0.749041i −0.0949383 + 0.0406225i
\(341\) 9.95091 5.74516i 0.538872 0.311118i
\(342\) −14.4115 + 26.5690i −0.779283 + 1.43669i
\(343\) 0 0
\(344\) 12.8052 + 18.4601i 0.690411 + 0.995302i
\(345\) −3.75772 + 10.3078i −0.202309 + 0.554953i
\(346\) 13.5097 11.9871i 0.726285 0.644432i
\(347\) −12.8143 + 22.1950i −0.687907 + 1.19149i 0.284607 + 0.958644i \(0.408137\pi\)
−0.972514 + 0.232846i \(0.925196\pi\)
\(348\) −12.2740 + 8.01230i −0.657958 + 0.429504i
\(349\) 28.1235 1.50542 0.752709 0.658354i \(-0.228747\pi\)
0.752709 + 0.658354i \(0.228747\pi\)
\(350\) 0 0
\(351\) 13.6517 + 23.7297i 0.728672 + 1.26660i
\(352\) 6.21113 + 11.7243i 0.331055 + 0.624906i
\(353\) 8.92430 + 5.15245i 0.474993 + 0.274237i 0.718327 0.695705i \(-0.244908\pi\)
−0.243335 + 0.969942i \(0.578241\pi\)
\(354\) 1.60439 + 0.238254i 0.0852725 + 0.0126631i
\(355\) −6.72874 + 3.88484i −0.357124 + 0.206186i
\(356\) −19.6230 + 26.1975i −1.04002 + 1.38847i
\(357\) 0 0
\(358\) 9.43543 28.3353i 0.498678 1.49757i
\(359\) −13.4197 23.2436i −0.708265 1.22675i −0.965500 0.260402i \(-0.916145\pi\)
0.257235 0.966349i \(-0.417188\pi\)
\(360\) −0.630772 + 6.78548i −0.0332446 + 0.357626i
\(361\) 15.8778 27.5012i 0.835675 1.44743i
\(362\) 17.1895 3.52306i 0.903459 0.185168i
\(363\) −7.29917 + 6.11835i −0.383107 + 0.321130i
\(364\) 0 0
\(365\) 1.13579i 0.0594499i
\(366\) 1.45928 1.83807i 0.0762779 0.0960775i
\(367\) −11.5631 6.67596i −0.603589 0.348482i 0.166863 0.985980i \(-0.446636\pi\)
−0.770452 + 0.637498i \(0.779969\pi\)
\(368\) −30.6548 7.45554i −1.59799 0.388647i
\(369\) −7.33552 20.2187i −0.381872 1.05254i
\(370\) −1.12929 0.376045i −0.0587089 0.0195496i
\(371\) 0 0
\(372\) 0.928355 + 16.9452i 0.0481330 + 0.878565i
\(373\) 11.4029 + 19.7505i 0.590422 + 1.02264i 0.994176 + 0.107773i \(0.0343720\pi\)
−0.403753 + 0.914868i \(0.632295\pi\)
\(374\) −2.94116 + 2.60969i −0.152084 + 0.134944i
\(375\) 12.8167 2.25315i 0.661853 0.116352i
\(376\) 15.6023 + 7.35922i 0.804627 + 0.379523i
\(377\) 22.2931i 1.14815i
\(378\) 0 0
\(379\) 1.98122i 0.101768i −0.998705 0.0508842i \(-0.983796\pi\)
0.998705 0.0508842i \(-0.0162040\pi\)
\(380\) 1.36183 11.3621i 0.0698605 0.582862i
\(381\) −7.09996 + 1.24816i −0.363742 + 0.0639451i
\(382\) −5.72545 6.45267i −0.292939 0.330147i
\(383\) −14.4104 24.9596i −0.736339 1.27538i −0.954134 0.299381i \(-0.903220\pi\)
0.217795 0.975995i \(-0.430114\pi\)
\(384\) −19.5926 + 0.358762i −0.999832 + 0.0183080i
\(385\) 0 0
\(386\) 0.288191 0.865458i 0.0146685 0.0440506i
\(387\) 8.12716 + 22.4007i 0.413127 + 1.13869i
\(388\) 8.05054 3.44469i 0.408704 0.174878i
\(389\) 1.69719 + 0.979873i 0.0860509 + 0.0496815i 0.542408 0.840115i \(-0.317513\pi\)
−0.456357 + 0.889797i \(0.650846\pi\)
\(390\) −8.11740 6.44457i −0.411040 0.326333i
\(391\) 9.34962i 0.472831i
\(392\) 0 0
\(393\) −13.9269 + 11.6739i −0.702520 + 0.588870i
\(394\) −4.23396 20.6580i −0.213304 1.04074i
\(395\) 2.78210 4.81874i 0.139983 0.242457i
\(396\) 3.19115 + 13.7061i 0.160361 + 0.688759i
\(397\) −2.28155 3.95176i −0.114508 0.198333i 0.803075 0.595878i \(-0.203196\pi\)
−0.917583 + 0.397545i \(0.869862\pi\)
\(398\) 25.0902 + 8.35485i 1.25766 + 0.418791i
\(399\) 0 0
\(400\) 4.89811 + 16.7172i 0.244906 + 0.835858i
\(401\) 23.1931 13.3905i 1.15821 0.668692i 0.207335 0.978270i \(-0.433521\pi\)
0.950874 + 0.309578i \(0.100188\pi\)
\(402\) −3.03183 + 20.4162i −0.151214 + 1.01827i
\(403\) −22.3527 12.9053i −1.11347 0.642860i
\(404\) −16.6674 1.99772i −0.829236 0.0993903i
\(405\) −2.48610 + 6.78712i −0.123535 + 0.337255i
\(406\) 0 0
\(407\) −2.45792 −0.121835
\(408\) −1.47549 5.61683i −0.0730475 0.278075i
\(409\) 9.02122 15.6252i 0.446071 0.772617i −0.552055 0.833807i \(-0.686156\pi\)
0.998126 + 0.0611902i \(0.0194896\pi\)
\(410\) 5.40447 + 6.09092i 0.266908 + 0.300809i
\(411\) −8.00388 + 21.9554i −0.394802 + 1.08298i
\(412\) 3.07782 4.10901i 0.151633 0.202436i
\(413\) 0 0
\(414\) −29.4138 15.9545i −1.44561 0.784123i
\(415\) −3.60442 + 2.08101i −0.176934 + 0.102153i
\(416\) 15.8318 25.2509i 0.776217 1.23803i
\(417\) −12.9181 + 2.27097i −0.632602 + 0.111210i
\(418\) −4.74468 23.1499i −0.232070 1.13230i
\(419\) 17.5395 0.856861 0.428430 0.903575i \(-0.359067\pi\)
0.428430 + 0.903575i \(0.359067\pi\)
\(420\) 0 0
\(421\) 15.4006 0.750582 0.375291 0.926907i \(-0.377543\pi\)
0.375291 + 0.926907i \(0.377543\pi\)
\(422\) −3.32907 16.2430i −0.162057 0.790696i
\(423\) 14.0044 + 11.7756i 0.680918 + 0.572550i
\(424\) 24.5793 2.04147i 1.19368 0.0991428i
\(425\) −4.47089 + 2.58127i −0.216870 + 0.125210i
\(426\) −8.70551 22.0402i −0.421784 1.06785i
\(427\) 0 0
\(428\) 9.76434 + 7.31389i 0.471977 + 0.353530i
\(429\) −20.1088 7.33068i −0.970861 0.353929i
\(430\) −5.98772 6.74825i −0.288754 0.325430i
\(431\) 4.50180 7.79735i 0.216844 0.375585i −0.736997 0.675896i \(-0.763757\pi\)
0.953841 + 0.300311i \(0.0970903\pi\)
\(432\) −20.1883 4.94291i −0.971310 0.237816i
\(433\) 6.15889 0.295977 0.147989 0.988989i \(-0.452720\pi\)
0.147989 + 0.988989i \(0.452720\pi\)
\(434\) 0 0
\(435\) 4.51087 3.78113i 0.216280 0.181291i
\(436\) −1.29738 + 10.8243i −0.0621331 + 0.518391i
\(437\) 48.6621 + 28.0951i 2.32782 + 1.34397i
\(438\) 3.42653 + 0.508844i 0.163726 + 0.0243135i
\(439\) 25.3306 14.6246i 1.20896 0.697996i 0.246432 0.969160i \(-0.420742\pi\)
0.962533 + 0.271164i \(0.0874086\pi\)
\(440\) −3.03671 4.37775i −0.144770 0.208701i
\(441\) 0 0
\(442\) 8.38012 + 2.79052i 0.398602 + 0.132731i
\(443\) −3.60820 6.24958i −0.171431 0.296927i 0.767490 0.641061i \(-0.221506\pi\)
−0.938920 + 0.344135i \(0.888172\pi\)
\(444\) 1.64041 3.23844i 0.0778503 0.153690i
\(445\) 6.57193 11.3829i 0.311539 0.539602i
\(446\) −0.194010 0.946599i −0.00918663 0.0448227i
\(447\) 17.9153 + 21.3729i 0.847365 + 1.01090i
\(448\) 0 0
\(449\) 4.43423i 0.209264i 0.994511 + 0.104632i \(0.0333665\pi\)
−0.994511 + 0.104632i \(0.966634\pi\)
\(450\) 0.491345 + 18.4701i 0.0231622 + 0.870690i
\(451\) 14.5627 + 8.40777i 0.685730 + 0.395907i
\(452\) 5.58451 + 13.0515i 0.262673 + 0.613890i
\(453\) −10.3130 + 28.2894i −0.484545 + 1.32915i
\(454\) −3.91125 + 11.7458i −0.183564 + 0.551256i
\(455\) 0 0
\(456\) 33.6678 + 9.19877i 1.57664 + 0.430772i
\(457\) −6.83102 11.8317i −0.319541 0.553462i 0.660851 0.750517i \(-0.270196\pi\)
−0.980392 + 0.197055i \(0.936862\pi\)
\(458\) 17.3630 + 19.5683i 0.811318 + 0.914368i
\(459\) 0.00948255 6.15967i 0.000442608 0.287509i
\(460\) 12.5786 + 1.50764i 0.586482 + 0.0702943i
\(461\) 5.25789i 0.244885i −0.992476 0.122442i \(-0.960927\pi\)
0.992476 0.122442i \(-0.0390726\pi\)
\(462\) 0 0
\(463\) 15.8863i 0.738299i 0.929370 + 0.369149i \(0.120351\pi\)
−0.929370 + 0.369149i \(0.879649\pi\)
\(464\) 12.2427 + 11.6869i 0.568351 + 0.542549i
\(465\) −1.17992 6.71181i −0.0547176 0.311253i
\(466\) 10.7254 9.51669i 0.496847 0.440852i
\(467\) −13.5384 23.4491i −0.626481 1.08510i −0.988252 0.152830i \(-0.951161\pi\)
0.361771 0.932267i \(-0.382172\pi\)
\(468\) 23.0791 21.6019i 1.06683 0.998548i
\(469\) 0 0
\(470\) −6.57245 2.18858i −0.303164 0.100951i
\(471\) −6.38253 2.32676i −0.294092 0.107212i
\(472\) −0.155024 1.86648i −0.00713555 0.0859118i
\(473\) −16.1343 9.31514i −0.741856 0.428311i
\(474\) 13.2911 + 10.5521i 0.610481 + 0.484673i
\(475\) 31.0263i 1.42358i
\(476\) 0 0
\(477\) 25.7579 + 4.56908i 1.17937 + 0.209204i
\(478\) 2.07078 0.424416i 0.0947152 0.0194123i
\(479\) −7.63026 + 13.2160i −0.348635 + 0.603854i −0.986007 0.166702i \(-0.946688\pi\)
0.637372 + 0.770556i \(0.280021\pi\)
\(480\) 7.79460 1.07934i 0.355773 0.0492649i
\(481\) 2.76061 + 4.78152i 0.125873 + 0.218019i
\(482\) 4.61712 13.8655i 0.210304 0.631558i
\(483\) 0 0
\(484\) 8.80221 + 6.59322i 0.400100 + 0.299692i
\(485\) −3.04520 + 1.75815i −0.138275 + 0.0798334i
\(486\) −19.3621 10.5409i −0.878280 0.478146i
\(487\) −5.25172 3.03208i −0.237978 0.137397i 0.376269 0.926511i \(-0.377207\pi\)
−0.614247 + 0.789114i \(0.710540\pi\)
\(488\) −2.45102 1.15608i −0.110952 0.0523335i
\(489\) −8.13254 9.70209i −0.367766 0.438744i
\(490\) 0 0
\(491\) 4.03833 0.182247 0.0911235 0.995840i \(-0.470954\pi\)
0.0911235 + 0.995840i \(0.470954\pi\)
\(492\) −20.7968 + 13.5758i −0.937591 + 0.612044i
\(493\) −2.50797 + 4.34393i −0.112953 + 0.195641i
\(494\) −39.7056 + 35.2308i −1.78644 + 1.58511i
\(495\) −1.92733 5.31225i −0.0866270 0.238768i
\(496\) 18.8053 5.50994i 0.844384 0.247404i
\(497\) 0 0
\(498\) −4.66333 11.8064i −0.208969 0.529056i
\(499\) −33.3430 + 19.2506i −1.49264 + 0.861776i −0.999964 0.00843800i \(-0.997314\pi\)
−0.492675 + 0.870214i \(0.663981\pi\)
\(500\) −5.91117 13.8149i −0.264356 0.617822i
\(501\) 2.51068 + 14.2816i 0.112169 + 0.638057i
\(502\) 37.3446 7.65395i 1.66677 0.341613i
\(503\) −14.3498 −0.639827 −0.319914 0.947447i \(-0.603654\pi\)
−0.319914 + 0.947447i \(0.603654\pi\)
\(504\) 0 0
\(505\) 6.74091 0.299967
\(506\) 25.6286 5.25270i 1.13933 0.233511i
\(507\) 4.42579 + 25.1754i 0.196556 + 1.11808i
\(508\) 3.27455 + 7.65291i 0.145285 + 0.339543i
\(509\) 10.4646 6.04176i 0.463837 0.267796i −0.249819 0.968292i \(-0.580371\pi\)
0.713656 + 0.700496i \(0.247038\pi\)
\(510\) 0.856707 + 2.16897i 0.0379356 + 0.0960435i
\(511\) 0 0
\(512\) 5.56740 + 21.9318i 0.246047 + 0.969258i
\(513\) 32.0308 + 18.5588i 1.41419 + 0.819391i
\(514\) −2.95312 + 2.62030i −0.130257 + 0.115577i
\(515\) −1.03079 + 1.78538i −0.0454220 + 0.0786732i
\(516\) 23.0412 15.0409i 1.01433 0.662139i
\(517\) −14.3051 −0.629137
\(518\) 0 0
\(519\) −14.2099 16.9524i −0.623746 0.744126i
\(520\) −5.10557 + 10.8243i −0.223894 + 0.474678i
\(521\) −27.6002 15.9350i −1.20919 0.698125i −0.246606 0.969116i \(-0.579316\pi\)
−0.962582 + 0.270990i \(0.912649\pi\)
\(522\) 9.38625 + 15.3027i 0.410825 + 0.669780i
\(523\) −31.7039 + 18.3043i −1.38631 + 0.800389i −0.992898 0.118971i \(-0.962040\pi\)
−0.393417 + 0.919360i \(0.628707\pi\)
\(524\) 16.7947 + 12.5800i 0.733682 + 0.549558i
\(525\) 0 0
\(526\) −6.84068 + 20.5430i −0.298268 + 0.895719i
\(527\) 2.90370 + 5.02935i 0.126487 + 0.219082i
\(528\) 14.5676 7.20009i 0.633972 0.313344i
\(529\) −19.6033 + 33.9539i −0.852316 + 1.47625i
\(530\) −9.70241 + 1.98855i −0.421446 + 0.0863773i
\(531\) 0.346963 1.95599i 0.0150569 0.0848825i
\(532\) 0 0
\(533\) 37.7727i 1.63612i
\(534\) 31.3965 + 24.9263i 1.35866 + 1.07867i
\(535\) −4.24264 2.44949i −0.183425 0.105901i
\(536\) 23.7514 1.97271i 1.02590 0.0852080i
\(537\) −34.3647 12.5277i −1.48294 0.540610i
\(538\) 41.1744 + 13.7108i 1.77515 + 0.591113i
\(539\) 0 0
\(540\) 8.28546 + 1.00602i 0.356549 + 0.0432921i
\(541\) 18.1033 + 31.3558i 0.778320 + 1.34809i 0.932909 + 0.360111i \(0.117261\pi\)
−0.154589 + 0.987979i \(0.549405\pi\)
\(542\) −20.8247 + 18.4778i −0.894498 + 0.793688i
\(543\) −3.72090 21.1658i −0.159679 0.908311i
\(544\) −5.92564 + 3.13921i −0.254060 + 0.134592i
\(545\) 4.37775i 0.187522i
\(546\) 0 0
\(547\) 31.3917i 1.34221i −0.741361 0.671106i \(-0.765820\pi\)
0.741361 0.671106i \(-0.234180\pi\)
\(548\) 26.7922 + 3.21126i 1.14451 + 0.137178i
\(549\) −2.20000 1.84987i −0.0938937 0.0789505i
\(550\) −9.58739 10.8051i −0.408808 0.460733i
\(551\) −15.0726 26.1065i −0.642115 1.11218i
\(552\) −10.1837 + 37.2726i −0.433447 + 1.58643i
\(553\) 0 0
\(554\) −5.85888 + 17.5946i −0.248920 + 0.747525i
\(555\) −0.499285 + 1.36959i −0.0211935 + 0.0581357i
\(556\) 5.95792 + 13.9242i 0.252672 + 0.590517i
\(557\) 30.5691 + 17.6491i 1.29526 + 0.747816i 0.979581 0.201051i \(-0.0644356\pi\)
0.315675 + 0.948867i \(0.397769\pi\)
\(558\) 20.7773 0.552719i 0.879572 0.0233985i
\(559\) 41.8491i 1.77003i
\(560\) 0 0
\(561\) 3.09361 + 3.69066i 0.130612 + 0.155820i
\(562\) −0.813993 3.97157i −0.0343362 0.167531i
\(563\) 13.2232 22.9032i 0.557290 0.965254i −0.440432 0.897786i \(-0.645175\pi\)
0.997721 0.0674681i \(-0.0214921\pi\)
\(564\) 9.54716 18.8477i 0.402008 0.793632i
\(565\) −2.85030 4.93686i −0.119913 0.207695i
\(566\) 2.67067 + 0.889314i 0.112257 + 0.0373807i
\(567\) 0 0
\(568\) −22.4834 + 15.5961i −0.943382 + 0.654396i
\(569\) −23.7332 + 13.7024i −0.994948 + 0.574434i −0.906750 0.421669i \(-0.861444\pi\)
−0.0881985 + 0.996103i \(0.528111\pi\)
\(570\) −13.8632 2.05870i −0.580666 0.0862296i
\(571\) −24.3299 14.0469i −1.01817 0.587843i −0.104599 0.994514i \(-0.533356\pi\)
−0.913574 + 0.406672i \(0.866689\pi\)
\(572\) −2.94116 + 24.5388i −0.122976 + 1.02602i
\(573\) −8.09701 + 6.78712i −0.338257 + 0.283536i
\(574\) 0 0
\(575\) 34.3483 1.43242
\(576\) −0.235827 + 23.9988i −0.00982612 + 0.999952i
\(577\) −11.4154 + 19.7721i −0.475231 + 0.823124i −0.999598 0.0283688i \(-0.990969\pi\)
0.524367 + 0.851492i \(0.324302\pi\)
\(578\) 14.6374 + 16.4966i 0.608837 + 0.686169i
\(579\) −1.04962 0.382639i −0.0436206 0.0159019i
\(580\) −5.43974 4.07459i −0.225873 0.169188i
\(581\) 0 0
\(582\) −3.93982 9.97464i −0.163311 0.413462i
\(583\) −17.7123 + 10.2262i −0.733568 + 0.423526i
\(584\) −0.331087 3.98627i −0.0137005 0.164953i
\(585\) −8.16950 + 9.71577i −0.337767 + 0.401697i
\(586\) −4.75561 23.2032i −0.196452 0.958517i
\(587\) 28.4011 1.17224 0.586119 0.810225i \(-0.300655\pi\)
0.586119 + 0.810225i \(0.300655\pi\)
\(588\) 0 0
\(589\) −34.9018 −1.43810
\(590\) 0.151005 + 0.736774i 0.00621679 + 0.0303325i
\(591\) −25.4367 + 4.47172i −1.04633 + 0.183942i
\(592\) −4.07308 0.990610i −0.167403 0.0407138i
\(593\) 20.6799 11.9396i 0.849223 0.490299i −0.0111655 0.999938i \(-0.503554\pi\)
0.860389 + 0.509638i \(0.170221\pi\)
\(594\) 16.8898 3.43456i 0.692998 0.140922i
\(595\) 0 0
\(596\) 19.3058 25.7740i 0.790796 1.05574i
\(597\) 11.0930 30.4291i 0.454005 1.24538i
\(598\) −39.0030 43.9570i −1.59495 1.79753i
\(599\) 19.5625 33.8832i 0.799300 1.38443i −0.120772 0.992680i \(-0.538537\pi\)
0.920072 0.391749i \(-0.128130\pi\)
\(600\) 20.6349 5.42059i 0.842417 0.221295i
\(601\) 4.88356 0.199204 0.0996022 0.995027i \(-0.468243\pi\)
0.0996022 + 0.995027i \(0.468243\pi\)
\(602\) 0 0
\(603\) 24.8903 + 4.41518i 1.01361 + 0.179800i
\(604\) 34.5217 + 4.13769i 1.40467 + 0.168360i
\(605\) −3.82459 2.20813i −0.155492 0.0897732i
\(606\) −3.01999 + 20.3365i −0.122679 + 0.826112i
\(607\) −27.4754 + 15.8630i −1.11519 + 0.643857i −0.940170 0.340707i \(-0.889334\pi\)
−0.175024 + 0.984564i \(0.556000\pi\)
\(608\) 1.46753 40.2744i 0.0595161 1.63334i
\(609\) 0 0
\(610\) 1.03249 + 0.343811i 0.0418042 + 0.0139205i
\(611\) 16.0667 + 27.8284i 0.649990 + 1.12582i
\(612\) −6.92730 + 1.61286i −0.280019 + 0.0651959i
\(613\) −16.4834 + 28.5501i −0.665758 + 1.15313i 0.313322 + 0.949647i \(0.398558\pi\)
−0.979079 + 0.203479i \(0.934775\pi\)
\(614\) 4.39746 + 21.4558i 0.177467 + 0.865885i
\(615\) 7.64308 6.40662i 0.308199 0.258340i
\(616\) 0 0
\(617\) 14.3990i 0.579680i −0.957075 0.289840i \(-0.906398\pi\)
0.957075 0.289840i \(-0.0936021\pi\)
\(618\) −4.92445 3.90962i −0.198091 0.157268i
\(619\) 21.3838 + 12.3460i 0.859489 + 0.496226i 0.863841 0.503764i \(-0.168052\pi\)
−0.00435197 + 0.999991i \(0.501385\pi\)
\(620\) −7.23453 + 3.09553i −0.290546 + 0.124320i
\(621\) −20.5459 + 35.4604i −0.824480 + 1.42298i
\(622\) −4.86990 + 14.6246i −0.195265 + 0.586395i
\(623\) 0 0
\(624\) −30.3682 20.2522i −1.21570 0.810738i
\(625\) −7.87046 13.6320i −0.314818 0.545281i
\(626\) −31.7272 35.7571i −1.26807 1.42914i
\(627\) −28.5049 + 5.01111i −1.13838 + 0.200124i
\(628\) −0.933526 + 7.78862i −0.0372517 + 0.310800i
\(629\) 1.24227i 0.0495327i
\(630\) 0 0
\(631\) 15.8863i 0.632423i 0.948689 + 0.316212i \(0.102411\pi\)
−0.948689 + 0.316212i \(0.897589\pi\)
\(632\) 8.35966 17.7233i 0.332529 0.704996i
\(633\) −20.0003 + 3.51602i −0.794942 + 0.139749i
\(634\) 9.82365 8.71652i 0.390147 0.346177i
\(635\) −1.67131 2.89479i −0.0663239 0.114876i
\(636\) −1.65244 30.1618i −0.0655235 1.19599i
\(637\) 0 0
\(638\) −13.3163 4.43423i −0.527197 0.175553i
\(639\) −27.2828 + 9.89844i −1.07929 + 0.391576i
\(640\) −3.26785 8.47834i −0.129173 0.335136i
\(641\) −16.8007 9.69989i −0.663588 0.383122i 0.130055 0.991507i \(-0.458485\pi\)
−0.793643 + 0.608384i \(0.791818\pi\)
\(642\) 9.29053 11.7021i 0.366668 0.461845i
\(643\) 37.0568i 1.46138i 0.682710 + 0.730690i \(0.260801\pi\)
−0.682710 + 0.730690i \(0.739199\pi\)
\(644\) 0 0
\(645\) −8.46792 + 7.09803i −0.333424 + 0.279485i
\(646\) 11.7003 2.39804i 0.460343 0.0943494i
\(647\) −22.7029 + 39.3225i −0.892542 + 1.54593i −0.0557235 + 0.998446i \(0.517747\pi\)
−0.836818 + 0.547481i \(0.815587\pi\)
\(648\) −6.74698 + 24.5454i −0.265046 + 0.964236i
\(649\) 0.776548 + 1.34502i 0.0304822 + 0.0527967i
\(650\) −10.2517 + 30.7866i −0.402105 + 1.20755i
\(651\) 0 0
\(652\) −8.76374 + 11.6999i −0.343215 + 0.458205i
\(653\) 0.855070 0.493675i 0.0334615 0.0193190i −0.483176 0.875523i \(-0.660517\pi\)
0.516637 + 0.856204i \(0.327184\pi\)
\(654\) 13.2071 + 1.96127i 0.516438 + 0.0766917i
\(655\) −7.29738 4.21314i −0.285132 0.164621i
\(656\) 20.7436 + 19.8019i 0.809901 + 0.773133i
\(657\) 0.741015 4.17743i 0.0289097 0.162977i
\(658\) 0 0
\(659\) −6.67629 −0.260071 −0.130036 0.991509i \(-0.541509\pi\)
−0.130036 + 0.991509i \(0.541509\pi\)
\(660\) −5.46413 + 3.56690i −0.212691 + 0.138841i
\(661\) 1.35571 2.34815i 0.0527309 0.0913326i −0.838455 0.544971i \(-0.816541\pi\)
0.891186 + 0.453638i \(0.149874\pi\)
\(662\) −1.07364 + 0.952641i −0.0417282 + 0.0370254i
\(663\) 3.70505 10.1633i 0.143892 0.394710i
\(664\) −12.0438 + 8.35442i −0.467390 + 0.324214i
\(665\) 0 0
\(666\) −3.90818 2.11986i −0.151439 0.0821431i
\(667\) 28.9018 16.6865i 1.11908 0.646102i
\(668\) 15.3939 6.58680i 0.595609 0.254851i
\(669\) −1.16557 + 0.204904i −0.0450634 + 0.00792206i
\(670\) −9.37559 + 1.92157i −0.362211 + 0.0742368i
\(671\) 2.24723 0.0867535
\(672\) 0 0
\(673\) 37.2088 1.43430 0.717148 0.696921i \(-0.245447\pi\)
0.717148 + 0.696921i \(0.245447\pi\)
\(674\) 17.5390 3.59470i 0.675576 0.138462i
\(675\) 22.6292 + 0.0348367i 0.870997 + 0.00134086i
\(676\) 27.1361 11.6111i 1.04370 0.446580i
\(677\) −9.63730 + 5.56410i −0.370392 + 0.213846i −0.673630 0.739069i \(-0.735266\pi\)
0.303238 + 0.952915i \(0.401932\pi\)
\(678\) 16.1708 6.38722i 0.621037 0.245300i
\(679\) 0 0
\(680\) 2.21258 1.53480i 0.0848487 0.0588570i
\(681\) 14.2451 + 5.19307i 0.545873 + 0.198999i
\(682\) −12.1548 + 10.7850i −0.465432 + 0.412978i
\(683\) 4.83716 8.37821i 0.185089 0.320583i −0.758518 0.651652i \(-0.774076\pi\)
0.943606 + 0.331069i \(0.107409\pi\)
\(684\) 12.4217 40.9012i 0.474955 1.56389i
\(685\) −10.8357 −0.414013
\(686\) 0 0
\(687\) 24.5549 20.5826i 0.936829 0.785274i
\(688\) −22.9822 21.9389i −0.876190 0.836412i
\(689\) 39.7870 + 22.9710i 1.51576 + 0.875127i
\(690\) 2.27913 15.3476i 0.0867652 0.584272i
\(691\) 7.20943 4.16236i 0.274260 0.158344i −0.356562 0.934272i \(-0.616051\pi\)
0.630822 + 0.775928i \(0.282718\pi\)
\(692\) −15.3128 + 20.4432i −0.582105 + 0.777133i
\(693\) 0 0
\(694\) 11.4509 34.3879i 0.434670 1.30535i
\(695\) −3.04088 5.26697i −0.115347 0.199787i
\(696\) 14.7296 14.5855i 0.558323 0.552863i
\(697\) −4.24943 + 7.36022i −0.160958 + 0.278788i
\(698\) −38.9627 + 7.98559i −1.47476 + 0.302259i
\(699\) −11.2814 13.4586i −0.426700 0.509052i
\(700\) 0 0
\(701\) 34.0535i 1.28618i −0.765790 0.643091i \(-0.777652\pi\)
0.765790 0.643091i \(-0.222348\pi\)
\(702\) −25.6512 28.9991i −0.968141 1.09450i
\(703\) 6.46568 + 3.73296i 0.243858 + 0.140791i
\(704\) −11.9341 14.4793i −0.449782 0.545711i
\(705\) −2.90583 + 7.97098i −0.109440 + 0.300205i
\(706\) −13.8269 4.60425i −0.520382 0.173283i
\(707\) 0 0
\(708\) −2.29040 + 0.125482i −0.0860785 + 0.00471589i
\(709\) −4.82135 8.35083i −0.181070 0.313622i 0.761175 0.648546i \(-0.224623\pi\)
−0.942245 + 0.334924i \(0.891289\pi\)
\(710\) 8.21900 7.29272i 0.308454 0.273691i
\(711\) 13.3764 15.9082i 0.501655 0.596605i
\(712\) 19.7473 41.8663i 0.740062 1.56901i
\(713\) 38.6388i 1.44703i
\(714\) 0 0
\(715\) 9.92437i 0.371150i
\(716\) −5.02626 + 41.9353i −0.187840 + 1.56719i
\(717\) −0.448249 2.54980i −0.0167402 0.0952239i
\(718\) 25.1918 + 28.3915i 0.940150 + 1.05956i
\(719\) −4.04585 7.00762i −0.150885 0.261340i 0.780668 0.624946i \(-0.214879\pi\)
−0.931553 + 0.363606i \(0.881546\pi\)
\(720\) −1.05284 9.57981i −0.0392369 0.357018i
\(721\) 0 0
\(722\) −14.1885 + 42.6090i −0.528040 + 1.58574i
\(723\) −16.8160 6.13028i −0.625392 0.227988i
\(724\) −22.8142 + 9.76181i −0.847883 + 0.362795i
\(725\) −15.9586 9.21369i −0.592687 0.342188i
\(726\) 8.37509 10.5490i 0.310829 0.391511i
\(727\) 36.9501i 1.37040i −0.728353 0.685202i \(-0.759714\pi\)
0.728353 0.685202i \(-0.240286\pi\)
\(728\) 0 0
\(729\) −13.5719 + 23.3410i −0.502664 + 0.864482i
\(730\) 0.322504 + 1.57354i 0.0119364 + 0.0582393i
\(731\) 4.70802 8.15453i 0.174133 0.301606i
\(732\) −1.49980 + 2.96085i −0.0554340 + 0.109436i
\(733\) −18.9776 32.8702i −0.700954 1.21409i −0.968132 0.250440i \(-0.919425\pi\)
0.267178 0.963647i \(-0.413909\pi\)
\(734\) 17.9153 + 5.96566i 0.661266 + 0.220197i
\(735\) 0 0
\(736\) 44.5867 + 1.62466i 1.64349 + 0.0598857i
\(737\) −17.1157 + 9.88173i −0.630463 + 0.363998i
\(738\) 15.9038 + 25.9284i 0.585426 + 0.954437i
\(739\) −19.1667 11.0659i −0.705058 0.407065i 0.104171 0.994559i \(-0.466781\pi\)
−0.809228 + 0.587494i \(0.800115\pi\)
\(740\) 1.67131 + 0.200319i 0.0614386 + 0.00736388i
\(741\) 41.7636 + 49.8238i 1.53422 + 1.83032i
\(742\) 0 0
\(743\) −21.7884 −0.799340 −0.399670 0.916659i \(-0.630875\pi\)
−0.399670 + 0.916659i \(0.630875\pi\)
\(744\) −6.09769 23.2125i −0.223552 0.851010i
\(745\) −6.46568 + 11.1989i −0.236884 + 0.410296i
\(746\) −21.4059 24.1248i −0.783726 0.883271i
\(747\) −14.6147 + 5.30235i −0.534725 + 0.194003i
\(748\) 3.33371 4.45064i 0.121893 0.162731i
\(749\) 0 0
\(750\) −17.1167 + 6.76083i −0.625014 + 0.246871i
\(751\) −4.44124 + 2.56415i −0.162063 + 0.0935671i −0.578838 0.815443i \(-0.696494\pi\)
0.416775 + 0.909010i \(0.363160\pi\)
\(752\) −23.7053 5.76534i −0.864443 0.210240i
\(753\) −8.08376 45.9832i −0.294588 1.67572i
\(754\) 6.33005 + 30.8851i 0.230527 + 1.12477i
\(755\) −13.9618 −0.508122
\(756\) 0 0
\(757\) −30.4486 −1.10667 −0.553337 0.832958i \(-0.686646\pi\)
−0.553337 + 0.832958i \(0.686646\pi\)
\(758\) 0.562562 + 2.74481i 0.0204332 + 0.0996961i
\(759\) −5.54766 31.5570i −0.201367 1.14545i
\(760\) 1.33953 + 16.1279i 0.0485897 + 0.585019i
\(761\) 37.0224 21.3749i 1.34206 0.774839i 0.354951 0.934885i \(-0.384498\pi\)
0.987110 + 0.160046i \(0.0511642\pi\)
\(762\) 9.48197 3.74523i 0.343496 0.135675i
\(763\) 0 0
\(764\) 9.76434 + 7.31389i 0.353261 + 0.264607i
\(765\) 2.68490 0.974103i 0.0970726 0.0352188i
\(766\) 27.0516 + 30.4876i 0.977415 + 1.10156i
\(767\) 1.74436 3.02131i 0.0629851 0.109093i
\(768\) 27.0421 6.06031i 0.975796 0.218683i
\(769\) −7.77655 −0.280430 −0.140215 0.990121i \(-0.544779\pi\)
−0.140215 + 0.990121i \(0.544779\pi\)
\(770\) 0 0
\(771\) 3.10619 + 3.70567i 0.111867 + 0.133456i
\(772\) −0.153520 + 1.28085i −0.00552529 + 0.0460988i
\(773\) −1.04249 0.601881i −0.0374957 0.0216482i 0.481135 0.876647i \(-0.340225\pi\)
−0.518631 + 0.854998i \(0.673558\pi\)
\(774\) −17.6201 28.7266i −0.633342 1.03256i
\(775\) −18.4767 + 10.6675i −0.663701 + 0.383188i
\(776\) −10.1752 + 7.05825i −0.365269 + 0.253376i
\(777\) 0 0
\(778\) −2.62954 0.875618i −0.0942737 0.0313924i
\(779\) −25.5386 44.2341i −0.915014 1.58485i
\(780\) 13.0759 + 6.62348i 0.468192 + 0.237159i
\(781\) 11.3453 19.6507i 0.405968 0.703157i
\(782\) 2.65480 + 12.9531i 0.0949354 + 0.463202i
\(783\) 19.0579 10.9640i 0.681072 0.391820i
\(784\) 0 0
\(785\) 3.15000i 0.112428i
\(786\) 15.9798 20.1277i 0.569980 0.717931i
\(787\) −19.4895 11.2522i −0.694724 0.401099i 0.110655 0.993859i \(-0.464705\pi\)
−0.805380 + 0.592760i \(0.798038\pi\)
\(788\) 11.7316 + 27.4177i 0.417920 + 0.976716i
\(789\) 24.9143 + 9.08256i 0.886974 + 0.323348i
\(790\) −2.48610 + 7.46593i −0.0884514 + 0.265626i
\(791\) 0 0
\(792\) −8.31288 18.0826i −0.295385 0.642536i
\(793\) −2.52398 4.37166i −0.0896290 0.155242i
\(794\) 4.28298 + 4.82699i 0.151997 + 0.171303i
\(795\) 2.10022 + 11.9468i 0.0744871 + 0.423709i
\(796\) −37.1327 4.45064i −1.31613 0.157749i
\(797\) 18.3911i 0.651447i 0.945465 + 0.325724i \(0.105608\pi\)
−0.945465 + 0.325724i \(0.894392\pi\)
\(798\) 0 0
\(799\) 7.23003i 0.255780i
\(800\) −11.5327 21.7694i −0.407743 0.769665i
\(801\) 31.5980 37.5786i 1.11646 1.32778i
\(802\) −28.3299 + 25.1371i −1.00036 + 0.887621i
\(803\) 1.65849 + 2.87258i 0.0585267 + 0.101371i
\(804\) −1.59678 29.1458i −0.0563140 1.02789i
\(805\) 0 0
\(806\) 34.6322 + 11.5323i 1.21987 + 0.406206i
\(807\) 18.2042 49.9358i 0.640817 1.75782i
\(808\) 23.6586 1.96500i 0.832305 0.0691285i
\(809\) 11.5087 + 6.64455i 0.404624 + 0.233610i 0.688477 0.725258i \(-0.258279\pi\)
−0.283853 + 0.958868i \(0.591613\pi\)
\(810\) 1.51709 10.1089i 0.0533052 0.355190i
\(811\) 6.46254i 0.226930i −0.993542 0.113465i \(-0.963805\pi\)
0.993542 0.113465i \(-0.0361950\pi\)
\(812\) 0 0
\(813\) 21.9041 + 26.1315i 0.768210 + 0.916472i
\(814\) 3.40524 0.697921i 0.119354 0.0244621i
\(815\) 2.93506 5.08367i 0.102811 0.178073i
\(816\) 3.63904 + 7.36268i 0.127392 + 0.257745i
\(817\) 28.2947 + 49.0078i 0.989906 + 1.71457i
\(818\) −8.06140 + 24.2090i −0.281860 + 0.846446i
\(819\) 0 0
\(820\) −9.21694 6.90387i −0.321869 0.241094i
\(821\) −24.1767 + 13.9584i −0.843774 + 0.487153i −0.858545 0.512738i \(-0.828631\pi\)
0.0147715 + 0.999891i \(0.495298\pi\)
\(822\) 4.85451 32.6900i 0.169321 1.14020i
\(823\) 38.9668 + 22.4975i 1.35830 + 0.784213i 0.989394 0.145256i \(-0.0464004\pi\)
0.368902 + 0.929468i \(0.379734\pi\)
\(824\) −3.09731 + 6.56662i −0.107900 + 0.228759i
\(825\) −13.5586 + 11.3652i −0.472051 + 0.395685i
\(826\) 0 0
\(827\) −34.2989 −1.19269 −0.596344 0.802729i \(-0.703381\pi\)
−0.596344 + 0.802729i \(0.703381\pi\)
\(828\) 45.2805 + 13.7517i 1.57361 + 0.477904i
\(829\) 11.5078 19.9322i 0.399684 0.692273i −0.594003 0.804463i \(-0.702453\pi\)
0.993687 + 0.112190i \(0.0357865\pi\)
\(830\) 4.40272 3.90653i 0.152820 0.135598i
\(831\) 21.3386 + 7.77900i 0.740226 + 0.269851i
\(832\) −14.7637 + 39.4784i −0.511838 + 1.36867i
\(833\) 0 0
\(834\) 17.2521 6.81430i 0.597391 0.235960i
\(835\) −5.82291 + 3.36186i −0.201510 + 0.116342i
\(836\) 13.1467 + 30.7249i 0.454688 + 1.06264i
\(837\) 0.0391882 25.4558i 0.00135454 0.879882i
\(838\) −24.2995 + 4.98029i −0.839412 + 0.172041i
\(839\) −46.9847 −1.62209 −0.811046 0.584983i \(-0.801101\pi\)
−0.811046 + 0.584983i \(0.801101\pi\)
\(840\) 0 0
\(841\) 11.0959 0.382617
\(842\) −21.3363 + 4.37297i −0.735297 + 0.150703i
\(843\) −4.89029 + 0.859702i −0.168430 + 0.0296097i
\(844\) 9.22430 + 21.5580i 0.317513 + 0.742056i
\(845\) −10.2645 + 5.92623i −0.353110 + 0.203868i
\(846\) −22.7456 12.3376i −0.782009 0.424175i
\(847\) 0 0
\(848\) −33.4728 + 9.80751i −1.14946 + 0.336791i
\(849\) 1.18077 3.23896i 0.0405238 0.111161i
\(850\) 5.46109 4.84562i 0.187314 0.166204i
\(851\) −4.13266 + 7.15798i −0.141666 + 0.245372i
\(852\) 18.3190 + 28.0629i 0.627598 + 0.961418i
\(853\) −12.7498 −0.436545 −0.218272 0.975888i \(-0.570042\pi\)
−0.218272 + 0.975888i \(0.570042\pi\)
\(854\) 0 0
\(855\) −2.99803 + 16.9012i −0.102531 + 0.578010i
\(856\) −15.6044 7.36022i −0.533348 0.251567i
\(857\) −26.1774 15.1136i −0.894204 0.516269i −0.0188889 0.999822i \(-0.506013\pi\)
−0.875315 + 0.483553i \(0.839346\pi\)
\(858\) 29.9405 + 4.44621i 1.02215 + 0.151791i
\(859\) −15.8982 + 9.17880i −0.542438 + 0.313177i −0.746066 0.665872i \(-0.768060\pi\)
0.203628 + 0.979048i \(0.434727\pi\)
\(860\) 10.2116 + 7.64893i 0.348214 + 0.260826i
\(861\) 0 0
\(862\) −4.02283 + 12.0808i −0.137018 + 0.411475i
\(863\) 13.1968 + 22.8576i 0.449225 + 0.778080i 0.998336 0.0576693i \(-0.0183669\pi\)
−0.549111 + 0.835749i \(0.685034\pi\)
\(864\) 29.3727 + 1.11557i 0.999280 + 0.0379525i
\(865\) 5.12839 8.88264i 0.174371 0.302019i
\(866\) −8.53261 + 1.74880i −0.289950 + 0.0594266i
\(867\) 20.7005 17.3517i 0.703025 0.589293i
\(868\) 0 0
\(869\) 16.2498i 0.551236i
\(870\) −5.17578 + 6.51928i −0.175476 + 0.221024i
\(871\) 38.4468 + 22.1973i 1.30272 + 0.752126i
\(872\) −1.27613 15.3646i −0.0432152 0.520310i
\(873\) −12.3473 + 4.47970i −0.417893 + 0.151615i
\(874\) −75.3947 25.1059i −2.55026 0.849218i
\(875\) 0 0
\(876\) −4.89164 + 0.267993i −0.165273 + 0.00905464i
\(877\) 0.468662 + 0.811746i 0.0158256 + 0.0274107i 0.873830 0.486232i \(-0.161629\pi\)
−0.858004 + 0.513643i \(0.828296\pi\)
\(878\) −30.9408 + 27.4538i −1.04420 + 0.926519i
\(879\) −28.5706 + 5.02266i −0.963664 + 0.169410i
\(880\) 5.45016 + 5.20273i 0.183725 + 0.175384i
\(881\) 37.1298i 1.25093i −0.780251 0.625467i \(-0.784909\pi\)
0.780251 0.625467i \(-0.215091\pi\)
\(882\) 0 0
\(883\) 5.76235i 0.193918i 0.995288 + 0.0969592i \(0.0309116\pi\)
−0.995288 + 0.0969592i \(0.969088\pi\)
\(884\) −12.4023 1.48651i −0.417134 0.0499968i
\(885\) 0.907205 0.159485i 0.0304954 0.00536102i
\(886\) 6.77340 + 7.63372i 0.227557 + 0.256460i
\(887\) 13.0672 + 22.6330i 0.438752 + 0.759941i 0.997594 0.0693335i \(-0.0220873\pi\)
−0.558841 + 0.829275i \(0.688754\pi\)
\(888\) −1.35310 + 4.95238i −0.0454070 + 0.166191i
\(889\) 0 0
\(890\) −5.87270 + 17.6361i −0.196853 + 0.591165i
\(891\) −3.62287 20.7959i −0.121371 0.696688i
\(892\) 0.537568 + 1.25634i 0.0179991 + 0.0420655i
\(893\) 37.6302 + 21.7258i 1.25925 + 0.727027i
\(894\) −30.8889 24.5233i −1.03308 0.820183i
\(895\) 16.9601i 0.566915i
\(896\) 0 0
\(897\) −55.1586 + 46.2353i −1.84169 + 1.54375i
\(898\) −1.25909 6.14324i −0.0420163 0.205003i
\(899\) −10.3646 + 17.9520i −0.345678 + 0.598732i
\(900\) −5.92526 25.4493i −0.197509 0.848309i
\(901\) −5.16848 8.95207i −0.172187 0.298237i
\(902\) −22.5627 7.51322i −0.751257 0.250163i
\(903\) 0 0
\(904\) −11.4428 16.4960i −0.380582 0.548649i
\(905\) 8.62971 4.98237i 0.286861 0.165619i
\(906\) 6.25502 42.1210i 0.207809 1.39937i
\(907\) 35.3624 + 20.4165i 1.17419 + 0.677918i 0.954663 0.297689i \(-0.0962160\pi\)
0.219525 + 0.975607i \(0.429549\pi\)
\(908\) 2.08352 17.3833i 0.0691442 0.576886i
\(909\) 24.7931 + 4.39793i 0.822334 + 0.145870i
\(910\) 0 0
\(911\) −4.31270 −0.142886 −0.0714430 0.997445i \(-0.522760\pi\)
−0.0714430 + 0.997445i \(0.522760\pi\)
\(912\) −49.2558 3.18425i −1.63102 0.105441i
\(913\) 6.07741 10.5264i 0.201133 0.348372i
\(914\) 12.8234 + 14.4521i 0.424159 + 0.478034i
\(915\) 0.456487 1.25219i 0.0150910 0.0413961i
\(916\) −29.6113 22.1801i −0.978384 0.732850i
\(917\) 0 0
\(918\) 1.73588 + 8.53639i 0.0572927 + 0.281743i
\(919\) 14.9668 8.64107i 0.493708 0.285043i −0.232403 0.972620i \(-0.574659\pi\)
0.726112 + 0.687577i \(0.241326\pi\)
\(920\) −17.8547 + 1.48295i −0.588652 + 0.0488915i
\(921\) 26.4190 4.64440i 0.870535 0.153038i
\(922\) 1.49296 + 7.28436i 0.0491682 + 0.239898i
\(923\) −50.9699 −1.67770
\(924\) 0 0
\(925\) 4.56383 0.150058
\(926\) −4.51087 22.0091i −0.148236 0.723264i
\(927\) −4.95606 + 5.89411i −0.162778 + 0.193588i
\(928\) −20.2796 12.7149i −0.665711 0.417387i
\(929\) 20.0527 11.5774i 0.657908 0.379843i −0.133571 0.991039i \(-0.542645\pi\)
0.791479 + 0.611196i \(0.209311\pi\)
\(930\) 3.54048 + 8.96360i 0.116097 + 0.293928i
\(931\) 0 0
\(932\) −12.1570 + 16.2300i −0.398214 + 0.531632i
\(933\) 17.7366 + 6.46590i 0.580670 + 0.211684i
\(934\) 25.4146 + 28.6426i 0.831590 + 0.937215i
\(935\) −1.11649 + 1.93382i −0.0365132 + 0.0632426i
\(936\) −25.8403 + 36.4808i −0.844616 + 1.19241i
\(937\) 3.10294 0.101369 0.0506843 0.998715i \(-0.483860\pi\)
0.0506843 + 0.998715i \(0.483860\pi\)
\(938\) 0 0
\(939\) −44.8691 + 37.6104i −1.46425 + 1.22737i
\(940\) 9.72701 + 1.16586i 0.317260 + 0.0380260i
\(941\) 20.4823 + 11.8254i 0.667703 + 0.385498i 0.795206 0.606340i \(-0.207363\pi\)
−0.127503 + 0.991838i \(0.540696\pi\)
\(942\) 9.50313 + 1.41123i 0.309629 + 0.0459803i
\(943\) 48.9703 28.2730i 1.59469 0.920696i
\(944\) 0.744755 + 2.54183i 0.0242397 + 0.0827296i
\(945\) 0 0
\(946\) 24.9977 + 8.32404i 0.812745 + 0.270638i
\(947\) 28.7686 + 49.8286i 0.934852 + 1.61921i 0.774897 + 0.632087i \(0.217802\pi\)
0.159955 + 0.987124i \(0.448865\pi\)
\(948\) −21.4099 10.8450i −0.695362 0.352230i
\(949\) 3.72545 6.45267i 0.120933 0.209462i
\(950\) 8.80982 + 42.9842i 0.285828 + 1.39459i
\(951\) −10.3328 12.3270i −0.335065 0.399731i
\(952\) 0 0
\(953\) 14.1961i 0.459855i −0.973208 0.229928i \(-0.926151\pi\)
0.973208 0.229928i \(-0.0738490\pi\)
\(954\) −36.9828 + 0.983821i −1.19736 + 0.0318524i
\(955\) −4.24264 2.44949i −0.137289 0.0792636i
\(956\) −2.74838 + 1.17598i −0.0888889 + 0.0380340i
\(957\) −5.88745 + 16.1498i −0.190314 + 0.522050i
\(958\) 6.81842 20.4762i 0.220293 0.661557i
\(959\) 0 0
\(960\) −10.4923 + 3.70859i −0.338637 + 0.119694i
\(961\) −3.50000 6.06218i −0.112903 0.195554i
\(962\) −5.18229 5.84052i −0.167084 0.188306i
\(963\) −14.0063 11.7772i −0.451347 0.379515i
\(964\) −2.45955 + 20.5206i −0.0792166 + 0.660923i
\(965\) 0.518021i 0.0166757i
\(966\) 0 0
\(967\) 31.5730i 1.01532i −0.861558 0.507660i \(-0.830511\pi\)
0.861558 0.507660i \(-0.169489\pi\)
\(968\) −14.0668 6.63498i −0.452125 0.213256i
\(969\) −2.53270 14.4069i −0.0813619 0.462815i
\(970\) 3.71964 3.30044i 0.119431 0.105971i
\(971\) 14.6620 + 25.3953i 0.470526 + 0.814974i 0.999432 0.0337060i \(-0.0107310\pi\)
−0.528906 + 0.848680i \(0.677398\pi\)
\(972\) 29.8175 + 9.10575i 0.956398 + 0.292067i
\(973\) 0 0
\(974\) 8.13677 + 2.70948i 0.260719 + 0.0868174i
\(975\) 37.3376 + 13.6115i 1.19576 + 0.435916i
\(976\) 3.72394 + 0.905697i 0.119200 + 0.0289907i
\(977\) −10.3022 5.94797i −0.329596 0.190292i 0.326066 0.945347i \(-0.394277\pi\)
−0.655662 + 0.755055i \(0.727610\pi\)
\(978\) 14.0218 + 11.1322i 0.448368 + 0.355969i
\(979\) 38.3855i 1.22681i
\(980\) 0 0
\(981\) 2.85614 16.1013i 0.0911896 0.514076i
\(982\) −5.59476 + 1.14667i −0.178536 + 0.0365918i
\(983\) 7.49013 12.9733i 0.238898 0.413783i −0.721500 0.692414i \(-0.756547\pi\)
0.960398 + 0.278631i \(0.0898805\pi\)
\(984\) 24.9573 24.7133i 0.795611 0.787831i
\(985\) −5.98772 10.3710i −0.190785 0.330449i
\(986\) 2.24113 6.73027i 0.0713721 0.214336i
\(987\) 0 0
\(988\) 45.0051 60.0835i 1.43180 1.91151i
\(989\) −54.2552 + 31.3243i −1.72521 + 0.996053i
\(990\) 4.17855 + 6.81241i 0.132803 + 0.216513i
\(991\) 18.0000 + 10.3923i 0.571789 + 0.330122i 0.757863 0.652413i \(-0.226243\pi\)
−0.186075 + 0.982536i \(0.559577\pi\)
\(992\) −24.4887 + 12.9733i −0.777515 + 0.411902i
\(993\) 1.12929 + 1.34724i 0.0358369 + 0.0427533i
\(994\) 0 0
\(995\) 15.0178 0.476096
\(996\) 9.81302 + 15.0326i 0.310938 + 0.476325i
\(997\) −9.81912 + 17.0072i −0.310975 + 0.538624i −0.978574 0.205897i \(-0.933989\pi\)
0.667599 + 0.744521i \(0.267322\pi\)
\(998\) 40.7278 36.1377i 1.28922 1.14392i
\(999\) −2.72992 + 4.71159i −0.0863708 + 0.149068i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.n.h.263.2 24
3.2 odd 2 inner 588.2.n.h.263.12 24
4.3 odd 2 588.2.n.d.263.3 24
7.2 even 3 588.2.n.d.275.9 24
7.3 odd 6 588.2.e.f.491.13 yes 24
7.4 even 3 588.2.e.f.491.14 yes 24
7.5 odd 6 588.2.n.d.275.10 24
7.6 odd 2 inner 588.2.n.h.263.1 24
12.11 even 2 588.2.n.d.263.9 24
21.2 odd 6 588.2.n.d.275.3 24
21.5 even 6 588.2.n.d.275.4 24
21.11 odd 6 588.2.e.f.491.11 yes 24
21.17 even 6 588.2.e.f.491.12 yes 24
21.20 even 2 inner 588.2.n.h.263.11 24
28.3 even 6 588.2.e.f.491.10 yes 24
28.11 odd 6 588.2.e.f.491.9 24
28.19 even 6 inner 588.2.n.h.275.11 24
28.23 odd 6 inner 588.2.n.h.275.12 24
28.27 even 2 588.2.n.d.263.4 24
84.11 even 6 588.2.e.f.491.16 yes 24
84.23 even 6 inner 588.2.n.h.275.2 24
84.47 odd 6 inner 588.2.n.h.275.1 24
84.59 odd 6 588.2.e.f.491.15 yes 24
84.83 odd 2 588.2.n.d.263.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.e.f.491.9 24 28.11 odd 6
588.2.e.f.491.10 yes 24 28.3 even 6
588.2.e.f.491.11 yes 24 21.11 odd 6
588.2.e.f.491.12 yes 24 21.17 even 6
588.2.e.f.491.13 yes 24 7.3 odd 6
588.2.e.f.491.14 yes 24 7.4 even 3
588.2.e.f.491.15 yes 24 84.59 odd 6
588.2.e.f.491.16 yes 24 84.11 even 6
588.2.n.d.263.3 24 4.3 odd 2
588.2.n.d.263.4 24 28.27 even 2
588.2.n.d.263.9 24 12.11 even 2
588.2.n.d.263.10 24 84.83 odd 2
588.2.n.d.275.3 24 21.2 odd 6
588.2.n.d.275.4 24 21.5 even 6
588.2.n.d.275.9 24 7.2 even 3
588.2.n.d.275.10 24 7.5 odd 6
588.2.n.h.263.1 24 7.6 odd 2 inner
588.2.n.h.263.2 24 1.1 even 1 trivial
588.2.n.h.263.11 24 21.20 even 2 inner
588.2.n.h.263.12 24 3.2 odd 2 inner
588.2.n.h.275.1 24 84.47 odd 6 inner
588.2.n.h.275.2 24 84.23 even 6 inner
588.2.n.h.275.11 24 28.19 even 6 inner
588.2.n.h.275.12 24 28.23 odd 6 inner