Properties

Label 588.2.n.f.263.6
Level $588$
Weight $2$
Character 588.263
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(263,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.263");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 263.6
Character \(\chi\) \(=\) 588.263
Dual form 588.2.n.f.275.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.300756 - 1.38186i) q^{2} +(1.73104 - 0.0590228i) q^{3} +(-1.81909 + 0.831208i) q^{4} +(0.301907 - 0.174306i) q^{5} +(-0.602184 - 2.37432i) q^{6} +(1.69572 + 2.26374i) q^{8} +(2.99303 - 0.204342i) q^{9} +(-0.331667 - 0.364770i) q^{10} +(1.95188 - 3.38076i) q^{11} +(-3.09987 + 1.54623i) q^{12} -2.93923 q^{13} +(0.512326 - 0.319551i) q^{15} +(2.61819 - 3.02409i) q^{16} +(3.38076 + 1.95188i) q^{17} +(-1.18255 - 4.07450i) q^{18} +(4.83098 - 2.78917i) q^{19} +(-0.404312 + 0.568026i) q^{20} +(-5.25879 - 1.68045i) q^{22} +(-1.09094 - 1.88957i) q^{23} +(3.06898 + 3.81856i) q^{24} +(-2.43923 + 4.22488i) q^{25} +(0.883993 + 4.06162i) q^{26} +(5.16901 - 0.530383i) q^{27} -9.75220i q^{29} +(-0.595661 - 0.611858i) q^{30} +(2.28553 + 1.31955i) q^{31} +(-4.96631 - 2.70846i) q^{32} +(3.17925 - 5.96745i) q^{33} +(1.68045 - 5.25879i) q^{34} +(-5.27475 + 2.85955i) q^{36} +(-0.319551 - 0.553478i) q^{37} +(-5.30720 - 5.83689i) q^{38} +(-5.08795 + 0.173482i) q^{39} +(0.906533 + 0.387866i) q^{40} +7.57031i q^{41} -2.51757i q^{43} +(-0.740538 + 7.77233i) q^{44} +(0.867999 - 0.583396i) q^{45} +(-2.28302 + 2.07583i) q^{46} +(-2.18189 - 3.77914i) q^{47} +(4.35371 - 5.38936i) q^{48} +(6.57182 + 2.10003i) q^{50} +(5.96745 + 3.17925i) q^{51} +(5.34674 - 2.44312i) q^{52} +(-1.49119 - 0.860938i) q^{53} +(-2.28753 - 6.98335i) q^{54} -1.36090i q^{55} +(8.19802 - 5.11331i) q^{57} +(-13.4762 + 2.93304i) q^{58} +(-4.12318 + 7.14155i) q^{59} +(-0.666355 + 1.00714i) q^{60} +(7.04795 + 12.2074i) q^{61} +(1.13605 - 3.55515i) q^{62} +(-2.24908 + 7.67735i) q^{64} +(-0.887375 + 0.512326i) q^{65} +(-9.20238 - 2.59854i) q^{66} +(0.553478 + 0.319551i) q^{67} +(-7.77233 - 0.740538i) q^{68} +(-2.00000 - 3.20654i) q^{69} -11.9341 q^{71} +(5.53792 + 6.42895i) q^{72} +(-3.93923 + 6.82295i) q^{73} +(-0.668724 + 0.608037i) q^{74} +(-3.97306 + 7.45743i) q^{75} +(-6.46962 + 9.08930i) q^{76} +(1.76996 + 6.97867i) q^{78} +(-3.46410 + 2.00000i) q^{79} +(0.263332 - 1.36936i) q^{80} +(8.91649 - 1.22321i) q^{81} +(10.4611 - 2.27682i) q^{82} -8.94358 q^{83} +1.36090 q^{85} +(-3.47894 + 0.757175i) q^{86} +(-0.575602 - 16.8815i) q^{87} +(10.9630 - 1.31425i) q^{88} +(9.12760 - 5.26982i) q^{89} +(-1.06723 - 1.02400i) q^{90} +(3.55515 + 2.53050i) q^{92} +(4.03424 + 2.14930i) q^{93} +(-4.56604 + 4.15167i) q^{94} +(0.972337 - 1.68414i) q^{95} +(-8.75677 - 4.39535i) q^{96} -2.00000 q^{97} +(5.15121 - 10.5176i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} - 12 q^{6} + 4 q^{9} - 4 q^{10} + 6 q^{12} - 4 q^{16} + 8 q^{18} - 32 q^{22} - 2 q^{24} + 12 q^{25} - 20 q^{30} + 16 q^{33} + 64 q^{34} - 40 q^{36} + 16 q^{37} - 20 q^{40} - 24 q^{45} + 92 q^{48}+ \cdots - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.300756 1.38186i −0.212667 0.977125i
\(3\) 1.73104 0.0590228i 0.999419 0.0340768i
\(4\) −1.81909 + 0.831208i −0.909546 + 0.415604i
\(5\) 0.301907 0.174306i 0.135017 0.0779520i −0.430970 0.902366i \(-0.641829\pi\)
0.565987 + 0.824414i \(0.308495\pi\)
\(6\) −0.602184 2.37432i −0.245841 0.969310i
\(7\) 0 0
\(8\) 1.69572 + 2.26374i 0.599527 + 0.800354i
\(9\) 2.99303 0.204342i 0.997678 0.0681141i
\(10\) −0.331667 0.364770i −0.104882 0.115350i
\(11\) 1.95188 3.38076i 0.588514 1.01934i −0.405913 0.913912i \(-0.633046\pi\)
0.994427 0.105425i \(-0.0336203\pi\)
\(12\) −3.09987 + 1.54623i −0.894855 + 0.446357i
\(13\) −2.93923 −0.815197 −0.407599 0.913161i \(-0.633634\pi\)
−0.407599 + 0.913161i \(0.633634\pi\)
\(14\) 0 0
\(15\) 0.512326 0.319551i 0.132282 0.0825077i
\(16\) 2.61819 3.02409i 0.654547 0.756022i
\(17\) 3.38076 + 1.95188i 0.819954 + 0.473401i 0.850401 0.526136i \(-0.176360\pi\)
−0.0304464 + 0.999536i \(0.509693\pi\)
\(18\) −1.18255 4.07450i −0.278729 0.960370i
\(19\) 4.83098 2.78917i 1.10830 0.639879i 0.169914 0.985459i \(-0.445651\pi\)
0.938389 + 0.345580i \(0.112318\pi\)
\(20\) −0.404312 + 0.568026i −0.0904068 + 0.127014i
\(21\) 0 0
\(22\) −5.25879 1.68045i −1.12118 0.358273i
\(23\) −1.09094 1.88957i −0.227477 0.394003i 0.729582 0.683893i \(-0.239714\pi\)
−0.957060 + 0.289890i \(0.906381\pi\)
\(24\) 3.06898 + 3.81856i 0.626452 + 0.779460i
\(25\) −2.43923 + 4.22488i −0.487847 + 0.844976i
\(26\) 0.883993 + 4.06162i 0.173365 + 0.796549i
\(27\) 5.16901 0.530383i 0.994777 0.102072i
\(28\) 0 0
\(29\) 9.75220i 1.81094i −0.424412 0.905469i \(-0.639519\pi\)
0.424412 0.905469i \(-0.360481\pi\)
\(30\) −0.595661 0.611858i −0.108752 0.111709i
\(31\) 2.28553 + 1.31955i 0.410493 + 0.236998i 0.691002 0.722853i \(-0.257170\pi\)
−0.280508 + 0.959852i \(0.590503\pi\)
\(32\) −4.96631 2.70846i −0.877928 0.478793i
\(33\) 3.17925 5.96745i 0.553437 1.03880i
\(34\) 1.68045 5.25879i 0.288195 0.901874i
\(35\) 0 0
\(36\) −5.27475 + 2.85955i −0.879125 + 0.476592i
\(37\) −0.319551 0.553478i −0.0525338 0.0909913i 0.838563 0.544805i \(-0.183396\pi\)
−0.891096 + 0.453814i \(0.850063\pi\)
\(38\) −5.30720 5.83689i −0.860941 0.946869i
\(39\) −5.08795 + 0.173482i −0.814724 + 0.0277793i
\(40\) 0.906533 + 0.387866i 0.143335 + 0.0613270i
\(41\) 7.57031i 1.18228i 0.806567 + 0.591142i \(0.201323\pi\)
−0.806567 + 0.591142i \(0.798677\pi\)
\(42\) 0 0
\(43\) 2.51757i 0.383926i −0.981402 0.191963i \(-0.938515\pi\)
0.981402 0.191963i \(-0.0614854\pi\)
\(44\) −0.740538 + 7.77233i −0.111640 + 1.17172i
\(45\) 0.867999 0.583396i 0.129394 0.0869675i
\(46\) −2.28302 + 2.07583i −0.336613 + 0.306065i
\(47\) −2.18189 3.77914i −0.318261 0.551244i 0.661864 0.749624i \(-0.269765\pi\)
−0.980125 + 0.198379i \(0.936432\pi\)
\(48\) 4.35371 5.38936i 0.628404 0.777887i
\(49\) 0 0
\(50\) 6.57182 + 2.10003i 0.929396 + 0.296989i
\(51\) 5.96745 + 3.17925i 0.835610 + 0.445184i
\(52\) 5.34674 2.44312i 0.741459 0.338799i
\(53\) −1.49119 0.860938i −0.204830 0.118259i 0.394076 0.919078i \(-0.371065\pi\)
−0.598907 + 0.800819i \(0.704398\pi\)
\(54\) −2.28753 6.98335i −0.311293 0.950314i
\(55\) 1.36090i 0.183504i
\(56\) 0 0
\(57\) 8.19802 5.11331i 1.08585 0.677275i
\(58\) −13.4762 + 2.93304i −1.76951 + 0.385126i
\(59\) −4.12318 + 7.14155i −0.536792 + 0.929751i 0.462282 + 0.886733i \(0.347031\pi\)
−0.999074 + 0.0430181i \(0.986303\pi\)
\(60\) −0.666355 + 1.00714i −0.0860260 + 0.130021i
\(61\) 7.04795 + 12.2074i 0.902398 + 1.56300i 0.824372 + 0.566048i \(0.191528\pi\)
0.0780257 + 0.996951i \(0.475138\pi\)
\(62\) 1.13605 3.55515i 0.144279 0.451505i
\(63\) 0 0
\(64\) −2.24908 + 7.67735i −0.281135 + 0.959668i
\(65\) −0.887375 + 0.512326i −0.110065 + 0.0635462i
\(66\) −9.20238 2.59854i −1.13273 0.319859i
\(67\) 0.553478 + 0.319551i 0.0676181 + 0.0390393i 0.533428 0.845846i \(-0.320904\pi\)
−0.465810 + 0.884885i \(0.654237\pi\)
\(68\) −7.77233 0.740538i −0.942533 0.0898034i
\(69\) −2.00000 3.20654i −0.240772 0.386022i
\(70\) 0 0
\(71\) −11.9341 −1.41632 −0.708158 0.706054i \(-0.750474\pi\)
−0.708158 + 0.706054i \(0.750474\pi\)
\(72\) 5.53792 + 6.42895i 0.652650 + 0.757659i
\(73\) −3.93923 + 6.82295i −0.461053 + 0.798566i −0.999014 0.0444032i \(-0.985861\pi\)
0.537961 + 0.842970i \(0.319195\pi\)
\(74\) −0.668724 + 0.608037i −0.0777376 + 0.0706829i
\(75\) −3.97306 + 7.45743i −0.458770 + 0.861109i
\(76\) −6.46962 + 9.08930i −0.742116 + 1.04261i
\(77\) 0 0
\(78\) 1.76996 + 6.97867i 0.200409 + 0.790179i
\(79\) −3.46410 + 2.00000i −0.389742 + 0.225018i −0.682048 0.731307i \(-0.738911\pi\)
0.292306 + 0.956325i \(0.405577\pi\)
\(80\) 0.263332 1.36936i 0.0294414 0.153099i
\(81\) 8.91649 1.22321i 0.990721 0.135912i
\(82\) 10.4611 2.27682i 1.15524 0.251433i
\(83\) −8.94358 −0.981685 −0.490843 0.871248i \(-0.663311\pi\)
−0.490843 + 0.871248i \(0.663311\pi\)
\(84\) 0 0
\(85\) 1.36090 0.147610
\(86\) −3.47894 + 0.757175i −0.375144 + 0.0816483i
\(87\) −0.575602 16.8815i −0.0617110 1.80989i
\(88\) 10.9630 1.31425i 1.16866 0.140100i
\(89\) 9.12760 5.26982i 0.967523 0.558600i 0.0690430 0.997614i \(-0.478005\pi\)
0.898480 + 0.439014i \(0.144672\pi\)
\(90\) −1.06723 1.02400i −0.112496 0.107939i
\(91\) 0 0
\(92\) 3.55515 + 2.53050i 0.370650 + 0.263823i
\(93\) 4.03424 + 2.14930i 0.418331 + 0.222872i
\(94\) −4.56604 + 4.15167i −0.470951 + 0.428212i
\(95\) 0.972337 1.68414i 0.0997597 0.172789i
\(96\) −8.75677 4.39535i −0.893734 0.448598i
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 5.15121 10.5176i 0.517716 1.05706i
\(100\) 0.925439 9.71295i 0.0925439 0.971295i
\(101\) 2.68047 + 1.54757i 0.266717 + 0.153989i 0.627395 0.778701i \(-0.284121\pi\)
−0.360678 + 0.932690i \(0.617455\pi\)
\(102\) 2.59854 9.20238i 0.257294 0.911171i
\(103\) −6.26948 + 3.61968i −0.617750 + 0.356658i −0.775992 0.630742i \(-0.782751\pi\)
0.158243 + 0.987400i \(0.449417\pi\)
\(104\) −4.98412 6.65368i −0.488733 0.652447i
\(105\) 0 0
\(106\) −0.741214 + 2.31955i −0.0719931 + 0.225295i
\(107\) −5.50703 9.53846i −0.532385 0.922118i −0.999285 0.0378077i \(-0.987963\pi\)
0.466900 0.884310i \(-0.345371\pi\)
\(108\) −8.96205 + 5.26134i −0.862374 + 0.506273i
\(109\) −0.699867 + 1.21220i −0.0670351 + 0.116108i −0.897595 0.440821i \(-0.854687\pi\)
0.830560 + 0.556929i \(0.188021\pi\)
\(110\) −1.88058 + 0.409299i −0.179306 + 0.0390251i
\(111\) −0.585825 0.939235i −0.0556040 0.0891482i
\(112\) 0 0
\(113\) 8.83218i 0.830862i 0.909625 + 0.415431i \(0.136369\pi\)
−0.909625 + 0.415431i \(0.863631\pi\)
\(114\) −9.53150 9.79068i −0.892707 0.916981i
\(115\) −0.658727 0.380316i −0.0614266 0.0354646i
\(116\) 8.10611 + 17.7401i 0.752633 + 1.64713i
\(117\) −8.79723 + 0.600610i −0.813304 + 0.0555264i
\(118\) 11.1087 + 3.54980i 1.02264 + 0.326786i
\(119\) 0 0
\(120\) 1.59214 + 0.617907i 0.145342 + 0.0564069i
\(121\) −2.11968 3.67140i −0.192699 0.333764i
\(122\) 14.7493 13.4108i 1.33534 1.21415i
\(123\) 0.446821 + 13.1046i 0.0402885 + 1.18160i
\(124\) −5.25441 0.500634i −0.471860 0.0449582i
\(125\) 3.44375i 0.308019i
\(126\) 0 0
\(127\) 12.3960i 1.09997i 0.835174 + 0.549985i \(0.185367\pi\)
−0.835174 + 0.549985i \(0.814633\pi\)
\(128\) 11.2855 + 0.798907i 0.997504 + 0.0706140i
\(129\) −0.148594 4.35803i −0.0130830 0.383703i
\(130\) 0.974848 + 1.07215i 0.0854998 + 0.0940334i
\(131\) −0.805238 1.39471i −0.0703540 0.121857i 0.828702 0.559689i \(-0.189080\pi\)
−0.899056 + 0.437833i \(0.855746\pi\)
\(132\) −0.823160 + 13.4980i −0.0716469 + 1.17485i
\(133\) 0 0
\(134\) 0.275113 0.860938i 0.0237662 0.0743737i
\(135\) 1.46811 1.06112i 0.126355 0.0913263i
\(136\) 1.31425 + 10.9630i 0.112696 + 0.940071i
\(137\) 3.77914 + 2.18189i 0.322874 + 0.186411i 0.652673 0.757640i \(-0.273648\pi\)
−0.329799 + 0.944051i \(0.606981\pi\)
\(138\) −3.82949 + 3.72811i −0.325988 + 0.317358i
\(139\) 16.8177i 1.42646i 0.700931 + 0.713230i \(0.252768\pi\)
−0.700931 + 0.713230i \(0.747232\pi\)
\(140\) 0 0
\(141\) −4.00000 6.41308i −0.336861 0.540079i
\(142\) 3.58925 + 16.4913i 0.301203 + 1.38392i
\(143\) −5.73704 + 9.93684i −0.479755 + 0.830961i
\(144\) 7.21837 9.58619i 0.601531 0.798850i
\(145\) −1.69987 2.94426i −0.141166 0.244507i
\(146\) 10.6131 + 3.39144i 0.878350 + 0.280677i
\(147\) 0 0
\(148\) 1.04135 + 0.741214i 0.0855982 + 0.0609274i
\(149\) 6.63421 3.83026i 0.543496 0.313788i −0.202999 0.979179i \(-0.565069\pi\)
0.746495 + 0.665391i \(0.231735\pi\)
\(150\) 11.5001 + 3.24736i 0.938976 + 0.265146i
\(151\) 10.9458 + 6.31955i 0.890755 + 0.514278i 0.874189 0.485585i \(-0.161393\pi\)
0.0165658 + 0.999863i \(0.494727\pi\)
\(152\) 14.5059 + 6.20646i 1.17659 + 0.503411i
\(153\) 10.5176 + 5.15121i 0.850295 + 0.416451i
\(154\) 0 0
\(155\) 0.920022 0.0738980
\(156\) 9.11124 4.54472i 0.729483 0.363869i
\(157\) −0.108719 + 0.188307i −0.00867672 + 0.0150285i −0.870331 0.492467i \(-0.836095\pi\)
0.861654 + 0.507495i \(0.169429\pi\)
\(158\) 3.80558 + 4.18540i 0.302755 + 0.332973i
\(159\) −2.63213 1.40231i −0.208741 0.111210i
\(160\) −1.97146 + 0.0479539i −0.155858 + 0.00379109i
\(161\) 0 0
\(162\) −4.37199 11.9535i −0.343496 0.939154i
\(163\) 4.53743 2.61968i 0.355399 0.205189i −0.311662 0.950193i \(-0.600886\pi\)
0.667060 + 0.745004i \(0.267552\pi\)
\(164\) −6.29250 13.7711i −0.491362 1.07534i
\(165\) −0.0803240 2.35578i −0.00625322 0.183397i
\(166\) 2.68984 + 12.3588i 0.208772 + 0.959229i
\(167\) 11.4741 0.887891 0.443945 0.896054i \(-0.353578\pi\)
0.443945 + 0.896054i \(0.353578\pi\)
\(168\) 0 0
\(169\) −4.36090 −0.335454
\(170\) −0.409299 1.88058i −0.0313918 0.144234i
\(171\) 13.8893 9.33524i 1.06214 0.713884i
\(172\) 2.09263 + 4.57969i 0.159561 + 0.349198i
\(173\) −18.3642 + 10.6025i −1.39620 + 0.806097i −0.993992 0.109451i \(-0.965091\pi\)
−0.402208 + 0.915548i \(0.631757\pi\)
\(174\) −23.1548 + 5.87262i −1.75536 + 0.445202i
\(175\) 0 0
\(176\) −5.11331 14.7541i −0.385430 1.11213i
\(177\) −6.71589 + 12.6057i −0.504797 + 0.947503i
\(178\) −10.0274 11.0282i −0.751582 0.826595i
\(179\) 0.906046 1.56932i 0.0677211 0.117296i −0.830177 0.557500i \(-0.811761\pi\)
0.897898 + 0.440204i \(0.145094\pi\)
\(180\) −1.09405 + 1.78274i −0.0815454 + 0.132877i
\(181\) 7.53950 0.560407 0.280203 0.959941i \(-0.409598\pi\)
0.280203 + 0.959941i \(0.409598\pi\)
\(182\) 0 0
\(183\) 12.9208 + 20.7156i 0.955136 + 1.53134i
\(184\) 2.42757 5.67380i 0.178963 0.418278i
\(185\) −0.192949 0.111399i −0.0141859 0.00819023i
\(186\) 1.75672 6.22118i 0.128809 0.456159i
\(187\) 13.1977 7.61968i 0.965110 0.557206i
\(188\) 7.11030 + 5.06100i 0.518572 + 0.369111i
\(189\) 0 0
\(190\) −2.61968 0.837122i −0.190052 0.0607312i
\(191\) 0.815830 + 1.41306i 0.0590314 + 0.102245i 0.894031 0.448005i \(-0.147865\pi\)
−0.834999 + 0.550251i \(0.814532\pi\)
\(192\) −3.44011 + 13.4226i −0.248269 + 0.968691i
\(193\) 7.57834 13.1261i 0.545501 0.944835i −0.453075 0.891473i \(-0.649673\pi\)
0.998575 0.0533622i \(-0.0169938\pi\)
\(194\) 0.601512 + 2.76373i 0.0431861 + 0.198424i
\(195\) −1.50585 + 0.939235i −0.107836 + 0.0672600i
\(196\) 0 0
\(197\) 21.2263i 1.51231i 0.654393 + 0.756155i \(0.272924\pi\)
−0.654393 + 0.756155i \(0.727076\pi\)
\(198\) −16.0831 3.95505i −1.14298 0.281073i
\(199\) −3.25361 1.87847i −0.230642 0.133161i 0.380226 0.924894i \(-0.375846\pi\)
−0.610868 + 0.791732i \(0.709179\pi\)
\(200\) −13.7003 + 1.64240i −0.968758 + 0.116135i
\(201\) 0.976956 + 0.520489i 0.0689092 + 0.0367125i
\(202\) 1.33236 4.16948i 0.0937447 0.293364i
\(203\) 0 0
\(204\) −13.4980 0.823160i −0.945046 0.0576328i
\(205\) 1.31955 + 2.28553i 0.0921614 + 0.159628i
\(206\) 6.88749 + 7.57492i 0.479874 + 0.527769i
\(207\) −3.65135 5.43262i −0.253786 0.377593i
\(208\) −7.69547 + 8.88850i −0.533585 + 0.616307i
\(209\) 21.7765i 1.50631i
\(210\) 0 0
\(211\) 9.83963i 0.677388i −0.940897 0.338694i \(-0.890015\pi\)
0.940897 0.338694i \(-0.109985\pi\)
\(212\) 3.42823 + 0.326637i 0.235452 + 0.0224335i
\(213\) −20.6584 + 0.704383i −1.41549 + 0.0482635i
\(214\) −11.5246 + 10.4787i −0.787804 + 0.716310i
\(215\) −0.438828 0.760072i −0.0299278 0.0518365i
\(216\) 9.96584 + 10.8019i 0.678090 + 0.734979i
\(217\) 0 0
\(218\) 1.88559 + 0.602542i 0.127708 + 0.0408093i
\(219\) −6.41628 + 12.0433i −0.433572 + 0.813814i
\(220\) 1.13119 + 2.47560i 0.0762648 + 0.166905i
\(221\) −9.93684 5.73704i −0.668424 0.385915i
\(222\) −1.12170 + 1.09201i −0.0752838 + 0.0732909i
\(223\) 22.9136i 1.53441i −0.641403 0.767204i \(-0.721647\pi\)
0.641403 0.767204i \(-0.278353\pi\)
\(224\) 0 0
\(225\) −6.43739 + 13.1436i −0.429159 + 0.876243i
\(226\) 12.2049 2.65633i 0.811855 0.176697i
\(227\) −6.76508 + 11.7175i −0.449014 + 0.777715i −0.998322 0.0579050i \(-0.981558\pi\)
0.549308 + 0.835620i \(0.314891\pi\)
\(228\) −10.6627 + 16.1158i −0.706156 + 1.06730i
\(229\) −7.34809 12.7273i −0.485575 0.841041i 0.514287 0.857618i \(-0.328056\pi\)
−0.999863 + 0.0165769i \(0.994723\pi\)
\(230\) −0.327428 + 1.02465i −0.0215900 + 0.0675636i
\(231\) 0 0
\(232\) 22.0765 16.5370i 1.44939 1.08571i
\(233\) −14.8869 + 8.59497i −0.975274 + 0.563075i −0.900840 0.434151i \(-0.857048\pi\)
−0.0744343 + 0.997226i \(0.523715\pi\)
\(234\) 3.47578 + 11.9759i 0.227219 + 0.782891i
\(235\) −1.31745 0.760632i −0.0859412 0.0496182i
\(236\) 1.56432 16.4184i 0.101829 1.06874i
\(237\) −5.87847 + 3.66655i −0.381848 + 0.238168i
\(238\) 0 0
\(239\) −14.5336 −0.940102 −0.470051 0.882639i \(-0.655764\pi\)
−0.470051 + 0.882639i \(0.655764\pi\)
\(240\) 0.375016 2.38596i 0.0242072 0.154013i
\(241\) 9.39604 16.2744i 0.605252 1.04833i −0.386759 0.922181i \(-0.626406\pi\)
0.992012 0.126147i \(-0.0402611\pi\)
\(242\) −4.43586 + 4.03331i −0.285148 + 0.259271i
\(243\) 15.3626 2.64370i 0.985514 0.169593i
\(244\) −22.9678 16.3481i −1.47036 1.04658i
\(245\) 0 0
\(246\) 17.9743 4.55872i 1.14600 0.290653i
\(247\) −14.1994 + 8.19802i −0.903485 + 0.521628i
\(248\) 0.888488 + 7.41144i 0.0564191 + 0.470627i
\(249\) −15.4817 + 0.527875i −0.981115 + 0.0334527i
\(250\) 4.75879 1.03573i 0.300973 0.0655053i
\(251\) −20.6405 −1.30281 −0.651407 0.758729i \(-0.725821\pi\)
−0.651407 + 0.758729i \(0.725821\pi\)
\(252\) 0 0
\(253\) −8.51757 −0.535495
\(254\) 17.1296 3.72819i 1.07481 0.233927i
\(255\) 2.35578 0.0803240i 0.147524 0.00503008i
\(256\) −2.29019 15.8352i −0.143137 0.989703i
\(257\) −4.17752 + 2.41189i −0.260587 + 0.150450i −0.624602 0.780943i \(-0.714739\pi\)
0.364016 + 0.931393i \(0.381406\pi\)
\(258\) −5.97751 + 1.51604i −0.372143 + 0.0943846i
\(259\) 0 0
\(260\) 1.18837 1.66956i 0.0736994 0.103542i
\(261\) −1.99279 29.1887i −0.123350 1.80673i
\(262\) −1.68512 + 1.53220i −0.104107 + 0.0946595i
\(263\) 7.22891 12.5208i 0.445754 0.772068i −0.552351 0.833612i \(-0.686269\pi\)
0.998104 + 0.0615439i \(0.0196024\pi\)
\(264\) 18.8999 2.92210i 1.16321 0.179843i
\(265\) −0.600267 −0.0368741
\(266\) 0 0
\(267\) 15.4892 9.66103i 0.947926 0.591246i
\(268\) −1.27244 0.121237i −0.0777267 0.00740571i
\(269\) −4.08105 2.35619i −0.248826 0.143660i 0.370401 0.928872i \(-0.379220\pi\)
−0.619226 + 0.785212i \(0.712554\pi\)
\(270\) −1.90786 1.70959i −0.116109 0.104042i
\(271\) −13.5743 + 7.83712i −0.824580 + 0.476071i −0.851993 0.523553i \(-0.824606\pi\)
0.0274135 + 0.999624i \(0.491273\pi\)
\(272\) 14.7541 5.11331i 0.894600 0.310040i
\(273\) 0 0
\(274\) 1.87847 5.87847i 0.113483 0.355131i
\(275\) 9.52220 + 16.4929i 0.574210 + 0.994561i
\(276\) 6.30348 + 4.17057i 0.379425 + 0.251039i
\(277\) −8.49815 + 14.7192i −0.510605 + 0.884393i 0.489320 + 0.872104i \(0.337245\pi\)
−0.999924 + 0.0122887i \(0.996088\pi\)
\(278\) 23.2398 5.05803i 1.39383 0.303360i
\(279\) 7.11030 + 3.48243i 0.425683 + 0.208488i
\(280\) 0 0
\(281\) 5.75822i 0.343507i 0.985140 + 0.171753i \(0.0549432\pi\)
−0.985140 + 0.171753i \(0.945057\pi\)
\(282\) −7.65897 + 7.45623i −0.456085 + 0.444012i
\(283\) 4.83098 + 2.78917i 0.287172 + 0.165799i 0.636666 0.771140i \(-0.280313\pi\)
−0.349494 + 0.936939i \(0.613646\pi\)
\(284\) 21.7092 9.91971i 1.28820 0.588626i
\(285\) 1.58376 2.97271i 0.0938137 0.176088i
\(286\) 15.4568 + 4.93923i 0.913980 + 0.292063i
\(287\) 0 0
\(288\) −15.4178 7.09169i −0.908501 0.417882i
\(289\) −0.880316 1.52475i −0.0517833 0.0896913i
\(290\) −3.55731 + 3.23449i −0.208893 + 0.189936i
\(291\) −3.46209 + 0.118046i −0.202951 + 0.00691995i
\(292\) 1.49453 15.6859i 0.0874610 0.917948i
\(293\) 23.7712i 1.38873i −0.719624 0.694364i \(-0.755686\pi\)
0.719624 0.694364i \(-0.244314\pi\)
\(294\) 0 0
\(295\) 2.87478i 0.167376i
\(296\) 0.711065 1.66192i 0.0413298 0.0965974i
\(297\) 8.29621 18.5104i 0.481395 1.07408i
\(298\) −7.28818 8.01560i −0.422193 0.464331i
\(299\) 3.20654 + 5.55389i 0.185439 + 0.321190i
\(300\) 1.02869 16.8682i 0.0593915 0.973885i
\(301\) 0 0
\(302\) 5.44074 17.0262i 0.313080 0.979749i
\(303\) 4.73136 + 2.52070i 0.271809 + 0.144811i
\(304\) 4.21373 21.9119i 0.241674 1.25673i
\(305\) 4.25565 + 2.45700i 0.243678 + 0.140687i
\(306\) 3.95505 16.0831i 0.226095 0.919410i
\(307\) 3.69987i 0.211163i −0.994411 0.105581i \(-0.966330\pi\)
0.994411 0.105581i \(-0.0336703\pi\)
\(308\) 0 0
\(309\) −10.6391 + 6.63588i −0.605237 + 0.377502i
\(310\) −0.276702 1.27134i −0.0157156 0.0722075i
\(311\) −3.79236 + 6.56857i −0.215045 + 0.372469i −0.953287 0.302067i \(-0.902323\pi\)
0.738241 + 0.674537i \(0.235657\pi\)
\(312\) −9.02045 11.2236i −0.510682 0.635413i
\(313\) −7.81770 13.5407i −0.441883 0.765363i 0.555946 0.831218i \(-0.312356\pi\)
−0.997829 + 0.0658547i \(0.979023\pi\)
\(314\) 0.292912 + 0.0936004i 0.0165300 + 0.00528217i
\(315\) 0 0
\(316\) 4.63910 6.51757i 0.260970 0.366642i
\(317\) −12.0318 + 6.94659i −0.675776 + 0.390159i −0.798262 0.602311i \(-0.794247\pi\)
0.122486 + 0.992470i \(0.460913\pi\)
\(318\) −1.14617 + 4.05900i −0.0642740 + 0.227617i
\(319\) −32.9698 19.0351i −1.84596 1.06576i
\(320\) 0.659196 + 2.70987i 0.0368502 + 0.151486i
\(321\) −10.0959 16.1865i −0.563499 0.903440i
\(322\) 0 0
\(323\) 21.7765 1.21168
\(324\) −15.2032 + 9.63658i −0.844621 + 0.535365i
\(325\) 7.16948 12.4179i 0.397691 0.688822i
\(326\) −4.98470 5.48222i −0.276077 0.303632i
\(327\) −1.13995 + 2.13969i −0.0630395 + 0.118325i
\(328\) −17.1373 + 12.8371i −0.946247 + 0.708811i
\(329\) 0 0
\(330\) −3.23120 + 0.819511i −0.177872 + 0.0451126i
\(331\) 27.5359 15.8979i 1.51351 0.873827i 0.513638 0.858007i \(-0.328298\pi\)
0.999875 0.0158198i \(-0.00503580\pi\)
\(332\) 16.2692 7.43397i 0.892888 0.407992i
\(333\) −1.06952 1.59128i −0.0586096 0.0872016i
\(334\) −3.45090 15.8556i −0.188825 0.867580i
\(335\) 0.222798 0.0121728
\(336\) 0 0
\(337\) −17.1178 −0.932468 −0.466234 0.884661i \(-0.654390\pi\)
−0.466234 + 0.884661i \(0.654390\pi\)
\(338\) 1.31157 + 6.02616i 0.0713399 + 0.327780i
\(339\) 0.521300 + 15.2889i 0.0283131 + 0.830379i
\(340\) −2.47560 + 1.13119i −0.134258 + 0.0613474i
\(341\) 8.92216 5.15121i 0.483162 0.278954i
\(342\) −17.0773 16.3855i −0.923437 0.886028i
\(343\) 0 0
\(344\) 5.69914 4.26909i 0.307277 0.230174i
\(345\) −1.16273 0.619464i −0.0625994 0.0333508i
\(346\) 20.1744 + 22.1880i 1.08458 + 1.19283i
\(347\) −4.22398 + 7.31616i −0.226755 + 0.392752i −0.956845 0.290600i \(-0.906145\pi\)
0.730089 + 0.683352i \(0.239478\pi\)
\(348\) 15.0791 + 30.2305i 0.808325 + 1.62053i
\(349\) 17.4956 0.936520 0.468260 0.883591i \(-0.344881\pi\)
0.468260 + 0.883591i \(0.344881\pi\)
\(350\) 0 0
\(351\) −15.1929 + 1.55892i −0.810939 + 0.0832089i
\(352\) −18.8503 + 11.5033i −1.00472 + 0.613127i
\(353\) 7.15990 + 4.13377i 0.381083 + 0.220018i 0.678289 0.734795i \(-0.262722\pi\)
−0.297206 + 0.954813i \(0.596055\pi\)
\(354\) 19.4392 + 5.48920i 1.03318 + 0.291747i
\(355\) −3.60298 + 2.08018i −0.191226 + 0.110405i
\(356\) −12.2236 + 17.1732i −0.647850 + 0.910179i
\(357\) 0 0
\(358\) −2.44108 0.780049i −0.129015 0.0412269i
\(359\) −12.5650 21.7633i −0.663156 1.14862i −0.979782 0.200070i \(-0.935883\pi\)
0.316625 0.948551i \(-0.397450\pi\)
\(360\) 2.79254 + 0.975652i 0.147180 + 0.0514214i
\(361\) 6.05892 10.4944i 0.318890 0.552334i
\(362\) −2.26755 10.4186i −0.119180 0.547587i
\(363\) −3.88596 6.23025i −0.203960 0.327003i
\(364\) 0 0
\(365\) 2.74653i 0.143760i
\(366\) 24.7401 24.0852i 1.29319 1.25895i
\(367\) −18.8041 10.8565i −0.981565 0.566707i −0.0788227 0.996889i \(-0.525116\pi\)
−0.902742 + 0.430182i \(0.858449\pi\)
\(368\) −8.57052 1.64814i −0.446769 0.0859152i
\(369\) 1.54693 + 22.6582i 0.0805302 + 1.17954i
\(370\) −0.0959078 + 0.300133i −0.00498601 + 0.0156032i
\(371\) 0 0
\(372\) −9.12516 0.556490i −0.473118 0.0288526i
\(373\) 0.360898 + 0.625094i 0.0186866 + 0.0323662i 0.875217 0.483730i \(-0.160718\pi\)
−0.856531 + 0.516096i \(0.827385\pi\)
\(374\) −14.4986 15.9457i −0.749707 0.824534i
\(375\) 0.203260 + 5.96129i 0.0104963 + 0.307840i
\(376\) 4.85514 11.3476i 0.250385 0.585207i
\(377\) 28.6640i 1.47627i
\(378\) 0 0
\(379\) 18.2745i 0.938699i −0.883013 0.469349i \(-0.844489\pi\)
0.883013 0.469349i \(-0.155511\pi\)
\(380\) −0.368902 + 3.87181i −0.0189243 + 0.198620i
\(381\) 0.731649 + 21.4581i 0.0374835 + 1.09933i
\(382\) 1.70729 1.55235i 0.0873525 0.0794252i
\(383\) 1.02465 + 1.77475i 0.0523573 + 0.0906855i 0.891016 0.453971i \(-0.149993\pi\)
−0.838659 + 0.544657i \(0.816660\pi\)
\(384\) 19.5828 + 0.716843i 0.999331 + 0.0365813i
\(385\) 0 0
\(386\) −20.4177 6.52448i −1.03923 0.332087i
\(387\) −0.514446 7.53517i −0.0261508 0.383034i
\(388\) 3.63818 1.66242i 0.184701 0.0843964i
\(389\) −9.65328 5.57332i −0.489441 0.282579i 0.234902 0.972019i \(-0.424523\pi\)
−0.724342 + 0.689440i \(0.757857\pi\)
\(390\) 1.75079 + 1.79839i 0.0886545 + 0.0910652i
\(391\) 8.51757i 0.430752i
\(392\) 0 0
\(393\) −1.47622 2.36678i −0.0744656 0.119389i
\(394\) 29.3318 6.38394i 1.47772 0.321618i
\(395\) −0.697224 + 1.20763i −0.0350811 + 0.0607623i
\(396\) −0.628241 + 23.4142i −0.0315703 + 1.17661i
\(397\) −3.98719 6.90601i −0.200111 0.346603i 0.748453 0.663188i \(-0.230797\pi\)
−0.948564 + 0.316585i \(0.897464\pi\)
\(398\) −1.61725 + 5.06100i −0.0810652 + 0.253685i
\(399\) 0 0
\(400\) 6.39002 + 18.4380i 0.319501 + 0.921899i
\(401\) 18.6004 10.7390i 0.928860 0.536278i 0.0424093 0.999100i \(-0.486497\pi\)
0.886451 + 0.462823i \(0.153163\pi\)
\(402\) 0.425419 1.50656i 0.0212180 0.0751404i
\(403\) −6.71771 3.87847i −0.334633 0.193200i
\(404\) −6.16237 0.587144i −0.306589 0.0292115i
\(405\) 2.47874 1.92349i 0.123169 0.0955790i
\(406\) 0 0
\(407\) −2.49490 −0.123668
\(408\) 2.92210 + 18.8999i 0.144665 + 0.935684i
\(409\) −18.4568 + 31.9681i −0.912630 + 1.58072i −0.102296 + 0.994754i \(0.532619\pi\)
−0.810334 + 0.585968i \(0.800714\pi\)
\(410\) 2.76143 2.51083i 0.136377 0.124001i
\(411\) 6.67064 + 3.55389i 0.329038 + 0.175300i
\(412\) 8.39604 11.7958i 0.413643 0.581136i
\(413\) 0 0
\(414\) −6.40897 + 6.67956i −0.314984 + 0.328282i
\(415\) −2.70013 + 1.55892i −0.132544 + 0.0765243i
\(416\) 14.5971 + 7.96081i 0.715684 + 0.390311i
\(417\) 0.992628 + 29.1122i 0.0486092 + 1.42563i
\(418\) −30.0921 + 6.54942i −1.47186 + 0.320343i
\(419\) 29.5773 1.44494 0.722472 0.691400i \(-0.243006\pi\)
0.722472 + 0.691400i \(0.243006\pi\)
\(420\) 0 0
\(421\) 36.8309 1.79503 0.897515 0.440985i \(-0.145371\pi\)
0.897515 + 0.440985i \(0.145371\pi\)
\(422\) −13.5970 + 2.95933i −0.661893 + 0.144058i
\(423\) −7.30270 10.8652i −0.355069 0.528286i
\(424\) −0.579692 4.83558i −0.0281523 0.234836i
\(425\) −16.4929 + 9.52220i −0.800024 + 0.461894i
\(426\) 7.18652 + 28.3353i 0.348188 + 1.37285i
\(427\) 0 0
\(428\) 17.9462 + 12.7738i 0.867464 + 0.617447i
\(429\) −9.34457 + 17.5397i −0.451160 + 0.846826i
\(430\) −0.918335 + 0.834996i −0.0442861 + 0.0402671i
\(431\) 2.33839 4.05022i 0.112636 0.195092i −0.804196 0.594364i \(-0.797404\pi\)
0.916832 + 0.399272i \(0.130737\pi\)
\(432\) 11.9295 17.0202i 0.573959 0.818884i
\(433\) −16.5564 −0.795650 −0.397825 0.917461i \(-0.630235\pi\)
−0.397825 + 0.917461i \(0.630235\pi\)
\(434\) 0 0
\(435\) −3.11632 4.99631i −0.149416 0.239555i
\(436\) 0.265527 2.78685i 0.0127165 0.133466i
\(437\) −10.5407 6.08565i −0.504228 0.291116i
\(438\) 18.5720 + 5.24431i 0.887404 + 0.250583i
\(439\) −22.9313 + 13.2394i −1.09445 + 0.631881i −0.934758 0.355286i \(-0.884383\pi\)
−0.159692 + 0.987167i \(0.551050\pi\)
\(440\) 3.08073 2.30770i 0.146868 0.110015i
\(441\) 0 0
\(442\) −4.93923 + 15.4568i −0.234935 + 0.735205i
\(443\) −2.30049 3.98457i −0.109300 0.189313i 0.806187 0.591661i \(-0.201528\pi\)
−0.915487 + 0.402348i \(0.868194\pi\)
\(444\) 1.84637 + 1.22161i 0.0876247 + 0.0579751i
\(445\) 1.83712 3.18199i 0.0870879 0.150841i
\(446\) −31.6635 + 6.89141i −1.49931 + 0.326318i
\(447\) 11.2580 7.02193i 0.532487 0.332126i
\(448\) 0 0
\(449\) 17.0095i 0.802728i −0.915919 0.401364i \(-0.868536\pi\)
0.915919 0.401364i \(-0.131464\pi\)
\(450\) 20.0988 + 4.94256i 0.947466 + 0.232994i
\(451\) 25.5934 + 14.7764i 1.20515 + 0.695791i
\(452\) −7.34138 16.0665i −0.345309 0.755706i
\(453\) 19.3206 + 10.2934i 0.907763 + 0.483625i
\(454\) 18.2266 + 5.82431i 0.855415 + 0.273348i
\(455\) 0 0
\(456\) 25.4768 + 9.88748i 1.19306 + 0.463024i
\(457\) 7.71559 + 13.3638i 0.360920 + 0.625132i 0.988113 0.153732i \(-0.0491293\pi\)
−0.627192 + 0.778864i \(0.715796\pi\)
\(458\) −15.3773 + 13.9819i −0.718536 + 0.653329i
\(459\) 18.5104 + 8.29621i 0.863993 + 0.387234i
\(460\) 1.51441 + 0.144291i 0.0706095 + 0.00672759i
\(461\) 33.3764i 1.55449i 0.629196 + 0.777247i \(0.283384\pi\)
−0.629196 + 0.777247i \(0.716616\pi\)
\(462\) 0 0
\(463\) 26.4787i 1.23057i 0.788304 + 0.615286i \(0.210959\pi\)
−0.788304 + 0.615286i \(0.789041\pi\)
\(464\) −29.4915 25.5331i −1.36911 1.18534i
\(465\) 1.59260 0.0543023i 0.0738550 0.00251821i
\(466\) 16.3544 + 17.9867i 0.757603 + 0.833217i
\(467\) 9.29557 + 16.1004i 0.430148 + 0.745038i 0.996886 0.0788602i \(-0.0251281\pi\)
−0.566738 + 0.823898i \(0.691795\pi\)
\(468\) 15.5037 8.40489i 0.716660 0.388516i
\(469\) 0 0
\(470\) −0.654857 + 2.04930i −0.0302063 + 0.0945274i
\(471\) −0.177083 + 0.332385i −0.00815956 + 0.0153155i
\(472\) −23.1584 + 2.77624i −1.06595 + 0.127787i
\(473\) −8.51130 4.91400i −0.391350 0.225946i
\(474\) 6.83466 + 7.02050i 0.313926 + 0.322462i
\(475\) 27.2137i 1.24865i
\(476\) 0 0
\(477\) −4.63910 2.27210i −0.212410 0.104032i
\(478\) 4.37108 + 20.0835i 0.199928 + 0.918597i
\(479\) 20.4388 35.4011i 0.933874 1.61752i 0.157245 0.987560i \(-0.449739\pi\)
0.776629 0.629958i \(-0.216928\pi\)
\(480\) −3.40986 + 0.199372i −0.155638 + 0.00910003i
\(481\) 0.939235 + 1.62680i 0.0428254 + 0.0741758i
\(482\) −25.3149 8.08941i −1.15306 0.368462i
\(483\) 0 0
\(484\) 6.90760 + 4.91671i 0.313982 + 0.223487i
\(485\) −0.603814 + 0.348612i −0.0274178 + 0.0158297i
\(486\) −8.27364 20.4340i −0.375300 0.926903i
\(487\) 18.5599 + 10.7156i 0.841032 + 0.485570i 0.857615 0.514293i \(-0.171945\pi\)
−0.0165831 + 0.999862i \(0.505279\pi\)
\(488\) −15.6831 + 36.6551i −0.709941 + 1.65930i
\(489\) 7.69987 4.80260i 0.348200 0.217181i
\(490\) 0 0
\(491\) −1.63166 −0.0736358 −0.0368179 0.999322i \(-0.511722\pi\)
−0.0368179 + 0.999322i \(0.511722\pi\)
\(492\) −11.7054 23.4670i −0.527721 1.05797i
\(493\) 19.0351 32.9698i 0.857300 1.48489i
\(494\) 15.5991 + 17.1560i 0.701837 + 0.771885i
\(495\) −0.278089 4.07321i −0.0124992 0.183077i
\(496\) 9.97438 3.45681i 0.447863 0.155215i
\(497\) 0 0
\(498\) 5.38568 + 21.2349i 0.241338 + 0.951558i
\(499\) −7.69218 + 4.44108i −0.344349 + 0.198810i −0.662194 0.749333i \(-0.730374\pi\)
0.317844 + 0.948143i \(0.397041\pi\)
\(500\) −2.86247 6.26450i −0.128014 0.280157i
\(501\) 19.8621 0.677232i 0.887375 0.0302565i
\(502\) 6.20775 + 28.5223i 0.277065 + 1.27301i
\(503\) −34.8967 −1.55597 −0.777983 0.628286i \(-0.783757\pi\)
−0.777983 + 0.628286i \(0.783757\pi\)
\(504\) 0 0
\(505\) 1.07900 0.0480150
\(506\) 2.56171 + 11.7701i 0.113882 + 0.523246i
\(507\) −7.54891 + 0.257392i −0.335259 + 0.0114312i
\(508\) −10.3037 22.5495i −0.457152 1.00047i
\(509\) 20.5865 11.8856i 0.912479 0.526820i 0.0312508 0.999512i \(-0.490051\pi\)
0.881228 + 0.472692i \(0.156718\pi\)
\(510\) −0.819511 3.23120i −0.0362886 0.143080i
\(511\) 0 0
\(512\) −21.1934 + 7.92728i −0.936623 + 0.350340i
\(513\) 23.4921 16.9795i 1.03720 0.749664i
\(514\) 4.58932 + 5.04737i 0.202426 + 0.222630i
\(515\) −1.26186 + 2.18561i −0.0556044 + 0.0963097i
\(516\) 3.89273 + 7.80414i 0.171368 + 0.343558i
\(517\) −17.0351 −0.749205
\(518\) 0 0
\(519\) −31.1634 + 19.4374i −1.36792 + 0.853207i
\(520\) −2.66451 1.14003i −0.116847 0.0499936i
\(521\) −4.96256 2.86513i −0.217414 0.125524i 0.387338 0.921938i \(-0.373394\pi\)
−0.604752 + 0.796414i \(0.706728\pi\)
\(522\) −39.7354 + 11.5324i −1.73917 + 0.504761i
\(523\) 4.17225 2.40885i 0.182440 0.105332i −0.405999 0.913874i \(-0.633076\pi\)
0.588439 + 0.808542i \(0.299743\pi\)
\(524\) 2.62410 + 1.86779i 0.114634 + 0.0815948i
\(525\) 0 0
\(526\) −19.4762 6.22364i −0.849204 0.271364i
\(527\) 5.15121 + 8.92216i 0.224390 + 0.388656i
\(528\) −9.72220 25.2382i −0.423105 1.09835i
\(529\) 9.11968 15.7958i 0.396508 0.686772i
\(530\) 0.180534 + 0.829486i 0.00784189 + 0.0360306i
\(531\) −10.8815 + 22.2174i −0.472216 + 0.964155i
\(532\) 0 0
\(533\) 22.2509i 0.963795i
\(534\) −18.0087 18.4984i −0.779313 0.800504i
\(535\) −3.32522 1.91982i −0.143762 0.0830009i
\(536\) 0.215162 + 1.79480i 0.00929358 + 0.0775236i
\(537\) 1.47578 2.77004i 0.0636846 0.119536i
\(538\) −2.02854 + 6.34809i −0.0874564 + 0.273685i
\(539\) 0 0
\(540\) −1.78862 + 3.15057i −0.0769700 + 0.135579i
\(541\) 6.01942 + 10.4259i 0.258795 + 0.448246i 0.965919 0.258843i \(-0.0833413\pi\)
−0.707124 + 0.707089i \(0.750008\pi\)
\(542\) 14.9124 + 16.4008i 0.640542 + 0.704473i
\(543\) 13.0512 0.445002i 0.560081 0.0190969i
\(544\) −11.5033 18.8503i −0.493200 0.808200i
\(545\) 0.487964i 0.0209021i
\(546\) 0 0
\(547\) 35.3097i 1.50973i −0.655879 0.754866i \(-0.727702\pi\)
0.655879 0.754866i \(-0.272298\pi\)
\(548\) −8.68820 0.827802i −0.371142 0.0353619i
\(549\) 23.5892 + 35.0970i 1.00676 + 1.49790i
\(550\) 19.9271 18.1187i 0.849695 0.772585i
\(551\) −27.2005 47.1127i −1.15878 2.00707i
\(552\) 3.86735 9.96488i 0.164605 0.424133i
\(553\) 0 0
\(554\) 22.8958 + 7.31638i 0.972751 + 0.310843i
\(555\) −0.340579 0.181449i −0.0144568 0.00770207i
\(556\) −13.9790 30.5929i −0.592842 1.29743i
\(557\) 30.1308 + 17.3960i 1.27668 + 0.737093i 0.976237 0.216706i \(-0.0695314\pi\)
0.300445 + 0.953799i \(0.402865\pi\)
\(558\) 2.67377 10.8728i 0.113190 0.460283i
\(559\) 7.39973i 0.312975i
\(560\) 0 0
\(561\) 22.3960 13.9690i 0.945562 0.589771i
\(562\) 7.95707 1.73182i 0.335649 0.0730525i
\(563\) 6.43088 11.1386i 0.271029 0.469436i −0.698096 0.716004i \(-0.745969\pi\)
0.969126 + 0.246567i \(0.0793027\pi\)
\(564\) 12.6070 + 8.34115i 0.530849 + 0.351226i
\(565\) 1.53950 + 2.66649i 0.0647673 + 0.112180i
\(566\) 2.40130 7.51461i 0.100934 0.315863i
\(567\) 0 0
\(568\) −20.2369 27.0157i −0.849120 1.13355i
\(569\) 13.5887 7.84543i 0.569667 0.328897i −0.187349 0.982293i \(-0.559990\pi\)
0.757016 + 0.653396i \(0.226656\pi\)
\(570\) −4.58420 1.29447i −0.192011 0.0542196i
\(571\) 36.4003 + 21.0157i 1.52331 + 0.879481i 0.999620 + 0.0275690i \(0.00877659\pi\)
0.523685 + 0.851912i \(0.324557\pi\)
\(572\) 2.17662 22.8447i 0.0910089 0.955185i
\(573\) 1.49564 + 2.39792i 0.0624813 + 0.100174i
\(574\) 0 0
\(575\) 10.6443 0.443897
\(576\) −5.16275 + 23.4381i −0.215115 + 0.976589i
\(577\) −19.3960 + 33.5949i −0.807468 + 1.39858i 0.107145 + 0.994243i \(0.465829\pi\)
−0.914612 + 0.404332i \(0.867504\pi\)
\(578\) −1.84224 + 1.67505i −0.0766270 + 0.0696731i
\(579\) 12.3437 23.1691i 0.512987 0.962875i
\(580\) 5.53950 + 3.94293i 0.230015 + 0.163721i
\(581\) 0 0
\(582\) 1.20437 + 4.74863i 0.0499227 + 0.196837i
\(583\) −5.82125 + 3.36090i −0.241091 + 0.139194i
\(584\) −22.1253 + 2.65239i −0.915550 + 0.109757i
\(585\) −2.55125 + 1.71474i −0.105481 + 0.0708956i
\(586\) −32.8485 + 7.14933i −1.35696 + 0.295336i
\(587\) −7.07471 −0.292004 −0.146002 0.989284i \(-0.546641\pi\)
−0.146002 + 0.989284i \(0.546641\pi\)
\(588\) 0 0
\(589\) 14.7218 0.606601
\(590\) 3.97255 0.864607i 0.163547 0.0355953i
\(591\) 1.25283 + 36.7436i 0.0515347 + 1.51143i
\(592\) −2.51041 0.482760i −0.103177 0.0198413i
\(593\) 15.9258 9.19477i 0.653994 0.377584i −0.135991 0.990710i \(-0.543422\pi\)
0.789985 + 0.613126i \(0.210088\pi\)
\(594\) −28.0740 5.89710i −1.15189 0.241961i
\(595\) 0 0
\(596\) −8.88449 + 12.4820i −0.363923 + 0.511283i
\(597\) −5.74301 3.05968i −0.235046 0.125224i
\(598\) 6.71033 6.10137i 0.274406 0.249503i
\(599\) −18.9258 + 32.7804i −0.773287 + 1.33937i 0.162466 + 0.986714i \(0.448055\pi\)
−0.935752 + 0.352658i \(0.885278\pi\)
\(600\) −23.6189 + 3.65170i −0.964237 + 0.149080i
\(601\) 21.9488 0.895308 0.447654 0.894207i \(-0.352260\pi\)
0.447654 + 0.894207i \(0.352260\pi\)
\(602\) 0 0
\(603\) 1.72188 + 0.843327i 0.0701202 + 0.0343429i
\(604\) −25.1642 2.39762i −1.02392 0.0975577i
\(605\) −1.27989 0.738947i −0.0520351 0.0300425i
\(606\) 2.06028 7.29620i 0.0836933 0.296388i
\(607\) 22.4114 12.9392i 0.909651 0.525187i 0.0293323 0.999570i \(-0.490662\pi\)
0.880319 + 0.474382i \(0.157329\pi\)
\(608\) −31.5465 + 0.767338i −1.27938 + 0.0311197i
\(609\) 0 0
\(610\) 2.11533 6.61968i 0.0856470 0.268023i
\(611\) 6.41308 + 11.1078i 0.259445 + 0.449373i
\(612\) −23.4142 0.628241i −0.946461 0.0253951i
\(613\) 6.45681 11.1835i 0.260788 0.451698i −0.705664 0.708547i \(-0.749351\pi\)
0.966452 + 0.256849i \(0.0826843\pi\)
\(614\) −5.11271 + 1.11276i −0.206332 + 0.0449073i
\(615\) 2.41910 + 3.87847i 0.0975475 + 0.156395i
\(616\) 0 0
\(617\) 26.4677i 1.06555i −0.846257 0.532775i \(-0.821149\pi\)
0.846257 0.532775i \(-0.178851\pi\)
\(618\) 12.3697 + 12.7060i 0.497580 + 0.511110i
\(619\) −29.7384 17.1695i −1.19529 0.690100i −0.235787 0.971805i \(-0.575767\pi\)
−0.959501 + 0.281705i \(0.909100\pi\)
\(620\) −1.67360 + 0.764730i −0.0672136 + 0.0307123i
\(621\) −6.64130 9.18859i −0.266506 0.368726i
\(622\) 10.2174 + 3.26499i 0.409682 + 0.130914i
\(623\) 0 0
\(624\) −12.7966 + 15.8406i −0.512273 + 0.634131i
\(625\) −11.5959 20.0847i −0.463836 0.803388i
\(626\) −16.3601 + 14.8754i −0.653882 + 0.594542i
\(627\) −1.28531 37.6961i −0.0513303 1.50544i
\(628\) 0.0412477 0.432916i 0.00164596 0.0172752i
\(629\) 2.49490i 0.0994782i
\(630\) 0 0
\(631\) 27.7569i 1.10499i 0.833517 + 0.552493i \(0.186323\pi\)
−0.833517 + 0.552493i \(0.813677\pi\)
\(632\) −10.4016 4.45040i −0.413755 0.177028i
\(633\) −0.580763 17.0328i −0.0230832 0.676995i
\(634\) 13.2179 + 14.5371i 0.524949 + 0.577343i
\(635\) 2.16070 + 3.74245i 0.0857449 + 0.148515i
\(636\) 5.95369 + 0.363081i 0.236079 + 0.0143971i
\(637\) 0 0
\(638\) −16.3881 + 51.2847i −0.648810 + 2.03038i
\(639\) −35.7191 + 2.43864i −1.41303 + 0.0964710i
\(640\) 3.54641 1.72593i 0.140184 0.0682233i
\(641\) −6.03040 3.48165i −0.238186 0.137517i 0.376156 0.926556i \(-0.377246\pi\)
−0.614343 + 0.789039i \(0.710579\pi\)
\(642\) −19.3311 + 18.8193i −0.762936 + 0.742740i
\(643\) 9.74373i 0.384255i −0.981370 0.192128i \(-0.938461\pi\)
0.981370 0.192128i \(-0.0615387\pi\)
\(644\) 0 0
\(645\) −0.804492 1.28982i −0.0316768 0.0507865i
\(646\) −6.54942 30.0921i −0.257683 1.18396i
\(647\) 14.0948 24.4129i 0.554123 0.959770i −0.443848 0.896102i \(-0.646387\pi\)
0.997971 0.0636677i \(-0.0202798\pi\)
\(648\) 17.8889 + 18.1104i 0.702742 + 0.711445i
\(649\) 16.0959 + 27.8789i 0.631820 + 1.09434i
\(650\) −19.3161 6.17248i −0.757641 0.242105i
\(651\) 0 0
\(652\) −6.07649 + 8.53699i −0.237974 + 0.334334i
\(653\) −9.39867 + 5.42633i −0.367799 + 0.212349i −0.672496 0.740101i \(-0.734778\pi\)
0.304698 + 0.952449i \(0.401445\pi\)
\(654\) 3.29961 + 0.931734i 0.129025 + 0.0364337i
\(655\) −0.486214 0.280716i −0.0189979 0.0109685i
\(656\) 22.8933 + 19.8205i 0.893832 + 0.773860i
\(657\) −10.3960 + 21.2263i −0.405588 + 0.828116i
\(658\) 0 0
\(659\) 19.2248 0.748893 0.374446 0.927249i \(-0.377833\pi\)
0.374446 + 0.927249i \(0.377833\pi\)
\(660\) 2.10426 + 4.21861i 0.0819081 + 0.164209i
\(661\) 1.37371 2.37933i 0.0534311 0.0925454i −0.838073 0.545558i \(-0.816318\pi\)
0.891504 + 0.453013i \(0.149651\pi\)
\(662\) −30.2503 33.2695i −1.17571 1.29306i
\(663\) −17.5397 9.34457i −0.681187 0.362913i
\(664\) −15.1658 20.2460i −0.588547 0.785696i
\(665\) 0 0
\(666\) −1.87727 + 1.95652i −0.0727426 + 0.0758138i
\(667\) −18.4275 + 10.6391i −0.713514 + 0.411948i
\(668\) −20.8724 + 9.53734i −0.807577 + 0.369011i
\(669\) −1.35243 39.6645i −0.0522878 1.53352i
\(670\) −0.0670080 0.307877i −0.00258875 0.0118943i
\(671\) 55.0271 2.12430
\(672\) 0 0
\(673\) 31.3097 1.20690 0.603449 0.797401i \(-0.293793\pi\)
0.603449 + 0.797401i \(0.293793\pi\)
\(674\) 5.14830 + 23.6545i 0.198305 + 0.911138i
\(675\) −10.3676 + 23.1322i −0.399050 + 0.890358i
\(676\) 7.93287 3.62481i 0.305110 0.139416i
\(677\) 18.1712 10.4911i 0.698376 0.403208i −0.108366 0.994111i \(-0.534562\pi\)
0.806742 + 0.590903i \(0.201229\pi\)
\(678\) 20.9704 5.31860i 0.805363 0.204259i
\(679\) 0 0
\(680\) 2.30770 + 3.08073i 0.0884963 + 0.118140i
\(681\) −11.0191 + 20.6827i −0.422251 + 0.792564i
\(682\) −9.80167 10.7800i −0.375325 0.412786i
\(683\) −7.91172 + 13.7035i −0.302734 + 0.524350i −0.976754 0.214363i \(-0.931233\pi\)
0.674021 + 0.738713i \(0.264566\pi\)
\(684\) −17.5064 + 28.5266i −0.669376 + 1.09074i
\(685\) 1.52126 0.0581245
\(686\) 0 0
\(687\) −13.4711 21.5978i −0.513953 0.824006i
\(688\) −7.61335 6.59147i −0.290256 0.251298i
\(689\) 4.38295 + 2.53050i 0.166977 + 0.0964043i
\(690\) −0.506316 + 1.79304i −0.0192751 + 0.0682600i
\(691\) 21.1390 12.2046i 0.804167 0.464286i −0.0407593 0.999169i \(-0.512978\pi\)
0.844926 + 0.534883i \(0.179644\pi\)
\(692\) 24.5931 34.5514i 0.934891 1.31345i
\(693\) 0 0
\(694\) 11.3803 + 3.63659i 0.431991 + 0.138043i
\(695\) 2.93143 + 5.07738i 0.111195 + 0.192596i
\(696\) 37.2393 29.9293i 1.41155 1.13447i
\(697\) −14.7764 + 25.5934i −0.559694 + 0.969419i
\(698\) −5.26192 24.1766i −0.199167 0.915097i
\(699\) −25.2626 + 15.7569i −0.955520 + 0.595982i
\(700\) 0 0
\(701\) 21.4779i 0.811209i −0.914049 0.405605i \(-0.867061\pi\)
0.914049 0.405605i \(-0.132939\pi\)
\(702\) 6.72358 + 20.5257i 0.253765 + 0.774693i
\(703\) −3.08749 1.78256i −0.116447 0.0672306i
\(704\) 21.5653 + 22.5889i 0.812774 + 0.851350i
\(705\) −2.32546 1.23893i −0.0875821 0.0466607i
\(706\) 3.55892 11.1373i 0.133942 0.419156i
\(707\) 0 0
\(708\) 1.73885 28.5132i 0.0653501 1.07159i
\(709\) 21.0959 + 36.5392i 0.792273 + 1.37226i 0.924556 + 0.381046i \(0.124436\pi\)
−0.132283 + 0.991212i \(0.542231\pi\)
\(710\) 3.95815 + 4.35320i 0.148547 + 0.163373i
\(711\) −9.95948 + 6.69393i −0.373510 + 0.251042i
\(712\) 27.4074 + 11.7264i 1.02713 + 0.439466i
\(713\) 5.75822i 0.215647i
\(714\) 0 0
\(715\) 4.00000i 0.149592i
\(716\) −0.343751 + 3.60784i −0.0128466 + 0.134831i
\(717\) −25.1583 + 0.857815i −0.939556 + 0.0320357i
\(718\) −26.2948 + 23.9086i −0.981314 + 0.892260i
\(719\) 9.52940 + 16.5054i 0.355387 + 0.615548i 0.987184 0.159586i \(-0.0510158\pi\)
−0.631797 + 0.775134i \(0.717683\pi\)
\(720\) 0.508344 4.15234i 0.0189449 0.154749i
\(721\) 0 0
\(722\) −16.3240 5.21635i −0.607517 0.194133i
\(723\) 15.3044 28.7263i 0.569177 1.06834i
\(724\) −13.7150 + 6.26689i −0.509716 + 0.232907i
\(725\) 41.2019 + 23.7879i 1.53020 + 0.883461i
\(726\) −7.44062 + 7.24366i −0.276147 + 0.268837i
\(727\) 3.72549i 0.138171i −0.997611 0.0690854i \(-0.977992\pi\)
0.997611 0.0690854i \(-0.0220081\pi\)
\(728\) 0 0
\(729\) 26.4374 5.48311i 0.979163 0.203078i
\(730\) 3.79533 0.826036i 0.140471 0.0305729i
\(731\) 4.91400 8.51130i 0.181751 0.314802i
\(732\) −40.7232 26.9437i −1.50517 0.995866i
\(733\) 12.7090 + 22.0126i 0.469417 + 0.813054i 0.999389 0.0349611i \(-0.0111307\pi\)
−0.529972 + 0.848015i \(0.677797\pi\)
\(734\) −9.34681 + 29.2498i −0.344997 + 1.07963i
\(735\) 0 0
\(736\) 0.300133 + 12.3390i 0.0110631 + 0.454820i
\(737\) 2.16065 1.24745i 0.0795885 0.0459504i
\(738\) 30.8453 8.95225i 1.13543 0.329537i
\(739\) −20.1868 11.6548i −0.742582 0.428730i 0.0804256 0.996761i \(-0.474372\pi\)
−0.823007 + 0.568031i \(0.807705\pi\)
\(740\) 0.443588 + 0.0422645i 0.0163066 + 0.00155368i
\(741\) −24.0959 + 15.0292i −0.885185 + 0.552113i
\(742\) 0 0
\(743\) −33.8576 −1.24211 −0.621057 0.783765i \(-0.713297\pi\)
−0.621057 + 0.783765i \(0.713297\pi\)
\(744\) 1.97546 + 12.7771i 0.0724238 + 0.468431i
\(745\) 1.33528 2.31277i 0.0489207 0.0847332i
\(746\) 0.755252 0.686713i 0.0276518 0.0251424i
\(747\) −26.7684 + 1.82755i −0.979405 + 0.0668666i
\(748\) −17.6742 + 24.8309i −0.646234 + 0.907908i
\(749\) 0 0
\(750\) 8.17655 2.07377i 0.298566 0.0757235i
\(751\) 41.7017 24.0765i 1.52172 0.878564i 0.522046 0.852918i \(-0.325169\pi\)
0.999671 0.0256461i \(-0.00816430\pi\)
\(752\) −17.1410 3.29628i −0.625069 0.120203i
\(753\) −35.7296 + 1.21826i −1.30206 + 0.0443958i
\(754\) 39.6097 8.62088i 1.44250 0.313954i
\(755\) 4.40614 0.160356
\(756\) 0 0
\(757\) −11.3923 −0.414062 −0.207031 0.978334i \(-0.566380\pi\)
−0.207031 + 0.978334i \(0.566380\pi\)
\(758\) −25.2529 + 5.49617i −0.917226 + 0.199630i
\(759\) −14.7443 + 0.502731i −0.535184 + 0.0182480i
\(760\) 5.46127 0.654700i 0.198101 0.0237485i
\(761\) −23.8583 + 13.7746i −0.864861 + 0.499328i −0.865637 0.500672i \(-0.833086\pi\)
0.000776011 1.00000i \(0.499753\pi\)
\(762\) 29.4321 7.46470i 1.06621 0.270417i
\(763\) 0 0
\(764\) −2.65862 1.89236i −0.0961853 0.0684632i
\(765\) 4.07321 0.278089i 0.147267 0.0100543i
\(766\) 2.14429 1.94970i 0.0774764 0.0704454i
\(767\) 12.1190 20.9907i 0.437591 0.757930i
\(768\) −4.89907 27.2763i −0.176780 0.984250i
\(769\) −5.83461 −0.210401 −0.105201 0.994451i \(-0.533549\pi\)
−0.105201 + 0.994451i \(0.533549\pi\)
\(770\) 0 0
\(771\) −7.08912 + 4.42166i −0.255308 + 0.159242i
\(772\) −2.87520 + 30.1767i −0.103481 + 1.08608i
\(773\) 41.1952 + 23.7841i 1.48169 + 0.855454i 0.999784 0.0207689i \(-0.00661143\pi\)
0.481906 + 0.876223i \(0.339945\pi\)
\(774\) −10.2579 + 2.97714i −0.368711 + 0.107011i
\(775\) −11.1499 + 6.43739i −0.400516 + 0.231238i
\(776\) −3.39144 4.52749i −0.121745 0.162527i
\(777\) 0 0
\(778\) −4.79829 + 15.0157i −0.172027 + 0.538340i
\(779\) 21.1149 + 36.5720i 0.756519 + 1.31033i
\(780\) 1.95857 2.96023i 0.0701282 0.105993i
\(781\) −23.2939 + 40.3463i −0.833522 + 1.44370i
\(782\) −11.7701 + 2.56171i −0.420899 + 0.0916067i
\(783\) −5.17240 50.4093i −0.184846 1.80148i
\(784\) 0 0
\(785\) 0.0758015i 0.00270547i
\(786\) −2.82659 + 2.75176i −0.100821 + 0.0981522i
\(787\) 42.2774 + 24.4089i 1.50703 + 0.870082i 0.999967 + 0.00817024i \(0.00260070\pi\)
0.507059 + 0.861911i \(0.330733\pi\)
\(788\) −17.6435 38.6125i −0.628522 1.37551i
\(789\) 11.7746 22.1008i 0.419185 0.786809i
\(790\) 1.87847 + 0.600267i 0.0668330 + 0.0213565i
\(791\) 0 0
\(792\) 32.5441 6.17381i 1.15640 0.219377i
\(793\) −20.7156 35.8805i −0.735632 1.27415i
\(794\) −8.34399 + 7.58678i −0.296117 + 0.269245i
\(795\) −1.03909 + 0.0354294i −0.0368527 + 0.00125655i
\(796\) 7.48000 + 0.712686i 0.265122 + 0.0252605i
\(797\) 12.7292i 0.450890i −0.974256 0.225445i \(-0.927616\pi\)
0.974256 0.225445i \(-0.0723837\pi\)
\(798\) 0 0
\(799\) 17.0351i 0.602660i
\(800\) 23.5569 14.3755i 0.832863 0.508250i
\(801\) 26.2423 17.6379i 0.927228 0.623204i
\(802\) −20.4340 22.4734i −0.721548 0.793564i
\(803\) 15.3778 + 26.6352i 0.542672 + 0.939936i
\(804\) −2.20981 0.134763i −0.0779339 0.00475273i
\(805\) 0 0
\(806\) −3.33912 + 10.4494i −0.117616 + 0.368065i
\(807\) −7.20354 3.83780i −0.253577 0.135097i
\(808\) 1.04202 + 8.69214i 0.0366581 + 0.305789i
\(809\) −23.0201 13.2906i −0.809342 0.467274i 0.0373853 0.999301i \(-0.488097\pi\)
−0.846727 + 0.532027i \(0.821430\pi\)
\(810\) −3.40350 2.84677i −0.119587 0.100025i
\(811\) 4.13977i 0.145367i 0.997355 + 0.0726835i \(0.0231563\pi\)
−0.997355 + 0.0726835i \(0.976844\pi\)
\(812\) 0 0
\(813\) −23.0351 + 14.3676i −0.807878 + 0.503894i
\(814\) 0.750357 + 3.44761i 0.0263000 + 0.120839i
\(815\) 0.913253 1.58180i 0.0319899 0.0554081i
\(816\) 25.2382 9.72220i 0.883515 0.340345i
\(817\) −7.02193 12.1623i −0.245666 0.425506i
\(818\) 49.7266 + 15.8902i 1.73865 + 0.555587i
\(819\) 0 0
\(820\) −4.30013 3.06077i −0.150167 0.106887i
\(821\) 25.5549 14.7541i 0.891871 0.514922i 0.0173172 0.999850i \(-0.494487\pi\)
0.874554 + 0.484928i \(0.161154\pi\)
\(822\) 2.90475 10.2868i 0.101315 0.358792i
\(823\) −10.4596 6.03884i −0.364598 0.210501i 0.306498 0.951871i \(-0.400843\pi\)
−0.671096 + 0.741371i \(0.734176\pi\)
\(824\) −18.8253 8.05453i −0.655811 0.280593i
\(825\) 17.4568 + 27.9880i 0.607768 + 0.974416i
\(826\) 0 0
\(827\) 11.9341 0.414989 0.207494 0.978236i \(-0.433469\pi\)
0.207494 + 0.978236i \(0.433469\pi\)
\(828\) 11.1578 + 6.84740i 0.387759 + 0.237964i
\(829\) 1.25218 2.16884i 0.0434900 0.0753269i −0.843461 0.537190i \(-0.819486\pi\)
0.886951 + 0.461863i \(0.152819\pi\)
\(830\) 2.96629 + 3.26235i 0.102962 + 0.113238i
\(831\) −13.8419 + 25.9812i −0.480171 + 0.901279i
\(832\) 6.61057 22.5655i 0.229180 0.782319i
\(833\) 0 0
\(834\) 39.9305 10.1274i 1.38268 0.350682i
\(835\) 3.46410 2.00000i 0.119880 0.0692129i
\(836\) 18.1008 + 39.6135i 0.626029 + 1.37006i
\(837\) 12.5138 + 5.60857i 0.432540 + 0.193861i
\(838\) −8.89555 40.8717i −0.307292 1.41189i
\(839\) 1.64607 0.0568288 0.0284144 0.999596i \(-0.490954\pi\)
0.0284144 + 0.999596i \(0.490954\pi\)
\(840\) 0 0
\(841\) −66.1054 −2.27950
\(842\) −11.0771 50.8953i −0.381743 1.75397i
\(843\) 0.339866 + 9.96774i 0.0117056 + 0.343307i
\(844\) 8.17878 + 17.8992i 0.281525 + 0.616116i
\(845\) −1.31658 + 0.760131i −0.0452919 + 0.0261493i
\(846\) −12.8179 + 13.3591i −0.440690 + 0.459296i
\(847\) 0 0
\(848\) −6.50776 + 2.25539i −0.223477 + 0.0774503i
\(849\) 8.52727 + 4.54304i 0.292655 + 0.155917i
\(850\) 18.1187 + 19.9271i 0.621467 + 0.683494i
\(851\) −0.697224 + 1.20763i −0.0239005 + 0.0413969i
\(852\) 36.9941 18.4528i 1.26740 0.632182i
\(853\) −15.1311 −0.518077 −0.259039 0.965867i \(-0.583406\pi\)
−0.259039 + 0.965867i \(0.583406\pi\)
\(854\) 0 0
\(855\) 2.56610 5.23937i 0.0877587 0.179183i
\(856\) 12.2543 28.6411i 0.418842 0.978931i
\(857\) −42.3681 24.4612i −1.44727 0.835579i −0.448947 0.893558i \(-0.648201\pi\)
−0.998318 + 0.0579792i \(0.981534\pi\)
\(858\) 27.0480 + 7.63773i 0.923402 + 0.260748i
\(859\) −13.9058 + 8.02854i −0.474461 + 0.273930i −0.718105 0.695935i \(-0.754990\pi\)
0.243644 + 0.969865i \(0.421657\pi\)
\(860\) 1.43005 + 1.01788i 0.0487641 + 0.0347095i
\(861\) 0 0
\(862\) −6.30013 2.01321i −0.214583 0.0685703i
\(863\) −7.45171 12.9067i −0.253659 0.439350i 0.710871 0.703322i \(-0.248301\pi\)
−0.964530 + 0.263972i \(0.914967\pi\)
\(864\) −27.1074 11.3660i −0.922214 0.386680i
\(865\) −3.69617 + 6.40196i −0.125674 + 0.217673i
\(866\) 4.97944 + 22.8787i 0.169208 + 0.777449i
\(867\) −1.61386 2.58746i −0.0548096 0.0878746i
\(868\) 0 0
\(869\) 15.6151i 0.529704i
\(870\) −5.96696 + 5.80900i −0.202299 + 0.196944i
\(871\) −1.62680 0.939235i −0.0551221 0.0318248i
\(872\) −3.93090 + 0.471239i −0.133117 + 0.0159582i
\(873\) −5.98607 + 0.408684i −0.202598 + 0.0138319i
\(874\) −5.23937 + 16.3960i −0.177224 + 0.554604i
\(875\) 0 0
\(876\) 1.66128 27.2412i 0.0561295 0.920395i
\(877\) −5.93923 10.2871i −0.200554 0.347369i 0.748153 0.663526i \(-0.230941\pi\)
−0.948707 + 0.316157i \(0.897607\pi\)
\(878\) 25.1917 + 27.7060i 0.850179 + 0.935033i
\(879\) −1.40304 41.1490i −0.0473234 1.38792i
\(880\) −4.11547 3.56309i −0.138733 0.120112i
\(881\) 36.4995i 1.22970i −0.788644 0.614850i \(-0.789217\pi\)
0.788644 0.614850i \(-0.210783\pi\)
\(882\) 0 0
\(883\) 31.1178i 1.04720i −0.851965 0.523599i \(-0.824589\pi\)
0.851965 0.523599i \(-0.175411\pi\)
\(884\) 22.8447 + 2.17662i 0.768350 + 0.0732075i
\(885\) 0.169677 + 4.97637i 0.00570364 + 0.167279i
\(886\) −4.81424 + 4.37735i −0.161738 + 0.147060i
\(887\) 28.4624 + 49.2983i 0.955674 + 1.65528i 0.732819 + 0.680424i \(0.238204\pi\)
0.222855 + 0.974852i \(0.428462\pi\)
\(888\) 1.13279 2.91884i 0.0380141 0.0979497i
\(889\) 0 0
\(890\) −4.94960 1.58165i −0.165911 0.0530170i
\(891\) 13.2686 32.5320i 0.444514 1.08986i
\(892\) 19.0460 + 41.6820i 0.637706 + 1.39562i
\(893\) −21.0813 12.1713i −0.705459 0.407297i
\(894\) −13.0893 13.4452i −0.437771 0.449674i
\(895\) 0.631717i 0.0211160i
\(896\) 0 0
\(897\) 5.87847 + 9.42477i 0.196276 + 0.314684i
\(898\) −23.5048 + 5.11571i −0.784365 + 0.170714i
\(899\) 12.8685 22.2889i 0.429189 0.743378i
\(900\) 0.785102 29.2603i 0.0261701 0.975343i
\(901\) −3.36090 5.82125i −0.111968 0.193934i
\(902\) 12.7215 39.8107i 0.423581 1.32555i
\(903\) 0 0
\(904\) −19.9938 + 14.9769i −0.664984 + 0.498124i
\(905\) 2.27623 1.31418i 0.0756643 0.0436848i
\(906\) 8.41323 29.7943i 0.279511 0.989848i
\(907\) 5.81050 + 3.35469i 0.192934 + 0.111391i 0.593356 0.804940i \(-0.297803\pi\)
−0.400421 + 0.916331i \(0.631136\pi\)
\(908\) 2.56665 26.9383i 0.0851773 0.893979i
\(909\) 8.33897 + 4.08419i 0.276586 + 0.135464i
\(910\) 0 0
\(911\) 50.1275 1.66080 0.830399 0.557169i \(-0.188112\pi\)
0.830399 + 0.557169i \(0.188112\pi\)
\(912\) 6.00085 38.1791i 0.198708 1.26424i
\(913\) −17.4568 + 30.2361i −0.577736 + 1.00067i
\(914\) 16.1464 14.6811i 0.534076 0.485609i
\(915\) 7.51174 + 4.00200i 0.248330 + 0.132302i
\(916\) 23.9458 + 17.0443i 0.791193 + 0.563158i
\(917\) 0 0
\(918\) 5.89710 28.0740i 0.194633 0.926580i
\(919\) −14.7529 + 8.51757i −0.486652 + 0.280969i −0.723185 0.690655i \(-0.757322\pi\)
0.236532 + 0.971624i \(0.423989\pi\)
\(920\) −0.256077 2.13610i −0.00844260 0.0704250i
\(921\) −0.218376 6.40464i −0.00719575 0.211040i
\(922\) 46.1216 10.0382i 1.51893 0.330589i
\(923\) 35.0771 1.15458
\(924\) 0 0
\(925\) 3.11784 0.102514
\(926\) 36.5900 7.96364i 1.20242 0.261702i
\(927\) −18.0251 + 12.1150i −0.592022 + 0.397907i
\(928\) −26.4135 + 48.4324i −0.867065 + 1.58987i
\(929\) 20.2721 11.7041i 0.665105 0.383999i −0.129114 0.991630i \(-0.541213\pi\)
0.794219 + 0.607631i \(0.207880\pi\)
\(930\) −0.554023 2.18442i −0.0181671 0.0716301i
\(931\) 0 0
\(932\) 19.9365 28.0092i 0.653040 0.917470i
\(933\) −6.17706 + 11.5943i −0.202228 + 0.379581i
\(934\) 19.4529 17.6875i 0.636517 0.578753i
\(935\) 2.65631 4.60087i 0.0868707 0.150464i
\(936\) −16.2772 18.8962i −0.532038 0.617642i
\(937\) −48.5929 −1.58746 −0.793730 0.608270i \(-0.791864\pi\)
−0.793730 + 0.608270i \(0.791864\pi\)
\(938\) 0 0
\(939\) −14.3320 22.9781i −0.467707 0.749861i
\(940\) 3.02881 + 0.288582i 0.0987889 + 0.00941249i
\(941\) 12.6540 + 7.30579i 0.412509 + 0.238162i 0.691867 0.722025i \(-0.256788\pi\)
−0.279358 + 0.960187i \(0.590122\pi\)
\(942\) 0.512569 + 0.144738i 0.0167004 + 0.00471582i
\(943\) 14.3046 8.25879i 0.465823 0.268943i
\(944\) 10.8014 + 31.1668i 0.351556 + 1.01439i
\(945\) 0 0
\(946\) −4.23065 + 13.2394i −0.137550 + 0.430449i
\(947\) −15.7125 27.2148i −0.510587 0.884362i −0.999925 0.0122681i \(-0.996095\pi\)
0.489338 0.872094i \(-0.337238\pi\)
\(948\) 7.64581 11.5560i 0.248324 0.375322i
\(949\) 11.5783 20.0543i 0.375849 0.650989i
\(950\) 37.6057 8.18470i 1.22009 0.265547i
\(951\) −20.4177 + 12.7350i −0.662088 + 0.412961i
\(952\) 0 0
\(953\) 14.0113i 0.453872i 0.973910 + 0.226936i \(0.0728708\pi\)
−0.973910 + 0.226936i \(0.927129\pi\)
\(954\) −1.74450 + 7.09395i −0.0564802 + 0.229675i
\(955\) 0.492609 + 0.284408i 0.0159405 + 0.00920323i
\(956\) 26.4380 12.0805i 0.855065 0.390710i
\(957\) −58.1958 31.0047i −1.88120 1.00224i
\(958\) −55.0666 17.5966i −1.77912 0.568520i
\(959\) 0 0
\(960\) 1.30104 + 4.65200i 0.0419909 + 0.150143i
\(961\) −12.0176 20.8150i −0.387664 0.671453i
\(962\) 1.96554 1.78717i 0.0633715 0.0576205i
\(963\) −18.4318 27.4236i −0.593958 0.883713i
\(964\) −3.56483 + 37.4147i −0.114815 + 1.20505i
\(965\) 5.28380i 0.170091i
\(966\) 0 0
\(967\) 35.9876i 1.15728i 0.815582 + 0.578641i \(0.196417\pi\)
−0.815582 + 0.578641i \(0.803583\pi\)
\(968\) 4.71672 11.0241i 0.151601 0.354328i
\(969\) 37.6961 1.28531i 1.21097 0.0412901i
\(970\) 0.663335 + 0.729540i 0.0212984 + 0.0234241i
\(971\) −24.1922 41.9022i −0.776365 1.34470i −0.934024 0.357210i \(-0.883728\pi\)
0.157659 0.987494i \(-0.449605\pi\)
\(972\) −25.7486 + 17.5787i −0.825886 + 0.563837i
\(973\) 0 0
\(974\) 9.22546 28.8701i 0.295603 0.925057i
\(975\) 11.6778 21.9191i 0.373988 0.701974i
\(976\) 55.3691 + 10.6477i 1.77232 + 0.340824i
\(977\) 32.6000 + 18.8216i 1.04296 + 0.602156i 0.920672 0.390338i \(-0.127642\pi\)
0.122293 + 0.992494i \(0.460975\pi\)
\(978\) −8.95232 9.19575i −0.286264 0.294048i
\(979\) 41.1443i 1.31498i
\(980\) 0 0
\(981\) −1.84702 + 3.77118i −0.0589708 + 0.120405i
\(982\) 0.490732 + 2.25473i 0.0156599 + 0.0719514i
\(983\) −2.67750 + 4.63756i −0.0853989 + 0.147915i −0.905561 0.424216i \(-0.860550\pi\)
0.820162 + 0.572131i \(0.193883\pi\)
\(984\) −28.9077 + 23.2331i −0.921543 + 0.740645i
\(985\) 3.69987 + 6.40836i 0.117888 + 0.204187i
\(986\) −51.2847 16.3881i −1.63324 0.521903i
\(987\) 0 0
\(988\) 19.0157 26.7156i 0.604971 0.849936i
\(989\) −4.75713 + 2.74653i −0.151268 + 0.0873345i
\(990\) −5.54499 + 1.60933i −0.176231 + 0.0511477i
\(991\) −44.1913 25.5139i −1.40378 0.810475i −0.409005 0.912532i \(-0.634124\pi\)
−0.994779 + 0.102057i \(0.967458\pi\)
\(992\) −7.77669 12.7436i −0.246910 0.404609i
\(993\) 46.7276 29.1452i 1.48286 0.924895i
\(994\) 0 0
\(995\) −1.30971 −0.0415207
\(996\) 27.7239 13.8288i 0.878466 0.438182i
\(997\) 26.9653 46.7052i 0.853998 1.47917i −0.0235729 0.999722i \(-0.507504\pi\)
0.877571 0.479446i \(-0.159162\pi\)
\(998\) 8.45044 + 9.29385i 0.267494 + 0.294192i
\(999\) −1.94532 2.69145i −0.0615471 0.0851538i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.n.f.263.6 24
3.2 odd 2 inner 588.2.n.f.263.7 24
4.3 odd 2 inner 588.2.n.f.263.10 24
7.2 even 3 inner 588.2.n.f.275.3 24
7.3 odd 6 588.2.e.c.491.12 12
7.4 even 3 84.2.e.a.71.12 yes 12
7.5 odd 6 588.2.n.g.275.3 24
7.6 odd 2 588.2.n.g.263.6 24
12.11 even 2 inner 588.2.n.f.263.3 24
21.2 odd 6 inner 588.2.n.f.275.10 24
21.5 even 6 588.2.n.g.275.10 24
21.11 odd 6 84.2.e.a.71.1 12
21.17 even 6 588.2.e.c.491.1 12
21.20 even 2 588.2.n.g.263.7 24
28.3 even 6 588.2.e.c.491.2 12
28.11 odd 6 84.2.e.a.71.2 yes 12
28.19 even 6 588.2.n.g.275.7 24
28.23 odd 6 inner 588.2.n.f.275.7 24
28.27 even 2 588.2.n.g.263.10 24
56.11 odd 6 1344.2.h.h.575.3 12
56.53 even 6 1344.2.h.h.575.10 12
84.11 even 6 84.2.e.a.71.11 yes 12
84.23 even 6 inner 588.2.n.f.275.6 24
84.47 odd 6 588.2.n.g.275.6 24
84.59 odd 6 588.2.e.c.491.11 12
84.83 odd 2 588.2.n.g.263.3 24
168.11 even 6 1344.2.h.h.575.9 12
168.53 odd 6 1344.2.h.h.575.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.e.a.71.1 12 21.11 odd 6
84.2.e.a.71.2 yes 12 28.11 odd 6
84.2.e.a.71.11 yes 12 84.11 even 6
84.2.e.a.71.12 yes 12 7.4 even 3
588.2.e.c.491.1 12 21.17 even 6
588.2.e.c.491.2 12 28.3 even 6
588.2.e.c.491.11 12 84.59 odd 6
588.2.e.c.491.12 12 7.3 odd 6
588.2.n.f.263.3 24 12.11 even 2 inner
588.2.n.f.263.6 24 1.1 even 1 trivial
588.2.n.f.263.7 24 3.2 odd 2 inner
588.2.n.f.263.10 24 4.3 odd 2 inner
588.2.n.f.275.3 24 7.2 even 3 inner
588.2.n.f.275.6 24 84.23 even 6 inner
588.2.n.f.275.7 24 28.23 odd 6 inner
588.2.n.f.275.10 24 21.2 odd 6 inner
588.2.n.g.263.3 24 84.83 odd 2
588.2.n.g.263.6 24 7.6 odd 2
588.2.n.g.263.7 24 21.20 even 2
588.2.n.g.263.10 24 28.27 even 2
588.2.n.g.275.3 24 7.5 odd 6
588.2.n.g.275.6 24 84.47 odd 6
588.2.n.g.275.7 24 28.19 even 6
588.2.n.g.275.10 24 21.5 even 6
1344.2.h.h.575.3 12 56.11 odd 6
1344.2.h.h.575.4 12 168.53 odd 6
1344.2.h.h.575.9 12 168.11 even 6
1344.2.h.h.575.10 12 56.53 even 6