Properties

Label 588.2.n.g.263.3
Level $588$
Weight $2$
Character 588.263
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [588,2,Mod(263,588)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(588, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("588.263");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 263.3
Character \(\chi\) \(=\) 588.263
Dual form 588.2.n.g.275.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04635 - 0.951394i) q^{2} +(0.814407 + 1.52864i) q^{3} +(0.189699 + 1.99098i) q^{4} +(0.301907 - 0.174306i) q^{5} +(0.602184 - 2.37432i) q^{6} +(1.69572 - 2.26374i) q^{8} +(-1.67348 + 2.48987i) q^{9} +(-0.481734 - 0.104847i) q^{10} +(1.95188 - 3.38076i) q^{11} +(-2.88901 + 1.91145i) q^{12} +2.93923 q^{13} +(0.512326 + 0.319551i) q^{15} +(-3.92803 + 0.755373i) q^{16} +(3.38076 + 1.95188i) q^{17} +(4.11990 - 1.01314i) q^{18} +(4.83098 - 2.78917i) q^{19} +(0.404312 + 0.568026i) q^{20} +(-5.25879 + 1.68045i) q^{22} +(-1.09094 - 1.88957i) q^{23} +(4.84146 + 0.748534i) q^{24} +(-2.43923 + 4.22488i) q^{25} +(-3.07547 - 2.79637i) q^{26} +(-5.16901 - 0.530383i) q^{27} +9.75220i q^{29} +(-0.232054 - 0.821786i) q^{30} +(2.28553 + 1.31955i) q^{31} +(4.82875 + 2.94672i) q^{32} +(6.75759 + 0.230411i) q^{33} +(-1.68045 - 5.25879i) q^{34} +(-5.27475 - 2.85955i) q^{36} +(-0.319551 - 0.553478i) q^{37} +(-7.70850 - 1.67772i) q^{38} +(2.39373 + 4.49303i) q^{39} +(0.117365 - 0.979014i) q^{40} +7.57031i q^{41} +2.51757i q^{43} +(7.10130 + 3.24484i) q^{44} +(-0.0712361 + 1.04341i) q^{45} +(-0.656216 + 3.01507i) q^{46} +(2.18189 + 3.77914i) q^{47} +(-4.35371 - 5.38936i) q^{48} +(6.57182 - 2.10003i) q^{50} +(-0.230411 + 6.75759i) q^{51} +(0.557569 + 5.85197i) q^{52} +(1.49119 + 0.860938i) q^{53} +(4.90400 + 5.47273i) q^{54} -1.36090i q^{55} +(8.19802 + 5.11331i) q^{57} +(9.27819 - 10.2042i) q^{58} +(4.12318 - 7.14155i) q^{59} +(-0.539033 + 1.08065i) q^{60} +(-7.04795 - 12.2074i) q^{61} +(-1.13605 - 3.55515i) q^{62} +(-2.24908 - 7.67735i) q^{64} +(0.887375 - 0.512326i) q^{65} +(-6.85160 - 6.67022i) q^{66} +(-0.553478 - 0.319551i) q^{67} +(-3.24484 + 7.10130i) q^{68} +(2.00000 - 3.20654i) q^{69} -11.9341 q^{71} +(2.79868 + 8.01046i) q^{72} +(3.93923 - 6.82295i) q^{73} +(-0.192214 + 0.883151i) q^{74} +(-8.44485 - 0.287941i) q^{75} +(6.46962 + 9.08930i) q^{76} +(1.76996 - 6.97867i) q^{78} +(3.46410 - 2.00000i) q^{79} +(-1.05423 + 0.912731i) q^{80} +(-3.39892 - 8.33351i) q^{81} +(7.20235 - 7.92120i) q^{82} +8.94358 q^{83} +1.36090 q^{85} +(2.39520 - 2.63426i) q^{86} +(-14.9076 + 7.94226i) q^{87} +(-4.34333 - 10.1514i) q^{88} +(9.12760 - 5.26982i) q^{89} +(1.06723 - 1.02400i) q^{90} +(3.55515 - 2.53050i) q^{92} +(-0.155767 + 4.56840i) q^{93} +(1.31243 - 6.03014i) q^{94} +(0.972337 - 1.68414i) q^{95} +(-0.571901 + 9.78125i) q^{96} +2.00000 q^{97} +(5.15121 + 10.5176i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{4} + 12 q^{6} + 4 q^{9} + 4 q^{10} - 6 q^{12} - 4 q^{16} + 8 q^{18} - 32 q^{22} + 2 q^{24} + 12 q^{25} - 20 q^{30} - 16 q^{33} - 64 q^{34} - 40 q^{36} + 16 q^{37} + 20 q^{40} + 24 q^{45} - 92 q^{48}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04635 0.951394i −0.739882 0.672737i
\(3\) 0.814407 + 1.52864i 0.470198 + 0.882561i
\(4\) 0.189699 + 1.99098i 0.0948493 + 0.995492i
\(5\) 0.301907 0.174306i 0.135017 0.0779520i −0.430970 0.902366i \(-0.641829\pi\)
0.565987 + 0.824414i \(0.308495\pi\)
\(6\) 0.602184 2.37432i 0.245841 0.969310i
\(7\) 0 0
\(8\) 1.69572 2.26374i 0.599527 0.800354i
\(9\) −1.67348 + 2.48987i −0.557827 + 0.829957i
\(10\) −0.481734 0.104847i −0.152338 0.0331556i
\(11\) 1.95188 3.38076i 0.588514 1.01934i −0.405913 0.913912i \(-0.633046\pi\)
0.994427 0.105425i \(-0.0336203\pi\)
\(12\) −2.88901 + 1.91145i −0.833984 + 0.551789i
\(13\) 2.93923 0.815197 0.407599 0.913161i \(-0.366366\pi\)
0.407599 + 0.913161i \(0.366366\pi\)
\(14\) 0 0
\(15\) 0.512326 + 0.319551i 0.132282 + 0.0825077i
\(16\) −3.92803 + 0.755373i −0.982007 + 0.188843i
\(17\) 3.38076 + 1.95188i 0.819954 + 0.473401i 0.850401 0.526136i \(-0.176360\pi\)
−0.0304464 + 0.999536i \(0.509693\pi\)
\(18\) 4.11990 1.01314i 0.971069 0.238799i
\(19\) 4.83098 2.78917i 1.10830 0.639879i 0.169914 0.985459i \(-0.445651\pi\)
0.938389 + 0.345580i \(0.112318\pi\)
\(20\) 0.404312 + 0.568026i 0.0904068 + 0.127014i
\(21\) 0 0
\(22\) −5.25879 + 1.68045i −1.12118 + 0.358273i
\(23\) −1.09094 1.88957i −0.227477 0.394003i 0.729582 0.683893i \(-0.239714\pi\)
−0.957060 + 0.289890i \(0.906381\pi\)
\(24\) 4.84146 + 0.748534i 0.988258 + 0.152794i
\(25\) −2.43923 + 4.22488i −0.487847 + 0.844976i
\(26\) −3.07547 2.79637i −0.603149 0.548413i
\(27\) −5.16901 0.530383i −0.994777 0.102072i
\(28\) 0 0
\(29\) 9.75220i 1.81094i 0.424412 + 0.905469i \(0.360481\pi\)
−0.424412 + 0.905469i \(0.639519\pi\)
\(30\) −0.232054 0.821786i −0.0423671 0.150037i
\(31\) 2.28553 + 1.31955i 0.410493 + 0.236998i 0.691002 0.722853i \(-0.257170\pi\)
−0.280508 + 0.959852i \(0.590503\pi\)
\(32\) 4.82875 + 2.94672i 0.853611 + 0.520911i
\(33\) 6.75759 + 0.230411i 1.17635 + 0.0401094i
\(34\) −1.68045 5.25879i −0.288195 0.901874i
\(35\) 0 0
\(36\) −5.27475 2.85955i −0.879125 0.476592i
\(37\) −0.319551 0.553478i −0.0525338 0.0909913i 0.838563 0.544805i \(-0.183396\pi\)
−0.891096 + 0.453814i \(0.850063\pi\)
\(38\) −7.70850 1.67772i −1.25048 0.272162i
\(39\) 2.39373 + 4.49303i 0.383304 + 0.719461i
\(40\) 0.117365 0.979014i 0.0185570 0.154796i
\(41\) 7.57031i 1.18228i 0.806567 + 0.591142i \(0.201323\pi\)
−0.806567 + 0.591142i \(0.798677\pi\)
\(42\) 0 0
\(43\) 2.51757i 0.383926i 0.981402 + 0.191963i \(0.0614854\pi\)
−0.981402 + 0.191963i \(0.938515\pi\)
\(44\) 7.10130 + 3.24484i 1.07056 + 0.489178i
\(45\) −0.0712361 + 1.04341i −0.0106193 + 0.155542i
\(46\) −0.656216 + 3.01507i −0.0967538 + 0.444548i
\(47\) 2.18189 + 3.77914i 0.318261 + 0.551244i 0.980125 0.198379i \(-0.0635678\pi\)
−0.661864 + 0.749624i \(0.730235\pi\)
\(48\) −4.35371 5.38936i −0.628404 0.777887i
\(49\) 0 0
\(50\) 6.57182 2.10003i 0.929396 0.296989i
\(51\) −0.230411 + 6.75759i −0.0322640 + 0.946252i
\(52\) 0.557569 + 5.85197i 0.0773208 + 0.811522i
\(53\) 1.49119 + 0.860938i 0.204830 + 0.118259i 0.598907 0.800819i \(-0.295602\pi\)
−0.394076 + 0.919078i \(0.628935\pi\)
\(54\) 4.90400 + 5.47273i 0.667349 + 0.744745i
\(55\) 1.36090i 0.183504i
\(56\) 0 0
\(57\) 8.19802 + 5.11331i 1.08585 + 0.677275i
\(58\) 9.27819 10.2042i 1.21829 1.33988i
\(59\) 4.12318 7.14155i 0.536792 0.929751i −0.462282 0.886733i \(-0.652969\pi\)
0.999074 0.0430181i \(-0.0136973\pi\)
\(60\) −0.539033 + 1.08065i −0.0695888 + 0.139511i
\(61\) −7.04795 12.2074i −0.902398 1.56300i −0.824372 0.566048i \(-0.808472\pi\)
−0.0780257 0.996951i \(-0.524862\pi\)
\(62\) −1.13605 3.55515i −0.144279 0.451505i
\(63\) 0 0
\(64\) −2.24908 7.67735i −0.281135 0.959668i
\(65\) 0.887375 0.512326i 0.110065 0.0635462i
\(66\) −6.85160 6.67022i −0.843373 0.821047i
\(67\) −0.553478 0.319551i −0.0676181 0.0390393i 0.465810 0.884885i \(-0.345763\pi\)
−0.533428 + 0.845846i \(0.679096\pi\)
\(68\) −3.24484 + 7.10130i −0.393495 + 0.861159i
\(69\) 2.00000 3.20654i 0.240772 0.386022i
\(70\) 0 0
\(71\) −11.9341 −1.41632 −0.708158 0.706054i \(-0.750474\pi\)
−0.708158 + 0.706054i \(0.750474\pi\)
\(72\) 2.79868 + 8.01046i 0.329827 + 0.944041i
\(73\) 3.93923 6.82295i 0.461053 0.798566i −0.537961 0.842970i \(-0.680805\pi\)
0.999014 + 0.0444032i \(0.0141386\pi\)
\(74\) −0.192214 + 0.883151i −0.0223444 + 0.102664i
\(75\) −8.44485 0.287941i −0.975127 0.0332485i
\(76\) 6.46962 + 9.08930i 0.742116 + 1.04261i
\(77\) 0 0
\(78\) 1.76996 6.97867i 0.200409 0.790179i
\(79\) 3.46410 2.00000i 0.389742 0.225018i −0.292306 0.956325i \(-0.594423\pi\)
0.682048 + 0.731307i \(0.261089\pi\)
\(80\) −1.05423 + 0.912731i −0.117867 + 0.102046i
\(81\) −3.39892 8.33351i −0.377657 0.925945i
\(82\) 7.20235 7.92120i 0.795367 0.874750i
\(83\) 8.94358 0.981685 0.490843 0.871248i \(-0.336689\pi\)
0.490843 + 0.871248i \(0.336689\pi\)
\(84\) 0 0
\(85\) 1.36090 0.147610
\(86\) 2.39520 2.63426i 0.258281 0.284060i
\(87\) −14.9076 + 7.94226i −1.59826 + 0.851500i
\(88\) −4.34333 10.1514i −0.463001 1.08214i
\(89\) 9.12760 5.26982i 0.967523 0.558600i 0.0690430 0.997614i \(-0.478005\pi\)
0.898480 + 0.439014i \(0.144672\pi\)
\(90\) 1.06723 1.02400i 0.112496 0.107939i
\(91\) 0 0
\(92\) 3.55515 2.53050i 0.370650 0.263823i
\(93\) −0.155767 + 4.56840i −0.0161523 + 0.473721i
\(94\) 1.31243 6.03014i 0.135367 0.621961i
\(95\) 0.972337 1.68414i 0.0997597 0.172789i
\(96\) −0.571901 + 9.78125i −0.0583694 + 0.998295i
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 5.15121 + 10.5176i 0.517716 + 1.05706i
\(100\) −8.87438 4.05502i −0.887438 0.405502i
\(101\) 2.68047 + 1.54757i 0.266717 + 0.153989i 0.627395 0.778701i \(-0.284121\pi\)
−0.360678 + 0.932690i \(0.617455\pi\)
\(102\) 6.67022 6.85160i 0.660450 0.678409i
\(103\) −6.26948 + 3.61968i −0.617750 + 0.356658i −0.775992 0.630742i \(-0.782751\pi\)
0.158243 + 0.987400i \(0.449417\pi\)
\(104\) 4.98412 6.65368i 0.488733 0.652447i
\(105\) 0 0
\(106\) −0.741214 2.31955i −0.0719931 0.225295i
\(107\) −5.50703 9.53846i −0.532385 0.922118i −0.999285 0.0378077i \(-0.987963\pi\)
0.466900 0.884310i \(-0.345371\pi\)
\(108\) 0.0754286 10.3920i 0.00725812 0.999974i
\(109\) −0.699867 + 1.21220i −0.0670351 + 0.116108i −0.897595 0.440821i \(-0.854687\pi\)
0.830560 + 0.556929i \(0.188021\pi\)
\(110\) −1.29475 + 1.42398i −0.123450 + 0.135771i
\(111\) 0.585825 0.939235i 0.0556040 0.0891482i
\(112\) 0 0
\(113\) 8.83218i 0.830862i −0.909625 0.415431i \(-0.863631\pi\)
0.909625 0.415431i \(-0.136369\pi\)
\(114\) −3.71323 13.1499i −0.347776 1.23160i
\(115\) −0.658727 0.380316i −0.0614266 0.0354646i
\(116\) −19.4165 + 1.84998i −1.80277 + 0.171766i
\(117\) −4.91876 + 7.31832i −0.454739 + 0.676579i
\(118\) −11.1087 + 3.54980i −1.02264 + 0.326786i
\(119\) 0 0
\(120\) 1.59214 0.617907i 0.145342 0.0564069i
\(121\) −2.11968 3.67140i −0.192699 0.333764i
\(122\) −4.23943 + 19.4786i −0.383820 + 1.76351i
\(123\) −11.5723 + 6.16532i −1.04344 + 0.555908i
\(124\) −2.19364 + 4.80077i −0.196995 + 0.431122i
\(125\) 3.44375i 0.308019i
\(126\) 0 0
\(127\) 12.3960i 1.09997i −0.835174 0.549985i \(-0.814633\pi\)
0.835174 0.549985i \(-0.185367\pi\)
\(128\) −4.95086 + 10.1730i −0.437598 + 0.899171i
\(129\) −3.84846 + 2.05033i −0.338838 + 0.180521i
\(130\) −1.41593 0.308171i −0.124185 0.0270283i
\(131\) 0.805238 + 1.39471i 0.0703540 + 0.121857i 0.899056 0.437833i \(-0.144254\pi\)
−0.828702 + 0.559689i \(0.810920\pi\)
\(132\) 0.823160 + 13.4980i 0.0716469 + 1.17485i
\(133\) 0 0
\(134\) 0.275113 + 0.860938i 0.0237662 + 0.0743737i
\(135\) −1.65301 + 0.740864i −0.142268 + 0.0637634i
\(136\) 10.1514 4.34333i 0.870473 0.372437i
\(137\) −3.77914 2.18189i −0.322874 0.186411i 0.329799 0.944051i \(-0.393019\pi\)
−0.652673 + 0.757640i \(0.726352\pi\)
\(138\) −5.14338 + 1.45238i −0.437834 + 0.123634i
\(139\) 16.8177i 1.42646i 0.700931 + 0.713230i \(0.252768\pi\)
−0.700931 + 0.713230i \(0.747232\pi\)
\(140\) 0 0
\(141\) −4.00000 + 6.41308i −0.336861 + 0.540079i
\(142\) 12.4872 + 11.3540i 1.04791 + 0.952808i
\(143\) 5.73704 9.93684i 0.479755 0.830961i
\(144\) 4.69270 11.0444i 0.391059 0.920366i
\(145\) 1.69987 + 2.94426i 0.141166 + 0.244507i
\(146\) −10.6131 + 3.39144i −0.878350 + 0.280677i
\(147\) 0 0
\(148\) 1.04135 0.741214i 0.0855982 0.0609274i
\(149\) −6.63421 + 3.83026i −0.543496 + 0.313788i −0.746495 0.665391i \(-0.768265\pi\)
0.202999 + 0.979179i \(0.434931\pi\)
\(150\) 8.56233 + 8.33567i 0.699111 + 0.680604i
\(151\) −10.9458 6.31955i −0.890755 0.514278i −0.0165658 0.999863i \(-0.505273\pi\)
−0.874189 + 0.485585i \(0.838607\pi\)
\(152\) 1.87802 15.6658i 0.152328 1.27066i
\(153\) −10.5176 + 5.15121i −0.850295 + 0.416451i
\(154\) 0 0
\(155\) 0.920022 0.0738980
\(156\) −8.49147 + 5.61821i −0.679861 + 0.449816i
\(157\) 0.108719 0.188307i 0.00867672 0.0150285i −0.861654 0.507495i \(-0.830571\pi\)
0.870331 + 0.492467i \(0.163905\pi\)
\(158\) −5.52745 1.20302i −0.439741 0.0957075i
\(159\) −0.101630 + 2.98064i −0.00805978 + 0.236381i
\(160\) 1.97146 + 0.0479539i 0.155858 + 0.00379109i
\(161\) 0 0
\(162\) −4.37199 + 11.9535i −0.343496 + 0.939154i
\(163\) −4.53743 + 2.61968i −0.355399 + 0.205189i −0.667060 0.745004i \(-0.732448\pi\)
0.311662 + 0.950193i \(0.399114\pi\)
\(164\) −15.0724 + 1.43608i −1.17695 + 0.112139i
\(165\) 2.08032 1.10833i 0.161953 0.0862830i
\(166\) −9.35812 8.50887i −0.726331 0.660416i
\(167\) −11.4741 −0.887891 −0.443945 0.896054i \(-0.646422\pi\)
−0.443945 + 0.896054i \(0.646422\pi\)
\(168\) 0 0
\(169\) −4.36090 −0.335454
\(170\) −1.42398 1.29475i −0.109214 0.0993028i
\(171\) −1.13989 + 16.6961i −0.0871695 + 1.27679i
\(172\) −5.01244 + 0.477580i −0.382195 + 0.0364151i
\(173\) −18.3642 + 10.6025i −1.39620 + 0.806097i −0.993992 0.109451i \(-0.965091\pi\)
−0.402208 + 0.915548i \(0.631757\pi\)
\(174\) 23.1548 + 5.87262i 1.75536 + 0.445202i
\(175\) 0 0
\(176\) −5.11331 + 14.7541i −0.385430 + 1.11213i
\(177\) 14.2748 + 0.486723i 1.07296 + 0.0365843i
\(178\) −14.5643 3.16986i −1.09164 0.237591i
\(179\) 0.906046 1.56932i 0.0677211 0.117296i −0.830177 0.557500i \(-0.811761\pi\)
0.897898 + 0.440204i \(0.145094\pi\)
\(180\) −2.09092 + 0.0561028i −0.155848 + 0.00418166i
\(181\) −7.53950 −0.560407 −0.280203 0.959941i \(-0.590402\pi\)
−0.280203 + 0.959941i \(0.590402\pi\)
\(182\) 0 0
\(183\) 12.9208 20.7156i 0.955136 1.53134i
\(184\) −6.12744 0.734561i −0.451721 0.0541526i
\(185\) −0.192949 0.111399i −0.0141859 0.00819023i
\(186\) 4.50934 4.63195i 0.330641 0.339631i
\(187\) 13.1977 7.61968i 0.965110 0.557206i
\(188\) −7.11030 + 5.06100i −0.518572 + 0.369111i
\(189\) 0 0
\(190\) −2.61968 + 0.837122i −0.190052 + 0.0607312i
\(191\) 0.815830 + 1.41306i 0.0590314 + 0.102245i 0.894031 0.448005i \(-0.147865\pi\)
−0.834999 + 0.550251i \(0.814532\pi\)
\(192\) 9.90424 9.69052i 0.714777 0.699353i
\(193\) 7.57834 13.1261i 0.545501 0.944835i −0.453075 0.891473i \(-0.649673\pi\)
0.998575 0.0533622i \(-0.0169938\pi\)
\(194\) −2.09270 1.90279i −0.150247 0.136612i
\(195\) 1.50585 + 0.939235i 0.107836 + 0.0672600i
\(196\) 0 0
\(197\) 21.2263i 1.51231i −0.654393 0.756155i \(-0.727076\pi\)
0.654393 0.756155i \(-0.272924\pi\)
\(198\) 4.61638 15.9059i 0.328072 1.13038i
\(199\) −3.25361 1.87847i −0.230642 0.133161i 0.380226 0.924894i \(-0.375846\pi\)
−0.610868 + 0.791732i \(0.709179\pi\)
\(200\) 5.42779 + 12.6860i 0.383803 + 0.897036i
\(201\) 0.0377216 1.10631i 0.00266067 0.0780333i
\(202\) −1.33236 4.16948i −0.0937447 0.293364i
\(203\) 0 0
\(204\) −13.4980 + 0.823160i −0.945046 + 0.0576328i
\(205\) 1.31955 + 2.28553i 0.0921614 + 0.159628i
\(206\) 10.0038 + 2.17729i 0.696999 + 0.151699i
\(207\) 6.53046 + 0.445852i 0.453898 + 0.0309888i
\(208\) −11.5454 + 2.22022i −0.800529 + 0.153945i
\(209\) 21.7765i 1.50631i
\(210\) 0 0
\(211\) 9.83963i 0.677388i 0.940897 + 0.338694i \(0.109985\pi\)
−0.940897 + 0.338694i \(0.890015\pi\)
\(212\) −1.43124 + 3.13225i −0.0982978 + 0.215124i
\(213\) −9.71921 18.2429i −0.665949 1.24998i
\(214\) −3.31255 + 15.2199i −0.226441 + 1.04041i
\(215\) 0.438828 + 0.760072i 0.0299278 + 0.0518365i
\(216\) −9.96584 + 10.8019i −0.678090 + 0.734979i
\(217\) 0 0
\(218\) 1.88559 0.602542i 0.127708 0.0408093i
\(219\) 13.6380 + 0.465009i 0.921570 + 0.0314224i
\(220\) 2.70953 0.258160i 0.182676 0.0174052i
\(221\) 9.93684 + 5.73704i 0.668424 + 0.385915i
\(222\) −1.50656 + 0.425419i −0.101114 + 0.0285522i
\(223\) 22.9136i 1.53441i −0.641403 0.767204i \(-0.721647\pi\)
0.641403 0.767204i \(-0.278353\pi\)
\(224\) 0 0
\(225\) −6.43739 13.1436i −0.429159 0.876243i
\(226\) −8.40288 + 9.24155i −0.558951 + 0.614739i
\(227\) 6.76508 11.7175i 0.449014 0.777715i −0.549308 0.835620i \(-0.685109\pi\)
0.998322 + 0.0579050i \(0.0184421\pi\)
\(228\) −8.62537 + 17.2921i −0.571229 + 1.14520i
\(229\) 7.34809 + 12.7273i 0.485575 + 0.841041i 0.999863 0.0165769i \(-0.00527684\pi\)
−0.514287 + 0.857618i \(0.671944\pi\)
\(230\) 0.327428 + 1.02465i 0.0215900 + 0.0675636i
\(231\) 0 0
\(232\) 22.0765 + 16.5370i 1.44939 + 1.08571i
\(233\) 14.8869 8.59497i 0.975274 0.563075i 0.0744343 0.997226i \(-0.476285\pi\)
0.900840 + 0.434151i \(0.142952\pi\)
\(234\) 12.1093 2.97785i 0.791613 0.194668i
\(235\) 1.31745 + 0.760632i 0.0859412 + 0.0496182i
\(236\) 15.0009 + 6.85443i 0.976474 + 0.446186i
\(237\) 5.87847 + 3.66655i 0.381848 + 0.238168i
\(238\) 0 0
\(239\) −14.5336 −0.940102 −0.470051 0.882639i \(-0.655764\pi\)
−0.470051 + 0.882639i \(0.655764\pi\)
\(240\) −2.25381 0.868207i −0.145483 0.0560425i
\(241\) −9.39604 + 16.2744i −0.605252 + 1.04833i 0.386759 + 0.922181i \(0.373594\pi\)
−0.992012 + 0.126147i \(0.959739\pi\)
\(242\) −1.27502 + 5.85823i −0.0819612 + 0.376581i
\(243\) 9.97083 11.9826i 0.639629 0.768684i
\(244\) 22.9678 16.3481i 1.47036 1.04658i
\(245\) 0 0
\(246\) 17.9743 + 4.55872i 1.14600 + 0.290653i
\(247\) 14.1994 8.19802i 0.903485 0.521628i
\(248\) 6.86274 2.93627i 0.435784 0.186453i
\(249\) 7.28371 + 13.6715i 0.461587 + 0.866397i
\(250\) 3.27637 3.60337i 0.207216 0.227897i
\(251\) 20.6405 1.30281 0.651407 0.758729i \(-0.274179\pi\)
0.651407 + 0.758729i \(0.274179\pi\)
\(252\) 0 0
\(253\) −8.51757 −0.535495
\(254\) −11.7935 + 12.9706i −0.739991 + 0.813848i
\(255\) 1.10833 + 2.08032i 0.0694060 + 0.130275i
\(256\) 14.8588 5.93426i 0.928676 0.370891i
\(257\) −4.17752 + 2.41189i −0.260587 + 0.150450i −0.624602 0.780943i \(-0.714739\pi\)
0.364016 + 0.931393i \(0.381406\pi\)
\(258\) 5.97751 + 1.51604i 0.372143 + 0.0943846i
\(259\) 0 0
\(260\) 1.18837 + 1.66956i 0.0736994 + 0.103542i
\(261\) −24.2817 16.3201i −1.50300 1.01019i
\(262\) 0.484361 2.22546i 0.0299239 0.137489i
\(263\) 7.22891 12.5208i 0.445754 0.772068i −0.552351 0.833612i \(-0.686269\pi\)
0.998104 + 0.0615439i \(0.0196024\pi\)
\(264\) 11.9806 14.9067i 0.737353 0.917447i
\(265\) 0.600267 0.0368741
\(266\) 0 0
\(267\) 15.4892 + 9.66103i 0.947926 + 0.591246i
\(268\) 0.531226 1.16258i 0.0324498 0.0710161i
\(269\) −4.08105 2.35619i −0.248826 0.143660i 0.370401 0.928872i \(-0.379220\pi\)
−0.619226 + 0.785212i \(0.712554\pi\)
\(270\) 2.43448 + 0.797460i 0.148158 + 0.0485319i
\(271\) −13.5743 + 7.83712i −0.824580 + 0.476071i −0.851993 0.523553i \(-0.824606\pi\)
0.0274135 + 0.999624i \(0.491273\pi\)
\(272\) −14.7541 5.11331i −0.894600 0.310040i
\(273\) 0 0
\(274\) 1.87847 + 5.87847i 0.113483 + 0.355131i
\(275\) 9.52220 + 16.4929i 0.574210 + 0.994561i
\(276\) 6.76356 + 3.37369i 0.407119 + 0.203072i
\(277\) −8.49815 + 14.7192i −0.510605 + 0.884393i 0.489320 + 0.872104i \(0.337245\pi\)
−0.999924 + 0.0122887i \(0.996088\pi\)
\(278\) 16.0003 17.5972i 0.959632 1.05541i
\(279\) −7.11030 + 3.48243i −0.425683 + 0.208488i
\(280\) 0 0
\(281\) 5.75822i 0.343507i −0.985140 0.171753i \(-0.945057\pi\)
0.985140 0.171753i \(-0.0549432\pi\)
\(282\) 10.2868 2.90475i 0.612568 0.172975i
\(283\) 4.83098 + 2.78917i 0.287172 + 0.165799i 0.636666 0.771140i \(-0.280313\pi\)
−0.349494 + 0.936939i \(0.613646\pi\)
\(284\) −2.26388 23.7606i −0.134337 1.40993i
\(285\) 3.36632 + 0.114780i 0.199404 + 0.00679899i
\(286\) −15.4568 + 4.93923i −0.913980 + 0.292063i
\(287\) 0 0
\(288\) −15.4178 + 7.09169i −0.908501 + 0.417882i
\(289\) −0.880316 1.52475i −0.0517833 0.0896913i
\(290\) 1.02249 4.69797i 0.0600427 0.275874i
\(291\) 1.62881 + 3.05728i 0.0954828 + 0.179221i
\(292\) 14.3317 + 6.54865i 0.838697 + 0.383231i
\(293\) 23.7712i 1.38873i −0.719624 0.694364i \(-0.755686\pi\)
0.719624 0.694364i \(-0.244314\pi\)
\(294\) 0 0
\(295\) 2.87478i 0.167376i
\(296\) −1.79480 0.215162i −0.104321 0.0125060i
\(297\) −11.8824 + 16.4399i −0.689487 + 0.953942i
\(298\) 10.5858 + 2.30395i 0.613219 + 0.133464i
\(299\) −3.20654 5.55389i −0.185439 0.321190i
\(300\) −1.02869 16.8682i −0.0593915 0.973885i
\(301\) 0 0
\(302\) 5.44074 + 17.0262i 0.313080 + 0.979749i
\(303\) −0.182684 + 5.35783i −0.0104949 + 0.307799i
\(304\) −16.8694 + 14.6051i −0.967525 + 0.837662i
\(305\) −4.25565 2.45700i −0.243678 0.140687i
\(306\) 15.9059 + 4.61638i 0.909280 + 0.263901i
\(307\) 3.69987i 0.211163i −0.994411 0.105581i \(-0.966330\pi\)
0.994411 0.105581i \(-0.0336703\pi\)
\(308\) 0 0
\(309\) −10.6391 6.63588i −0.605237 0.377502i
\(310\) −0.962666 0.875304i −0.0546757 0.0497139i
\(311\) 3.79236 6.56857i 0.215045 0.372469i −0.738241 0.674537i \(-0.764343\pi\)
0.953287 + 0.302067i \(0.0976768\pi\)
\(312\) 14.2302 + 2.20012i 0.805625 + 0.124557i
\(313\) 7.81770 + 13.5407i 0.441883 + 0.765363i 0.997829 0.0658547i \(-0.0209774\pi\)
−0.555946 + 0.831218i \(0.687644\pi\)
\(314\) −0.292912 + 0.0936004i −0.0165300 + 0.00528217i
\(315\) 0 0
\(316\) 4.63910 + 6.51757i 0.260970 + 0.366642i
\(317\) 12.0318 6.94659i 0.675776 0.390159i −0.122486 0.992470i \(-0.539087\pi\)
0.798262 + 0.602311i \(0.205753\pi\)
\(318\) 2.94211 3.02211i 0.164985 0.169471i
\(319\) 32.9698 + 19.0351i 1.84596 + 1.06576i
\(320\) −2.01722 1.92582i −0.112766 0.107656i
\(321\) 10.0959 16.1865i 0.563499 0.903440i
\(322\) 0 0
\(323\) 21.7765 1.21168
\(324\) 15.9471 8.34804i 0.885950 0.463780i
\(325\) −7.16948 + 12.4179i −0.397691 + 0.688822i
\(326\) 7.24009 + 1.57577i 0.400991 + 0.0872740i
\(327\) −2.42300 0.0826162i −0.133992 0.00456868i
\(328\) 17.1373 + 12.8371i 0.946247 + 0.708811i
\(329\) 0 0
\(330\) −3.23120 0.819511i −0.177872 0.0451126i
\(331\) −27.5359 + 15.8979i −1.51351 + 0.873827i −0.513638 + 0.858007i \(0.671702\pi\)
−0.999875 + 0.0158198i \(0.994964\pi\)
\(332\) 1.69658 + 17.8065i 0.0931121 + 0.977259i
\(333\) 1.91285 + 0.130595i 0.104824 + 0.00715658i
\(334\) 12.0059 + 10.9164i 0.656934 + 0.597317i
\(335\) −0.222798 −0.0121728
\(336\) 0 0
\(337\) −17.1178 −0.932468 −0.466234 0.884661i \(-0.654390\pi\)
−0.466234 + 0.884661i \(0.654390\pi\)
\(338\) 4.56303 + 4.14893i 0.248196 + 0.225672i
\(339\) 13.5012 7.19299i 0.733286 0.390670i
\(340\) 0.258160 + 2.70953i 0.0140007 + 0.146945i
\(341\) 8.92216 5.15121i 0.483162 0.278954i
\(342\) 17.0773 16.3855i 0.923437 0.886028i
\(343\) 0 0
\(344\) 5.69914 + 4.26909i 0.307277 + 0.230174i
\(345\) 0.0448946 1.31669i 0.00241704 0.0708881i
\(346\) 29.3025 + 6.37756i 1.57531 + 0.342860i
\(347\) −4.22398 + 7.31616i −0.226755 + 0.392752i −0.956845 0.290600i \(-0.906145\pi\)
0.730089 + 0.683352i \(0.239478\pi\)
\(348\) −18.6409 28.1742i −0.999255 1.51029i
\(349\) −17.4956 −0.936520 −0.468260 0.883591i \(-0.655119\pi\)
−0.468260 + 0.883591i \(0.655119\pi\)
\(350\) 0 0
\(351\) −15.1929 1.55892i −0.810939 0.0832089i
\(352\) 19.3873 10.5732i 1.03335 0.563553i
\(353\) 7.15990 + 4.13377i 0.381083 + 0.220018i 0.678289 0.734795i \(-0.262722\pi\)
−0.297206 + 0.954813i \(0.596055\pi\)
\(354\) −14.4734 14.0903i −0.769252 0.748888i
\(355\) −3.60298 + 2.08018i −0.191226 + 0.110405i
\(356\) 12.2236 + 17.1732i 0.647850 + 0.910179i
\(357\) 0 0
\(358\) −2.44108 + 0.780049i −0.129015 + 0.0412269i
\(359\) −12.5650 21.7633i −0.663156 1.14862i −0.979782 0.200070i \(-0.935883\pi\)
0.316625 0.948551i \(-0.397450\pi\)
\(360\) 2.24121 + 1.93058i 0.118122 + 0.101751i
\(361\) 6.05892 10.4944i 0.318890 0.552334i
\(362\) 7.88896 + 7.17304i 0.414635 + 0.377006i
\(363\) 3.88596 6.23025i 0.203960 0.327003i
\(364\) 0 0
\(365\) 2.74653i 0.143760i
\(366\) −33.2284 + 9.38296i −1.73688 + 0.490455i
\(367\) −18.8041 10.8565i −0.981565 0.566707i −0.0788227 0.996889i \(-0.525116\pi\)
−0.902742 + 0.430182i \(0.858449\pi\)
\(368\) 5.71259 + 6.59822i 0.297789 + 0.343956i
\(369\) −18.8491 12.6688i −0.981245 0.659510i
\(370\) 0.0959078 + 0.300133i 0.00498601 + 0.0156032i
\(371\) 0 0
\(372\) −9.12516 + 0.556490i −0.473118 + 0.0288526i
\(373\) 0.360898 + 0.625094i 0.0186866 + 0.0323662i 0.875217 0.483730i \(-0.160718\pi\)
−0.856531 + 0.516096i \(0.827385\pi\)
\(374\) −21.0587 4.58333i −1.08892 0.236999i
\(375\) −5.26426 + 2.80462i −0.271845 + 0.144830i
\(376\) 12.2549 + 1.46912i 0.631997 + 0.0757642i
\(377\) 28.6640i 1.47627i
\(378\) 0 0
\(379\) 18.2745i 0.938699i 0.883013 + 0.469349i \(0.155511\pi\)
−0.883013 + 0.469349i \(0.844489\pi\)
\(380\) 3.53754 + 1.61643i 0.181472 + 0.0829210i
\(381\) 18.9491 10.0954i 0.970791 0.517204i
\(382\) 0.490732 2.25473i 0.0251080 0.115362i
\(383\) −1.02465 1.77475i −0.0523573 0.0906855i 0.838659 0.544657i \(-0.183340\pi\)
−0.891016 + 0.453971i \(0.850007\pi\)
\(384\) −19.5828 + 0.716843i −0.999331 + 0.0365813i
\(385\) 0 0
\(386\) −20.4177 + 6.52448i −1.03923 + 0.332087i
\(387\) −6.26843 4.21311i −0.318642 0.214164i
\(388\) 0.379397 + 3.98197i 0.0192610 + 0.202154i
\(389\) 9.65328 + 5.57332i 0.489441 + 0.282579i 0.724342 0.689440i \(-0.242143\pi\)
−0.234902 + 0.972019i \(0.575477\pi\)
\(390\) −0.682061 2.41542i −0.0345375 0.122310i
\(391\) 8.51757i 0.430752i
\(392\) 0 0
\(393\) −1.47622 + 2.36678i −0.0744656 + 0.119389i
\(394\) −20.1946 + 22.2101i −1.01739 + 1.11893i
\(395\) 0.697224 1.20763i 0.0350811 0.0607623i
\(396\) −19.9631 + 12.2511i −1.00319 + 0.615643i
\(397\) 3.98719 + 6.90601i 0.200111 + 0.346603i 0.948564 0.316585i \(-0.102536\pi\)
−0.748453 + 0.663188i \(0.769203\pi\)
\(398\) 1.61725 + 5.06100i 0.0810652 + 0.253685i
\(399\) 0 0
\(400\) 6.39002 18.4380i 0.319501 0.921899i
\(401\) −18.6004 + 10.7390i −0.928860 + 0.536278i −0.886451 0.462823i \(-0.846837\pi\)
−0.0424093 + 0.999100i \(0.513503\pi\)
\(402\) −1.09201 + 1.12170i −0.0544645 + 0.0559455i
\(403\) 6.71771 + 3.87847i 0.334633 + 0.193200i
\(404\) −2.57271 + 5.63034i −0.127997 + 0.280120i
\(405\) −2.47874 1.92349i −0.123169 0.0955790i
\(406\) 0 0
\(407\) −2.49490 −0.123668
\(408\) 14.9067 + 11.9806i 0.737994 + 0.593126i
\(409\) 18.4568 31.9681i 0.912630 1.58072i 0.102296 0.994754i \(-0.467381\pi\)
0.810334 0.585968i \(-0.199286\pi\)
\(410\) 0.793726 3.64688i 0.0391993 0.180106i
\(411\) 0.257562 7.55389i 0.0127046 0.372606i
\(412\) −8.39604 11.7958i −0.413643 0.581136i
\(413\) 0 0
\(414\) −6.40897 6.67956i −0.314984 0.328282i
\(415\) 2.70013 1.55892i 0.132544 0.0765243i
\(416\) 14.1928 + 8.66110i 0.695861 + 0.424645i
\(417\) −25.7082 + 13.6965i −1.25894 + 0.670719i
\(418\) −20.7180 + 22.7859i −1.01335 + 1.11449i
\(419\) −29.5773 −1.44494 −0.722472 0.691400i \(-0.756994\pi\)
−0.722472 + 0.691400i \(0.756994\pi\)
\(420\) 0 0
\(421\) 36.8309 1.79503 0.897515 0.440985i \(-0.145371\pi\)
0.897515 + 0.440985i \(0.145371\pi\)
\(422\) 9.36137 10.2957i 0.455704 0.501187i
\(423\) −13.0609 0.891703i −0.635044 0.0433561i
\(424\) 4.47758 1.91576i 0.217450 0.0930376i
\(425\) −16.4929 + 9.52220i −0.800024 + 0.461894i
\(426\) −7.18652 + 28.3353i −0.348188 + 1.37285i
\(427\) 0 0
\(428\) 17.9462 12.7738i 0.867464 0.617447i
\(429\) 19.8621 + 0.677232i 0.958953 + 0.0326971i
\(430\) 0.263960 1.21280i 0.0127293 0.0584864i
\(431\) 2.33839 4.05022i 0.112636 0.195092i −0.804196 0.594364i \(-0.797404\pi\)
0.916832 + 0.399272i \(0.130737\pi\)
\(432\) 20.7047 1.82118i 0.996154 0.0876214i
\(433\) 16.5564 0.795650 0.397825 0.917461i \(-0.369765\pi\)
0.397825 + 0.917461i \(0.369765\pi\)
\(434\) 0 0
\(435\) −3.11632 + 4.99631i −0.149416 + 0.239555i
\(436\) −2.54624 1.16347i −0.121943 0.0557201i
\(437\) −10.5407 6.08565i −0.504228 0.291116i
\(438\) −13.8277 13.4617i −0.660713 0.643223i
\(439\) −22.9313 + 13.2394i −1.09445 + 0.631881i −0.934758 0.355286i \(-0.884383\pi\)
−0.159692 + 0.987167i \(0.551050\pi\)
\(440\) −3.08073 2.30770i −0.146868 0.110015i
\(441\) 0 0
\(442\) −4.93923 15.4568i −0.234935 0.735205i
\(443\) −2.30049 3.98457i −0.109300 0.189313i 0.806187 0.591661i \(-0.201528\pi\)
−0.915487 + 0.402348i \(0.868194\pi\)
\(444\) 1.98113 + 0.988196i 0.0940203 + 0.0468977i
\(445\) 1.83712 3.18199i 0.0870879 0.150841i
\(446\) −21.7999 + 23.9757i −1.03225 + 1.13528i
\(447\) −11.2580 7.02193i −0.532487 0.332126i
\(448\) 0 0
\(449\) 17.0095i 0.802728i 0.915919 + 0.401364i \(0.131464\pi\)
−0.915919 + 0.401364i \(0.868536\pi\)
\(450\) −5.76902 + 19.8773i −0.271954 + 0.937027i
\(451\) 25.5934 + 14.7764i 1.20515 + 0.695791i
\(452\) 17.5847 1.67545i 0.827116 0.0788066i
\(453\) 0.745995 21.8789i 0.0350499 1.02796i
\(454\) −18.2266 + 5.82431i −0.855415 + 0.273348i
\(455\) 0 0
\(456\) 25.4768 9.88748i 1.19306 0.463024i
\(457\) 7.71559 + 13.3638i 0.360920 + 0.625132i 0.988113 0.153732i \(-0.0491293\pi\)
−0.627192 + 0.778864i \(0.715796\pi\)
\(458\) 4.41997 20.3081i 0.206531 0.948935i
\(459\) −16.4399 11.8824i −0.767351 0.554623i
\(460\) 0.632243 1.38366i 0.0294785 0.0645134i
\(461\) 33.3764i 1.55449i 0.629196 + 0.777247i \(0.283384\pi\)
−0.629196 + 0.777247i \(0.716616\pi\)
\(462\) 0 0
\(463\) 26.4787i 1.23057i −0.788304 0.615286i \(-0.789041\pi\)
0.788304 0.615286i \(-0.210959\pi\)
\(464\) −7.36655 38.3069i −0.341984 1.77835i
\(465\) 0.749273 + 1.40638i 0.0347467 + 0.0652195i
\(466\) −23.7541 5.16998i −1.10039 0.239495i
\(467\) −9.29557 16.1004i −0.430148 0.745038i 0.566738 0.823898i \(-0.308205\pi\)
−0.996886 + 0.0788602i \(0.974872\pi\)
\(468\) −15.5037 8.40489i −0.716660 0.388516i
\(469\) 0 0
\(470\) −0.654857 2.04930i −0.0302063 0.0945274i
\(471\) 0.376395 + 0.0128338i 0.0173434 + 0.000591350i
\(472\) −9.17490 21.4439i −0.422309 0.987035i
\(473\) 8.51130 + 4.91400i 0.391350 + 0.225946i
\(474\) −2.66260 9.42924i −0.122297 0.433099i
\(475\) 27.2137i 1.24865i
\(476\) 0 0
\(477\) −4.63910 + 2.27210i −0.212410 + 0.104032i
\(478\) 15.2073 + 13.8272i 0.695564 + 0.632441i
\(479\) −20.4388 + 35.4011i −0.933874 + 1.61752i −0.157245 + 0.987560i \(0.550261\pi\)
−0.776629 + 0.629958i \(0.783072\pi\)
\(480\) 1.53227 + 3.05271i 0.0699382 + 0.139337i
\(481\) −0.939235 1.62680i −0.0428254 0.0741758i
\(482\) 25.3149 8.08941i 1.15306 0.368462i
\(483\) 0 0
\(484\) 6.90760 4.91671i 0.313982 0.223487i
\(485\) 0.603814 0.348612i 0.0274178 0.0158297i
\(486\) −21.8332 + 3.05180i −0.990372 + 0.138432i
\(487\) −18.5599 10.7156i −0.841032 0.485570i 0.0165831 0.999862i \(-0.494721\pi\)
−0.857615 + 0.514293i \(0.828055\pi\)
\(488\) −39.5858 4.74557i −1.79197 0.214822i
\(489\) −7.69987 4.80260i −0.348200 0.217181i
\(490\) 0 0
\(491\) −1.63166 −0.0736358 −0.0368179 0.999322i \(-0.511722\pi\)
−0.0368179 + 0.999322i \(0.511722\pi\)
\(492\) −14.4703 21.8707i −0.652371 0.986006i
\(493\) −19.0351 + 32.9698i −0.857300 + 1.48489i
\(494\) −22.6571 4.93121i −1.01939 0.221866i
\(495\) 3.38846 + 2.27744i 0.152300 + 0.102363i
\(496\) −9.97438 3.45681i −0.447863 0.155215i
\(497\) 0 0
\(498\) 5.38568 21.2349i 0.241338 0.951558i
\(499\) 7.69218 4.44108i 0.344349 0.198810i −0.317844 0.948143i \(-0.602959\pi\)
0.662194 + 0.749333i \(0.269626\pi\)
\(500\) −6.85645 + 0.653275i −0.306630 + 0.0292153i
\(501\) −9.34457 17.5397i −0.417485 0.783618i
\(502\) −21.5971 19.6372i −0.963928 0.876451i
\(503\) 34.8967 1.55597 0.777983 0.628286i \(-0.216243\pi\)
0.777983 + 0.628286i \(0.216243\pi\)
\(504\) 0 0
\(505\) 1.07900 0.0480150
\(506\) 8.91236 + 8.10357i 0.396203 + 0.360247i
\(507\) −3.55155 6.66624i −0.157730 0.296058i
\(508\) 24.6803 2.35151i 1.09501 0.104331i
\(509\) 20.5865 11.8856i 0.912479 0.526820i 0.0312508 0.999512i \(-0.490051\pi\)
0.881228 + 0.472692i \(0.156718\pi\)
\(510\) 0.819511 3.23120i 0.0362886 0.143080i
\(511\) 0 0
\(512\) −21.1934 7.92728i −0.936623 0.350340i
\(513\) −26.4507 + 11.8550i −1.16783 + 0.523410i
\(514\) 6.66581 + 1.45078i 0.294016 + 0.0639913i
\(515\) −1.26186 + 2.18561i −0.0556044 + 0.0963097i
\(516\) −4.81222 7.27328i −0.211846 0.320188i
\(517\) 17.0351 0.749205
\(518\) 0 0
\(519\) −31.1634 19.4374i −1.36792 0.853207i
\(520\) 0.344963 2.87755i 0.0151276 0.126189i
\(521\) −4.96256 2.86513i −0.217414 0.125524i 0.387338 0.921938i \(-0.373394\pi\)
−0.604752 + 0.796414i \(0.706728\pi\)
\(522\) 9.88032 + 40.1781i 0.432450 + 1.75855i
\(523\) 4.17225 2.40885i 0.182440 0.105332i −0.405999 0.913874i \(-0.633076\pi\)
0.588439 + 0.808542i \(0.299743\pi\)
\(524\) −2.62410 + 1.86779i −0.114634 + 0.0815948i
\(525\) 0 0
\(526\) −19.4762 + 6.22364i −0.849204 + 0.271364i
\(527\) 5.15121 + 8.92216i 0.224390 + 0.388656i
\(528\) −26.7181 + 4.19944i −1.16275 + 0.182757i
\(529\) 9.11968 15.7958i 0.396508 0.686772i
\(530\) −0.628089 0.571090i −0.0272824 0.0248066i
\(531\) 10.8815 + 22.2174i 0.472216 + 0.964155i
\(532\) 0 0
\(533\) 22.2509i 0.963795i
\(534\) −7.01572 24.8452i −0.303600 1.07516i
\(535\) −3.32522 1.91982i −0.143762 0.0830009i
\(536\) −1.66192 + 0.711065i −0.0717842 + 0.0307133i
\(537\) 3.13681 + 0.106955i 0.135363 + 0.00461544i
\(538\) 2.02854 + 6.34809i 0.0874564 + 0.273685i
\(539\) 0 0
\(540\) −1.78862 3.15057i −0.0769700 0.135579i
\(541\) 6.01942 + 10.4259i 0.258795 + 0.448246i 0.965919 0.258843i \(-0.0833413\pi\)
−0.707124 + 0.707089i \(0.750008\pi\)
\(542\) 21.6597 + 4.71413i 0.930362 + 0.202489i
\(543\) −6.14022 11.5252i −0.263502 0.494593i
\(544\) 10.5732 + 19.3873i 0.453322 + 0.831223i
\(545\) 0.487964i 0.0209021i
\(546\) 0 0
\(547\) 35.3097i 1.50973i 0.655879 + 0.754866i \(0.272298\pi\)
−0.655879 + 0.754866i \(0.727702\pi\)
\(548\) 3.62720 7.93810i 0.154946 0.339099i
\(549\) 42.1895 + 2.88039i 1.80060 + 0.122932i
\(550\) 5.72772 26.3167i 0.244231 1.12215i
\(551\) 27.2005 + 47.1127i 1.15878 + 2.00707i
\(552\) −3.86735 9.96488i −0.164605 0.424133i
\(553\) 0 0
\(554\) 22.8958 7.31638i 0.972751 0.310843i
\(555\) 0.0131502 0.385674i 0.000558194 0.0163710i
\(556\) −33.4838 + 3.19029i −1.42003 + 0.135299i
\(557\) −30.1308 17.3960i −1.27668 0.737093i −0.300445 0.953799i \(-0.597135\pi\)
−0.976237 + 0.216706i \(0.930469\pi\)
\(558\) 10.7530 + 3.12086i 0.455212 + 0.132117i
\(559\) 7.39973i 0.312975i
\(560\) 0 0
\(561\) 22.3960 + 13.9690i 0.945562 + 0.589771i
\(562\) −5.47834 + 6.02512i −0.231090 + 0.254154i
\(563\) −6.43088 + 11.1386i −0.271029 + 0.469436i −0.969126 0.246567i \(-0.920697\pi\)
0.698096 + 0.716004i \(0.254031\pi\)
\(564\) −13.5271 6.74738i −0.569595 0.284116i
\(565\) −1.53950 2.66649i −0.0647673 0.112180i
\(566\) −2.40130 7.51461i −0.100934 0.315863i
\(567\) 0 0
\(568\) −20.2369 + 27.0157i −0.849120 + 1.13355i
\(569\) −13.5887 + 7.84543i −0.569667 + 0.328897i −0.757016 0.653396i \(-0.773344\pi\)
0.187349 + 0.982293i \(0.440010\pi\)
\(570\) −3.41315 3.32280i −0.142961 0.139177i
\(571\) −36.4003 21.0157i −1.52331 0.879481i −0.999620 0.0275690i \(-0.991223\pi\)
−0.523685 0.851912i \(-0.675443\pi\)
\(572\) 20.8724 + 9.53734i 0.872719 + 0.398776i
\(573\) −1.49564 + 2.39792i −0.0624813 + 0.100174i
\(574\) 0 0
\(575\) 10.6443 0.443897
\(576\) 22.8794 + 7.24799i 0.953308 + 0.302000i
\(577\) 19.3960 33.5949i 0.807468 1.39858i −0.107145 0.994243i \(-0.534171\pi\)
0.914612 0.404332i \(-0.132496\pi\)
\(578\) −0.529521 + 2.43295i −0.0220252 + 0.101197i
\(579\) 26.2369 + 0.894589i 1.09037 + 0.0371778i
\(580\) −5.53950 + 3.94293i −0.230015 + 0.163721i
\(581\) 0 0
\(582\) 1.20437 4.74863i 0.0499227 0.196837i
\(583\) 5.82125 3.36090i 0.241091 0.139194i
\(584\) −8.76559 20.4872i −0.362723 0.847768i
\(585\) −0.209380 + 3.06682i −0.00865678 + 0.126797i
\(586\) −22.6158 + 24.8730i −0.934249 + 1.02749i
\(587\) 7.07471 0.292004 0.146002 0.989284i \(-0.453359\pi\)
0.146002 + 0.989284i \(0.453359\pi\)
\(588\) 0 0
\(589\) 14.7218 0.606601
\(590\) −2.73505 + 3.00802i −0.112600 + 0.123838i
\(591\) 32.4473 17.2868i 1.33471 0.711085i
\(592\) 1.67329 + 1.93270i 0.0687717 + 0.0794334i
\(593\) 15.9258 9.19477i 0.653994 0.377584i −0.135991 0.990710i \(-0.543422\pi\)
0.789985 + 0.613126i \(0.210088\pi\)
\(594\) 28.0740 5.89710i 1.15189 0.241961i
\(595\) 0 0
\(596\) −8.88449 12.4820i −0.363923 0.511283i
\(597\) 0.221745 6.50343i 0.00907542 0.266168i
\(598\) −1.92877 + 8.86200i −0.0788734 + 0.362394i
\(599\) −18.9258 + 32.7804i −0.773287 + 1.33937i 0.162466 + 0.986714i \(0.448055\pi\)
−0.935752 + 0.352658i \(0.885278\pi\)
\(600\) −14.9719 + 18.6287i −0.611226 + 0.760514i
\(601\) −21.9488 −0.895308 −0.447654 0.894207i \(-0.647740\pi\)
−0.447654 + 0.894207i \(0.647740\pi\)
\(602\) 0 0
\(603\) 1.72188 0.843327i 0.0701202 0.0343429i
\(604\) 10.5057 22.9917i 0.427472 0.935518i
\(605\) −1.27989 0.738947i −0.0520351 0.0300425i
\(606\) 5.28856 5.43236i 0.214833 0.220675i
\(607\) 22.4114 12.9392i 0.909651 0.525187i 0.0293323 0.999570i \(-0.490662\pi\)
0.880319 + 0.474382i \(0.157329\pi\)
\(608\) 31.5465 + 0.767338i 1.27938 + 0.0311197i
\(609\) 0 0
\(610\) 2.11533 + 6.61968i 0.0856470 + 0.268023i
\(611\) 6.41308 + 11.1078i 0.259445 + 0.449373i
\(612\) −12.2511 19.9631i −0.495223 0.806962i
\(613\) 6.45681 11.1835i 0.260788 0.451698i −0.705664 0.708547i \(-0.749351\pi\)
0.966452 + 0.256849i \(0.0826843\pi\)
\(614\) −3.52003 + 3.87136i −0.142057 + 0.156235i
\(615\) −2.41910 + 3.87847i −0.0975475 + 0.156395i
\(616\) 0 0
\(617\) 26.4677i 1.06555i 0.846257 + 0.532775i \(0.178851\pi\)
−0.846257 + 0.532775i \(0.821149\pi\)
\(618\) 4.81889 + 17.0654i 0.193844 + 0.686472i
\(619\) −29.7384 17.1695i −1.19529 0.690100i −0.235787 0.971805i \(-0.575767\pi\)
−0.959501 + 0.281705i \(0.909100\pi\)
\(620\) 0.174527 + 1.83175i 0.00700917 + 0.0735648i
\(621\) 4.63691 + 10.3458i 0.186073 + 0.415164i
\(622\) −10.2174 + 3.26499i −0.409682 + 0.130914i
\(623\) 0 0
\(624\) −12.7966 15.8406i −0.512273 0.634131i
\(625\) −11.5959 20.0847i −0.463836 0.803388i
\(626\) 4.70245 21.6060i 0.187948 0.863549i
\(627\) 33.2884 17.7349i 1.32941 0.708265i
\(628\) 0.395540 + 0.180736i 0.0157838 + 0.00721216i
\(629\) 2.49490i 0.0994782i
\(630\) 0 0
\(631\) 27.7569i 1.10499i −0.833517 0.552493i \(-0.813677\pi\)
0.833517 0.552493i \(-0.186323\pi\)
\(632\) 1.34665 11.2333i 0.0535670 0.446836i
\(633\) −15.0413 + 8.01347i −0.597836 + 0.318507i
\(634\) −19.1985 4.17846i −0.762469 0.165948i
\(635\) −2.16070 3.74245i −0.0857449 0.148515i
\(636\) −5.95369 + 0.363081i −0.236079 + 0.0143971i
\(637\) 0 0
\(638\) −16.3881 51.2847i −0.648810 2.03038i
\(639\) 19.9715 29.7143i 0.790060 1.17548i
\(640\) 0.278508 + 3.93425i 0.0110090 + 0.155515i
\(641\) 6.03040 + 3.48165i 0.238186 + 0.137517i 0.614343 0.789039i \(-0.289421\pi\)
−0.376156 + 0.926556i \(0.622754\pi\)
\(642\) −25.9636 + 7.33153i −1.02470 + 0.289352i
\(643\) 9.74373i 0.384255i −0.981370 0.192128i \(-0.938461\pi\)
0.981370 0.192128i \(-0.0615387\pi\)
\(644\) 0 0
\(645\) −0.804492 + 1.28982i −0.0316768 + 0.0507865i
\(646\) −22.7859 20.7180i −0.896498 0.815140i
\(647\) −14.0948 + 24.4129i −0.554123 + 0.959770i 0.443848 + 0.896102i \(0.353613\pi\)
−0.997971 + 0.0636677i \(0.979720\pi\)
\(648\) −24.6285 6.43701i −0.967500 0.252869i
\(649\) −16.0959 27.8789i −0.631820 1.09434i
\(650\) 19.3161 6.17248i 0.757641 0.242105i
\(651\) 0 0
\(652\) −6.07649 8.53699i −0.237974 0.334334i
\(653\) 9.39867 5.42633i 0.367799 0.212349i −0.304698 0.952449i \(-0.598555\pi\)
0.672496 + 0.740101i \(0.265222\pi\)
\(654\) 2.45671 + 2.39167i 0.0960649 + 0.0935219i
\(655\) 0.486214 + 0.280716i 0.0189979 + 0.0109685i
\(656\) −5.71841 29.7364i −0.223267 1.16101i
\(657\) 10.3960 + 21.2263i 0.405588 + 0.828116i
\(658\) 0 0
\(659\) 19.2248 0.748893 0.374446 0.927249i \(-0.377833\pi\)
0.374446 + 0.927249i \(0.377833\pi\)
\(660\) 2.60129 + 3.93164i 0.101255 + 0.153039i
\(661\) −1.37371 + 2.37933i −0.0534311 + 0.0925454i −0.891504 0.453013i \(-0.850349\pi\)
0.838073 + 0.545558i \(0.183682\pi\)
\(662\) 43.9374 + 9.56278i 1.70768 + 0.371668i
\(663\) −0.677232 + 19.8621i −0.0263015 + 0.771382i
\(664\) 15.1658 20.2460i 0.588547 0.785696i
\(665\) 0 0
\(666\) −1.87727 1.95652i −0.0727426 0.0758138i
\(667\) 18.4275 10.6391i 0.713514 0.411948i
\(668\) −2.17662 22.8447i −0.0842158 0.883888i
\(669\) 35.0267 18.6610i 1.35421 0.721476i
\(670\) 0.233125 + 0.211969i 0.00900641 + 0.00818908i
\(671\) −55.0271 −2.12430
\(672\) 0 0
\(673\) 31.3097 1.20690 0.603449 0.797401i \(-0.293793\pi\)
0.603449 + 0.797401i \(0.293793\pi\)
\(674\) 17.9113 + 16.2858i 0.689916 + 0.627306i
\(675\) 14.8492 20.5447i 0.571547 0.790767i
\(676\) −0.827256 8.68248i −0.0318175 0.333941i
\(677\) 18.1712 10.4911i 0.698376 0.403208i −0.108366 0.994111i \(-0.534562\pi\)
0.806742 + 0.590903i \(0.201229\pi\)
\(678\) −20.9704 5.31860i −0.805363 0.204259i
\(679\) 0 0
\(680\) 2.30770 3.08073i 0.0884963 0.118140i
\(681\) 23.4213 + 0.798587i 0.897506 + 0.0306019i
\(682\) −14.2365 3.09852i −0.545145 0.118648i
\(683\) −7.91172 + 13.7035i −0.302734 + 0.524350i −0.976754 0.214363i \(-0.931233\pi\)
0.674021 + 0.738713i \(0.264566\pi\)
\(684\) −33.4580 + 0.897733i −1.27930 + 0.0343257i
\(685\) −1.52126 −0.0581245
\(686\) 0 0
\(687\) −13.4711 + 21.5978i −0.513953 + 0.824006i
\(688\) −1.90171 9.88909i −0.0725019 0.377018i
\(689\) 4.38295 + 2.53050i 0.166977 + 0.0964043i
\(690\) −1.29966 + 1.33500i −0.0494774 + 0.0508228i
\(691\) 21.1390 12.2046i 0.804167 0.464286i −0.0407593 0.999169i \(-0.512978\pi\)
0.844926 + 0.534883i \(0.179644\pi\)
\(692\) −24.5931 34.5514i −0.934891 1.31345i
\(693\) 0 0
\(694\) 11.3803 3.63659i 0.431991 0.138043i
\(695\) 2.93143 + 5.07738i 0.111195 + 0.192596i
\(696\) −7.29985 + 47.2149i −0.276700 + 1.78967i
\(697\) −14.7764 + 25.5934i −0.559694 + 0.969419i
\(698\) 18.3066 + 16.6452i 0.692914 + 0.630032i
\(699\) 25.2626 + 15.7569i 0.955520 + 0.595982i
\(700\) 0 0
\(701\) 21.4779i 0.811209i 0.914049 + 0.405605i \(0.132939\pi\)
−0.914049 + 0.405605i \(0.867061\pi\)
\(702\) 14.4140 + 16.0857i 0.544021 + 0.607114i
\(703\) −3.08749 1.78256i −0.116447 0.0672306i
\(704\) −30.3452 7.38169i −1.14368 0.278208i
\(705\) −0.0897892 + 2.63338i −0.00338166 + 0.0991787i
\(706\) −3.55892 11.1373i −0.133942 0.419156i
\(707\) 0 0
\(708\) 1.73885 + 28.5132i 0.0653501 + 1.07159i
\(709\) 21.0959 + 36.5392i 0.792273 + 1.37226i 0.924556 + 0.381046i \(0.124436\pi\)
−0.132283 + 0.991212i \(0.542231\pi\)
\(710\) 5.74906 + 1.25126i 0.215758 + 0.0469588i
\(711\) −0.817369 + 11.9721i −0.0306537 + 0.448990i
\(712\) 3.54831 29.5987i 0.132979 1.10926i
\(713\) 5.75822i 0.215647i
\(714\) 0 0
\(715\) 4.00000i 0.149592i
\(716\) 3.29636 + 1.50623i 0.123191 + 0.0562903i
\(717\) −11.8363 22.2167i −0.442034 0.829697i
\(718\) −7.55802 + 34.7263i −0.282063 + 1.29597i
\(719\) −9.52940 16.5054i −0.355387 0.615548i 0.631797 0.775134i \(-0.282317\pi\)
−0.987184 + 0.159586i \(0.948984\pi\)
\(720\) −0.508344 4.15234i −0.0189449 0.154749i
\(721\) 0 0
\(722\) −16.3240 + 5.21635i −0.607517 + 0.194133i
\(723\) −32.5299 1.10916i −1.20980 0.0412501i
\(724\) −1.43023 15.0110i −0.0531542 0.557880i
\(725\) −41.2019 23.7879i −1.53020 0.883461i
\(726\) −9.99350 + 2.82194i −0.370894 + 0.104732i
\(727\) 3.72549i 0.138171i −0.997611 0.0690854i \(-0.977992\pi\)
0.997611 0.0690854i \(-0.0220081\pi\)
\(728\) 0 0
\(729\) 26.4374 + 5.48311i 0.979163 + 0.203078i
\(730\) −2.61303 + 2.87383i −0.0967126 + 0.106365i
\(731\) −4.91400 + 8.51130i −0.181751 + 0.314802i
\(732\) 43.6955 + 21.7955i 1.61503 + 0.805583i
\(733\) −12.7090 22.0126i −0.469417 0.813054i 0.529972 0.848015i \(-0.322203\pi\)
−0.999389 + 0.0349611i \(0.988869\pi\)
\(734\) 9.34681 + 29.2498i 0.344997 + 1.07963i
\(735\) 0 0
\(736\) 0.300133 12.3390i 0.0110631 0.454820i
\(737\) −2.16065 + 1.24745i −0.0795885 + 0.0459504i
\(738\) 7.66977 + 31.1889i 0.282328 + 1.14808i
\(739\) 20.1868 + 11.6548i 0.742582 + 0.428730i 0.823007 0.568031i \(-0.192295\pi\)
−0.0804256 + 0.996761i \(0.525628\pi\)
\(740\) 0.185192 0.405291i 0.00680779 0.0148988i
\(741\) 24.0959 + 15.0292i 0.885185 + 0.552113i
\(742\) 0 0
\(743\) −33.8576 −1.24211 −0.621057 0.783765i \(-0.713297\pi\)
−0.621057 + 0.783765i \(0.713297\pi\)
\(744\) 10.0776 + 8.09934i 0.369461 + 0.296936i
\(745\) −1.33528 + 2.31277i −0.0489207 + 0.0847332i
\(746\) 0.217085 0.997424i 0.00794804 0.0365183i
\(747\) −14.9669 + 22.2684i −0.547611 + 0.814757i
\(748\) 17.6742 + 24.8309i 0.646234 + 0.907908i
\(749\) 0 0
\(750\) 8.17655 + 2.07377i 0.298566 + 0.0757235i
\(751\) −41.7017 + 24.0765i −1.52172 + 0.878564i −0.522046 + 0.852918i \(0.674831\pi\)
−0.999671 + 0.0256461i \(0.991836\pi\)
\(752\) −11.4252 13.1964i −0.416633 0.481224i
\(753\) 16.8097 + 31.5518i 0.612581 + 1.14981i
\(754\) 27.2708 29.9926i 0.993143 1.09227i
\(755\) −4.40614 −0.160356
\(756\) 0 0
\(757\) −11.3923 −0.414062 −0.207031 0.978334i \(-0.566380\pi\)
−0.207031 + 0.978334i \(0.566380\pi\)
\(758\) 17.3863 19.1215i 0.631497 0.694526i
\(759\) −6.93677 13.0203i −0.251789 0.472607i
\(760\) −2.16365 5.05695i −0.0784837 0.183435i
\(761\) −23.8583 + 13.7746i −0.864861 + 0.499328i −0.865637 0.500672i \(-0.833086\pi\)
0.000776011 1.00000i \(0.499753\pi\)
\(762\) −29.4321 7.46470i −1.06621 0.270417i
\(763\) 0 0
\(764\) −2.65862 + 1.89236i −0.0961853 + 0.0684632i
\(765\) −2.27744 + 3.38846i −0.0823410 + 0.122510i
\(766\) −0.616341 + 2.83186i −0.0222693 + 0.102319i
\(767\) 12.1190 20.9907i 0.437591 0.757930i
\(768\) 21.1725 + 17.8809i 0.763996 + 0.645221i
\(769\) 5.83461 0.210401 0.105201 0.994451i \(-0.466451\pi\)
0.105201 + 0.994451i \(0.466451\pi\)
\(770\) 0 0
\(771\) −7.08912 4.42166i −0.255308 0.159242i
\(772\) 27.5714 + 12.5983i 0.992315 + 0.453424i
\(773\) 41.1952 + 23.7841i 1.48169 + 0.855454i 0.999784 0.0207689i \(-0.00661143\pi\)
0.481906 + 0.876223i \(0.339945\pi\)
\(774\) 2.55065 + 10.3721i 0.0916810 + 0.372819i
\(775\) −11.1499 + 6.43739i −0.400516 + 0.231238i
\(776\) 3.39144 4.52749i 0.121745 0.162527i
\(777\) 0 0
\(778\) −4.79829 15.0157i −0.172027 0.538340i
\(779\) 21.1149 + 36.5720i 0.756519 + 1.31033i
\(780\) −1.58434 + 3.17629i −0.0567286 + 0.113729i
\(781\) −23.2939 + 40.3463i −0.833522 + 1.44370i
\(782\) −8.10357 + 8.91236i −0.289783 + 0.318706i
\(783\) 5.17240 50.4093i 0.184846 1.80148i
\(784\) 0 0
\(785\) 0.0758015i 0.00270547i
\(786\) 3.79639 1.07202i 0.135413 0.0382375i
\(787\) 42.2774 + 24.4089i 1.50703 + 0.870082i 0.999967 + 0.00817024i \(0.00260070\pi\)
0.507059 + 0.861911i \(0.330733\pi\)
\(788\) 42.2612 4.02659i 1.50549 0.143441i
\(789\) 25.0271 + 0.853341i 0.890989 + 0.0303797i
\(790\) −1.87847 + 0.600267i −0.0668330 + 0.0213565i
\(791\) 0 0
\(792\) 32.5441 + 6.17381i 1.15640 + 0.219377i
\(793\) −20.7156 35.8805i −0.735632 1.27415i
\(794\) 2.39834 11.0195i 0.0851140 0.391067i
\(795\) 0.488861 + 0.917592i 0.0173381 + 0.0325436i
\(796\) 3.12280 6.83422i 0.110685 0.242232i
\(797\) 12.7292i 0.450890i −0.974256 0.225445i \(-0.927616\pi\)
0.974256 0.225445i \(-0.0723837\pi\)
\(798\) 0 0
\(799\) 17.0351i 0.602660i
\(800\) −24.2280 + 13.2132i −0.856589 + 0.467156i
\(801\) −2.15369 + 31.5455i −0.0760970 + 1.11461i
\(802\) 29.6795 + 6.45961i 1.04802 + 0.228097i
\(803\) −15.3778 26.6352i −0.542672 0.939936i
\(804\) 2.20981 0.134763i 0.0779339 0.00475273i
\(805\) 0 0
\(806\) −3.33912 10.4494i −0.117616 0.368065i
\(807\) 0.278138 8.15735i 0.00979093 0.287152i
\(808\) 8.04863 3.44366i 0.283150 0.121147i
\(809\) 23.0201 + 13.2906i 0.809342 + 0.467274i 0.846727 0.532027i \(-0.178570\pi\)
−0.0373853 + 0.999301i \(0.511903\pi\)
\(810\) 0.763629 + 4.37090i 0.0268312 + 0.153578i
\(811\) 4.13977i 0.145367i 0.997355 + 0.0726835i \(0.0231563\pi\)
−0.997355 + 0.0726835i \(0.976844\pi\)
\(812\) 0 0
\(813\) −23.0351 14.3676i −0.807878 0.503894i
\(814\) 2.61054 + 2.37363i 0.0914994 + 0.0831958i
\(815\) −0.913253 + 1.58180i −0.0319899 + 0.0554081i
\(816\) −4.19944 26.7181i −0.147010 0.935319i
\(817\) 7.02193 + 12.1623i 0.245666 + 0.425506i
\(818\) −49.7266 + 15.8902i −1.73865 + 0.555587i
\(819\) 0 0
\(820\) −4.30013 + 3.06077i −0.150167 + 0.106887i
\(821\) −25.5549 + 14.7541i −0.891871 + 0.514922i −0.874554 0.484928i \(-0.838846\pi\)
−0.0173172 + 0.999850i \(0.505513\pi\)
\(822\) −7.45623 + 7.65897i −0.260066 + 0.267137i
\(823\) 10.4596 + 6.03884i 0.364598 + 0.210501i 0.671096 0.741371i \(-0.265824\pi\)
−0.306498 + 0.951871i \(0.599157\pi\)
\(824\) −2.43723 + 20.3305i −0.0849049 + 0.708245i
\(825\) −17.4568 + 27.9880i −0.607768 + 0.974416i
\(826\) 0 0
\(827\) 11.9341 0.414989 0.207494 0.978236i \(-0.433469\pi\)
0.207494 + 0.978236i \(0.433469\pi\)
\(828\) 0.351136 + 13.0866i 0.0122028 + 0.454791i
\(829\) −1.25218 + 2.16884i −0.0434900 + 0.0753269i −0.886951 0.461863i \(-0.847181\pi\)
0.843461 + 0.537190i \(0.180514\pi\)
\(830\) −4.30843 0.937709i −0.149548 0.0325484i
\(831\) −29.4214 1.00317i −1.02062 0.0347996i
\(832\) −6.61057 22.5655i −0.229180 0.782319i
\(833\) 0 0
\(834\) 39.9305 + 10.1274i 1.38268 + 0.350682i
\(835\) −3.46410 + 2.00000i −0.119880 + 0.0692129i
\(836\) 43.3567 4.13097i 1.49952 0.142873i
\(837\) −11.1141 8.03298i −0.384158 0.277660i
\(838\) 30.9482 + 28.1396i 1.06909 + 0.972068i
\(839\) −1.64607 −0.0568288 −0.0284144 0.999596i \(-0.509046\pi\)
−0.0284144 + 0.999596i \(0.509046\pi\)
\(840\) 0 0
\(841\) −66.1054 −2.27950
\(842\) −38.5380 35.0407i −1.32811 1.20758i
\(843\) 8.80225 4.68954i 0.303166 0.161516i
\(844\) −19.5905 + 1.86656i −0.674334 + 0.0642498i
\(845\) −1.31658 + 0.760131i −0.0452919 + 0.0261493i
\(846\) 12.8179 + 13.3591i 0.440690 + 0.459296i
\(847\) 0 0
\(848\) −6.50776 2.25539i −0.223477 0.0774503i
\(849\) −0.329249 + 9.65635i −0.0112998 + 0.331405i
\(850\) 26.3167 + 5.72772i 0.902657 + 0.196459i
\(851\) −0.697224 + 1.20763i −0.0239005 + 0.0413969i
\(852\) 34.4776 22.8114i 1.18118 0.781507i
\(853\) 15.1311 0.518077 0.259039 0.965867i \(-0.416594\pi\)
0.259039 + 0.965867i \(0.416594\pi\)
\(854\) 0 0
\(855\) 2.56610 + 5.23937i 0.0877587 + 0.179183i
\(856\) −30.9310 3.70803i −1.05720 0.126738i
\(857\) −42.3681 24.4612i −1.44727 0.835579i −0.448947 0.893558i \(-0.648201\pi\)
−0.998318 + 0.0579792i \(0.981534\pi\)
\(858\) −20.1384 19.6053i −0.687515 0.669316i
\(859\) −13.9058 + 8.02854i −0.474461 + 0.273930i −0.718105 0.695935i \(-0.754990\pi\)
0.243644 + 0.969865i \(0.421657\pi\)
\(860\) −1.43005 + 1.01788i −0.0487641 + 0.0347095i
\(861\) 0 0
\(862\) −6.30013 + 2.01321i −0.214583 + 0.0685703i
\(863\) −7.45171 12.9067i −0.253659 0.439350i 0.710871 0.703322i \(-0.248301\pi\)
−0.964530 + 0.263972i \(0.914967\pi\)
\(864\) −23.3970 17.7927i −0.795982 0.605320i
\(865\) −3.69617 + 6.40196i −0.125674 + 0.217673i
\(866\) −17.3238 15.7517i −0.588687 0.535263i
\(867\) 1.61386 2.58746i 0.0548096 0.0878746i
\(868\) 0 0
\(869\) 15.6151i 0.529704i
\(870\) 8.01422 2.26304i 0.271708 0.0767241i
\(871\) −1.62680 0.939235i −0.0551221 0.0318248i
\(872\) 1.55734 + 3.63988i 0.0527383 + 0.123262i
\(873\) −3.34696 + 4.97974i −0.113278 + 0.168539i
\(874\) 5.23937 + 16.3960i 0.177224 + 0.554604i
\(875\) 0 0
\(876\) 1.66128 + 27.2412i 0.0561295 + 0.920395i
\(877\) −5.93923 10.2871i −0.200554 0.347369i 0.748153 0.663526i \(-0.230941\pi\)
−0.948707 + 0.316157i \(0.897607\pi\)
\(878\) 36.5900 + 7.96364i 1.23485 + 0.268760i
\(879\) 36.3376 19.3594i 1.22564 0.652977i
\(880\) 1.02799 + 5.34565i 0.0346534 + 0.180202i
\(881\) 36.4995i 1.22970i −0.788644 0.614850i \(-0.789217\pi\)
0.788644 0.614850i \(-0.210783\pi\)
\(882\) 0 0
\(883\) 31.1178i 1.04720i 0.851965 + 0.523599i \(0.175411\pi\)
−0.851965 + 0.523599i \(0.824589\pi\)
\(884\) −9.53734 + 20.8724i −0.320776 + 0.702015i
\(885\) 4.39450 2.34124i 0.147720 0.0786999i
\(886\) −1.38378 + 6.35793i −0.0464888 + 0.213599i
\(887\) −28.4624 49.2983i −0.955674 1.65528i −0.732819 0.680424i \(-0.761796\pi\)
−0.222855 0.974852i \(-0.571538\pi\)
\(888\) −1.13279 2.91884i −0.0380141 0.0979497i
\(889\) 0 0
\(890\) −4.94960 + 1.58165i −0.165911 + 0.0530170i
\(891\) −34.8079 4.77510i −1.16611 0.159972i
\(892\) 45.6206 4.34668i 1.52749 0.145538i
\(893\) 21.0813 + 12.1713i 0.705459 + 0.407297i
\(894\) 5.09924 + 18.0582i 0.170544 + 0.603958i
\(895\) 0.631717i 0.0211160i
\(896\) 0 0
\(897\) 5.87847 9.42477i 0.196276 0.314684i
\(898\) 16.1827 17.7979i 0.540025 0.593924i
\(899\) −12.8685 + 22.2889i −0.429189 + 0.743378i
\(900\) 24.9476 15.3101i 0.831587 0.510335i
\(901\) 3.36090 + 5.82125i 0.111968 + 0.193934i
\(902\) −12.7215 39.8107i −0.423581 1.32555i
\(903\) 0 0
\(904\) −19.9938 14.9769i −0.664984 0.498124i
\(905\) −2.27623 + 1.31418i −0.0756643 + 0.0436848i
\(906\) −21.5960 + 22.1832i −0.717478 + 0.736988i
\(907\) −5.81050 3.35469i −0.192934 0.111391i 0.400421 0.916331i \(-0.368864\pi\)
−0.593356 + 0.804940i \(0.702197\pi\)
\(908\) 24.6126 + 11.2464i 0.816797 + 0.373224i
\(909\) −8.33897 + 4.08419i −0.276586 + 0.135464i
\(910\) 0 0
\(911\) 50.1275 1.66080 0.830399 0.557169i \(-0.188112\pi\)
0.830399 + 0.557169i \(0.188112\pi\)
\(912\) −36.0645 13.8927i −1.19422 0.460033i
\(913\) 17.4568 30.2361i 0.577736 1.00067i
\(914\) 4.64102 21.3238i 0.153511 0.705328i
\(915\) 0.290038 8.50636i 0.00958836 0.281211i
\(916\) −23.9458 + 17.0443i −0.791193 + 0.563158i
\(917\) 0 0
\(918\) 5.89710 + 28.0740i 0.194633 + 0.926580i
\(919\) 14.7529 8.51757i 0.486652 0.280969i −0.236532 0.971624i \(-0.576011\pi\)
0.723185 + 0.690655i \(0.242678\pi\)
\(920\) −1.97795 + 0.846280i −0.0652112 + 0.0279010i
\(921\) 5.65577 3.01320i 0.186364 0.0992883i
\(922\) 31.7541 34.9234i 1.04577 1.15014i
\(923\) −35.0771 −1.15458
\(924\) 0 0
\(925\) 3.11784 0.102514
\(926\) −25.1917 + 27.7060i −0.827851 + 0.910477i
\(927\) 1.47931 21.6677i 0.0485869 0.711659i
\(928\) −28.7370 + 47.0910i −0.943338 + 1.54584i
\(929\) 20.2721 11.7041i 0.665105 0.383999i −0.129114 0.991630i \(-0.541213\pi\)
0.794219 + 0.607631i \(0.207880\pi\)
\(930\) 0.554023 2.18442i 0.0181671 0.0716301i
\(931\) 0 0
\(932\) 19.9365 + 28.0092i 0.653040 + 0.917470i
\(933\) 13.1295 + 0.447672i 0.429841 + 0.0146561i
\(934\) −5.59140 + 25.6904i −0.182956 + 0.840616i
\(935\) 2.65631 4.60087i 0.0868707 0.150464i
\(936\) 8.22597 + 23.5446i 0.268874 + 0.769580i
\(937\) 48.5929 1.58746 0.793730 0.608270i \(-0.208136\pi\)
0.793730 + 0.608270i \(0.208136\pi\)
\(938\) 0 0
\(939\) −14.3320 + 22.9781i −0.467707 + 0.749861i
\(940\) −1.26449 + 2.76732i −0.0412430 + 0.0902600i
\(941\) 12.6540 + 7.30579i 0.412509 + 0.238162i 0.691867 0.722025i \(-0.256788\pi\)
−0.279358 + 0.960187i \(0.590122\pi\)
\(942\) −0.381631 0.371529i −0.0124342 0.0121051i
\(943\) 14.3046 8.25879i 0.465823 0.268943i
\(944\) −10.8014 + 31.1668i −0.351556 + 1.01439i
\(945\) 0 0
\(946\) −4.23065 13.2394i −0.137550 0.430449i
\(947\) −15.7125 27.2148i −0.510587 0.884362i −0.999925 0.0122681i \(-0.996095\pi\)
0.489338 0.872094i \(-0.337238\pi\)
\(948\) −6.18490 + 12.3995i −0.200876 + 0.402716i
\(949\) 11.5783 20.0543i 0.375849 0.650989i
\(950\) 25.8910 28.4751i 0.840015 0.923855i
\(951\) 20.4177 + 12.7350i 0.662088 + 0.412961i
\(952\) 0 0
\(953\) 14.0113i 0.453872i −0.973910 0.226936i \(-0.927129\pi\)
0.973910 0.226936i \(-0.0728708\pi\)
\(954\) 7.01579 + 2.03620i 0.227145 + 0.0659243i
\(955\) 0.492609 + 0.284408i 0.0159405 + 0.00920323i
\(956\) −2.75701 28.9362i −0.0891680 0.935863i
\(957\) −2.24701 + 65.9014i −0.0726357 + 2.13029i
\(958\) 55.0666 17.5966i 1.77912 0.568520i
\(959\) 0 0
\(960\) 1.30104 4.65200i 0.0419909 0.150143i
\(961\) −12.0176 20.8150i −0.387664 0.671453i
\(962\) −0.564961 + 2.59579i −0.0182151 + 0.0836916i
\(963\) 32.9655 + 2.25064i 1.06230 + 0.0725258i
\(964\) −34.1845 15.6201i −1.10101 0.503090i
\(965\) 5.28380i 0.170091i
\(966\) 0 0
\(967\) 35.9876i 1.15728i −0.815582 0.578641i \(-0.803583\pi\)
0.815582 0.578641i \(-0.196417\pi\)
\(968\) −11.9055 1.42724i −0.382657 0.0458732i
\(969\) 17.7349 + 33.2884i 0.569728 + 1.06938i
\(970\) −0.963468 0.209694i −0.0309351 0.00673288i
\(971\) 24.1922 + 41.9022i 0.776365 + 1.34470i 0.934024 + 0.357210i \(0.116272\pi\)
−0.157659 + 0.987494i \(0.550395\pi\)
\(972\) 25.7486 + 17.5787i 0.825886 + 0.563837i
\(973\) 0 0
\(974\) 9.22546 + 28.8701i 0.295603 + 0.925057i
\(975\) −24.8214 0.846326i −0.794921 0.0271041i
\(976\) 36.9057 + 42.6272i 1.18132 + 1.36446i
\(977\) −32.6000 18.8216i −1.04296 0.602156i −0.122293 0.992494i \(-0.539025\pi\)
−0.920672 + 0.390338i \(0.872358\pi\)
\(978\) 3.48759 + 12.3508i 0.111521 + 0.394935i
\(979\) 41.1443i 1.31498i
\(980\) 0 0
\(981\) −1.84702 3.77118i −0.0589708 0.120405i
\(982\) 1.70729 + 1.55235i 0.0544818 + 0.0495375i
\(983\) 2.67750 4.63756i 0.0853989 0.147915i −0.820162 0.572131i \(-0.806117\pi\)
0.905561 + 0.424216i \(0.139450\pi\)
\(984\) −5.66664 + 36.6513i −0.180646 + 1.16840i
\(985\) −3.69987 6.40836i −0.117888 0.204187i
\(986\) 51.2847 16.3881i 1.63324 0.521903i
\(987\) 0 0
\(988\) 19.0157 + 26.7156i 0.604971 + 0.849936i
\(989\) 4.75713 2.74653i 0.151268 0.0873345i
\(990\) −1.37878 5.60676i −0.0438204 0.178195i
\(991\) 44.1913 + 25.5139i 1.40378 + 0.810475i 0.994779 0.102057i \(-0.0325424\pi\)
0.409005 + 0.912532i \(0.365876\pi\)
\(992\) 7.14791 + 13.1066i 0.226946 + 0.416135i
\(993\) −46.7276 29.1452i −1.48286 0.924895i
\(994\) 0 0
\(995\) −1.30971 −0.0415207
\(996\) −25.8380 + 17.0952i −0.818710 + 0.541683i
\(997\) −26.9653 + 46.7052i −0.853998 + 1.47917i 0.0235729 + 0.999722i \(0.492496\pi\)
−0.877571 + 0.479446i \(0.840838\pi\)
\(998\) −12.2739 2.67137i −0.388525 0.0845606i
\(999\) 1.35821 + 3.03042i 0.0429718 + 0.0958783i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.n.g.263.3 24
3.2 odd 2 inner 588.2.n.g.263.10 24
4.3 odd 2 inner 588.2.n.g.263.7 24
7.2 even 3 inner 588.2.n.g.275.6 24
7.3 odd 6 84.2.e.a.71.11 yes 12
7.4 even 3 588.2.e.c.491.11 12
7.5 odd 6 588.2.n.f.275.6 24
7.6 odd 2 588.2.n.f.263.3 24
12.11 even 2 inner 588.2.n.g.263.6 24
21.2 odd 6 inner 588.2.n.g.275.7 24
21.5 even 6 588.2.n.f.275.7 24
21.11 odd 6 588.2.e.c.491.2 12
21.17 even 6 84.2.e.a.71.2 yes 12
21.20 even 2 588.2.n.f.263.10 24
28.3 even 6 84.2.e.a.71.1 12
28.11 odd 6 588.2.e.c.491.1 12
28.19 even 6 588.2.n.f.275.10 24
28.23 odd 6 inner 588.2.n.g.275.10 24
28.27 even 2 588.2.n.f.263.7 24
56.3 even 6 1344.2.h.h.575.4 12
56.45 odd 6 1344.2.h.h.575.9 12
84.11 even 6 588.2.e.c.491.12 12
84.23 even 6 inner 588.2.n.g.275.3 24
84.47 odd 6 588.2.n.f.275.3 24
84.59 odd 6 84.2.e.a.71.12 yes 12
84.83 odd 2 588.2.n.f.263.6 24
168.59 odd 6 1344.2.h.h.575.10 12
168.101 even 6 1344.2.h.h.575.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.e.a.71.1 12 28.3 even 6
84.2.e.a.71.2 yes 12 21.17 even 6
84.2.e.a.71.11 yes 12 7.3 odd 6
84.2.e.a.71.12 yes 12 84.59 odd 6
588.2.e.c.491.1 12 28.11 odd 6
588.2.e.c.491.2 12 21.11 odd 6
588.2.e.c.491.11 12 7.4 even 3
588.2.e.c.491.12 12 84.11 even 6
588.2.n.f.263.3 24 7.6 odd 2
588.2.n.f.263.6 24 84.83 odd 2
588.2.n.f.263.7 24 28.27 even 2
588.2.n.f.263.10 24 21.20 even 2
588.2.n.f.275.3 24 84.47 odd 6
588.2.n.f.275.6 24 7.5 odd 6
588.2.n.f.275.7 24 21.5 even 6
588.2.n.f.275.10 24 28.19 even 6
588.2.n.g.263.3 24 1.1 even 1 trivial
588.2.n.g.263.6 24 12.11 even 2 inner
588.2.n.g.263.7 24 4.3 odd 2 inner
588.2.n.g.263.10 24 3.2 odd 2 inner
588.2.n.g.275.3 24 84.23 even 6 inner
588.2.n.g.275.6 24 7.2 even 3 inner
588.2.n.g.275.7 24 21.2 odd 6 inner
588.2.n.g.275.10 24 28.23 odd 6 inner
1344.2.h.h.575.3 12 168.101 even 6
1344.2.h.h.575.4 12 56.3 even 6
1344.2.h.h.575.9 12 56.45 odd 6
1344.2.h.h.575.10 12 168.59 odd 6