Properties

Label 84.2.e.a.71.1
Level $84$
Weight $2$
Character 84.71
Analytic conductor $0.671$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,2,Mod(71,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 84.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.670743376979\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.2593100598870016.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{10} + x^{8} + 4x^{6} + 4x^{4} - 32x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.1
Root \(0.430469 - 1.34711i\) of defining polynomial
Character \(\chi\) \(=\) 84.71
Dual form 84.2.e.a.71.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34711 - 0.430469i) q^{2} +(0.916638 - 1.46962i) q^{3} +(1.62939 + 1.15978i) q^{4} -0.348612i q^{5} +(-1.86743 + 1.58515i) q^{6} -1.00000i q^{7} +(-1.69572 - 2.26374i) q^{8} +(-1.31955 - 2.69421i) q^{9} +(-0.150067 + 0.469617i) q^{10} +3.90376 q^{11} +(3.19799 - 1.33149i) q^{12} -2.93923 q^{13} +(-0.430469 + 1.34711i) q^{14} +(-0.512326 - 0.319551i) q^{15} +(1.30984 + 3.77946i) q^{16} +3.90376i q^{17} +(0.617800 + 4.19742i) q^{18} +5.57834i q^{19} +(0.404312 - 0.568026i) q^{20} +(-1.46962 - 0.916638i) q^{21} +(-5.25879 - 1.68045i) q^{22} -2.18189 q^{23} +(-4.88120 + 0.417024i) q^{24} +4.87847 q^{25} +(3.95946 + 1.26525i) q^{26} +(-5.16901 - 0.530383i) q^{27} +(1.15978 - 1.62939i) q^{28} +9.75220i q^{29} +(0.552601 + 0.651010i) q^{30} -2.63910i q^{31} +(-0.137557 - 5.65518i) q^{32} +(3.57834 - 5.73704i) q^{33} +(1.68045 - 5.25879i) q^{34} -0.348612 q^{35} +(0.974616 - 5.92031i) q^{36} +0.639102 q^{37} +(2.40130 - 7.51461i) q^{38} +(-2.69421 + 4.31955i) q^{39} +(-0.789168 + 0.591148i) q^{40} -7.57031i q^{41} +(1.58515 + 1.86743i) q^{42} -2.51757i q^{43} +(6.36076 + 4.52749i) q^{44} +(-0.939235 + 0.460011i) q^{45} +(2.93923 + 0.939235i) q^{46} -4.36377 q^{47} +(6.75501 + 1.53943i) q^{48} -1.00000 q^{49} +(-6.57182 - 2.10003i) q^{50} +(5.73704 + 3.57834i) q^{51} +(-4.78917 - 3.40885i) q^{52} -1.72188i q^{53} +(6.73490 + 2.93958i) q^{54} -1.36090i q^{55} +(-2.26374 + 1.69572i) q^{56} +(8.19802 + 5.11331i) q^{57} +(4.19802 - 13.1373i) q^{58} -8.24635 q^{59} +(-0.464173 - 1.11486i) q^{60} -14.0959 q^{61} +(-1.13605 + 3.55515i) q^{62} +(-2.69421 + 1.31955i) q^{63} +(-2.24908 + 7.67735i) q^{64} +1.02465i q^{65} +(-7.29002 + 6.18804i) q^{66} -0.639102i q^{67} +(-4.52749 + 6.36076i) q^{68} +(-2.00000 + 3.20654i) q^{69} +(0.469617 + 0.150067i) q^{70} +11.9341 q^{71} +(-3.86142 + 7.55575i) q^{72} +7.87847 q^{73} +(-0.860938 - 0.275113i) q^{74} +(4.47179 - 7.16948i) q^{75} +(-6.46962 + 9.08930i) q^{76} -3.90376i q^{77} +(5.48883 - 4.65912i) q^{78} -4.00000i q^{79} +(1.31756 - 0.456627i) q^{80} +(-5.51757 + 7.11030i) q^{81} +(-3.25879 + 10.1980i) q^{82} +8.94358 q^{83} +(-1.33149 - 3.19799i) q^{84} +1.36090 q^{85} +(-1.08374 + 3.39144i) q^{86} +(14.3320 + 8.93923i) q^{87} +(-6.61968 - 8.83712i) q^{88} -10.5396i q^{89} +(1.46327 - 0.215373i) q^{90} +2.93923i q^{91} +(-3.55515 - 2.53050i) q^{92} +(-3.87847 - 2.41910i) q^{93} +(5.87847 + 1.87847i) q^{94} +1.94467 q^{95} +(-8.43704 - 4.98160i) q^{96} -2.00000 q^{97} +(1.34711 + 0.430469i) q^{98} +(-5.15121 - 10.5176i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{4} - 6 q^{6} - 4 q^{9} + 4 q^{10} - 6 q^{12} + 4 q^{16} - 8 q^{18} - 16 q^{22} + 2 q^{24} - 12 q^{25} + 8 q^{28} + 20 q^{30} - 16 q^{33} + 32 q^{34} - 20 q^{36} - 16 q^{37} + 20 q^{40} + 10 q^{42}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34711 0.430469i −0.952548 0.304388i
\(3\) 0.916638 1.46962i 0.529221 0.848484i
\(4\) 1.62939 + 1.15978i 0.814696 + 0.579888i
\(5\) 0.348612i 0.155904i −0.996957 0.0779520i \(-0.975162\pi\)
0.996957 0.0779520i \(-0.0248381\pi\)
\(6\) −1.86743 + 1.58515i −0.762377 + 0.647134i
\(7\) 1.00000i 0.377964i
\(8\) −1.69572 2.26374i −0.599527 0.800354i
\(9\) −1.31955 2.69421i −0.439850 0.898071i
\(10\) −0.150067 + 0.469617i −0.0474552 + 0.148506i
\(11\) 3.90376 1.17703 0.588514 0.808487i \(-0.299713\pi\)
0.588514 + 0.808487i \(0.299713\pi\)
\(12\) 3.19799 1.33149i 0.923180 0.384368i
\(13\) −2.93923 −0.815197 −0.407599 0.913161i \(-0.633634\pi\)
−0.407599 + 0.913161i \(0.633634\pi\)
\(14\) −0.430469 + 1.34711i −0.115048 + 0.360029i
\(15\) −0.512326 0.319551i −0.132282 0.0825077i
\(16\) 1.30984 + 3.77946i 0.327461 + 0.944865i
\(17\) 3.90376i 0.946802i 0.880847 + 0.473401i \(0.156974\pi\)
−0.880847 + 0.473401i \(0.843026\pi\)
\(18\) 0.617800 + 4.19742i 0.145617 + 0.989341i
\(19\) 5.57834i 1.27976i 0.768476 + 0.639879i \(0.221016\pi\)
−0.768476 + 0.639879i \(0.778984\pi\)
\(20\) 0.404312 0.568026i 0.0904068 0.127014i
\(21\) −1.46962 0.916638i −0.320697 0.200027i
\(22\) −5.25879 1.68045i −1.12118 0.358273i
\(23\) −2.18189 −0.454955 −0.227477 0.973783i \(-0.573048\pi\)
−0.227477 + 0.973783i \(0.573048\pi\)
\(24\) −4.88120 + 0.417024i −0.996370 + 0.0851247i
\(25\) 4.87847 0.975694
\(26\) 3.95946 + 1.26525i 0.776515 + 0.248136i
\(27\) −5.16901 0.530383i −0.994777 0.102072i
\(28\) 1.15978 1.62939i 0.219177 0.307926i
\(29\) 9.75220i 1.81094i 0.424412 + 0.905469i \(0.360481\pi\)
−0.424412 + 0.905469i \(0.639519\pi\)
\(30\) 0.552601 + 0.651010i 0.100891 + 0.118858i
\(31\) 2.63910i 0.473997i −0.971510 0.236998i \(-0.923836\pi\)
0.971510 0.236998i \(-0.0761636\pi\)
\(32\) −0.137557 5.65518i −0.0243168 0.999704i
\(33\) 3.57834 5.73704i 0.622908 0.998690i
\(34\) 1.68045 5.25879i 0.288195 0.901874i
\(35\) −0.348612 −0.0589262
\(36\) 0.974616 5.92031i 0.162436 0.986719i
\(37\) 0.639102 0.105068 0.0525338 0.998619i \(-0.483270\pi\)
0.0525338 + 0.998619i \(0.483270\pi\)
\(38\) 2.40130 7.51461i 0.389542 1.21903i
\(39\) −2.69421 + 4.31955i −0.431419 + 0.691682i
\(40\) −0.789168 + 0.591148i −0.124778 + 0.0934687i
\(41\) 7.57031i 1.18228i −0.806567 0.591142i \(-0.798677\pi\)
0.806567 0.591142i \(-0.201323\pi\)
\(42\) 1.58515 + 1.86743i 0.244594 + 0.288151i
\(43\) 2.51757i 0.383926i −0.981402 0.191963i \(-0.938515\pi\)
0.981402 0.191963i \(-0.0614854\pi\)
\(44\) 6.36076 + 4.52749i 0.958921 + 0.682545i
\(45\) −0.939235 + 0.460011i −0.140013 + 0.0685744i
\(46\) 2.93923 + 0.939235i 0.433367 + 0.138483i
\(47\) −4.36377 −0.636522 −0.318261 0.948003i \(-0.603099\pi\)
−0.318261 + 0.948003i \(0.603099\pi\)
\(48\) 6.75501 + 1.53943i 0.975002 + 0.222197i
\(49\) −1.00000 −0.142857
\(50\) −6.57182 2.10003i −0.929396 0.296989i
\(51\) 5.73704 + 3.57834i 0.803346 + 0.501067i
\(52\) −4.78917 3.40885i −0.664138 0.472723i
\(53\) 1.72188i 0.236518i −0.992983 0.118259i \(-0.962269\pi\)
0.992983 0.118259i \(-0.0377313\pi\)
\(54\) 6.73490 + 2.93958i 0.916504 + 0.400026i
\(55\) 1.36090i 0.183504i
\(56\) −2.26374 + 1.69572i −0.302506 + 0.226600i
\(57\) 8.19802 + 5.11331i 1.08585 + 0.677275i
\(58\) 4.19802 13.1373i 0.551227 1.72501i
\(59\) −8.24635 −1.07358 −0.536792 0.843715i \(-0.680364\pi\)
−0.536792 + 0.843715i \(0.680364\pi\)
\(60\) −0.464173 1.11486i −0.0599245 0.143927i
\(61\) −14.0959 −1.80480 −0.902398 0.430903i \(-0.858195\pi\)
−0.902398 + 0.430903i \(0.858195\pi\)
\(62\) −1.13605 + 3.55515i −0.144279 + 0.451505i
\(63\) −2.69421 + 1.31955i −0.339439 + 0.166248i
\(64\) −2.24908 + 7.67735i −0.281135 + 0.959668i
\(65\) 1.02465i 0.127092i
\(66\) −7.29002 + 6.18804i −0.897339 + 0.761695i
\(67\) 0.639102i 0.0780787i −0.999238 0.0390393i \(-0.987570\pi\)
0.999238 0.0390393i \(-0.0124298\pi\)
\(68\) −4.52749 + 6.36076i −0.549039 + 0.771356i
\(69\) −2.00000 + 3.20654i −0.240772 + 0.386022i
\(70\) 0.469617 + 0.150067i 0.0561300 + 0.0179364i
\(71\) 11.9341 1.41632 0.708158 0.706054i \(-0.249526\pi\)
0.708158 + 0.706054i \(0.249526\pi\)
\(72\) −3.86142 + 7.55575i −0.455073 + 0.890454i
\(73\) 7.87847 0.922105 0.461053 0.887373i \(-0.347472\pi\)
0.461053 + 0.887373i \(0.347472\pi\)
\(74\) −0.860938 0.275113i −0.100082 0.0319813i
\(75\) 4.47179 7.16948i 0.516358 0.827861i
\(76\) −6.46962 + 9.08930i −0.742116 + 1.04261i
\(77\) 3.90376i 0.444875i
\(78\) 5.48883 4.65912i 0.621487 0.527541i
\(79\) 4.00000i 0.450035i −0.974355 0.225018i \(-0.927756\pi\)
0.974355 0.225018i \(-0.0722440\pi\)
\(80\) 1.31756 0.456627i 0.147308 0.0510524i
\(81\) −5.51757 + 7.11030i −0.613063 + 0.790034i
\(82\) −3.25879 + 10.1980i −0.359873 + 1.12618i
\(83\) 8.94358 0.981685 0.490843 0.871248i \(-0.336689\pi\)
0.490843 + 0.871248i \(0.336689\pi\)
\(84\) −1.33149 3.19799i −0.145278 0.348929i
\(85\) 1.36090 0.147610
\(86\) −1.08374 + 3.39144i −0.116862 + 0.365708i
\(87\) 14.3320 + 8.93923i 1.53655 + 0.958387i
\(88\) −6.61968 8.83712i −0.705661 0.942040i
\(89\) 10.5396i 1.11720i −0.829437 0.558600i \(-0.811339\pi\)
0.829437 0.558600i \(-0.188661\pi\)
\(90\) 1.46327 0.215373i 0.154242 0.0227023i
\(91\) 2.93923i 0.308116i
\(92\) −3.55515 2.53050i −0.370650 0.263823i
\(93\) −3.87847 2.41910i −0.402179 0.250849i
\(94\) 5.87847 + 1.87847i 0.606318 + 0.193749i
\(95\) 1.94467 0.199519
\(96\) −8.43704 4.98160i −0.861102 0.508432i
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 1.34711 + 0.430469i 0.136078 + 0.0434839i
\(99\) −5.15121 10.5176i −0.517716 1.05706i
\(100\) 7.94894 + 5.65793i 0.794894 + 0.565793i
\(101\) 3.09514i 0.307978i 0.988073 + 0.153989i \(0.0492120\pi\)
−0.988073 + 0.153989i \(0.950788\pi\)
\(102\) −6.18804 7.29002i −0.612707 0.721819i
\(103\) 7.23937i 0.713316i −0.934235 0.356658i \(-0.883916\pi\)
0.934235 0.356658i \(-0.116084\pi\)
\(104\) 4.98412 + 6.65368i 0.488733 + 0.652447i
\(105\) −0.319551 + 0.512326i −0.0311850 + 0.0499979i
\(106\) −0.741214 + 2.31955i −0.0719931 + 0.225295i
\(107\) −11.0141 −1.06477 −0.532385 0.846502i \(-0.678704\pi\)
−0.532385 + 0.846502i \(0.678704\pi\)
\(108\) −7.80723 6.85910i −0.751251 0.660017i
\(109\) 1.39973 0.134070 0.0670351 0.997751i \(-0.478646\pi\)
0.0670351 + 0.997751i \(0.478646\pi\)
\(110\) −0.585825 + 1.83328i −0.0558562 + 0.174796i
\(111\) 0.585825 0.939235i 0.0556040 0.0891482i
\(112\) 3.77946 1.30984i 0.357125 0.123768i
\(113\) 8.83218i 0.830862i −0.909625 0.415431i \(-0.863631\pi\)
0.909625 0.415431i \(-0.136369\pi\)
\(114\) −8.84249 10.4172i −0.828175 0.975658i
\(115\) 0.760632i 0.0709293i
\(116\) −11.3104 + 15.8902i −1.05014 + 1.47536i
\(117\) 3.87847 + 7.91893i 0.358565 + 0.732105i
\(118\) 11.1087 + 3.54980i 1.02264 + 0.326786i
\(119\) 3.90376 0.357857
\(120\) 0.145380 + 1.70164i 0.0132713 + 0.155338i
\(121\) 4.23937 0.385397
\(122\) 18.9887 + 6.06785i 1.71916 + 0.549357i
\(123\) −11.1255 6.93923i −1.00315 0.625690i
\(124\) 3.06077 4.30013i 0.274865 0.386163i
\(125\) 3.44375i 0.308019i
\(126\) 4.19742 0.617800i 0.373936 0.0550380i
\(127\) 12.3960i 1.09997i 0.835174 + 0.549985i \(0.185367\pi\)
−0.835174 + 0.549985i \(0.814633\pi\)
\(128\) 6.33461 9.37405i 0.559905 0.828557i
\(129\) −3.69987 2.30770i −0.325755 0.203182i
\(130\) 0.441081 1.38032i 0.0386854 0.121062i
\(131\) −1.61048 −0.140708 −0.0703540 0.997522i \(-0.522413\pi\)
−0.0703540 + 0.997522i \(0.522413\pi\)
\(132\) 12.4842 5.19782i 1.08661 0.452412i
\(133\) 5.57834 0.483703
\(134\) −0.275113 + 0.860938i −0.0237662 + 0.0743737i
\(135\) −0.184898 + 1.80198i −0.0159135 + 0.155090i
\(136\) 8.83712 6.61968i 0.757777 0.567633i
\(137\) 4.36377i 0.372822i 0.982472 + 0.186411i \(0.0596857\pi\)
−0.982472 + 0.186411i \(0.940314\pi\)
\(138\) 4.07453 3.45861i 0.346847 0.294417i
\(139\) 16.8177i 1.42646i 0.700931 + 0.713230i \(0.252768\pi\)
−0.700931 + 0.713230i \(0.747232\pi\)
\(140\) −0.568026 0.404312i −0.0480069 0.0341706i
\(141\) −4.00000 + 6.41308i −0.336861 + 0.540079i
\(142\) −16.0765 5.13726i −1.34911 0.431109i
\(143\) −11.4741 −0.959511
\(144\) 8.45427 8.51618i 0.704522 0.709682i
\(145\) 3.39973 0.282332
\(146\) −10.6131 3.39144i −0.878350 0.280677i
\(147\) −0.916638 + 1.46962i −0.0756030 + 0.121212i
\(148\) 1.04135 + 0.741214i 0.0855982 + 0.0609274i
\(149\) 7.66053i 0.627575i −0.949493 0.313788i \(-0.898402\pi\)
0.949493 0.313788i \(-0.101598\pi\)
\(150\) −9.11022 + 7.73309i −0.743846 + 0.631404i
\(151\) 12.6391i 1.02856i −0.857624 0.514278i \(-0.828060\pi\)
0.857624 0.514278i \(-0.171940\pi\)
\(152\) 12.6279 9.45929i 1.02426 0.767250i
\(153\) 10.5176 5.15121i 0.850295 0.416451i
\(154\) −1.68045 + 5.25879i −0.135414 + 0.423765i
\(155\) −0.920022 −0.0738980
\(156\) −9.39964 + 3.91356i −0.752574 + 0.313336i
\(157\) 0.217438 0.0173534 0.00867672 0.999962i \(-0.497238\pi\)
0.00867672 + 0.999962i \(0.497238\pi\)
\(158\) −1.72188 + 5.38843i −0.136985 + 0.428680i
\(159\) −2.53050 1.57834i −0.200682 0.125170i
\(160\) −1.97146 + 0.0479539i −0.155858 + 0.00379109i
\(161\) 2.18189i 0.171957i
\(162\) 10.4935 7.20319i 0.824449 0.565936i
\(163\) 5.23937i 0.410379i 0.978722 + 0.205189i \(0.0657811\pi\)
−0.978722 + 0.205189i \(0.934219\pi\)
\(164\) 8.77986 12.3350i 0.685592 0.963203i
\(165\) −2.00000 1.24745i −0.155700 0.0971139i
\(166\) −12.0480 3.84993i −0.935103 0.298813i
\(167\) −11.4741 −0.887891 −0.443945 0.896054i \(-0.646422\pi\)
−0.443945 + 0.896054i \(0.646422\pi\)
\(168\) 0.417024 + 4.88120i 0.0321741 + 0.376593i
\(169\) −4.36090 −0.335454
\(170\) −1.83328 0.585825i −0.140606 0.0449307i
\(171\) 15.0292 7.36090i 1.14931 0.562902i
\(172\) 2.91982 4.10211i 0.222634 0.312783i
\(173\) 21.2051i 1.61219i 0.591784 + 0.806097i \(0.298424\pi\)
−0.591784 + 0.806097i \(0.701576\pi\)
\(174\) −15.4587 18.2116i −1.17192 1.38062i
\(175\) 4.87847i 0.368778i
\(176\) 5.11331 + 14.7541i 0.385430 + 1.11213i
\(177\) −7.55892 + 12.1190i −0.568163 + 0.910919i
\(178\) −4.53699 + 14.1980i −0.340062 + 1.06419i
\(179\) 1.81209 0.135442 0.0677211 0.997704i \(-0.478427\pi\)
0.0677211 + 0.997704i \(0.478427\pi\)
\(180\) −2.06389 0.339763i −0.153833 0.0253244i
\(181\) 7.53950 0.560407 0.280203 0.959941i \(-0.409598\pi\)
0.280203 + 0.959941i \(0.409598\pi\)
\(182\) 1.26525 3.95946i 0.0937865 0.293495i
\(183\) −12.9208 + 20.7156i −0.955136 + 1.53134i
\(184\) 3.69987 + 4.93923i 0.272758 + 0.364125i
\(185\) 0.222798i 0.0163805i
\(186\) 4.18336 + 4.92835i 0.306739 + 0.361364i
\(187\) 15.2394i 1.11441i
\(188\) −7.11030 5.06100i −0.518572 0.369111i
\(189\) −0.530383 + 5.16901i −0.0385797 + 0.375990i
\(190\) −2.61968 0.837122i −0.190052 0.0607312i
\(191\) 1.63166 0.118063 0.0590314 0.998256i \(-0.481199\pi\)
0.0590314 + 0.998256i \(0.481199\pi\)
\(192\) 9.22117 + 10.3426i 0.665481 + 0.746415i
\(193\) −15.1567 −1.09100 −0.545501 0.838110i \(-0.683660\pi\)
−0.545501 + 0.838110i \(0.683660\pi\)
\(194\) 2.69421 + 0.860938i 0.193433 + 0.0618117i
\(195\) 1.50585 + 0.939235i 0.107836 + 0.0672600i
\(196\) −1.62939 1.15978i −0.116385 0.0828411i
\(197\) 21.2263i 1.51231i −0.654393 0.756155i \(-0.727076\pi\)
0.654393 0.756155i \(-0.272924\pi\)
\(198\) 2.41175 + 16.3857i 0.171395 + 1.16448i
\(199\) 3.75694i 0.266322i 0.991094 + 0.133161i \(0.0425128\pi\)
−0.991094 + 0.133161i \(0.957487\pi\)
\(200\) −8.27251 11.0436i −0.584955 0.780901i
\(201\) −0.939235 0.585825i −0.0662485 0.0413209i
\(202\) 1.33236 4.16948i 0.0937447 0.293364i
\(203\) 9.75220 0.684470
\(204\) 5.19782 + 12.4842i 0.363920 + 0.874068i
\(205\) −2.63910 −0.184323
\(206\) −3.11632 + 9.75220i −0.217125 + 0.679468i
\(207\) 2.87911 + 5.87847i 0.200112 + 0.408582i
\(208\) −3.84993 11.1087i −0.266945 0.770251i
\(209\) 21.7765i 1.50631i
\(210\) 0.651010 0.552601i 0.0449239 0.0381331i
\(211\) 9.83963i 0.677388i −0.940897 0.338694i \(-0.890015\pi\)
0.940897 0.338694i \(-0.109985\pi\)
\(212\) 1.99699 2.80561i 0.137154 0.192690i
\(213\) 10.9392 17.5385i 0.749544 1.20172i
\(214\) 14.8371 + 4.74121i 1.01424 + 0.324103i
\(215\) −0.877655 −0.0598556
\(216\) 7.56454 + 12.6007i 0.514702 + 0.857369i
\(217\) −2.63910 −0.179154
\(218\) −1.88559 0.602542i −0.127708 0.0408093i
\(219\) 7.22170 11.5783i 0.487997 0.782391i
\(220\) 1.57834 2.21744i 0.106411 0.149500i
\(221\) 11.4741i 0.771830i
\(222\) −1.19348 + 1.01307i −0.0801011 + 0.0679928i
\(223\) 22.9136i 1.53441i −0.641403 0.767204i \(-0.721647\pi\)
0.641403 0.767204i \(-0.278353\pi\)
\(224\) −5.65518 + 0.137557i −0.377853 + 0.00919090i
\(225\) −6.43739 13.1436i −0.429159 0.876243i
\(226\) −3.80198 + 11.8979i −0.252904 + 0.791436i
\(227\) −13.5302 −0.898028 −0.449014 0.893525i \(-0.648225\pi\)
−0.449014 + 0.893525i \(0.648225\pi\)
\(228\) 7.42750 + 17.8395i 0.491898 + 1.18145i
\(229\) 14.6962 0.971151 0.485575 0.874195i \(-0.338610\pi\)
0.485575 + 0.874195i \(0.338610\pi\)
\(230\) 0.327428 1.02465i 0.0215900 0.0675636i
\(231\) −5.73704 3.57834i −0.377469 0.235437i
\(232\) 22.0765 16.5370i 1.44939 1.08571i
\(233\) 17.1899i 1.12615i 0.826406 + 0.563075i \(0.190382\pi\)
−0.826406 + 0.563075i \(0.809618\pi\)
\(234\) −1.81586 12.3372i −0.118706 0.806508i
\(235\) 1.52126i 0.0992363i
\(236\) −13.4366 9.56392i −0.874645 0.622558i
\(237\) −5.87847 3.66655i −0.381848 0.238168i
\(238\) −5.25879 1.68045i −0.340876 0.108927i
\(239\) 14.5336 0.940102 0.470051 0.882639i \(-0.344236\pi\)
0.470051 + 0.882639i \(0.344236\pi\)
\(240\) 0.536663 2.35488i 0.0346414 0.152007i
\(241\) −18.7921 −1.21050 −0.605252 0.796034i \(-0.706928\pi\)
−0.605252 + 0.796034i \(0.706928\pi\)
\(242\) −5.71088 1.82492i −0.367109 0.117310i
\(243\) 5.39181 + 14.6263i 0.345885 + 0.938277i
\(244\) −22.9678 16.3481i −1.47036 1.04658i
\(245\) 0.348612i 0.0222720i
\(246\) 12.0001 + 14.1371i 0.765096 + 0.901346i
\(247\) 16.3960i 1.04326i
\(248\) −5.97425 + 4.47517i −0.379365 + 0.284174i
\(249\) 8.19802 13.1436i 0.519528 0.832944i
\(250\) −1.48243 + 4.63910i −0.0937570 + 0.293403i
\(251\) 20.6405 1.30281 0.651407 0.758729i \(-0.274179\pi\)
0.651407 + 0.758729i \(0.274179\pi\)
\(252\) −5.92031 0.974616i −0.372945 0.0613950i
\(253\) −8.51757 −0.535495
\(254\) 5.33611 16.6988i 0.334817 1.04778i
\(255\) 1.24745 2.00000i 0.0781184 0.125245i
\(256\) −12.5686 + 9.90099i −0.785539 + 0.618812i
\(257\) 4.82379i 0.300899i 0.988618 + 0.150450i \(0.0480722\pi\)
−0.988618 + 0.150450i \(0.951928\pi\)
\(258\) 3.99072 + 4.70140i 0.248451 + 0.292696i
\(259\) 0.639102i 0.0397118i
\(260\) −1.18837 + 1.66956i −0.0736994 + 0.103542i
\(261\) 26.2745 12.8685i 1.62635 0.796542i
\(262\) 2.16948 + 0.693260i 0.134031 + 0.0428298i
\(263\) 14.4578 0.891507 0.445754 0.895156i \(-0.352936\pi\)
0.445754 + 0.895156i \(0.352936\pi\)
\(264\) −19.0550 + 1.62796i −1.17276 + 0.100194i
\(265\) −0.600267 −0.0368741
\(266\) −7.51461 2.40130i −0.460751 0.147233i
\(267\) −15.4892 9.66103i −0.947926 0.591246i
\(268\) 0.741214 1.04135i 0.0452769 0.0636104i
\(269\) 4.71239i 0.287319i −0.989627 0.143660i \(-0.954113\pi\)
0.989627 0.143660i \(-0.0458871\pi\)
\(270\) 1.02477 2.34787i 0.0623657 0.142887i
\(271\) 15.6742i 0.952143i −0.879407 0.476071i \(-0.842060\pi\)
0.879407 0.476071i \(-0.157940\pi\)
\(272\) −14.7541 + 5.11331i −0.894600 + 0.310040i
\(273\) 4.31955 + 2.69421i 0.261431 + 0.163061i
\(274\) 1.87847 5.87847i 0.113483 0.355131i
\(275\) 19.0444 1.14842
\(276\) −6.97765 + 2.90516i −0.420005 + 0.174870i
\(277\) 16.9963 1.02121 0.510605 0.859816i \(-0.329422\pi\)
0.510605 + 0.859816i \(0.329422\pi\)
\(278\) 7.23950 22.6552i 0.434196 1.35877i
\(279\) −7.11030 + 3.48243i −0.425683 + 0.208488i
\(280\) 0.591148 + 0.789168i 0.0353278 + 0.0471618i
\(281\) 5.75822i 0.343507i −0.985140 0.171753i \(-0.945057\pi\)
0.985140 0.171753i \(-0.0549432\pi\)
\(282\) 8.14906 6.91723i 0.485269 0.411915i
\(283\) 5.57834i 0.331598i −0.986160 0.165799i \(-0.946980\pi\)
0.986160 0.165799i \(-0.0530202\pi\)
\(284\) 19.4453 + 13.8409i 1.15387 + 0.821304i
\(285\) 1.78256 2.85793i 0.105590 0.169289i
\(286\) 15.4568 + 4.93923i 0.913980 + 0.292063i
\(287\) −7.57031 −0.446862
\(288\) −15.0548 + 7.83291i −0.887110 + 0.461558i
\(289\) 1.76063 0.103567
\(290\) −4.57980 1.46348i −0.268935 0.0859385i
\(291\) −1.83328 + 2.93923i −0.107469 + 0.172301i
\(292\) 12.8371 + 9.13726i 0.751236 + 0.534717i
\(293\) 23.7712i 1.38873i 0.719624 + 0.694364i \(0.244314\pi\)
−0.719624 + 0.694364i \(0.755686\pi\)
\(294\) 1.86743 1.58515i 0.108911 0.0924477i
\(295\) 2.87478i 0.167376i
\(296\) −1.08374 1.44676i −0.0629909 0.0840914i
\(297\) −20.1786 2.07049i −1.17088 0.120142i
\(298\) −3.29762 + 10.3196i −0.191026 + 0.597796i
\(299\) 6.41308 0.370878
\(300\) 15.6013 6.49564i 0.900741 0.375026i
\(301\) −2.51757 −0.145110
\(302\) −5.44074 + 17.0262i −0.313080 + 0.979749i
\(303\) 4.54867 + 2.83712i 0.261314 + 0.162988i
\(304\) −21.0831 + 7.30674i −1.20920 + 0.419070i
\(305\) 4.91400i 0.281375i
\(306\) −16.3857 + 2.41175i −0.936710 + 0.137870i
\(307\) 3.69987i 0.211163i −0.994411 0.105581i \(-0.966330\pi\)
0.994411 0.105581i \(-0.0336703\pi\)
\(308\) 4.52749 6.36076i 0.257978 0.362438i
\(309\) −10.6391 6.63588i −0.605237 0.377502i
\(310\) 1.23937 + 0.396041i 0.0703914 + 0.0224936i
\(311\) −7.58473 −0.430090 −0.215045 0.976604i \(-0.568990\pi\)
−0.215045 + 0.976604i \(0.568990\pi\)
\(312\) 14.3470 1.22573i 0.812238 0.0693934i
\(313\) 15.6354 0.883766 0.441883 0.897073i \(-0.354311\pi\)
0.441883 + 0.897073i \(0.354311\pi\)
\(314\) −0.292912 0.0936004i −0.0165300 0.00528217i
\(315\) 0.460011 + 0.939235i 0.0259187 + 0.0529199i
\(316\) 4.63910 6.51757i 0.260970 0.366642i
\(317\) 13.8932i 0.780319i 0.920747 + 0.390159i \(0.127580\pi\)
−0.920747 + 0.390159i \(0.872420\pi\)
\(318\) 2.72943 + 3.21549i 0.153059 + 0.180316i
\(319\) 38.0703i 2.13153i
\(320\) 2.67641 + 0.784055i 0.149616 + 0.0438300i
\(321\) −10.0959 + 16.1865i −0.563499 + 0.903440i
\(322\) 0.939235 2.93923i 0.0523415 0.163797i
\(323\) −21.7765 −1.21168
\(324\) −17.2366 + 5.18633i −0.957591 + 0.288130i
\(325\) −14.3390 −0.795383
\(326\) 2.25539 7.05799i 0.124914 0.390906i
\(327\) 1.28305 2.05707i 0.0709527 0.113756i
\(328\) −17.1373 + 12.8371i −0.946247 + 0.708811i
\(329\) 4.36377i 0.240583i
\(330\) 2.15722 + 2.54139i 0.118751 + 0.139899i
\(331\) 31.7958i 1.74765i 0.486237 + 0.873827i \(0.338369\pi\)
−0.486237 + 0.873827i \(0.661631\pi\)
\(332\) 14.5726 + 10.3725i 0.799775 + 0.569267i
\(333\) −0.843327 1.72188i −0.0462140 0.0943582i
\(334\) 15.4568 + 4.93923i 0.845759 + 0.270263i
\(335\) −0.222798 −0.0121728
\(336\) 1.53943 6.75501i 0.0839827 0.368516i
\(337\) −17.1178 −0.932468 −0.466234 0.884661i \(-0.654390\pi\)
−0.466234 + 0.884661i \(0.654390\pi\)
\(338\) 5.87460 + 1.87723i 0.319536 + 0.102108i
\(339\) −12.9799 8.09591i −0.704973 0.439709i
\(340\) 2.21744 + 1.57834i 0.120257 + 0.0855973i
\(341\) 10.3024i 0.557908i
\(342\) −23.4146 + 3.44630i −1.26612 + 0.186354i
\(343\) 1.00000i 0.0539949i
\(344\) −5.69914 + 4.26909i −0.307277 + 0.230174i
\(345\) 1.11784 + 0.697224i 0.0601824 + 0.0375373i
\(346\) 9.12814 28.5655i 0.490732 1.53569i
\(347\) −8.44797 −0.453511 −0.226755 0.973952i \(-0.572812\pi\)
−0.226755 + 0.973952i \(0.572812\pi\)
\(348\) 12.9850 + 31.1874i 0.696067 + 1.67182i
\(349\) 17.4956 0.936520 0.468260 0.883591i \(-0.344881\pi\)
0.468260 + 0.883591i \(0.344881\pi\)
\(350\) −2.10003 + 6.57182i −0.112251 + 0.351279i
\(351\) 15.1929 + 1.55892i 0.810939 + 0.0832089i
\(352\) −0.536989 22.0765i −0.0286216 1.17668i
\(353\) 8.26754i 0.440037i 0.975496 + 0.220018i \(0.0706117\pi\)
−0.975496 + 0.220018i \(0.929388\pi\)
\(354\) 15.3995 13.0717i 0.818475 0.694752i
\(355\) 4.16037i 0.220809i
\(356\) 12.2236 17.1732i 0.647850 0.910179i
\(357\) 3.57834 5.73704i 0.189386 0.303636i
\(358\) −2.44108 0.780049i −0.129015 0.0412269i
\(359\) −25.1300 −1.32631 −0.663156 0.748481i \(-0.730784\pi\)
−0.663156 + 0.748481i \(0.730784\pi\)
\(360\) 2.63403 + 1.34614i 0.138825 + 0.0709477i
\(361\) −12.1178 −0.637781
\(362\) −10.1565 3.24552i −0.533814 0.170581i
\(363\) 3.88596 6.23025i 0.203960 0.327003i
\(364\) −3.40885 + 4.78917i −0.178672 + 0.251021i
\(365\) 2.74653i 0.143760i
\(366\) 26.3232 22.3441i 1.37593 1.16794i
\(367\) 21.7131i 1.13341i 0.823920 + 0.566707i \(0.191783\pi\)
−0.823920 + 0.566707i \(0.808217\pi\)
\(368\) −2.85793 8.24635i −0.148980 0.429871i
\(369\) −20.3960 + 9.98941i −1.06178 + 0.520028i
\(370\) −0.0959078 + 0.300133i −0.00498601 + 0.0156032i
\(371\) −1.72188 −0.0893954
\(372\) −3.51394 8.43982i −0.182189 0.437584i
\(373\) −0.721797 −0.0373732 −0.0186866 0.999825i \(-0.505948\pi\)
−0.0186866 + 0.999825i \(0.505948\pi\)
\(374\) 6.56008 20.5291i 0.339213 1.06153i
\(375\) −5.06100 3.15667i −0.261349 0.163010i
\(376\) 7.39973 + 9.87847i 0.381612 + 0.509443i
\(377\) 28.6640i 1.47627i
\(378\) 2.93958 6.73490i 0.151196 0.346406i
\(379\) 18.2745i 0.938699i −0.883013 0.469349i \(-0.844489\pi\)
0.883013 0.469349i \(-0.155511\pi\)
\(380\) 3.16864 + 2.25539i 0.162548 + 0.115699i
\(381\) 18.2174 + 11.3627i 0.933308 + 0.582128i
\(382\) −2.19802 0.702379i −0.112461 0.0359368i
\(383\) 2.04930 0.104715 0.0523573 0.998628i \(-0.483327\pi\)
0.0523573 + 0.998628i \(0.483327\pi\)
\(384\) −7.96972 17.9021i −0.406703 0.913560i
\(385\) −1.36090 −0.0693578
\(386\) 20.4177 + 6.52448i 1.03923 + 0.332087i
\(387\) −6.78287 + 3.32206i −0.344793 + 0.168870i
\(388\) −3.25879 2.31955i −0.165440 0.117757i
\(389\) 11.1466i 0.565158i −0.959244 0.282579i \(-0.908810\pi\)
0.959244 0.282579i \(-0.0911899\pi\)
\(390\) −1.62422 1.91347i −0.0822458 0.0968923i
\(391\) 8.51757i 0.430752i
\(392\) 1.69572 + 2.26374i 0.0856467 + 0.114336i
\(393\) −1.47622 + 2.36678i −0.0744656 + 0.119389i
\(394\) −9.13726 + 28.5941i −0.460328 + 1.44055i
\(395\) −1.39445 −0.0701623
\(396\) 3.80467 23.1115i 0.191192 1.16140i
\(397\) 7.97438 0.400223 0.200111 0.979773i \(-0.435870\pi\)
0.200111 + 0.979773i \(0.435870\pi\)
\(398\) 1.61725 5.06100i 0.0810652 0.253685i
\(399\) 5.11331 8.19802i 0.255986 0.410414i
\(400\) 6.39002 + 18.4380i 0.319501 + 0.921899i
\(401\) 21.4779i 1.07256i −0.844042 0.536278i \(-0.819830\pi\)
0.844042 0.536278i \(-0.180170\pi\)
\(402\) 1.01307 + 1.19348i 0.0505274 + 0.0595254i
\(403\) 7.75694i 0.386401i
\(404\) −3.58967 + 5.04320i −0.178593 + 0.250909i
\(405\) 2.47874 + 1.92349i 0.123169 + 0.0955790i
\(406\) −13.1373 4.19802i −0.651991 0.208344i
\(407\) 2.49490 0.123668
\(408\) −1.62796 19.0550i −0.0805962 0.943365i
\(409\) 36.9136 1.82526 0.912630 0.408786i \(-0.134048\pi\)
0.912630 + 0.408786i \(0.134048\pi\)
\(410\) 3.55515 + 1.13605i 0.175576 + 0.0561056i
\(411\) 6.41308 + 4.00000i 0.316334 + 0.197305i
\(412\) 8.39604 11.7958i 0.413643 0.581136i
\(413\) 8.24635i 0.405777i
\(414\) −1.34797 9.15829i −0.0662491 0.450106i
\(415\) 3.11784i 0.153049i
\(416\) 0.404312 + 16.6219i 0.0198230 + 0.814956i
\(417\) 24.7156 + 15.4157i 1.21033 + 0.754912i
\(418\) 9.37411 29.3353i 0.458503 1.43484i
\(419\) −29.5773 −1.44494 −0.722472 0.691400i \(-0.756994\pi\)
−0.722472 + 0.691400i \(0.756994\pi\)
\(420\) −1.11486 + 0.464173i −0.0543995 + 0.0226493i
\(421\) 36.8309 1.79503 0.897515 0.440985i \(-0.145371\pi\)
0.897515 + 0.440985i \(0.145371\pi\)
\(422\) −4.23566 + 13.2550i −0.206189 + 0.645245i
\(423\) 5.75822 + 11.7569i 0.279974 + 0.571642i
\(424\) −3.89789 + 2.91982i −0.189298 + 0.141799i
\(425\) 19.0444i 0.923789i
\(426\) −22.2861 + 18.9173i −1.07977 + 0.916546i
\(427\) 14.0959i 0.682149i
\(428\) −17.9462 12.7738i −0.867464 0.617447i
\(429\) −10.5176 + 16.8625i −0.507793 + 0.814129i
\(430\) 1.18230 + 0.377803i 0.0570153 + 0.0182193i
\(431\) 4.67679 0.225273 0.112636 0.993636i \(-0.464070\pi\)
0.112636 + 0.993636i \(0.464070\pi\)
\(432\) −4.76603 20.2308i −0.229306 0.973354i
\(433\) −16.5564 −0.795650 −0.397825 0.917461i \(-0.630235\pi\)
−0.397825 + 0.917461i \(0.630235\pi\)
\(434\) 3.55515 + 1.13605i 0.170653 + 0.0545322i
\(435\) 3.11632 4.99631i 0.149416 0.239555i
\(436\) 2.28072 + 1.62338i 0.109226 + 0.0777456i
\(437\) 12.1713i 0.582232i
\(438\) −14.7125 + 12.4885i −0.702991 + 0.596725i
\(439\) 26.4787i 1.26376i −0.775066 0.631881i \(-0.782283\pi\)
0.775066 0.631881i \(-0.217717\pi\)
\(440\) −3.08073 + 2.30770i −0.146868 + 0.110015i
\(441\) 1.31955 + 2.69421i 0.0628358 + 0.128296i
\(442\) −4.93923 + 15.4568i −0.234935 + 0.735205i
\(443\) −4.60099 −0.218599 −0.109300 0.994009i \(-0.534861\pi\)
−0.109300 + 0.994009i \(0.534861\pi\)
\(444\) 2.04384 0.850958i 0.0969963 0.0403847i
\(445\) −3.67424 −0.174176
\(446\) −9.86360 + 30.8671i −0.467055 + 1.46160i
\(447\) −11.2580 7.02193i −0.532487 0.332126i
\(448\) 7.67735 + 2.24908i 0.362721 + 0.106259i
\(449\) 17.0095i 0.802728i 0.915919 + 0.401364i \(0.131464\pi\)
−0.915919 + 0.401364i \(0.868536\pi\)
\(450\) 3.01392 + 20.4770i 0.142078 + 0.965294i
\(451\) 29.5527i 1.39158i
\(452\) 10.2433 14.3911i 0.481806 0.676900i
\(453\) −18.5746 11.5855i −0.872713 0.544333i
\(454\) 18.2266 + 5.82431i 0.855415 + 0.273348i
\(455\) 1.02465 0.0480364
\(456\) −2.32630 27.2290i −0.108939 1.27511i
\(457\) −15.4312 −0.721840 −0.360920 0.932597i \(-0.617537\pi\)
−0.360920 + 0.932597i \(0.617537\pi\)
\(458\) −19.7973 6.32625i −0.925068 0.295606i
\(459\) 2.07049 20.1786i 0.0966421 0.941857i
\(460\) −0.882162 + 1.23937i −0.0411310 + 0.0577858i
\(461\) 33.3764i 1.55449i −0.629196 0.777247i \(-0.716616\pi\)
0.629196 0.777247i \(-0.283384\pi\)
\(462\) 6.18804 + 7.29002i 0.287894 + 0.339162i
\(463\) 26.4787i 1.23057i 0.788304 + 0.615286i \(0.210959\pi\)
−0.788304 + 0.615286i \(0.789041\pi\)
\(464\) −36.8580 + 12.7738i −1.71109 + 0.593011i
\(465\) −0.843327 + 1.35208i −0.0391084 + 0.0627012i
\(466\) 7.39973 23.1567i 0.342786 1.07271i
\(467\) 18.5911 0.860296 0.430148 0.902758i \(-0.358461\pi\)
0.430148 + 0.902758i \(0.358461\pi\)
\(468\) −2.86462 + 17.4012i −0.132417 + 0.804371i
\(469\) −0.639102 −0.0295110
\(470\) 0.654857 2.04930i 0.0302063 0.0945274i
\(471\) 0.199312 0.319551i 0.00918381 0.0147241i
\(472\) 13.9835 + 18.6676i 0.643643 + 0.859248i
\(473\) 9.82800i 0.451892i
\(474\) 6.34059 + 7.46973i 0.291233 + 0.343096i
\(475\) 27.2137i 1.24865i
\(476\) 6.36076 + 4.52749i 0.291545 + 0.207517i
\(477\) −4.63910 + 2.27210i −0.212410 + 0.104032i
\(478\) −19.5783 6.25627i −0.895492 0.286155i
\(479\) 40.8777 1.86775 0.933874 0.357601i \(-0.116405\pi\)
0.933874 + 0.357601i \(0.116405\pi\)
\(480\) −1.73664 + 2.94125i −0.0792666 + 0.134249i
\(481\) −1.87847 −0.0856508
\(482\) 25.3149 + 8.08941i 1.15306 + 0.368462i
\(483\) 3.20654 + 2.00000i 0.145903 + 0.0910032i
\(484\) 6.90760 + 4.91671i 0.313982 + 0.223487i
\(485\) 0.697224i 0.0316593i
\(486\) −0.967180 22.0242i −0.0438722 0.999037i
\(487\) 21.4312i 0.971140i −0.874198 0.485570i \(-0.838612\pi\)
0.874198 0.485570i \(-0.161388\pi\)
\(488\) 23.9027 + 31.9095i 1.08202 + 1.44448i
\(489\) 7.69987 + 4.80260i 0.348200 + 0.217181i
\(490\) 0.150067 0.469617i 0.00677932 0.0212152i
\(491\) 1.63166 0.0736358 0.0368179 0.999322i \(-0.488278\pi\)
0.0368179 + 0.999322i \(0.488278\pi\)
\(492\) −10.0798 24.2098i −0.454432 1.09146i
\(493\) −38.0703 −1.71460
\(494\) −7.05799 + 22.0872i −0.317554 + 0.993751i
\(495\) −3.66655 + 1.79577i −0.164799 + 0.0807141i
\(496\) 9.97438 3.45681i 0.447863 0.155215i
\(497\) 11.9341i 0.535317i
\(498\) −16.7015 + 14.1769i −0.748414 + 0.635282i
\(499\) 8.88216i 0.397620i −0.980038 0.198810i \(-0.936292\pi\)
0.980038 0.198810i \(-0.0637077\pi\)
\(500\) 3.99398 5.61123i 0.178616 0.250942i
\(501\) −10.5176 + 16.8625i −0.469890 + 0.753361i
\(502\) −27.8049 8.88508i −1.24099 0.396560i
\(503\) 34.8967 1.55597 0.777983 0.628286i \(-0.216243\pi\)
0.777983 + 0.628286i \(0.216243\pi\)
\(504\) 7.55575 + 3.86142i 0.336560 + 0.172001i
\(505\) 1.07900 0.0480150
\(506\) 11.4741 + 3.66655i 0.510085 + 0.162998i
\(507\) −3.99736 + 6.40885i −0.177529 + 0.284627i
\(508\) −14.3766 + 20.1980i −0.637860 + 0.896142i
\(509\) 23.7712i 1.05364i −0.849977 0.526820i \(-0.823384\pi\)
0.849977 0.526820i \(-0.176616\pi\)
\(510\) −2.54139 + 2.15722i −0.112535 + 0.0955235i
\(511\) 7.87847i 0.348523i
\(512\) 21.1934 7.92728i 0.936623 0.350340i
\(513\) 2.95865 28.8345i 0.130628 1.27307i
\(514\) 2.07649 6.49815i 0.0915901 0.286621i
\(515\) −2.52373 −0.111209
\(516\) −3.35212 8.05117i −0.147569 0.354433i
\(517\) −17.0351 −0.749205
\(518\) −0.275113 + 0.860938i −0.0120878 + 0.0378274i
\(519\) 31.1634 + 19.4374i 1.36792 + 0.853207i
\(520\) 2.31955 1.73752i 0.101719 0.0761954i
\(521\) 5.73027i 0.251048i −0.992091 0.125524i \(-0.959939\pi\)
0.992091 0.125524i \(-0.0400612\pi\)
\(522\) −40.9341 + 6.02491i −1.79164 + 0.263703i
\(523\) 4.81770i 0.210664i 0.994437 + 0.105332i \(0.0335904\pi\)
−0.994437 + 0.105332i \(0.966410\pi\)
\(524\) −2.62410 1.86779i −0.114634 0.0815948i
\(525\) −7.16948 4.47179i −0.312902 0.195165i
\(526\) −19.4762 6.22364i −0.849204 0.271364i
\(527\) 10.3024 0.448781
\(528\) 26.3700 + 6.00956i 1.14761 + 0.261533i
\(529\) −18.2394 −0.793016
\(530\) 0.808623 + 0.258396i 0.0351243 + 0.0112240i
\(531\) 10.8815 + 22.2174i 0.472216 + 0.964155i
\(532\) 9.08930 + 6.46962i 0.394071 + 0.280493i
\(533\) 22.2509i 0.963795i
\(534\) 16.7069 + 19.6821i 0.722978 + 0.851727i
\(535\) 3.83963i 0.166002i
\(536\) −1.44676 + 1.08374i −0.0624906 + 0.0468103i
\(537\) 1.66103 2.66308i 0.0716788 0.114920i
\(538\) −2.02854 + 6.34809i −0.0874564 + 0.273685i
\(539\) −3.90376 −0.168147
\(540\) −2.39116 + 2.72169i −0.102899 + 0.117123i
\(541\) −12.0388 −0.517590 −0.258795 0.965932i \(-0.583325\pi\)
−0.258795 + 0.965932i \(0.583325\pi\)
\(542\) −6.74728 + 21.1149i −0.289820 + 0.906962i
\(543\) 6.91099 11.0802i 0.296579 0.475496i
\(544\) 22.0765 0.536989i 0.946522 0.0230232i
\(545\) 0.487964i 0.0209021i
\(546\) −4.65912 5.48883i −0.199392 0.234900i
\(547\) 35.3097i 1.50973i −0.655879 0.754866i \(-0.727702\pi\)
0.655879 0.754866i \(-0.272298\pi\)
\(548\) −5.06100 + 7.11030i −0.216195 + 0.303737i
\(549\) 18.6003 + 37.9774i 0.793840 + 1.62084i
\(550\) −25.6548 8.19802i −1.09393 0.349565i
\(551\) −54.4011 −2.31756
\(552\) 10.6502 0.909900i 0.453304 0.0387279i
\(553\) −4.00000 −0.170097
\(554\) −22.8958 7.31638i −0.972751 0.310843i
\(555\) −0.327428 0.204225i −0.0138986 0.00866889i
\(556\) −19.5048 + 27.4026i −0.827186 + 1.16213i
\(557\) 34.7920i 1.47419i 0.675792 + 0.737093i \(0.263802\pi\)
−0.675792 + 0.737093i \(0.736198\pi\)
\(558\) 11.0774 1.63044i 0.468944 0.0690219i
\(559\) 7.39973i 0.312975i
\(560\) −0.456627 1.31756i −0.0192960 0.0556773i
\(561\) 22.3960 + 13.9690i 0.945562 + 0.589771i
\(562\) −2.47874 + 7.75694i −0.104559 + 0.327207i
\(563\) 12.8618 0.542058 0.271029 0.962571i \(-0.412636\pi\)
0.271029 + 0.962571i \(0.412636\pi\)
\(564\) −13.9553 + 5.81032i −0.587624 + 0.244659i
\(565\) −3.07900 −0.129535
\(566\) −2.40130 + 7.51461i −0.100934 + 0.315863i
\(567\) 7.11030 + 5.51757i 0.298605 + 0.231716i
\(568\) −20.2369 27.0157i −0.849120 1.13355i
\(569\) 15.6909i 0.657795i −0.944366 0.328897i \(-0.893323\pi\)
0.944366 0.328897i \(-0.106677\pi\)
\(570\) −3.63155 + 3.08260i −0.152109 + 0.129116i
\(571\) 42.0315i 1.75896i −0.475935 0.879481i \(-0.657890\pi\)
0.475935 0.879481i \(-0.342110\pi\)
\(572\) −18.6958 13.3074i −0.781710 0.556408i
\(573\) 1.49564 2.39792i 0.0624813 0.100174i
\(574\) 10.1980 + 3.25879i 0.425657 + 0.136019i
\(575\) −10.6443 −0.443897
\(576\) 23.6522 4.07116i 0.985508 0.169632i
\(577\) 38.7921 1.61494 0.807468 0.589912i \(-0.200837\pi\)
0.807468 + 0.589912i \(0.200837\pi\)
\(578\) −2.37176 0.757897i −0.0986522 0.0315244i
\(579\) −13.8932 + 22.2745i −0.577381 + 0.925697i
\(580\) 5.53950 + 3.94293i 0.230015 + 0.163721i
\(581\) 8.94358i 0.371042i
\(582\) 3.73487 3.17029i 0.154815 0.131413i
\(583\) 6.72180i 0.278388i
\(584\) −13.3597 17.8348i −0.552827 0.738011i
\(585\) 2.76063 1.35208i 0.114138 0.0559017i
\(586\) 10.2328 32.0223i 0.422711 1.32283i
\(587\) 7.07471 0.292004 0.146002 0.989284i \(-0.453359\pi\)
0.146002 + 0.989284i \(0.453359\pi\)
\(588\) −3.19799 + 1.33149i −0.131883 + 0.0549097i
\(589\) 14.7218 0.606601
\(590\) 1.23750 3.87263i 0.0509472 0.159434i
\(591\) −31.1945 19.4568i −1.28317 0.800346i
\(592\) 0.837122 + 2.41546i 0.0344055 + 0.0992747i
\(593\) 18.3895i 0.755168i −0.925975 0.377584i \(-0.876755\pi\)
0.925975 0.377584i \(-0.123245\pi\)
\(594\) 26.2915 + 11.4754i 1.07875 + 0.470843i
\(595\) 1.36090i 0.0557914i
\(596\) 8.88449 12.4820i 0.363923 0.511283i
\(597\) 5.52126 + 3.44375i 0.225970 + 0.140943i
\(598\) −8.63910 2.76063i −0.353279 0.112891i
\(599\) −37.8516 −1.54657 −0.773287 0.634057i \(-0.781389\pi\)
−0.773287 + 0.634057i \(0.781389\pi\)
\(600\) −23.8128 + 2.03444i −0.972152 + 0.0830557i
\(601\) 21.9488 0.895308 0.447654 0.894207i \(-0.352260\pi\)
0.447654 + 0.894207i \(0.352260\pi\)
\(602\) 3.39144 + 1.08374i 0.138225 + 0.0441698i
\(603\) −1.72188 + 0.843327i −0.0701202 + 0.0343429i
\(604\) 14.6585 20.5941i 0.596447 0.837960i
\(605\) 1.47789i 0.0600849i
\(606\) −4.90625 5.77997i −0.199303 0.234795i
\(607\) 25.8785i 1.05037i 0.850987 + 0.525187i \(0.176005\pi\)
−0.850987 + 0.525187i \(0.823995\pi\)
\(608\) 31.5465 0.767338i 1.27938 0.0311197i
\(609\) 8.93923 14.3320i 0.362236 0.580762i
\(610\) 2.11533 6.61968i 0.0856470 0.268023i
\(611\) 12.8262 0.518891
\(612\) 23.1115 + 3.80467i 0.934227 + 0.153795i
\(613\) −12.9136 −0.521576 −0.260788 0.965396i \(-0.583982\pi\)
−0.260788 + 0.965396i \(0.583982\pi\)
\(614\) −1.59268 + 4.98412i −0.0642753 + 0.201143i
\(615\) −2.41910 + 3.87847i −0.0975475 + 0.156395i
\(616\) −8.83712 + 6.61968i −0.356058 + 0.266715i
\(617\) 26.4677i 1.06555i 0.846257 + 0.532775i \(0.178851\pi\)
−0.846257 + 0.532775i \(0.821149\pi\)
\(618\) 11.4755 + 13.5190i 0.461611 + 0.543815i
\(619\) 34.3390i 1.38020i 0.723714 + 0.690100i \(0.242433\pi\)
−0.723714 + 0.690100i \(0.757567\pi\)
\(620\) −1.49908 1.06702i −0.0602044 0.0428525i
\(621\) 11.2782 + 1.15723i 0.452579 + 0.0464382i
\(622\) 10.2174 + 3.26499i 0.409682 + 0.130914i
\(623\) −10.5396 −0.422262
\(624\) −19.8546 4.52474i −0.794819 0.181135i
\(625\) 23.1918 0.927673
\(626\) −21.0626 6.73056i −0.841829 0.269007i
\(627\) 32.0031 + 19.9612i 1.27808 + 0.797172i
\(628\) 0.354292 + 0.252179i 0.0141378 + 0.0100631i
\(629\) 2.49490i 0.0994782i
\(630\) −0.215373 1.46327i −0.00858065 0.0582981i
\(631\) 27.7569i 1.10499i 0.833517 + 0.552493i \(0.186323\pi\)
−0.833517 + 0.552493i \(0.813677\pi\)
\(632\) −9.05498 + 6.78287i −0.360188 + 0.269808i
\(633\) −14.4605 9.01938i −0.574753 0.358488i
\(634\) 5.98058 18.7156i 0.237519 0.743291i
\(635\) 4.32141 0.171490
\(636\) −2.29266 5.50654i −0.0909099 0.218349i
\(637\) 2.93923 0.116457
\(638\) 16.3881 51.2847i 0.648810 2.03038i
\(639\) −15.7476 32.1530i −0.622967 1.27195i
\(640\) −3.26790 2.20832i −0.129175 0.0872915i
\(641\) 6.96331i 0.275034i −0.990499 0.137517i \(-0.956088\pi\)
0.990499 0.137517i \(-0.0439122\pi\)
\(642\) 20.5680 17.4589i 0.811756 0.689049i
\(643\) 9.74373i 0.384255i −0.981370 0.192128i \(-0.938461\pi\)
0.981370 0.192128i \(-0.0615387\pi\)
\(644\) −2.53050 + 3.55515i −0.0997156 + 0.140093i
\(645\) −0.804492 + 1.28982i −0.0316768 + 0.0507865i
\(646\) 29.3353 + 9.37411i 1.15418 + 0.368819i
\(647\) 28.1896 1.10825 0.554123 0.832434i \(-0.313054\pi\)
0.554123 + 0.832434i \(0.313054\pi\)
\(648\) 25.4522 + 0.433298i 0.999855 + 0.0170216i
\(649\) −32.1918 −1.26364
\(650\) 19.3161 + 6.17248i 0.757641 + 0.242105i
\(651\) −2.41910 + 3.87847i −0.0948120 + 0.152009i
\(652\) −6.07649 + 8.53699i −0.237974 + 0.334334i
\(653\) 10.8527i 0.424697i 0.977194 + 0.212349i \(0.0681112\pi\)
−0.977194 + 0.212349i \(0.931889\pi\)
\(654\) −2.61391 + 2.21878i −0.102212 + 0.0867613i
\(655\) 0.561431i 0.0219369i
\(656\) 28.6117 9.91592i 1.11710 0.387151i
\(657\) −10.3960 21.2263i −0.405588 0.828116i
\(658\) 1.87847 5.87847i 0.0732304 0.229167i
\(659\) −19.2248 −0.748893 −0.374446 0.927249i \(-0.622167\pi\)
−0.374446 + 0.927249i \(0.622167\pi\)
\(660\) −1.81202 4.35214i −0.0705329 0.169407i
\(661\) −2.74742 −0.106862 −0.0534311 0.998572i \(-0.517016\pi\)
−0.0534311 + 0.998572i \(0.517016\pi\)
\(662\) 13.6871 42.8323i 0.531964 1.66472i
\(663\) −16.8625 10.5176i −0.654885 0.408469i
\(664\) −15.1658 20.2460i −0.588547 0.785696i
\(665\) 1.94467i 0.0754112i
\(666\) 0.394837 + 2.68258i 0.0152996 + 0.103948i
\(667\) 21.2782i 0.823895i
\(668\) −18.6958 13.3074i −0.723361 0.514877i
\(669\) −33.6742 21.0035i −1.30192 0.812041i
\(670\) 0.300133 + 0.0959078i 0.0115952 + 0.00370524i
\(671\) −55.0271 −2.12430
\(672\) −4.98160 + 8.43704i −0.192169 + 0.325466i
\(673\) 31.3097 1.20690 0.603449 0.797401i \(-0.293793\pi\)
0.603449 + 0.797401i \(0.293793\pi\)
\(674\) 23.0596 + 7.36870i 0.888221 + 0.283832i
\(675\) −25.2169 2.58746i −0.970598 0.0995912i
\(676\) −7.10562 5.05766i −0.273293 0.194525i
\(677\) 20.9823i 0.806415i −0.915109 0.403208i \(-0.867895\pi\)
0.915109 0.403208i \(-0.132105\pi\)
\(678\) 14.0003 + 16.4935i 0.537678 + 0.633429i
\(679\) 2.00000i 0.0767530i
\(680\) −2.30770 3.08073i −0.0884963 0.118140i
\(681\) −12.4022 + 19.8841i −0.475255 + 0.761962i
\(682\) −4.43488 + 13.8785i −0.169820 + 0.531434i
\(683\) −15.8234 −0.605467 −0.302734 0.953075i \(-0.597899\pi\)
−0.302734 + 0.953075i \(0.597899\pi\)
\(684\) 33.0255 + 5.43673i 1.26276 + 0.207879i
\(685\) 1.52126 0.0581245
\(686\) 0.430469 1.34711i 0.0164354 0.0514328i
\(687\) 13.4711 21.5978i 0.513953 0.824006i
\(688\) 9.51506 3.29762i 0.362758 0.125721i
\(689\) 5.06100i 0.192809i
\(690\) −1.20571 1.42043i −0.0459007 0.0540748i
\(691\) 24.4093i 0.928572i 0.885685 + 0.464286i \(0.153689\pi\)
−0.885685 + 0.464286i \(0.846311\pi\)
\(692\) −24.5931 + 34.5514i −0.934891 + 1.31345i
\(693\) −10.5176 + 5.15121i −0.399529 + 0.195678i
\(694\) 11.3803 + 3.63659i 0.431991 + 0.138043i
\(695\) 5.86285 0.222391
\(696\) −4.06690 47.6024i −0.154156 1.80437i
\(697\) 29.5527 1.11939
\(698\) −23.5685 7.53133i −0.892081 0.285065i
\(699\) 25.2626 + 15.7569i 0.955520 + 0.595982i
\(700\) 5.65793 7.94894i 0.213850 0.300442i
\(701\) 21.4779i 0.811209i 0.914049 + 0.405605i \(0.132939\pi\)
−0.914049 + 0.405605i \(0.867061\pi\)
\(702\) −19.7954 8.64012i −0.747131 0.326100i
\(703\) 3.56512i 0.134461i
\(704\) −8.77986 + 29.9705i −0.330904 + 1.12956i
\(705\) 2.23568 + 1.39445i 0.0842004 + 0.0525179i
\(706\) 3.55892 11.1373i 0.133942 0.419156i
\(707\) 3.09514 0.116405
\(708\) −26.3718 + 10.9799i −0.991111 + 0.412651i
\(709\) −42.1918 −1.58455 −0.792273 0.610166i \(-0.791103\pi\)
−0.792273 + 0.610166i \(0.791103\pi\)
\(710\) −1.79091 + 5.60446i −0.0672116 + 0.210331i
\(711\) −10.7769 + 5.27820i −0.404164 + 0.197948i
\(712\) −23.8591 + 17.8723i −0.894156 + 0.669791i
\(713\) 5.75822i 0.215647i
\(714\) −7.29002 + 6.18804i −0.272822 + 0.231582i
\(715\) 4.00000i 0.149592i
\(716\) 2.95261 + 2.10162i 0.110344 + 0.0785412i
\(717\) 13.3221 21.3589i 0.497522 0.797661i
\(718\) 33.8528 + 10.8177i 1.26338 + 0.403713i
\(719\) 19.0588 0.710774 0.355387 0.934719i \(-0.384349\pi\)
0.355387 + 0.934719i \(0.384349\pi\)
\(720\) −2.96884 2.94726i −0.110642 0.109838i
\(721\) −7.23937 −0.269608
\(722\) 16.3240 + 5.21635i 0.607517 + 0.194133i
\(723\) −17.2255 + 27.6172i −0.640624 + 1.02709i
\(724\) 12.2848 + 8.74413i 0.456561 + 0.324973i
\(725\) 47.5758i 1.76692i
\(726\) −7.91674 + 6.72002i −0.293818 + 0.249403i
\(727\) 3.72549i 0.138171i −0.997611 0.0690854i \(-0.977992\pi\)
0.997611 0.0690854i \(-0.0220081\pi\)
\(728\) 6.65368 4.98412i 0.246602 0.184724i
\(729\) 26.4374 + 5.48311i 0.979163 + 0.203078i
\(730\) −1.18230 + 3.69987i −0.0437587 + 0.136938i
\(731\) 9.82800 0.363502
\(732\) −45.0786 + 18.7686i −1.66615 + 0.693706i
\(733\) −25.4180 −0.938834 −0.469417 0.882977i \(-0.655536\pi\)
−0.469417 + 0.882977i \(0.655536\pi\)
\(734\) 9.34681 29.2498i 0.344997 1.07963i
\(735\) 0.512326 + 0.319551i 0.0188974 + 0.0117868i
\(736\) 0.300133 + 12.3390i 0.0110631 + 0.454820i
\(737\) 2.49490i 0.0919009i
\(738\) 31.7758 4.67694i 1.16968 0.172161i
\(739\) 23.3097i 0.857459i 0.903433 + 0.428730i \(0.141039\pi\)
−0.903433 + 0.428730i \(0.858961\pi\)
\(740\) 0.258396 0.363026i 0.00949883 0.0133451i
\(741\) −24.0959 15.0292i −0.885185 0.552113i
\(742\) 2.31955 + 0.741214i 0.0851534 + 0.0272108i
\(743\) 33.8576 1.24211 0.621057 0.783765i \(-0.286703\pi\)
0.621057 + 0.783765i \(0.286703\pi\)
\(744\) 1.10057 + 12.8820i 0.0403488 + 0.472276i
\(745\) −2.67055 −0.0978415
\(746\) 0.972337 + 0.310711i 0.0355998 + 0.0113759i
\(747\) −11.8015 24.0959i −0.431795 0.881623i
\(748\) −17.6742 + 24.8309i −0.646234 + 0.907908i
\(749\) 11.0141i 0.402445i
\(750\) 5.45885 + 6.43098i 0.199329 + 0.234826i
\(751\) 48.1530i 1.75713i 0.477625 + 0.878564i \(0.341498\pi\)
−0.477625 + 0.878564i \(0.658502\pi\)
\(752\) −5.71586 16.4927i −0.208436 0.601427i
\(753\) 18.9198 30.3336i 0.689476 1.10542i
\(754\) −12.3390 + 38.6135i −0.449359 + 1.40622i
\(755\) −4.40614 −0.160356
\(756\) −6.85910 + 7.80723i −0.249463 + 0.283946i
\(757\) −11.3923 −0.414062 −0.207031 0.978334i \(-0.566380\pi\)
−0.207031 + 0.978334i \(0.566380\pi\)
\(758\) −7.86661 + 24.6177i −0.285728 + 0.894156i
\(759\) −7.80753 + 12.5176i −0.283395 + 0.454359i
\(760\) −3.29762 4.40225i −0.119617 0.159686i
\(761\) 27.5491i 0.998656i 0.866413 + 0.499328i \(0.166420\pi\)
−0.866413 + 0.499328i \(0.833580\pi\)
\(762\) −19.6496 23.1488i −0.711828 0.838592i
\(763\) 1.39973i 0.0506738i
\(764\) 2.65862 + 1.89236i 0.0961853 + 0.0684632i
\(765\) −1.79577 3.66655i −0.0649264 0.132564i
\(766\) −2.76063 0.882162i −0.0997457 0.0318738i
\(767\) 24.2380 0.875182
\(768\) 3.02979 + 27.5467i 0.109328 + 0.994006i
\(769\) −5.83461 −0.210401 −0.105201 0.994451i \(-0.533549\pi\)
−0.105201 + 0.994451i \(0.533549\pi\)
\(770\) 1.83328 + 0.585825i 0.0660667 + 0.0211117i
\(771\) 7.08912 + 4.42166i 0.255308 + 0.159242i
\(772\) −24.6962 17.5783i −0.888835 0.632658i
\(773\) 47.5682i 1.71091i 0.517879 + 0.855454i \(0.326722\pi\)
−0.517879 + 0.855454i \(0.673278\pi\)
\(774\) 10.5673 1.55536i 0.379834 0.0559061i
\(775\) 12.8748i 0.462476i
\(776\) 3.39144 + 4.52749i 0.121745 + 0.162527i
\(777\) −0.939235 0.585825i −0.0336949 0.0210163i
\(778\) −4.79829 + 15.0157i −0.172027 + 0.538340i
\(779\) 42.2298 1.51304
\(780\) 1.36431 + 3.27683i 0.0488503 + 0.117329i
\(781\) 46.5879 1.66704
\(782\) −3.66655 + 11.4741i −0.131116 + 0.410312i
\(783\) 5.17240 50.4093i 0.184846 1.80148i
\(784\) −1.30984 3.77946i −0.0467801 0.134981i
\(785\) 0.0758015i 0.00270547i
\(786\) 3.00746 2.55284i 0.107272 0.0910569i
\(787\) 48.8177i 1.74016i −0.492908 0.870082i \(-0.664066\pi\)
0.492908 0.870082i \(-0.335934\pi\)
\(788\) 24.6177 34.5859i 0.876970 1.23207i
\(789\) 13.2526 21.2475i 0.471804 0.756430i
\(790\) 1.87847 + 0.600267i 0.0668330 + 0.0213565i
\(791\) −8.83218 −0.314036
\(792\) −15.0741 + 29.4959i −0.535634 + 1.04809i
\(793\) 41.4312 1.47126
\(794\) −10.7423 3.43272i −0.381231 0.121823i
\(795\) −0.550227 + 0.882162i −0.0195145 + 0.0312871i
\(796\) −4.35721 + 6.12153i −0.154437 + 0.216972i
\(797\) 12.7292i 0.450890i 0.974256 + 0.225445i \(0.0723837\pi\)
−0.974256 + 0.225445i \(0.927616\pi\)
\(798\) −10.4172 + 8.84249i −0.368764 + 0.313021i
\(799\) 17.0351i 0.602660i
\(800\) −0.671066 27.5886i −0.0237258 0.975405i
\(801\) −28.3960 + 13.9076i −1.00332 + 0.491401i
\(802\) −9.24557 + 28.9330i −0.326473 + 1.02166i
\(803\) 30.7557 1.08534
\(804\) −0.850958 2.04384i −0.0300110 0.0720807i
\(805\) 0.760632 0.0268088
\(806\) 3.33912 10.4494i 0.117616 0.368065i
\(807\) −6.92541 4.31955i −0.243786 0.152055i
\(808\) 7.00661 5.24849i 0.246492 0.184641i
\(809\) 26.5813i 0.934548i −0.884113 0.467274i \(-0.845236\pi\)
0.884113 0.467274i \(-0.154764\pi\)
\(810\) −2.51112 3.65817i −0.0882317 0.128535i
\(811\) 4.13977i 0.145367i 0.997355 + 0.0726835i \(0.0231563\pi\)
−0.997355 + 0.0726835i \(0.976844\pi\)
\(812\) 15.8902 + 11.3104i 0.557636 + 0.396916i
\(813\) −23.0351 14.3676i −0.807878 0.503894i
\(814\) −3.36090 1.07398i −0.117799 0.0376429i
\(815\) 1.82651 0.0639797
\(816\) −6.00956 + 26.3700i −0.210377 + 0.923133i
\(817\) 14.0439 0.491332
\(818\) −49.7266 15.8902i −1.73865 0.555587i
\(819\) 7.91893 3.87847i 0.276710 0.135525i
\(820\) −4.30013 3.06077i −0.150167 0.106887i
\(821\) 29.5082i 1.02984i −0.857237 0.514922i \(-0.827821\pi\)
0.857237 0.514922i \(-0.172179\pi\)
\(822\) −6.91723 8.14906i −0.241266 0.284231i
\(823\) 12.0777i 0.421001i 0.977594 + 0.210501i \(0.0675094\pi\)
−0.977594 + 0.210501i \(0.932491\pi\)
\(824\) −16.3881 + 12.2759i −0.570906 + 0.427652i
\(825\) 17.4568 27.9880i 0.607768 0.974416i
\(826\) 3.54980 11.1087i 0.123513 0.386522i
\(827\) −11.9341 −0.414989 −0.207494 0.978236i \(-0.566531\pi\)
−0.207494 + 0.978236i \(0.566531\pi\)
\(828\) −2.12650 + 12.9175i −0.0739010 + 0.448913i
\(829\) −2.50436 −0.0869800 −0.0434900 0.999054i \(-0.513848\pi\)
−0.0434900 + 0.999054i \(0.513848\pi\)
\(830\) −1.34213 + 4.20006i −0.0465861 + 0.145786i
\(831\) 15.5795 24.9781i 0.540445 0.866480i
\(832\) 6.61057 22.5655i 0.229180 0.782319i
\(833\) 3.90376i 0.135257i
\(834\) −26.6585 31.4059i −0.923110 1.08750i
\(835\) 4.00000i 0.138426i
\(836\) −25.2559 + 35.4825i −0.873492 + 1.22719i
\(837\) −1.39973 + 13.6416i −0.0483819 + 0.471521i
\(838\) 39.8437 + 12.7321i 1.37638 + 0.439823i
\(839\) −1.64607 −0.0568288 −0.0284144 0.999596i \(-0.509046\pi\)
−0.0284144 + 0.999596i \(0.509046\pi\)
\(840\) 1.70164 0.145380i 0.0587123 0.00501607i
\(841\) −66.1054 −2.27950
\(842\) −49.6152 15.8546i −1.70985 0.546385i
\(843\) −8.46238 5.27820i −0.291460 0.181791i
\(844\) 11.4118 16.0326i 0.392809 0.551866i
\(845\) 1.52026i 0.0522986i
\(846\) −2.69594 18.3166i −0.0926884 0.629737i
\(847\) 4.23937i 0.145666i
\(848\) 6.50776 2.25539i 0.223477 0.0774503i
\(849\) −8.19802 5.11331i −0.281355 0.175488i
\(850\) 8.19802 25.6548i 0.281190 0.879953i
\(851\) −1.39445 −0.0478010
\(852\) 38.1651 15.8901i 1.30751 0.544387i
\(853\) −15.1311 −0.518077 −0.259039 0.965867i \(-0.583406\pi\)
−0.259039 + 0.965867i \(0.583406\pi\)
\(854\) 6.06785 18.9887i 0.207638 0.649780i
\(855\) −2.56610 5.23937i −0.0877587 0.179183i
\(856\) 18.6768 + 24.9330i 0.638358 + 0.852193i
\(857\) 48.9224i 1.67116i −0.549370 0.835579i \(-0.685132\pi\)
0.549370 0.835579i \(-0.314868\pi\)
\(858\) 21.4271 18.1881i 0.731508 0.620932i
\(859\) 16.0571i 0.547860i −0.961750 0.273930i \(-0.911676\pi\)
0.961750 0.273930i \(-0.0883237\pi\)
\(860\) −1.43005 1.01788i −0.0487641 0.0347095i
\(861\) −6.93923 + 11.1255i −0.236488 + 0.379155i
\(862\) −6.30013 2.01321i −0.214583 0.0685703i
\(863\) −14.9034 −0.507318 −0.253659 0.967294i \(-0.581634\pi\)
−0.253659 + 0.967294i \(0.581634\pi\)
\(864\) −2.28838 + 29.3047i −0.0778522 + 0.996965i
\(865\) 7.39235 0.251347
\(866\) 22.3032 + 7.12702i 0.757895 + 0.242186i
\(867\) 1.61386 2.58746i 0.0548096 0.0878746i
\(868\) −4.30013 3.06077i −0.145956 0.103889i
\(869\) 15.6151i 0.529704i
\(870\) −6.34878 + 5.38908i −0.215244 + 0.182707i
\(871\) 1.87847i 0.0636495i
\(872\) −2.37355 3.16864i −0.0803787 0.107304i
\(873\) 2.63910 + 5.38843i 0.0893201 + 0.182371i
\(874\) −5.23937 + 16.3960i −0.177224 + 0.554604i
\(875\) −3.44375 −0.116420
\(876\) 25.1953 10.4901i 0.851269 0.354428i
\(877\) 11.8785 0.401107 0.200554 0.979683i \(-0.435726\pi\)
0.200554 + 0.979683i \(0.435726\pi\)
\(878\) −11.3983 + 35.6697i −0.384673 + 1.20379i
\(879\) 34.9346 + 21.7896i 1.17831 + 0.734944i
\(880\) 5.14346 1.78256i 0.173386 0.0600901i
\(881\) 36.4995i 1.22970i 0.788644 + 0.614850i \(0.210783\pi\)
−0.788644 + 0.614850i \(0.789217\pi\)
\(882\) −0.617800 4.19742i −0.0208024 0.141334i
\(883\) 31.1178i 1.04720i −0.851965 0.523599i \(-0.824589\pi\)
0.851965 0.523599i \(-0.175411\pi\)
\(884\) 13.3074 18.6958i 0.447575 0.628807i
\(885\) 4.22482 + 2.63513i 0.142016 + 0.0885789i
\(886\) 6.19802 + 1.98058i 0.208227 + 0.0665390i
\(887\) 56.9248 1.91135 0.955674 0.294428i \(-0.0951291\pi\)
0.955674 + 0.294428i \(0.0951291\pi\)
\(888\) −3.11958 + 0.266521i −0.104686 + 0.00894386i
\(889\) 12.3960 0.415750
\(890\) 4.94960 + 1.58165i 0.165911 + 0.0530170i
\(891\) −21.5393 + 27.7569i −0.721593 + 0.929892i
\(892\) 26.5746 37.3353i 0.889785 1.25008i
\(893\) 24.3426i 0.814594i
\(894\) 12.1431 + 14.3055i 0.406125 + 0.478448i
\(895\) 0.631717i 0.0211160i
\(896\) −9.37405 6.33461i −0.313165 0.211624i
\(897\) 5.87847 9.42477i 0.196276 0.314684i
\(898\) 7.32206 22.9136i 0.244340 0.764637i
\(899\) 25.7370 0.858379
\(900\) 4.75463 28.8821i 0.158488 0.962736i
\(901\) 6.72180 0.223936
\(902\) −12.7215 + 39.8107i −0.423581 + 1.32555i
\(903\) −2.30770 + 3.69987i −0.0767955 + 0.123124i
\(904\) −19.9938 + 14.9769i −0.664984 + 0.498124i
\(905\) 2.62836i 0.0873696i
\(906\) 20.0348 + 23.6027i 0.665613 + 0.784147i
\(907\) 6.70939i 0.222782i −0.993777 0.111391i \(-0.964469\pi\)
0.993777 0.111391i \(-0.0355305\pi\)
\(908\) −22.0459 15.6919i −0.731620 0.520755i
\(909\) 8.33897 4.08419i 0.276586 0.135464i
\(910\) −1.38032 0.441081i −0.0457570 0.0146217i
\(911\) −50.1275 −1.66080 −0.830399 0.557169i \(-0.811888\pi\)
−0.830399 + 0.557169i \(0.811888\pi\)
\(912\) −8.58745 + 37.6817i −0.284359 + 1.24777i
\(913\) 34.9136 1.15547
\(914\) 20.7875 + 6.64265i 0.687588 + 0.219719i
\(915\) 7.22170 + 4.50436i 0.238742 + 0.148910i
\(916\) 23.9458 + 17.0443i 0.791193 + 0.563158i
\(917\) 1.61048i 0.0531826i
\(918\) −11.4754 + 26.2915i −0.378746 + 0.867747i
\(919\) 17.0351i 0.561938i −0.959717 0.280969i \(-0.909344\pi\)
0.959717 0.280969i \(-0.0906557\pi\)
\(920\) 1.72188 1.28982i 0.0567686 0.0425240i
\(921\) −5.43739 3.39144i −0.179168 0.111752i
\(922\) −14.3675 + 44.9616i −0.473169 + 1.48073i
\(923\) −35.0771 −1.15458
\(924\) −5.19782 12.4842i −0.170996 0.410700i
\(925\) 3.11784 0.102514
\(926\) 11.3983 35.6697i 0.374571 1.17218i
\(927\) −19.5044 + 9.55271i −0.640609 + 0.313752i
\(928\) 55.1505 1.34148i 1.81040 0.0440363i
\(929\) 23.4082i 0.767997i −0.923334 0.383999i \(-0.874547\pi\)
0.923334 0.383999i \(-0.125453\pi\)
\(930\) 1.71808 1.45837i 0.0563381 0.0478219i
\(931\) 5.57834i 0.182823i
\(932\) −19.9365 + 28.0092i −0.653040 + 0.917470i
\(933\) −6.95245 + 11.1466i −0.227613 + 0.364925i
\(934\) −25.0443 8.00291i −0.819473 0.261863i
\(935\) 5.31263 0.173741
\(936\) 11.3496 22.2081i 0.370974 0.725896i
\(937\) −48.5929 −1.58746 −0.793730 0.608270i \(-0.791864\pi\)
−0.793730 + 0.608270i \(0.791864\pi\)
\(938\) 0.860938 + 0.275113i 0.0281106 + 0.00898277i
\(939\) 14.3320 22.9781i 0.467707 0.749861i
\(940\) −1.76432 + 2.47874i −0.0575459 + 0.0808475i
\(941\) 14.6116i 0.476324i 0.971225 + 0.238162i \(0.0765449\pi\)
−0.971225 + 0.238162i \(0.923455\pi\)
\(942\) −0.406051 + 0.344671i −0.0132299 + 0.0112300i
\(943\) 16.5176i 0.537886i
\(944\) −10.8014 31.1668i −0.351556 1.01439i
\(945\) 1.80198 + 0.184898i 0.0586184 + 0.00601472i
\(946\) −4.23065 + 13.2394i −0.137550 + 0.430449i
\(947\) −31.4250 −1.02117 −0.510587 0.859826i \(-0.670572\pi\)
−0.510587 + 0.859826i \(0.670572\pi\)
\(948\) −5.32596 12.7920i −0.172979 0.415463i
\(949\) −23.1567 −0.751697
\(950\) 11.7147 36.6598i 0.380074 1.18940i
\(951\) 20.4177 + 12.7350i 0.662088 + 0.412961i
\(952\) −6.61968 8.83712i −0.214545 0.286413i
\(953\) 14.0113i 0.453872i −0.973910 0.226936i \(-0.927129\pi\)
0.973910 0.226936i \(-0.0728708\pi\)
\(954\) 7.22743 1.06378i 0.233997 0.0344410i
\(955\) 0.568816i 0.0184065i
\(956\) 23.6810 + 16.8557i 0.765898 + 0.545153i
\(957\) 55.9488 + 34.8967i 1.80857 + 1.12805i
\(958\) −55.0666 17.5966i −1.77912 0.568520i
\(959\) 4.36377 0.140914
\(960\) 3.60556 3.21461i 0.116369 0.103751i
\(961\) 24.0351 0.775327
\(962\) 2.53050 + 0.808623i 0.0815866 + 0.0260711i
\(963\) 14.5336 + 29.6742i 0.468339 + 0.956239i
\(964\) −30.6197 21.7946i −0.986194 0.701957i
\(965\) 5.28380i 0.170091i
\(966\) −3.45861 4.07453i −0.111279 0.131096i
\(967\) 35.9876i 1.15728i 0.815582 + 0.578641i \(0.196417\pi\)
−0.815582 + 0.578641i \(0.803583\pi\)
\(968\) −7.18878 9.59685i −0.231056 0.308454i
\(969\) −19.9612 + 32.0031i −0.641245 + 1.02809i
\(970\) 0.300133 0.939235i 0.00963670 0.0301570i
\(971\) −48.3844 −1.55273 −0.776365 0.630283i \(-0.782939\pi\)
−0.776365 + 0.630283i \(0.782939\pi\)
\(972\) −8.17783 + 30.0853i −0.262304 + 0.964985i
\(973\) 16.8177 0.539151
\(974\) −9.22546 + 28.8701i −0.295603 + 0.925057i
\(975\) −13.1436 + 21.0728i −0.420933 + 0.674870i
\(976\) −18.4634 53.2749i −0.590999 1.70529i
\(977\) 37.6432i 1.20431i 0.798378 + 0.602156i \(0.205692\pi\)
−0.798378 + 0.602156i \(0.794308\pi\)
\(978\) −8.30517 9.78417i −0.265570 0.312863i
\(979\) 41.1443i 1.31498i
\(980\) −0.404312 + 0.568026i −0.0129153 + 0.0181449i
\(981\) −1.84702 3.77118i −0.0589708 0.120405i
\(982\) −2.19802 0.702379i −0.0701417 0.0224138i
\(983\) −5.35499 −0.170798 −0.0853989 0.996347i \(-0.527216\pi\)
−0.0853989 + 0.996347i \(0.527216\pi\)
\(984\) 3.15700 + 36.9522i 0.100642 + 1.17799i
\(985\) −7.39973 −0.235775
\(986\) 51.2847 + 16.3881i 1.63324 + 0.521903i
\(987\) 6.41308 + 4.00000i 0.204131 + 0.127321i
\(988\) 19.0157 26.7156i 0.604971 0.849936i
\(989\) 5.49306i 0.174669i
\(990\) 5.71226 0.840763i 0.181548 0.0267212i
\(991\) 51.0278i 1.62095i 0.585773 + 0.810475i \(0.300791\pi\)
−0.585773 + 0.810475i \(0.699209\pi\)
\(992\) −14.9246 + 0.363026i −0.473856 + 0.0115261i
\(993\) 46.7276 + 29.1452i 1.48286 + 0.924895i
\(994\) −5.13726 + 16.0765i −0.162944 + 0.509915i
\(995\) 1.30971 0.0415207
\(996\) 28.6015 11.9083i 0.906272 0.377329i
\(997\) −53.9305 −1.70800 −0.853998 0.520276i \(-0.825829\pi\)
−0.853998 + 0.520276i \(0.825829\pi\)
\(998\) −3.82350 + 11.9652i −0.121031 + 0.378752i
\(999\) −3.30352 0.338968i −0.104519 0.0107245i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.2.e.a.71.1 12
3.2 odd 2 inner 84.2.e.a.71.12 yes 12
4.3 odd 2 inner 84.2.e.a.71.11 yes 12
7.2 even 3 588.2.n.f.263.7 24
7.3 odd 6 588.2.n.g.275.10 24
7.4 even 3 588.2.n.f.275.10 24
7.5 odd 6 588.2.n.g.263.7 24
7.6 odd 2 588.2.e.c.491.1 12
8.3 odd 2 1344.2.h.h.575.9 12
8.5 even 2 1344.2.h.h.575.4 12
12.11 even 2 inner 84.2.e.a.71.2 yes 12
21.2 odd 6 588.2.n.f.263.6 24
21.5 even 6 588.2.n.g.263.6 24
21.11 odd 6 588.2.n.f.275.3 24
21.17 even 6 588.2.n.g.275.3 24
21.20 even 2 588.2.e.c.491.12 12
24.5 odd 2 1344.2.h.h.575.10 12
24.11 even 2 1344.2.h.h.575.3 12
28.3 even 6 588.2.n.g.275.6 24
28.11 odd 6 588.2.n.f.275.6 24
28.19 even 6 588.2.n.g.263.3 24
28.23 odd 6 588.2.n.f.263.3 24
28.27 even 2 588.2.e.c.491.11 12
84.11 even 6 588.2.n.f.275.7 24
84.23 even 6 588.2.n.f.263.10 24
84.47 odd 6 588.2.n.g.263.10 24
84.59 odd 6 588.2.n.g.275.7 24
84.83 odd 2 588.2.e.c.491.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.e.a.71.1 12 1.1 even 1 trivial
84.2.e.a.71.2 yes 12 12.11 even 2 inner
84.2.e.a.71.11 yes 12 4.3 odd 2 inner
84.2.e.a.71.12 yes 12 3.2 odd 2 inner
588.2.e.c.491.1 12 7.6 odd 2
588.2.e.c.491.2 12 84.83 odd 2
588.2.e.c.491.11 12 28.27 even 2
588.2.e.c.491.12 12 21.20 even 2
588.2.n.f.263.3 24 28.23 odd 6
588.2.n.f.263.6 24 21.2 odd 6
588.2.n.f.263.7 24 7.2 even 3
588.2.n.f.263.10 24 84.23 even 6
588.2.n.f.275.3 24 21.11 odd 6
588.2.n.f.275.6 24 28.11 odd 6
588.2.n.f.275.7 24 84.11 even 6
588.2.n.f.275.10 24 7.4 even 3
588.2.n.g.263.3 24 28.19 even 6
588.2.n.g.263.6 24 21.5 even 6
588.2.n.g.263.7 24 7.5 odd 6
588.2.n.g.263.10 24 84.47 odd 6
588.2.n.g.275.3 24 21.17 even 6
588.2.n.g.275.6 24 28.3 even 6
588.2.n.g.275.7 24 84.59 odd 6
588.2.n.g.275.10 24 7.3 odd 6
1344.2.h.h.575.3 12 24.11 even 2
1344.2.h.h.575.4 12 8.5 even 2
1344.2.h.h.575.9 12 8.3 odd 2
1344.2.h.h.575.10 12 24.5 odd 2