Properties

Label 6.16.a.a
Level $6$
Weight $16$
Character orbit 6.a
Self dual yes
Analytic conductor $8.562$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6,16,Mod(1,6)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6.1");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6 = 2 \cdot 3 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 6.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.56161030600\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 128 q^{2} - 2187 q^{3} + 16384 q^{4} - 314490 q^{5} + 279936 q^{6} + 2025056 q^{7} - 2097152 q^{8} + 4782969 q^{9} + 40254720 q^{10} + 110255052 q^{11} - 35831808 q^{12} + 56047862 q^{13} - 259207168 q^{14}+ \cdots + 527346495809388 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−128.000 −2187.00 16384.0 −314490. 279936. 2.02506e6 −2.09715e6 4.78297e6 4.02547e7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6.16.a.a 1
3.b odd 2 1 18.16.a.f 1
4.b odd 2 1 48.16.a.c 1
5.b even 2 1 150.16.a.h 1
5.c odd 4 2 150.16.c.i 2
12.b even 2 1 144.16.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.16.a.a 1 1.a even 1 1 trivial
18.16.a.f 1 3.b odd 2 1
48.16.a.c 1 4.b odd 2 1
144.16.a.o 1 12.b even 2 1
150.16.a.h 1 5.b even 2 1
150.16.c.i 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 314490 \) acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(6))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 128 \) Copy content Toggle raw display
$3$ \( T + 2187 \) Copy content Toggle raw display
$5$ \( T + 314490 \) Copy content Toggle raw display
$7$ \( T - 2025056 \) Copy content Toggle raw display
$11$ \( T - 110255052 \) Copy content Toggle raw display
$13$ \( T - 56047862 \) Copy content Toggle raw display
$17$ \( T + 1930104414 \) Copy content Toggle raw display
$19$ \( T - 2163188180 \) Copy content Toggle raw display
$23$ \( T - 6228974472 \) Copy content Toggle raw display
$29$ \( T - 64743719070 \) Copy content Toggle raw display
$31$ \( T + 20237611048 \) Copy content Toggle raw display
$37$ \( T - 488967594446 \) Copy content Toggle raw display
$41$ \( T + 772359114198 \) Copy content Toggle raw display
$43$ \( T - 1306766329292 \) Copy content Toggle raw display
$47$ \( T - 3351821491776 \) Copy content Toggle raw display
$53$ \( T - 9387813393702 \) Copy content Toggle raw display
$59$ \( T - 28930359275340 \) Copy content Toggle raw display
$61$ \( T - 42393077399702 \) Copy content Toggle raw display
$67$ \( T + 52247243064364 \) Copy content Toggle raw display
$71$ \( T + 27194529024648 \) Copy content Toggle raw display
$73$ \( T + 91604195687878 \) Copy content Toggle raw display
$79$ \( T - 62882111078120 \) Copy content Toggle raw display
$83$ \( T + 223567315949868 \) Copy content Toggle raw display
$89$ \( T - 554198786115210 \) Copy content Toggle raw display
$97$ \( T + 1388870476877374 \) Copy content Toggle raw display
show more
show less