Properties

Label 6069.2.a.bc.1.2
Level $6069$
Weight $2$
Character 6069.1
Self dual yes
Analytic conductor $48.461$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6069,2,Mod(1,6069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6069.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 12x^{7} - 3x^{6} + 45x^{5} + 21x^{4} - 53x^{3} - 39x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.02180\) of defining polynomial
Character \(\chi\) \(=\) 6069.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.02180 q^{2} +1.00000 q^{3} +2.08766 q^{4} -0.796171 q^{5} -2.02180 q^{6} +1.00000 q^{7} -0.177223 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-2.02180 q^{2} +1.00000 q^{3} +2.08766 q^{4} -0.796171 q^{5} -2.02180 q^{6} +1.00000 q^{7} -0.177223 q^{8} +1.00000 q^{9} +1.60970 q^{10} -3.96044 q^{11} +2.08766 q^{12} -0.338889 q^{13} -2.02180 q^{14} -0.796171 q^{15} -3.81700 q^{16} -2.02180 q^{18} +5.37764 q^{19} -1.66213 q^{20} +1.00000 q^{21} +8.00719 q^{22} +9.14634 q^{23} -0.177223 q^{24} -4.36611 q^{25} +0.685164 q^{26} +1.00000 q^{27} +2.08766 q^{28} -2.16884 q^{29} +1.60970 q^{30} -10.6499 q^{31} +8.07165 q^{32} -3.96044 q^{33} -0.796171 q^{35} +2.08766 q^{36} -4.68236 q^{37} -10.8725 q^{38} -0.338889 q^{39} +0.141100 q^{40} +5.86902 q^{41} -2.02180 q^{42} -9.17251 q^{43} -8.26803 q^{44} -0.796171 q^{45} -18.4920 q^{46} +2.55127 q^{47} -3.81700 q^{48} +1.00000 q^{49} +8.82738 q^{50} -0.707484 q^{52} +4.13973 q^{53} -2.02180 q^{54} +3.15319 q^{55} -0.177223 q^{56} +5.37764 q^{57} +4.38495 q^{58} +4.55341 q^{59} -1.66213 q^{60} -9.58258 q^{61} +21.5320 q^{62} +1.00000 q^{63} -8.68521 q^{64} +0.269814 q^{65} +8.00719 q^{66} +2.80790 q^{67} +9.14634 q^{69} +1.60970 q^{70} -2.66873 q^{71} -0.177223 q^{72} +5.66157 q^{73} +9.46678 q^{74} -4.36611 q^{75} +11.2267 q^{76} -3.96044 q^{77} +0.685164 q^{78} +0.842146 q^{79} +3.03899 q^{80} +1.00000 q^{81} -11.8660 q^{82} +0.586268 q^{83} +2.08766 q^{84} +18.5449 q^{86} -2.16884 q^{87} +0.701881 q^{88} +17.6141 q^{89} +1.60970 q^{90} -0.338889 q^{91} +19.0944 q^{92} -10.6499 q^{93} -5.15815 q^{94} -4.28152 q^{95} +8.07165 q^{96} -14.5657 q^{97} -2.02180 q^{98} -3.96044 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 9 q^{3} + 6 q^{4} - 3 q^{5} + 9 q^{7} + 9 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 9 q + 9 q^{3} + 6 q^{4} - 3 q^{5} + 9 q^{7} + 9 q^{8} + 9 q^{9} - 12 q^{10} - 18 q^{11} + 6 q^{12} - 21 q^{13} - 3 q^{15} - 9 q^{19} - 15 q^{20} + 9 q^{21} - 6 q^{22} + 9 q^{24} + 3 q^{26} + 9 q^{27} + 6 q^{28} - 6 q^{29} - 12 q^{30} - 30 q^{31} + 3 q^{32} - 18 q^{33} - 3 q^{35} + 6 q^{36} - 12 q^{37} - 36 q^{38} - 21 q^{39} - 30 q^{40} - 9 q^{41} - 30 q^{44} - 3 q^{45} - 33 q^{46} - 9 q^{47} + 9 q^{49} - 12 q^{50} - 12 q^{52} + 30 q^{55} + 9 q^{56} - 9 q^{57} - 9 q^{58} - 3 q^{59} - 15 q^{60} - 33 q^{61} + 12 q^{62} + 9 q^{63} - 15 q^{64} + 15 q^{65} - 6 q^{66} - 15 q^{67} - 12 q^{70} + 9 q^{72} - 21 q^{73} - 6 q^{74} + 3 q^{76} - 18 q^{77} + 3 q^{78} - 30 q^{79} + 9 q^{81} - 9 q^{82} + 6 q^{84} + 72 q^{86} - 6 q^{87} - 48 q^{88} - 12 q^{89} - 12 q^{90} - 21 q^{91} - 48 q^{92} - 30 q^{93} + 48 q^{94} + 18 q^{95} + 3 q^{96} - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.02180 −1.42963 −0.714813 0.699316i \(-0.753488\pi\)
−0.714813 + 0.699316i \(0.753488\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.08766 1.04383
\(5\) −0.796171 −0.356059 −0.178029 0.984025i \(-0.556972\pi\)
−0.178029 + 0.984025i \(0.556972\pi\)
\(6\) −2.02180 −0.825394
\(7\) 1.00000 0.377964
\(8\) −0.177223 −0.0626578
\(9\) 1.00000 0.333333
\(10\) 1.60970 0.509030
\(11\) −3.96044 −1.19412 −0.597058 0.802198i \(-0.703664\pi\)
−0.597058 + 0.802198i \(0.703664\pi\)
\(12\) 2.08766 0.602654
\(13\) −0.338889 −0.0939909 −0.0469954 0.998895i \(-0.514965\pi\)
−0.0469954 + 0.998895i \(0.514965\pi\)
\(14\) −2.02180 −0.540348
\(15\) −0.796171 −0.205571
\(16\) −3.81700 −0.954251
\(17\) 0 0
\(18\) −2.02180 −0.476542
\(19\) 5.37764 1.23371 0.616857 0.787075i \(-0.288406\pi\)
0.616857 + 0.787075i \(0.288406\pi\)
\(20\) −1.66213 −0.371664
\(21\) 1.00000 0.218218
\(22\) 8.00719 1.70714
\(23\) 9.14634 1.90714 0.953572 0.301164i \(-0.0973751\pi\)
0.953572 + 0.301164i \(0.0973751\pi\)
\(24\) −0.177223 −0.0361755
\(25\) −4.36611 −0.873222
\(26\) 0.685164 0.134372
\(27\) 1.00000 0.192450
\(28\) 2.08766 0.394530
\(29\) −2.16884 −0.402744 −0.201372 0.979515i \(-0.564540\pi\)
−0.201372 + 0.979515i \(0.564540\pi\)
\(30\) 1.60970 0.293889
\(31\) −10.6499 −1.91279 −0.956394 0.292081i \(-0.905652\pi\)
−0.956394 + 0.292081i \(0.905652\pi\)
\(32\) 8.07165 1.42688
\(33\) −3.96044 −0.689423
\(34\) 0 0
\(35\) −0.796171 −0.134578
\(36\) 2.08766 0.347943
\(37\) −4.68236 −0.769776 −0.384888 0.922963i \(-0.625760\pi\)
−0.384888 + 0.922963i \(0.625760\pi\)
\(38\) −10.8725 −1.76375
\(39\) −0.338889 −0.0542657
\(40\) 0.141100 0.0223099
\(41\) 5.86902 0.916587 0.458294 0.888801i \(-0.348461\pi\)
0.458294 + 0.888801i \(0.348461\pi\)
\(42\) −2.02180 −0.311970
\(43\) −9.17251 −1.39879 −0.699397 0.714733i \(-0.746548\pi\)
−0.699397 + 0.714733i \(0.746548\pi\)
\(44\) −8.26803 −1.24645
\(45\) −0.796171 −0.118686
\(46\) −18.4920 −2.72650
\(47\) 2.55127 0.372141 0.186071 0.982536i \(-0.440425\pi\)
0.186071 + 0.982536i \(0.440425\pi\)
\(48\) −3.81700 −0.550937
\(49\) 1.00000 0.142857
\(50\) 8.82738 1.24838
\(51\) 0 0
\(52\) −0.707484 −0.0981103
\(53\) 4.13973 0.568636 0.284318 0.958730i \(-0.408233\pi\)
0.284318 + 0.958730i \(0.408233\pi\)
\(54\) −2.02180 −0.275131
\(55\) 3.15319 0.425175
\(56\) −0.177223 −0.0236824
\(57\) 5.37764 0.712286
\(58\) 4.38495 0.575772
\(59\) 4.55341 0.592803 0.296402 0.955063i \(-0.404213\pi\)
0.296402 + 0.955063i \(0.404213\pi\)
\(60\) −1.66213 −0.214580
\(61\) −9.58258 −1.22692 −0.613462 0.789724i \(-0.710224\pi\)
−0.613462 + 0.789724i \(0.710224\pi\)
\(62\) 21.5320 2.73457
\(63\) 1.00000 0.125988
\(64\) −8.68521 −1.08565
\(65\) 0.269814 0.0334663
\(66\) 8.00719 0.985617
\(67\) 2.80790 0.343040 0.171520 0.985181i \(-0.445132\pi\)
0.171520 + 0.985181i \(0.445132\pi\)
\(68\) 0 0
\(69\) 9.14634 1.10109
\(70\) 1.60970 0.192395
\(71\) −2.66873 −0.316720 −0.158360 0.987381i \(-0.550621\pi\)
−0.158360 + 0.987381i \(0.550621\pi\)
\(72\) −0.177223 −0.0208859
\(73\) 5.66157 0.662636 0.331318 0.943519i \(-0.392507\pi\)
0.331318 + 0.943519i \(0.392507\pi\)
\(74\) 9.46678 1.10049
\(75\) −4.36611 −0.504155
\(76\) 11.2267 1.28779
\(77\) −3.96044 −0.451333
\(78\) 0.685164 0.0775795
\(79\) 0.842146 0.0947488 0.0473744 0.998877i \(-0.484915\pi\)
0.0473744 + 0.998877i \(0.484915\pi\)
\(80\) 3.03899 0.339769
\(81\) 1.00000 0.111111
\(82\) −11.8660 −1.31038
\(83\) 0.586268 0.0643513 0.0321756 0.999482i \(-0.489756\pi\)
0.0321756 + 0.999482i \(0.489756\pi\)
\(84\) 2.08766 0.227782
\(85\) 0 0
\(86\) 18.5449 1.99975
\(87\) −2.16884 −0.232524
\(88\) 0.701881 0.0748207
\(89\) 17.6141 1.86709 0.933546 0.358457i \(-0.116697\pi\)
0.933546 + 0.358457i \(0.116697\pi\)
\(90\) 1.60970 0.169677
\(91\) −0.338889 −0.0355252
\(92\) 19.0944 1.99073
\(93\) −10.6499 −1.10435
\(94\) −5.15815 −0.532022
\(95\) −4.28152 −0.439275
\(96\) 8.07165 0.823809
\(97\) −14.5657 −1.47892 −0.739462 0.673199i \(-0.764920\pi\)
−0.739462 + 0.673199i \(0.764920\pi\)
\(98\) −2.02180 −0.204232
\(99\) −3.96044 −0.398039
\(100\) −9.11494 −0.911494
\(101\) −3.01541 −0.300045 −0.150022 0.988683i \(-0.547935\pi\)
−0.150022 + 0.988683i \(0.547935\pi\)
\(102\) 0 0
\(103\) −12.9090 −1.27197 −0.635983 0.771703i \(-0.719405\pi\)
−0.635983 + 0.771703i \(0.719405\pi\)
\(104\) 0.0600589 0.00588926
\(105\) −0.796171 −0.0776984
\(106\) −8.36970 −0.812937
\(107\) −5.98695 −0.578781 −0.289390 0.957211i \(-0.593453\pi\)
−0.289390 + 0.957211i \(0.593453\pi\)
\(108\) 2.08766 0.200885
\(109\) 17.0321 1.63138 0.815690 0.578490i \(-0.196358\pi\)
0.815690 + 0.578490i \(0.196358\pi\)
\(110\) −6.37510 −0.607841
\(111\) −4.68236 −0.444430
\(112\) −3.81700 −0.360673
\(113\) −15.5851 −1.46613 −0.733064 0.680160i \(-0.761910\pi\)
−0.733064 + 0.680160i \(0.761910\pi\)
\(114\) −10.8725 −1.01830
\(115\) −7.28206 −0.679055
\(116\) −4.52779 −0.420395
\(117\) −0.338889 −0.0313303
\(118\) −9.20606 −0.847486
\(119\) 0 0
\(120\) 0.141100 0.0128806
\(121\) 4.68505 0.425913
\(122\) 19.3740 1.75404
\(123\) 5.86902 0.529192
\(124\) −22.2334 −1.99662
\(125\) 7.45703 0.666977
\(126\) −2.02180 −0.180116
\(127\) −8.71907 −0.773692 −0.386846 0.922144i \(-0.626436\pi\)
−0.386846 + 0.922144i \(0.626436\pi\)
\(128\) 1.41642 0.125195
\(129\) −9.17251 −0.807595
\(130\) −0.545508 −0.0478442
\(131\) −17.5095 −1.52981 −0.764904 0.644144i \(-0.777214\pi\)
−0.764904 + 0.644144i \(0.777214\pi\)
\(132\) −8.26803 −0.719639
\(133\) 5.37764 0.466300
\(134\) −5.67701 −0.490419
\(135\) −0.796171 −0.0685235
\(136\) 0 0
\(137\) −18.4988 −1.58046 −0.790229 0.612812i \(-0.790038\pi\)
−0.790229 + 0.612812i \(0.790038\pi\)
\(138\) −18.4920 −1.57415
\(139\) 10.4827 0.889131 0.444566 0.895746i \(-0.353358\pi\)
0.444566 + 0.895746i \(0.353358\pi\)
\(140\) −1.66213 −0.140476
\(141\) 2.55127 0.214856
\(142\) 5.39563 0.452791
\(143\) 1.34215 0.112236
\(144\) −3.81700 −0.318084
\(145\) 1.72677 0.143400
\(146\) −11.4465 −0.947322
\(147\) 1.00000 0.0824786
\(148\) −9.77516 −0.803514
\(149\) 2.48701 0.203744 0.101872 0.994798i \(-0.467517\pi\)
0.101872 + 0.994798i \(0.467517\pi\)
\(150\) 8.82738 0.720753
\(151\) 5.59009 0.454915 0.227457 0.973788i \(-0.426959\pi\)
0.227457 + 0.973788i \(0.426959\pi\)
\(152\) −0.953042 −0.0773019
\(153\) 0 0
\(154\) 8.00719 0.645238
\(155\) 8.47918 0.681064
\(156\) −0.707484 −0.0566440
\(157\) −8.13832 −0.649509 −0.324754 0.945798i \(-0.605282\pi\)
−0.324754 + 0.945798i \(0.605282\pi\)
\(158\) −1.70265 −0.135455
\(159\) 4.13973 0.328302
\(160\) −6.42641 −0.508053
\(161\) 9.14634 0.720833
\(162\) −2.02180 −0.158847
\(163\) 20.7578 1.62588 0.812940 0.582347i \(-0.197866\pi\)
0.812940 + 0.582347i \(0.197866\pi\)
\(164\) 12.2525 0.956760
\(165\) 3.15319 0.245475
\(166\) −1.18531 −0.0919982
\(167\) −5.25596 −0.406719 −0.203359 0.979104i \(-0.565186\pi\)
−0.203359 + 0.979104i \(0.565186\pi\)
\(168\) −0.177223 −0.0136731
\(169\) −12.8852 −0.991166
\(170\) 0 0
\(171\) 5.37764 0.411238
\(172\) −19.1491 −1.46010
\(173\) −14.4999 −1.10241 −0.551205 0.834370i \(-0.685832\pi\)
−0.551205 + 0.834370i \(0.685832\pi\)
\(174\) 4.38495 0.332422
\(175\) −4.36611 −0.330047
\(176\) 15.1170 1.13949
\(177\) 4.55341 0.342255
\(178\) −35.6121 −2.66924
\(179\) 9.60523 0.717928 0.358964 0.933351i \(-0.383130\pi\)
0.358964 + 0.933351i \(0.383130\pi\)
\(180\) −1.66213 −0.123888
\(181\) 8.10859 0.602707 0.301354 0.953512i \(-0.402562\pi\)
0.301354 + 0.953512i \(0.402562\pi\)
\(182\) 0.685164 0.0507877
\(183\) −9.58258 −0.708365
\(184\) −1.62094 −0.119498
\(185\) 3.72796 0.274085
\(186\) 21.5320 1.57880
\(187\) 0 0
\(188\) 5.32618 0.388451
\(189\) 1.00000 0.0727393
\(190\) 8.65636 0.627998
\(191\) 10.8846 0.787585 0.393793 0.919199i \(-0.371163\pi\)
0.393793 + 0.919199i \(0.371163\pi\)
\(192\) −8.68521 −0.626801
\(193\) −19.6918 −1.41744 −0.708722 0.705488i \(-0.750728\pi\)
−0.708722 + 0.705488i \(0.750728\pi\)
\(194\) 29.4489 2.11431
\(195\) 0.269814 0.0193218
\(196\) 2.08766 0.149118
\(197\) −6.38860 −0.455169 −0.227585 0.973758i \(-0.573083\pi\)
−0.227585 + 0.973758i \(0.573083\pi\)
\(198\) 8.00719 0.569046
\(199\) 7.07076 0.501233 0.250616 0.968086i \(-0.419367\pi\)
0.250616 + 0.968086i \(0.419367\pi\)
\(200\) 0.773776 0.0547142
\(201\) 2.80790 0.198054
\(202\) 6.09655 0.428952
\(203\) −2.16884 −0.152223
\(204\) 0 0
\(205\) −4.67275 −0.326359
\(206\) 26.0995 1.81844
\(207\) 9.14634 0.635715
\(208\) 1.29354 0.0896909
\(209\) −21.2978 −1.47320
\(210\) 1.60970 0.111080
\(211\) −21.9882 −1.51373 −0.756864 0.653572i \(-0.773270\pi\)
−0.756864 + 0.653572i \(0.773270\pi\)
\(212\) 8.64234 0.593558
\(213\) −2.66873 −0.182858
\(214\) 12.1044 0.827439
\(215\) 7.30289 0.498053
\(216\) −0.177223 −0.0120585
\(217\) −10.6499 −0.722966
\(218\) −34.4354 −2.33226
\(219\) 5.66157 0.382573
\(220\) 6.58277 0.443810
\(221\) 0 0
\(222\) 9.46678 0.635369
\(223\) 14.4716 0.969091 0.484546 0.874766i \(-0.338985\pi\)
0.484546 + 0.874766i \(0.338985\pi\)
\(224\) 8.07165 0.539310
\(225\) −4.36611 −0.291074
\(226\) 31.5100 2.09601
\(227\) 8.35861 0.554780 0.277390 0.960757i \(-0.410531\pi\)
0.277390 + 0.960757i \(0.410531\pi\)
\(228\) 11.2267 0.743504
\(229\) 0.113291 0.00748645 0.00374322 0.999993i \(-0.498808\pi\)
0.00374322 + 0.999993i \(0.498808\pi\)
\(230\) 14.7228 0.970795
\(231\) −3.96044 −0.260577
\(232\) 0.384369 0.0252350
\(233\) −4.58747 −0.300535 −0.150268 0.988645i \(-0.548014\pi\)
−0.150268 + 0.988645i \(0.548014\pi\)
\(234\) 0.685164 0.0447906
\(235\) −2.03125 −0.132504
\(236\) 9.50595 0.618785
\(237\) 0.842146 0.0547032
\(238\) 0 0
\(239\) 9.40874 0.608601 0.304300 0.952576i \(-0.401577\pi\)
0.304300 + 0.952576i \(0.401577\pi\)
\(240\) 3.03899 0.196166
\(241\) 6.74293 0.434350 0.217175 0.976133i \(-0.430316\pi\)
0.217175 + 0.976133i \(0.430316\pi\)
\(242\) −9.47220 −0.608896
\(243\) 1.00000 0.0641500
\(244\) −20.0051 −1.28070
\(245\) −0.796171 −0.0508655
\(246\) −11.8660 −0.756546
\(247\) −1.82242 −0.115958
\(248\) 1.88742 0.119851
\(249\) 0.586268 0.0371532
\(250\) −15.0766 −0.953527
\(251\) −19.2601 −1.21569 −0.607843 0.794057i \(-0.707965\pi\)
−0.607843 + 0.794057i \(0.707965\pi\)
\(252\) 2.08766 0.131510
\(253\) −36.2235 −2.27735
\(254\) 17.6282 1.10609
\(255\) 0 0
\(256\) 14.5067 0.906669
\(257\) 27.6076 1.72212 0.861058 0.508508i \(-0.169803\pi\)
0.861058 + 0.508508i \(0.169803\pi\)
\(258\) 18.5449 1.15456
\(259\) −4.68236 −0.290948
\(260\) 0.563278 0.0349330
\(261\) −2.16884 −0.134248
\(262\) 35.4005 2.18705
\(263\) −14.1019 −0.869558 −0.434779 0.900537i \(-0.643173\pi\)
−0.434779 + 0.900537i \(0.643173\pi\)
\(264\) 0.701881 0.0431978
\(265\) −3.29594 −0.202468
\(266\) −10.8725 −0.666635
\(267\) 17.6141 1.07797
\(268\) 5.86194 0.358075
\(269\) 6.06716 0.369921 0.184961 0.982746i \(-0.440784\pi\)
0.184961 + 0.982746i \(0.440784\pi\)
\(270\) 1.60970 0.0979630
\(271\) −10.5918 −0.643404 −0.321702 0.946841i \(-0.604255\pi\)
−0.321702 + 0.946841i \(0.604255\pi\)
\(272\) 0 0
\(273\) −0.338889 −0.0205105
\(274\) 37.4008 2.25946
\(275\) 17.2917 1.04273
\(276\) 19.0944 1.14935
\(277\) 13.0667 0.785104 0.392552 0.919730i \(-0.371592\pi\)
0.392552 + 0.919730i \(0.371592\pi\)
\(278\) −21.1939 −1.27112
\(279\) −10.6499 −0.637596
\(280\) 0.141100 0.00843234
\(281\) −15.2363 −0.908920 −0.454460 0.890767i \(-0.650168\pi\)
−0.454460 + 0.890767i \(0.650168\pi\)
\(282\) −5.15815 −0.307163
\(283\) −8.32069 −0.494614 −0.247307 0.968937i \(-0.579546\pi\)
−0.247307 + 0.968937i \(0.579546\pi\)
\(284\) −5.57139 −0.330601
\(285\) −4.28152 −0.253615
\(286\) −2.71355 −0.160455
\(287\) 5.86902 0.346438
\(288\) 8.07165 0.475626
\(289\) 0 0
\(290\) −3.49117 −0.205009
\(291\) −14.5657 −0.853857
\(292\) 11.8194 0.691679
\(293\) −14.6794 −0.857577 −0.428789 0.903405i \(-0.641060\pi\)
−0.428789 + 0.903405i \(0.641060\pi\)
\(294\) −2.02180 −0.117913
\(295\) −3.62529 −0.211073
\(296\) 0.829823 0.0482325
\(297\) −3.96044 −0.229808
\(298\) −5.02823 −0.291278
\(299\) −3.09959 −0.179254
\(300\) −9.11494 −0.526251
\(301\) −9.17251 −0.528695
\(302\) −11.3020 −0.650358
\(303\) −3.01541 −0.173231
\(304\) −20.5265 −1.17727
\(305\) 7.62938 0.436857
\(306\) 0 0
\(307\) 9.34393 0.533286 0.266643 0.963795i \(-0.414085\pi\)
0.266643 + 0.963795i \(0.414085\pi\)
\(308\) −8.26803 −0.471115
\(309\) −12.9090 −0.734370
\(310\) −17.1432 −0.973667
\(311\) −12.5466 −0.711455 −0.355727 0.934590i \(-0.615767\pi\)
−0.355727 + 0.934590i \(0.615767\pi\)
\(312\) 0.0600589 0.00340017
\(313\) 11.4295 0.646033 0.323017 0.946393i \(-0.395303\pi\)
0.323017 + 0.946393i \(0.395303\pi\)
\(314\) 16.4540 0.928554
\(315\) −0.796171 −0.0448592
\(316\) 1.75811 0.0989015
\(317\) −1.27266 −0.0714799 −0.0357400 0.999361i \(-0.511379\pi\)
−0.0357400 + 0.999361i \(0.511379\pi\)
\(318\) −8.36970 −0.469349
\(319\) 8.58955 0.480923
\(320\) 6.91492 0.386556
\(321\) −5.98695 −0.334159
\(322\) −18.4920 −1.03052
\(323\) 0 0
\(324\) 2.08766 0.115981
\(325\) 1.47963 0.0820749
\(326\) −41.9681 −2.32440
\(327\) 17.0321 0.941877
\(328\) −1.04013 −0.0574314
\(329\) 2.55127 0.140656
\(330\) −6.37510 −0.350937
\(331\) −32.8446 −1.80530 −0.902651 0.430373i \(-0.858382\pi\)
−0.902651 + 0.430373i \(0.858382\pi\)
\(332\) 1.22393 0.0671717
\(333\) −4.68236 −0.256592
\(334\) 10.6265 0.581455
\(335\) −2.23557 −0.122142
\(336\) −3.81700 −0.208235
\(337\) −11.3437 −0.617930 −0.308965 0.951073i \(-0.599983\pi\)
−0.308965 + 0.951073i \(0.599983\pi\)
\(338\) 26.0511 1.41700
\(339\) −15.5851 −0.846469
\(340\) 0 0
\(341\) 42.1784 2.28409
\(342\) −10.8725 −0.587917
\(343\) 1.00000 0.0539949
\(344\) 1.62558 0.0876455
\(345\) −7.28206 −0.392053
\(346\) 29.3159 1.57603
\(347\) 8.67779 0.465848 0.232924 0.972495i \(-0.425171\pi\)
0.232924 + 0.972495i \(0.425171\pi\)
\(348\) −4.52779 −0.242715
\(349\) −11.6079 −0.621358 −0.310679 0.950515i \(-0.600556\pi\)
−0.310679 + 0.950515i \(0.600556\pi\)
\(350\) 8.82738 0.471843
\(351\) −0.338889 −0.0180886
\(352\) −31.9672 −1.70386
\(353\) −21.5750 −1.14832 −0.574161 0.818742i \(-0.694672\pi\)
−0.574161 + 0.818742i \(0.694672\pi\)
\(354\) −9.20606 −0.489297
\(355\) 2.12477 0.112771
\(356\) 36.7722 1.94892
\(357\) 0 0
\(358\) −19.4198 −1.02637
\(359\) 14.7447 0.778195 0.389098 0.921196i \(-0.372787\pi\)
0.389098 + 0.921196i \(0.372787\pi\)
\(360\) 0.141100 0.00743662
\(361\) 9.91899 0.522052
\(362\) −16.3939 −0.861645
\(363\) 4.68505 0.245901
\(364\) −0.707484 −0.0370822
\(365\) −4.50758 −0.235937
\(366\) 19.3740 1.01270
\(367\) 23.2530 1.21380 0.606898 0.794780i \(-0.292414\pi\)
0.606898 + 0.794780i \(0.292414\pi\)
\(368\) −34.9116 −1.81989
\(369\) 5.86902 0.305529
\(370\) −7.53718 −0.391839
\(371\) 4.13973 0.214924
\(372\) −22.2334 −1.15275
\(373\) 8.22143 0.425689 0.212845 0.977086i \(-0.431727\pi\)
0.212845 + 0.977086i \(0.431727\pi\)
\(374\) 0 0
\(375\) 7.45703 0.385079
\(376\) −0.452144 −0.0233176
\(377\) 0.734996 0.0378542
\(378\) −2.02180 −0.103990
\(379\) −36.7926 −1.88991 −0.944956 0.327199i \(-0.893895\pi\)
−0.944956 + 0.327199i \(0.893895\pi\)
\(380\) −8.93835 −0.458528
\(381\) −8.71907 −0.446691
\(382\) −22.0065 −1.12595
\(383\) 20.2911 1.03683 0.518413 0.855130i \(-0.326523\pi\)
0.518413 + 0.855130i \(0.326523\pi\)
\(384\) 1.41642 0.0722815
\(385\) 3.15319 0.160701
\(386\) 39.8127 2.02641
\(387\) −9.17251 −0.466265
\(388\) −30.4082 −1.54374
\(389\) 0.186762 0.00946923 0.00473461 0.999989i \(-0.498493\pi\)
0.00473461 + 0.999989i \(0.498493\pi\)
\(390\) −0.545508 −0.0276229
\(391\) 0 0
\(392\) −0.177223 −0.00895112
\(393\) −17.5095 −0.883235
\(394\) 12.9165 0.650721
\(395\) −0.670492 −0.0337361
\(396\) −8.26803 −0.415484
\(397\) −23.8728 −1.19814 −0.599071 0.800696i \(-0.704463\pi\)
−0.599071 + 0.800696i \(0.704463\pi\)
\(398\) −14.2956 −0.716575
\(399\) 5.37764 0.269219
\(400\) 16.6655 0.833273
\(401\) −33.3154 −1.66369 −0.831846 0.555006i \(-0.812716\pi\)
−0.831846 + 0.555006i \(0.812716\pi\)
\(402\) −5.67701 −0.283143
\(403\) 3.60915 0.179785
\(404\) −6.29515 −0.313195
\(405\) −0.796171 −0.0395621
\(406\) 4.38495 0.217621
\(407\) 18.5442 0.919202
\(408\) 0 0
\(409\) −19.1061 −0.944734 −0.472367 0.881402i \(-0.656600\pi\)
−0.472367 + 0.881402i \(0.656600\pi\)
\(410\) 9.44734 0.466571
\(411\) −18.4988 −0.912478
\(412\) −26.9497 −1.32771
\(413\) 4.55341 0.224059
\(414\) −18.4920 −0.908834
\(415\) −0.466770 −0.0229128
\(416\) −2.73539 −0.134114
\(417\) 10.4827 0.513340
\(418\) 43.0598 2.10612
\(419\) 17.6152 0.860557 0.430278 0.902696i \(-0.358415\pi\)
0.430278 + 0.902696i \(0.358415\pi\)
\(420\) −1.66213 −0.0811038
\(421\) 2.74504 0.133785 0.0668926 0.997760i \(-0.478692\pi\)
0.0668926 + 0.997760i \(0.478692\pi\)
\(422\) 44.4556 2.16406
\(423\) 2.55127 0.124047
\(424\) −0.733657 −0.0356295
\(425\) 0 0
\(426\) 5.39563 0.261419
\(427\) −9.58258 −0.463734
\(428\) −12.4987 −0.604147
\(429\) 1.34215 0.0647995
\(430\) −14.7650 −0.712029
\(431\) −25.2262 −1.21511 −0.607553 0.794279i \(-0.707849\pi\)
−0.607553 + 0.794279i \(0.707849\pi\)
\(432\) −3.81700 −0.183646
\(433\) −12.3644 −0.594193 −0.297097 0.954847i \(-0.596018\pi\)
−0.297097 + 0.954847i \(0.596018\pi\)
\(434\) 21.5320 1.03357
\(435\) 1.72677 0.0827922
\(436\) 35.5572 1.70288
\(437\) 49.1857 2.35287
\(438\) −11.4465 −0.546936
\(439\) 40.9891 1.95630 0.978152 0.207893i \(-0.0666605\pi\)
0.978152 + 0.207893i \(0.0666605\pi\)
\(440\) −0.558817 −0.0266406
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 35.2656 1.67552 0.837759 0.546039i \(-0.183865\pi\)
0.837759 + 0.546039i \(0.183865\pi\)
\(444\) −9.77516 −0.463909
\(445\) −14.0239 −0.664794
\(446\) −29.2586 −1.38544
\(447\) 2.48701 0.117632
\(448\) −8.68521 −0.410338
\(449\) 11.6904 0.551702 0.275851 0.961200i \(-0.411040\pi\)
0.275851 + 0.961200i \(0.411040\pi\)
\(450\) 8.82738 0.416127
\(451\) −23.2439 −1.09451
\(452\) −32.5364 −1.53039
\(453\) 5.59009 0.262645
\(454\) −16.8994 −0.793128
\(455\) 0.269814 0.0126491
\(456\) −0.953042 −0.0446303
\(457\) 6.91530 0.323484 0.161742 0.986833i \(-0.448289\pi\)
0.161742 + 0.986833i \(0.448289\pi\)
\(458\) −0.229050 −0.0107028
\(459\) 0 0
\(460\) −15.2024 −0.708817
\(461\) −16.2536 −0.757004 −0.378502 0.925601i \(-0.623561\pi\)
−0.378502 + 0.925601i \(0.623561\pi\)
\(462\) 8.00719 0.372528
\(463\) 2.42960 0.112913 0.0564566 0.998405i \(-0.482020\pi\)
0.0564566 + 0.998405i \(0.482020\pi\)
\(464\) 8.27847 0.384318
\(465\) 8.47918 0.393213
\(466\) 9.27493 0.429653
\(467\) −4.96726 −0.229857 −0.114929 0.993374i \(-0.536664\pi\)
−0.114929 + 0.993374i \(0.536664\pi\)
\(468\) −0.707484 −0.0327034
\(469\) 2.80790 0.129657
\(470\) 4.10677 0.189431
\(471\) −8.13832 −0.374994
\(472\) −0.806969 −0.0371438
\(473\) 36.3271 1.67032
\(474\) −1.70265 −0.0782051
\(475\) −23.4794 −1.07731
\(476\) 0 0
\(477\) 4.13973 0.189545
\(478\) −19.0225 −0.870071
\(479\) −35.8535 −1.63819 −0.819095 0.573658i \(-0.805524\pi\)
−0.819095 + 0.573658i \(0.805524\pi\)
\(480\) −6.42641 −0.293324
\(481\) 1.58680 0.0723519
\(482\) −13.6328 −0.620958
\(483\) 9.14634 0.416173
\(484\) 9.78077 0.444580
\(485\) 11.5968 0.526584
\(486\) −2.02180 −0.0917105
\(487\) −35.4441 −1.60612 −0.803062 0.595895i \(-0.796797\pi\)
−0.803062 + 0.595895i \(0.796797\pi\)
\(488\) 1.69826 0.0768764
\(489\) 20.7578 0.938702
\(490\) 1.60970 0.0727186
\(491\) −24.4787 −1.10471 −0.552354 0.833609i \(-0.686270\pi\)
−0.552354 + 0.833609i \(0.686270\pi\)
\(492\) 12.2525 0.552386
\(493\) 0 0
\(494\) 3.68456 0.165776
\(495\) 3.15319 0.141725
\(496\) 40.6509 1.82528
\(497\) −2.66873 −0.119709
\(498\) −1.18531 −0.0531152
\(499\) −34.8150 −1.55853 −0.779267 0.626692i \(-0.784408\pi\)
−0.779267 + 0.626692i \(0.784408\pi\)
\(500\) 15.5677 0.696209
\(501\) −5.25596 −0.234819
\(502\) 38.9400 1.73798
\(503\) −38.7296 −1.72687 −0.863434 0.504462i \(-0.831691\pi\)
−0.863434 + 0.504462i \(0.831691\pi\)
\(504\) −0.177223 −0.00789414
\(505\) 2.40079 0.106834
\(506\) 73.2365 3.25576
\(507\) −12.8852 −0.572250
\(508\) −18.2024 −0.807602
\(509\) −42.7219 −1.89361 −0.946807 0.321802i \(-0.895712\pi\)
−0.946807 + 0.321802i \(0.895712\pi\)
\(510\) 0 0
\(511\) 5.66157 0.250453
\(512\) −32.1624 −1.42139
\(513\) 5.37764 0.237429
\(514\) −55.8169 −2.46198
\(515\) 10.2778 0.452895
\(516\) −19.1491 −0.842990
\(517\) −10.1041 −0.444380
\(518\) 9.46678 0.415946
\(519\) −14.4999 −0.636477
\(520\) −0.0478172 −0.00209692
\(521\) −15.0271 −0.658351 −0.329175 0.944269i \(-0.606771\pi\)
−0.329175 + 0.944269i \(0.606771\pi\)
\(522\) 4.38495 0.191924
\(523\) 35.4305 1.54927 0.774634 0.632410i \(-0.217934\pi\)
0.774634 + 0.632410i \(0.217934\pi\)
\(524\) −36.5537 −1.59686
\(525\) −4.36611 −0.190553
\(526\) 28.5111 1.24314
\(527\) 0 0
\(528\) 15.1170 0.657883
\(529\) 60.6556 2.63720
\(530\) 6.66371 0.289453
\(531\) 4.55341 0.197601
\(532\) 11.2267 0.486737
\(533\) −1.98895 −0.0861509
\(534\) −35.6121 −1.54109
\(535\) 4.76664 0.206080
\(536\) −0.497625 −0.0214941
\(537\) 9.60523 0.414496
\(538\) −12.2666 −0.528849
\(539\) −3.96044 −0.170588
\(540\) −1.66213 −0.0715268
\(541\) −28.4223 −1.22197 −0.610984 0.791643i \(-0.709226\pi\)
−0.610984 + 0.791643i \(0.709226\pi\)
\(542\) 21.4144 0.919826
\(543\) 8.10859 0.347973
\(544\) 0 0
\(545\) −13.5605 −0.580867
\(546\) 0.685164 0.0293223
\(547\) −38.3873 −1.64132 −0.820660 0.571416i \(-0.806394\pi\)
−0.820660 + 0.571416i \(0.806394\pi\)
\(548\) −38.6191 −1.64973
\(549\) −9.58258 −0.408975
\(550\) −34.9603 −1.49071
\(551\) −11.6632 −0.496871
\(552\) −1.62094 −0.0689919
\(553\) 0.842146 0.0358117
\(554\) −26.4183 −1.12240
\(555\) 3.72796 0.158243
\(556\) 21.8843 0.928100
\(557\) 29.2077 1.23757 0.618785 0.785561i \(-0.287625\pi\)
0.618785 + 0.785561i \(0.287625\pi\)
\(558\) 21.5320 0.911523
\(559\) 3.10846 0.131474
\(560\) 3.03899 0.128421
\(561\) 0 0
\(562\) 30.8046 1.29941
\(563\) −7.13474 −0.300694 −0.150347 0.988633i \(-0.548039\pi\)
−0.150347 + 0.988633i \(0.548039\pi\)
\(564\) 5.32618 0.224273
\(565\) 12.4085 0.522027
\(566\) 16.8227 0.707113
\(567\) 1.00000 0.0419961
\(568\) 0.472961 0.0198450
\(569\) 32.9775 1.38249 0.691245 0.722620i \(-0.257062\pi\)
0.691245 + 0.722620i \(0.257062\pi\)
\(570\) 8.65636 0.362575
\(571\) 4.68900 0.196229 0.0981143 0.995175i \(-0.468719\pi\)
0.0981143 + 0.995175i \(0.468719\pi\)
\(572\) 2.80194 0.117155
\(573\) 10.8846 0.454713
\(574\) −11.8660 −0.495276
\(575\) −39.9340 −1.66536
\(576\) −8.68521 −0.361884
\(577\) −9.52490 −0.396527 −0.198263 0.980149i \(-0.563530\pi\)
−0.198263 + 0.980149i \(0.563530\pi\)
\(578\) 0 0
\(579\) −19.6918 −0.818362
\(580\) 3.60490 0.149685
\(581\) 0.586268 0.0243225
\(582\) 29.4489 1.22070
\(583\) −16.3951 −0.679018
\(584\) −1.00336 −0.0415194
\(585\) 0.269814 0.0111554
\(586\) 29.6787 1.22601
\(587\) −6.30065 −0.260056 −0.130028 0.991510i \(-0.541507\pi\)
−0.130028 + 0.991510i \(0.541507\pi\)
\(588\) 2.08766 0.0860935
\(589\) −57.2716 −2.35983
\(590\) 7.32960 0.301755
\(591\) −6.38860 −0.262792
\(592\) 17.8726 0.734559
\(593\) 44.1123 1.81148 0.905738 0.423838i \(-0.139317\pi\)
0.905738 + 0.423838i \(0.139317\pi\)
\(594\) 8.00719 0.328539
\(595\) 0 0
\(596\) 5.19203 0.212674
\(597\) 7.07076 0.289387
\(598\) 6.26675 0.256266
\(599\) 42.9971 1.75682 0.878408 0.477912i \(-0.158606\pi\)
0.878408 + 0.477912i \(0.158606\pi\)
\(600\) 0.773776 0.0315893
\(601\) −0.455710 −0.0185888 −0.00929439 0.999957i \(-0.502959\pi\)
−0.00929439 + 0.999957i \(0.502959\pi\)
\(602\) 18.5449 0.755835
\(603\) 2.80790 0.114347
\(604\) 11.6702 0.474853
\(605\) −3.73010 −0.151650
\(606\) 6.09655 0.247655
\(607\) −14.9373 −0.606285 −0.303143 0.952945i \(-0.598036\pi\)
−0.303143 + 0.952945i \(0.598036\pi\)
\(608\) 43.4064 1.76036
\(609\) −2.16884 −0.0878859
\(610\) −15.4250 −0.624542
\(611\) −0.864598 −0.0349779
\(612\) 0 0
\(613\) 3.36159 0.135773 0.0678866 0.997693i \(-0.478374\pi\)
0.0678866 + 0.997693i \(0.478374\pi\)
\(614\) −18.8915 −0.762400
\(615\) −4.67275 −0.188423
\(616\) 0.701881 0.0282796
\(617\) −2.51120 −0.101097 −0.0505485 0.998722i \(-0.516097\pi\)
−0.0505485 + 0.998722i \(0.516097\pi\)
\(618\) 26.0995 1.04987
\(619\) −32.7230 −1.31525 −0.657625 0.753345i \(-0.728439\pi\)
−0.657625 + 0.753345i \(0.728439\pi\)
\(620\) 17.7016 0.710914
\(621\) 9.14634 0.367030
\(622\) 25.3667 1.01711
\(623\) 17.6141 0.705695
\(624\) 1.29354 0.0517831
\(625\) 15.8935 0.635739
\(626\) −23.1081 −0.923585
\(627\) −21.2978 −0.850552
\(628\) −16.9900 −0.677976
\(629\) 0 0
\(630\) 1.60970 0.0641318
\(631\) 4.00974 0.159625 0.0798126 0.996810i \(-0.474568\pi\)
0.0798126 + 0.996810i \(0.474568\pi\)
\(632\) −0.149248 −0.00593675
\(633\) −21.9882 −0.873952
\(634\) 2.57307 0.102190
\(635\) 6.94187 0.275480
\(636\) 8.64234 0.342691
\(637\) −0.338889 −0.0134273
\(638\) −17.3663 −0.687539
\(639\) −2.66873 −0.105573
\(640\) −1.12772 −0.0445769
\(641\) 35.9660 1.42057 0.710286 0.703913i \(-0.248565\pi\)
0.710286 + 0.703913i \(0.248565\pi\)
\(642\) 12.1044 0.477722
\(643\) 29.0241 1.14460 0.572300 0.820044i \(-0.306051\pi\)
0.572300 + 0.820044i \(0.306051\pi\)
\(644\) 19.0944 0.752426
\(645\) 7.30289 0.287551
\(646\) 0 0
\(647\) 16.9266 0.665452 0.332726 0.943023i \(-0.392032\pi\)
0.332726 + 0.943023i \(0.392032\pi\)
\(648\) −0.177223 −0.00696198
\(649\) −18.0335 −0.707876
\(650\) −2.99150 −0.117336
\(651\) −10.6499 −0.417404
\(652\) 43.3352 1.69714
\(653\) −27.6212 −1.08090 −0.540450 0.841376i \(-0.681746\pi\)
−0.540450 + 0.841376i \(0.681746\pi\)
\(654\) −34.4354 −1.34653
\(655\) 13.9405 0.544702
\(656\) −22.4021 −0.874654
\(657\) 5.66157 0.220879
\(658\) −5.15815 −0.201086
\(659\) 35.3066 1.37535 0.687676 0.726018i \(-0.258631\pi\)
0.687676 + 0.726018i \(0.258631\pi\)
\(660\) 6.58277 0.256234
\(661\) −22.7708 −0.885683 −0.442842 0.896600i \(-0.646030\pi\)
−0.442842 + 0.896600i \(0.646030\pi\)
\(662\) 66.4050 2.58091
\(663\) 0 0
\(664\) −0.103900 −0.00403211
\(665\) −4.28152 −0.166030
\(666\) 9.46678 0.366830
\(667\) −19.8370 −0.768090
\(668\) −10.9726 −0.424545
\(669\) 14.4716 0.559505
\(670\) 4.51987 0.174618
\(671\) 37.9512 1.46509
\(672\) 8.07165 0.311371
\(673\) −29.2950 −1.12924 −0.564620 0.825351i \(-0.690977\pi\)
−0.564620 + 0.825351i \(0.690977\pi\)
\(674\) 22.9346 0.883408
\(675\) −4.36611 −0.168052
\(676\) −26.8998 −1.03461
\(677\) −38.3426 −1.47363 −0.736814 0.676096i \(-0.763670\pi\)
−0.736814 + 0.676096i \(0.763670\pi\)
\(678\) 31.5100 1.21013
\(679\) −14.5657 −0.558981
\(680\) 0 0
\(681\) 8.35861 0.320303
\(682\) −85.2761 −3.26539
\(683\) −7.80932 −0.298815 −0.149408 0.988776i \(-0.547737\pi\)
−0.149408 + 0.988776i \(0.547737\pi\)
\(684\) 11.2267 0.429262
\(685\) 14.7282 0.562736
\(686\) −2.02180 −0.0771925
\(687\) 0.113291 0.00432230
\(688\) 35.0115 1.33480
\(689\) −1.40291 −0.0534466
\(690\) 14.7228 0.560489
\(691\) −14.1041 −0.536546 −0.268273 0.963343i \(-0.586453\pi\)
−0.268273 + 0.963343i \(0.586453\pi\)
\(692\) −30.2709 −1.15073
\(693\) −3.96044 −0.150444
\(694\) −17.5447 −0.665988
\(695\) −8.34603 −0.316583
\(696\) 0.384369 0.0145695
\(697\) 0 0
\(698\) 23.4689 0.888309
\(699\) −4.58747 −0.173514
\(700\) −9.11494 −0.344512
\(701\) −24.3756 −0.920654 −0.460327 0.887750i \(-0.652268\pi\)
−0.460327 + 0.887750i \(0.652268\pi\)
\(702\) 0.685164 0.0258598
\(703\) −25.1801 −0.949684
\(704\) 34.3972 1.29639
\(705\) −2.03125 −0.0765013
\(706\) 43.6203 1.64167
\(707\) −3.01541 −0.113406
\(708\) 9.50595 0.357256
\(709\) −36.8892 −1.38540 −0.692701 0.721225i \(-0.743579\pi\)
−0.692701 + 0.721225i \(0.743579\pi\)
\(710\) −4.29584 −0.161220
\(711\) 0.842146 0.0315829
\(712\) −3.12163 −0.116988
\(713\) −97.4081 −3.64796
\(714\) 0 0
\(715\) −1.06858 −0.0399626
\(716\) 20.0524 0.749394
\(717\) 9.40874 0.351376
\(718\) −29.8108 −1.11253
\(719\) −43.1378 −1.60877 −0.804384 0.594110i \(-0.797504\pi\)
−0.804384 + 0.594110i \(0.797504\pi\)
\(720\) 3.03899 0.113256
\(721\) −12.9090 −0.480758
\(722\) −20.0542 −0.746339
\(723\) 6.74293 0.250772
\(724\) 16.9280 0.629123
\(725\) 9.46940 0.351685
\(726\) −9.47220 −0.351546
\(727\) −3.50565 −0.130017 −0.0650087 0.997885i \(-0.520708\pi\)
−0.0650087 + 0.997885i \(0.520708\pi\)
\(728\) 0.0600589 0.00222593
\(729\) 1.00000 0.0370370
\(730\) 9.11340 0.337302
\(731\) 0 0
\(732\) −20.0051 −0.739411
\(733\) −14.4182 −0.532547 −0.266274 0.963898i \(-0.585792\pi\)
−0.266274 + 0.963898i \(0.585792\pi\)
\(734\) −47.0128 −1.73527
\(735\) −0.796171 −0.0293672
\(736\) 73.8261 2.72126
\(737\) −11.1205 −0.409630
\(738\) −11.8660 −0.436792
\(739\) −45.0374 −1.65673 −0.828364 0.560191i \(-0.810728\pi\)
−0.828364 + 0.560191i \(0.810728\pi\)
\(740\) 7.78271 0.286098
\(741\) −1.82242 −0.0669483
\(742\) −8.36970 −0.307261
\(743\) −0.171900 −0.00630638 −0.00315319 0.999995i \(-0.501004\pi\)
−0.00315319 + 0.999995i \(0.501004\pi\)
\(744\) 1.88742 0.0691961
\(745\) −1.98009 −0.0725448
\(746\) −16.6220 −0.608576
\(747\) 0.586268 0.0214504
\(748\) 0 0
\(749\) −5.98695 −0.218758
\(750\) −15.0766 −0.550519
\(751\) 6.14404 0.224199 0.112100 0.993697i \(-0.464242\pi\)
0.112100 + 0.993697i \(0.464242\pi\)
\(752\) −9.73821 −0.355116
\(753\) −19.2601 −0.701877
\(754\) −1.48601 −0.0541173
\(755\) −4.45067 −0.161976
\(756\) 2.08766 0.0759273
\(757\) −28.9832 −1.05341 −0.526707 0.850047i \(-0.676573\pi\)
−0.526707 + 0.850047i \(0.676573\pi\)
\(758\) 74.3872 2.70186
\(759\) −36.2235 −1.31483
\(760\) 0.758785 0.0275240
\(761\) −36.8527 −1.33591 −0.667954 0.744202i \(-0.732830\pi\)
−0.667954 + 0.744202i \(0.732830\pi\)
\(762\) 17.6282 0.638601
\(763\) 17.0321 0.616603
\(764\) 22.7234 0.822104
\(765\) 0 0
\(766\) −41.0244 −1.48227
\(767\) −1.54310 −0.0557181
\(768\) 14.5067 0.523466
\(769\) 6.86931 0.247714 0.123857 0.992300i \(-0.460474\pi\)
0.123857 + 0.992300i \(0.460474\pi\)
\(770\) −6.37510 −0.229742
\(771\) 27.6076 0.994264
\(772\) −41.1096 −1.47957
\(773\) −22.1401 −0.796325 −0.398162 0.917315i \(-0.630352\pi\)
−0.398162 + 0.917315i \(0.630352\pi\)
\(774\) 18.5449 0.666584
\(775\) 46.4989 1.67029
\(776\) 2.58138 0.0926661
\(777\) −4.68236 −0.167979
\(778\) −0.377595 −0.0135374
\(779\) 31.5615 1.13081
\(780\) 0.563278 0.0201686
\(781\) 10.5693 0.378201
\(782\) 0 0
\(783\) −2.16884 −0.0775080
\(784\) −3.81700 −0.136322
\(785\) 6.47950 0.231263
\(786\) 35.4005 1.26270
\(787\) −16.0847 −0.573358 −0.286679 0.958027i \(-0.592551\pi\)
−0.286679 + 0.958027i \(0.592551\pi\)
\(788\) −13.3372 −0.475118
\(789\) −14.1019 −0.502039
\(790\) 1.35560 0.0482300
\(791\) −15.5851 −0.554144
\(792\) 0.701881 0.0249402
\(793\) 3.24743 0.115320
\(794\) 48.2659 1.71289
\(795\) −3.29594 −0.116895
\(796\) 14.7613 0.523201
\(797\) −2.05076 −0.0726418 −0.0363209 0.999340i \(-0.511564\pi\)
−0.0363209 + 0.999340i \(0.511564\pi\)
\(798\) −10.8725 −0.384882
\(799\) 0 0
\(800\) −35.2417 −1.24598
\(801\) 17.6141 0.622364
\(802\) 67.3569 2.37846
\(803\) −22.4223 −0.791265
\(804\) 5.86194 0.206735
\(805\) −7.28206 −0.256659
\(806\) −7.29696 −0.257024
\(807\) 6.06716 0.213574
\(808\) 0.534401 0.0188002
\(809\) 24.9418 0.876906 0.438453 0.898754i \(-0.355527\pi\)
0.438453 + 0.898754i \(0.355527\pi\)
\(810\) 1.60970 0.0565589
\(811\) −38.1085 −1.33817 −0.669085 0.743186i \(-0.733314\pi\)
−0.669085 + 0.743186i \(0.733314\pi\)
\(812\) −4.52779 −0.158894
\(813\) −10.5918 −0.371469
\(814\) −37.4926 −1.31411
\(815\) −16.5268 −0.578909
\(816\) 0 0
\(817\) −49.3265 −1.72571
\(818\) 38.6285 1.35061
\(819\) −0.338889 −0.0118417
\(820\) −9.75509 −0.340663
\(821\) 39.9313 1.39361 0.696806 0.717259i \(-0.254604\pi\)
0.696806 + 0.717259i \(0.254604\pi\)
\(822\) 37.4008 1.30450
\(823\) −25.3478 −0.883568 −0.441784 0.897122i \(-0.645654\pi\)
−0.441784 + 0.897122i \(0.645654\pi\)
\(824\) 2.28778 0.0796987
\(825\) 17.2917 0.602020
\(826\) −9.20606 −0.320320
\(827\) −25.0190 −0.869998 −0.434999 0.900431i \(-0.643251\pi\)
−0.434999 + 0.900431i \(0.643251\pi\)
\(828\) 19.0944 0.663577
\(829\) 36.3621 1.26291 0.631455 0.775413i \(-0.282458\pi\)
0.631455 + 0.775413i \(0.282458\pi\)
\(830\) 0.943713 0.0327568
\(831\) 13.0667 0.453280
\(832\) 2.94332 0.102041
\(833\) 0 0
\(834\) −21.1939 −0.733884
\(835\) 4.18465 0.144816
\(836\) −44.4625 −1.53777
\(837\) −10.6499 −0.368116
\(838\) −35.6143 −1.23027
\(839\) −47.5867 −1.64287 −0.821437 0.570299i \(-0.806827\pi\)
−0.821437 + 0.570299i \(0.806827\pi\)
\(840\) 0.141100 0.00486841
\(841\) −24.2961 −0.837798
\(842\) −5.54992 −0.191263
\(843\) −15.2363 −0.524765
\(844\) −45.9038 −1.58007
\(845\) 10.2588 0.352913
\(846\) −5.15815 −0.177341
\(847\) 4.68505 0.160980
\(848\) −15.8014 −0.542622
\(849\) −8.32069 −0.285565
\(850\) 0 0
\(851\) −42.8265 −1.46807
\(852\) −5.57139 −0.190873
\(853\) −40.8389 −1.39830 −0.699148 0.714977i \(-0.746437\pi\)
−0.699148 + 0.714977i \(0.746437\pi\)
\(854\) 19.3740 0.662965
\(855\) −4.28152 −0.146425
\(856\) 1.06103 0.0362651
\(857\) −29.8891 −1.02099 −0.510496 0.859880i \(-0.670538\pi\)
−0.510496 + 0.859880i \(0.670538\pi\)
\(858\) −2.71355 −0.0926390
\(859\) 22.8761 0.780524 0.390262 0.920704i \(-0.372384\pi\)
0.390262 + 0.920704i \(0.372384\pi\)
\(860\) 15.2459 0.519882
\(861\) 5.86902 0.200016
\(862\) 51.0023 1.73715
\(863\) −21.8280 −0.743035 −0.371518 0.928426i \(-0.621162\pi\)
−0.371518 + 0.928426i \(0.621162\pi\)
\(864\) 8.07165 0.274603
\(865\) 11.5444 0.392523
\(866\) 24.9982 0.849474
\(867\) 0 0
\(868\) −22.2334 −0.754652
\(869\) −3.33526 −0.113141
\(870\) −3.49117 −0.118362
\(871\) −0.951567 −0.0322426
\(872\) −3.01848 −0.102219
\(873\) −14.5657 −0.492975
\(874\) −99.4435 −3.36373
\(875\) 7.45703 0.252094
\(876\) 11.8194 0.399341
\(877\) 15.0344 0.507674 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(878\) −82.8716 −2.79678
\(879\) −14.6794 −0.495123
\(880\) −12.0357 −0.405724
\(881\) −43.6520 −1.47067 −0.735336 0.677703i \(-0.762976\pi\)
−0.735336 + 0.677703i \(0.762976\pi\)
\(882\) −2.02180 −0.0680774
\(883\) −5.48802 −0.184687 −0.0923434 0.995727i \(-0.529436\pi\)
−0.0923434 + 0.995727i \(0.529436\pi\)
\(884\) 0 0
\(885\) −3.62529 −0.121863
\(886\) −71.2998 −2.39536
\(887\) −10.5926 −0.355664 −0.177832 0.984061i \(-0.556908\pi\)
−0.177832 + 0.984061i \(0.556908\pi\)
\(888\) 0.829823 0.0278470
\(889\) −8.71907 −0.292428
\(890\) 28.3534 0.950407
\(891\) −3.96044 −0.132680
\(892\) 30.2118 1.01156
\(893\) 13.7198 0.459116
\(894\) −5.02823 −0.168169
\(895\) −7.64741 −0.255625
\(896\) 1.41642 0.0473194
\(897\) −3.09959 −0.103492
\(898\) −23.6355 −0.788728
\(899\) 23.0980 0.770363
\(900\) −9.11494 −0.303831
\(901\) 0 0
\(902\) 46.9944 1.56474
\(903\) −9.17251 −0.305242
\(904\) 2.76205 0.0918644
\(905\) −6.45583 −0.214599
\(906\) −11.3020 −0.375484
\(907\) 4.56022 0.151419 0.0757097 0.997130i \(-0.475878\pi\)
0.0757097 + 0.997130i \(0.475878\pi\)
\(908\) 17.4499 0.579095
\(909\) −3.01541 −0.100015
\(910\) −0.545508 −0.0180834
\(911\) −5.03634 −0.166862 −0.0834308 0.996514i \(-0.526588\pi\)
−0.0834308 + 0.996514i \(0.526588\pi\)
\(912\) −20.5265 −0.679699
\(913\) −2.32188 −0.0768429
\(914\) −13.9813 −0.462461
\(915\) 7.62938 0.252219
\(916\) 0.236512 0.00781457
\(917\) −17.5095 −0.578213
\(918\) 0 0
\(919\) 41.2557 1.36090 0.680450 0.732794i \(-0.261784\pi\)
0.680450 + 0.732794i \(0.261784\pi\)
\(920\) 1.29055 0.0425481
\(921\) 9.34393 0.307893
\(922\) 32.8614 1.08223
\(923\) 0.904403 0.0297688
\(924\) −8.26803 −0.271998
\(925\) 20.4437 0.672185
\(926\) −4.91216 −0.161424
\(927\) −12.9090 −0.423989
\(928\) −17.5061 −0.574666
\(929\) 53.2696 1.74772 0.873859 0.486180i \(-0.161610\pi\)
0.873859 + 0.486180i \(0.161610\pi\)
\(930\) −17.1432 −0.562147
\(931\) 5.37764 0.176245
\(932\) −9.57706 −0.313707
\(933\) −12.5466 −0.410759
\(934\) 10.0428 0.328610
\(935\) 0 0
\(936\) 0.0600589 0.00196309
\(937\) 12.1965 0.398442 0.199221 0.979955i \(-0.436159\pi\)
0.199221 + 0.979955i \(0.436159\pi\)
\(938\) −5.67701 −0.185361
\(939\) 11.4295 0.372987
\(940\) −4.24055 −0.138312
\(941\) 26.8763 0.876143 0.438071 0.898940i \(-0.355662\pi\)
0.438071 + 0.898940i \(0.355662\pi\)
\(942\) 16.4540 0.536101
\(943\) 53.6801 1.74807
\(944\) −17.3804 −0.565683
\(945\) −0.796171 −0.0258995
\(946\) −73.4460 −2.38794
\(947\) −28.8441 −0.937308 −0.468654 0.883382i \(-0.655261\pi\)
−0.468654 + 0.883382i \(0.655261\pi\)
\(948\) 1.75811 0.0571008
\(949\) −1.91864 −0.0622818
\(950\) 47.4705 1.54015
\(951\) −1.27266 −0.0412690
\(952\) 0 0
\(953\) −7.36090 −0.238443 −0.119221 0.992868i \(-0.538040\pi\)
−0.119221 + 0.992868i \(0.538040\pi\)
\(954\) −8.36970 −0.270979
\(955\) −8.66604 −0.280427
\(956\) 19.6422 0.635275
\(957\) 8.58955 0.277661
\(958\) 72.4885 2.34200
\(959\) −18.4988 −0.597357
\(960\) 6.91492 0.223178
\(961\) 82.4214 2.65875
\(962\) −3.20819 −0.103436
\(963\) −5.98695 −0.192927
\(964\) 14.0769 0.453387
\(965\) 15.6780 0.504693
\(966\) −18.4920 −0.594972
\(967\) −42.3882 −1.36311 −0.681556 0.731766i \(-0.738696\pi\)
−0.681556 + 0.731766i \(0.738696\pi\)
\(968\) −0.830298 −0.0266868
\(969\) 0 0
\(970\) −23.4464 −0.752817
\(971\) −28.2002 −0.904988 −0.452494 0.891767i \(-0.649466\pi\)
−0.452494 + 0.891767i \(0.649466\pi\)
\(972\) 2.08766 0.0669616
\(973\) 10.4827 0.336060
\(974\) 71.6607 2.29616
\(975\) 1.47963 0.0473860
\(976\) 36.5768 1.17079
\(977\) 32.1878 1.02978 0.514890 0.857256i \(-0.327833\pi\)
0.514890 + 0.857256i \(0.327833\pi\)
\(978\) −41.9681 −1.34199
\(979\) −69.7596 −2.22953
\(980\) −1.66213 −0.0530949
\(981\) 17.0321 0.543793
\(982\) 49.4909 1.57932
\(983\) 25.5348 0.814433 0.407216 0.913332i \(-0.366500\pi\)
0.407216 + 0.913332i \(0.366500\pi\)
\(984\) −1.04013 −0.0331580
\(985\) 5.08642 0.162067
\(986\) 0 0
\(987\) 2.55127 0.0812079
\(988\) −3.80459 −0.121040
\(989\) −83.8950 −2.66770
\(990\) −6.37510 −0.202614
\(991\) −3.61661 −0.114885 −0.0574426 0.998349i \(-0.518295\pi\)
−0.0574426 + 0.998349i \(0.518295\pi\)
\(992\) −85.9626 −2.72932
\(993\) −32.8446 −1.04229
\(994\) 5.39563 0.171139
\(995\) −5.62954 −0.178468
\(996\) 1.22393 0.0387816
\(997\) 49.0890 1.55467 0.777333 0.629090i \(-0.216572\pi\)
0.777333 + 0.629090i \(0.216572\pi\)
\(998\) 70.3888 2.22812
\(999\) −4.68236 −0.148143
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.bc.1.2 yes 9
17.16 even 2 6069.2.a.z.1.2 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6069.2.a.z.1.2 9 17.16 even 2
6069.2.a.bc.1.2 yes 9 1.1 even 1 trivial