Properties

Label 6069.2.a.l.1.2
Level $6069$
Weight $2$
Character 6069.1
Self dual yes
Analytic conductor $48.461$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6069,2,Mod(1,6069)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6069, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6069.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.24698\) of defining polynomial
Character \(\chi\) \(=\) 6069.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.554958 q^{2} +1.00000 q^{3} -1.69202 q^{4} -3.85086 q^{5} -0.554958 q^{6} +1.00000 q^{7} +2.04892 q^{8} +1.00000 q^{9} +2.13706 q^{10} +0.951083 q^{11} -1.69202 q^{12} +7.15883 q^{13} -0.554958 q^{14} -3.85086 q^{15} +2.24698 q^{16} -0.554958 q^{18} -4.51573 q^{19} +6.51573 q^{20} +1.00000 q^{21} -0.527811 q^{22} -2.02715 q^{23} +2.04892 q^{24} +9.82908 q^{25} -3.97285 q^{26} +1.00000 q^{27} -1.69202 q^{28} +9.76809 q^{29} +2.13706 q^{30} +6.87800 q^{31} -5.34481 q^{32} +0.951083 q^{33} -3.85086 q^{35} -1.69202 q^{36} +3.62565 q^{37} +2.50604 q^{38} +7.15883 q^{39} -7.89008 q^{40} +1.96077 q^{41} -0.554958 q^{42} -9.28382 q^{43} -1.60925 q^{44} -3.85086 q^{45} +1.12498 q^{46} -8.24698 q^{47} +2.24698 q^{48} +1.00000 q^{49} -5.45473 q^{50} -12.1129 q^{52} -8.13706 q^{53} -0.554958 q^{54} -3.66248 q^{55} +2.04892 q^{56} -4.51573 q^{57} -5.42088 q^{58} -1.55496 q^{59} +6.51573 q^{60} -6.14675 q^{61} -3.81700 q^{62} +1.00000 q^{63} -1.52781 q^{64} -27.5676 q^{65} -0.527811 q^{66} +2.32975 q^{67} -2.02715 q^{69} +2.13706 q^{70} -4.38404 q^{71} +2.04892 q^{72} -2.16421 q^{73} -2.01208 q^{74} +9.82908 q^{75} +7.64071 q^{76} +0.951083 q^{77} -3.97285 q^{78} +1.98792 q^{79} -8.65279 q^{80} +1.00000 q^{81} -1.08815 q^{82} -5.04892 q^{83} -1.69202 q^{84} +5.15213 q^{86} +9.76809 q^{87} +1.94869 q^{88} +3.31767 q^{89} +2.13706 q^{90} +7.15883 q^{91} +3.42998 q^{92} +6.87800 q^{93} +4.57673 q^{94} +17.3894 q^{95} -5.34481 q^{96} +14.7899 q^{97} -0.554958 q^{98} +0.951083 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} + 3 q^{3} + 2 q^{5} - 2 q^{6} + 3 q^{7} - 3 q^{8} + 3 q^{9} + q^{10} + 12 q^{11} + 13 q^{13} - 2 q^{14} + 2 q^{15} + 2 q^{16} - 2 q^{18} - q^{19} + 7 q^{20} + 3 q^{21} - 8 q^{22} - 3 q^{24}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.554958 −0.392415 −0.196207 0.980562i \(-0.562863\pi\)
−0.196207 + 0.980562i \(0.562863\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.69202 −0.846011
\(5\) −3.85086 −1.72215 −0.861077 0.508474i \(-0.830210\pi\)
−0.861077 + 0.508474i \(0.830210\pi\)
\(6\) −0.554958 −0.226561
\(7\) 1.00000 0.377964
\(8\) 2.04892 0.724402
\(9\) 1.00000 0.333333
\(10\) 2.13706 0.675799
\(11\) 0.951083 0.286762 0.143381 0.989668i \(-0.454203\pi\)
0.143381 + 0.989668i \(0.454203\pi\)
\(12\) −1.69202 −0.488445
\(13\) 7.15883 1.98550 0.992752 0.120184i \(-0.0383485\pi\)
0.992752 + 0.120184i \(0.0383485\pi\)
\(14\) −0.554958 −0.148319
\(15\) −3.85086 −0.994287
\(16\) 2.24698 0.561745
\(17\) 0 0
\(18\) −0.554958 −0.130805
\(19\) −4.51573 −1.03598 −0.517990 0.855387i \(-0.673319\pi\)
−0.517990 + 0.855387i \(0.673319\pi\)
\(20\) 6.51573 1.45696
\(21\) 1.00000 0.218218
\(22\) −0.527811 −0.112530
\(23\) −2.02715 −0.422689 −0.211345 0.977412i \(-0.567784\pi\)
−0.211345 + 0.977412i \(0.567784\pi\)
\(24\) 2.04892 0.418234
\(25\) 9.82908 1.96582
\(26\) −3.97285 −0.779141
\(27\) 1.00000 0.192450
\(28\) −1.69202 −0.319762
\(29\) 9.76809 1.81389 0.906944 0.421251i \(-0.138409\pi\)
0.906944 + 0.421251i \(0.138409\pi\)
\(30\) 2.13706 0.390173
\(31\) 6.87800 1.23533 0.617663 0.786443i \(-0.288080\pi\)
0.617663 + 0.786443i \(0.288080\pi\)
\(32\) −5.34481 −0.944839
\(33\) 0.951083 0.165562
\(34\) 0 0
\(35\) −3.85086 −0.650913
\(36\) −1.69202 −0.282004
\(37\) 3.62565 0.596052 0.298026 0.954558i \(-0.403672\pi\)
0.298026 + 0.954558i \(0.403672\pi\)
\(38\) 2.50604 0.406533
\(39\) 7.15883 1.14633
\(40\) −7.89008 −1.24753
\(41\) 1.96077 0.306221 0.153111 0.988209i \(-0.451071\pi\)
0.153111 + 0.988209i \(0.451071\pi\)
\(42\) −0.554958 −0.0856319
\(43\) −9.28382 −1.41577 −0.707884 0.706328i \(-0.750350\pi\)
−0.707884 + 0.706328i \(0.750350\pi\)
\(44\) −1.60925 −0.242604
\(45\) −3.85086 −0.574052
\(46\) 1.12498 0.165870
\(47\) −8.24698 −1.20295 −0.601473 0.798893i \(-0.705419\pi\)
−0.601473 + 0.798893i \(0.705419\pi\)
\(48\) 2.24698 0.324324
\(49\) 1.00000 0.142857
\(50\) −5.45473 −0.771415
\(51\) 0 0
\(52\) −12.1129 −1.67976
\(53\) −8.13706 −1.11771 −0.558856 0.829265i \(-0.688759\pi\)
−0.558856 + 0.829265i \(0.688759\pi\)
\(54\) −0.554958 −0.0755202
\(55\) −3.66248 −0.493849
\(56\) 2.04892 0.273798
\(57\) −4.51573 −0.598123
\(58\) −5.42088 −0.711796
\(59\) −1.55496 −0.202438 −0.101219 0.994864i \(-0.532274\pi\)
−0.101219 + 0.994864i \(0.532274\pi\)
\(60\) 6.51573 0.841177
\(61\) −6.14675 −0.787011 −0.393505 0.919322i \(-0.628738\pi\)
−0.393505 + 0.919322i \(0.628738\pi\)
\(62\) −3.81700 −0.484760
\(63\) 1.00000 0.125988
\(64\) −1.52781 −0.190976
\(65\) −27.5676 −3.41934
\(66\) −0.527811 −0.0649690
\(67\) 2.32975 0.284624 0.142312 0.989822i \(-0.454546\pi\)
0.142312 + 0.989822i \(0.454546\pi\)
\(68\) 0 0
\(69\) −2.02715 −0.244040
\(70\) 2.13706 0.255428
\(71\) −4.38404 −0.520290 −0.260145 0.965570i \(-0.583770\pi\)
−0.260145 + 0.965570i \(0.583770\pi\)
\(72\) 2.04892 0.241467
\(73\) −2.16421 −0.253302 −0.126651 0.991947i \(-0.540423\pi\)
−0.126651 + 0.991947i \(0.540423\pi\)
\(74\) −2.01208 −0.233900
\(75\) 9.82908 1.13496
\(76\) 7.64071 0.876450
\(77\) 0.951083 0.108386
\(78\) −3.97285 −0.449837
\(79\) 1.98792 0.223658 0.111829 0.993727i \(-0.464329\pi\)
0.111829 + 0.993727i \(0.464329\pi\)
\(80\) −8.65279 −0.967412
\(81\) 1.00000 0.111111
\(82\) −1.08815 −0.120166
\(83\) −5.04892 −0.554191 −0.277095 0.960842i \(-0.589372\pi\)
−0.277095 + 0.960842i \(0.589372\pi\)
\(84\) −1.69202 −0.184615
\(85\) 0 0
\(86\) 5.15213 0.555568
\(87\) 9.76809 1.04725
\(88\) 1.94869 0.207731
\(89\) 3.31767 0.351672 0.175836 0.984419i \(-0.443737\pi\)
0.175836 + 0.984419i \(0.443737\pi\)
\(90\) 2.13706 0.225266
\(91\) 7.15883 0.750450
\(92\) 3.42998 0.357600
\(93\) 6.87800 0.713216
\(94\) 4.57673 0.472053
\(95\) 17.3894 1.78412
\(96\) −5.34481 −0.545503
\(97\) 14.7899 1.50168 0.750841 0.660483i \(-0.229648\pi\)
0.750841 + 0.660483i \(0.229648\pi\)
\(98\) −0.554958 −0.0560592
\(99\) 0.951083 0.0955874
\(100\) −16.6310 −1.66310
\(101\) 9.22521 0.917943 0.458971 0.888451i \(-0.348218\pi\)
0.458971 + 0.888451i \(0.348218\pi\)
\(102\) 0 0
\(103\) 4.86294 0.479159 0.239580 0.970877i \(-0.422990\pi\)
0.239580 + 0.970877i \(0.422990\pi\)
\(104\) 14.6679 1.43830
\(105\) −3.85086 −0.375805
\(106\) 4.51573 0.438606
\(107\) 1.34481 0.130008 0.0650041 0.997885i \(-0.479294\pi\)
0.0650041 + 0.997885i \(0.479294\pi\)
\(108\) −1.69202 −0.162815
\(109\) 18.2228 1.74543 0.872715 0.488231i \(-0.162358\pi\)
0.872715 + 0.488231i \(0.162358\pi\)
\(110\) 2.03252 0.193794
\(111\) 3.62565 0.344131
\(112\) 2.24698 0.212320
\(113\) −7.47650 −0.703330 −0.351665 0.936126i \(-0.614384\pi\)
−0.351665 + 0.936126i \(0.614384\pi\)
\(114\) 2.50604 0.234712
\(115\) 7.80625 0.727937
\(116\) −16.5278 −1.53457
\(117\) 7.15883 0.661834
\(118\) 0.862937 0.0794398
\(119\) 0 0
\(120\) −7.89008 −0.720263
\(121\) −10.0954 −0.917767
\(122\) 3.41119 0.308835
\(123\) 1.96077 0.176797
\(124\) −11.6377 −1.04510
\(125\) −18.5961 −1.66329
\(126\) −0.554958 −0.0494396
\(127\) −14.7289 −1.30697 −0.653487 0.756937i \(-0.726695\pi\)
−0.653487 + 0.756937i \(0.726695\pi\)
\(128\) 11.5375 1.01978
\(129\) −9.28382 −0.817394
\(130\) 15.2989 1.34180
\(131\) 10.4601 0.913904 0.456952 0.889491i \(-0.348941\pi\)
0.456952 + 0.889491i \(0.348941\pi\)
\(132\) −1.60925 −0.140067
\(133\) −4.51573 −0.391563
\(134\) −1.29291 −0.111691
\(135\) −3.85086 −0.331429
\(136\) 0 0
\(137\) −9.35690 −0.799414 −0.399707 0.916643i \(-0.630888\pi\)
−0.399707 + 0.916643i \(0.630888\pi\)
\(138\) 1.12498 0.0957648
\(139\) 17.5864 1.49166 0.745830 0.666136i \(-0.232053\pi\)
0.745830 + 0.666136i \(0.232053\pi\)
\(140\) 6.51573 0.550680
\(141\) −8.24698 −0.694521
\(142\) 2.43296 0.204169
\(143\) 6.80864 0.569367
\(144\) 2.24698 0.187248
\(145\) −37.6155 −3.12380
\(146\) 1.20105 0.0993993
\(147\) 1.00000 0.0824786
\(148\) −6.13467 −0.504267
\(149\) −10.1564 −0.832048 −0.416024 0.909354i \(-0.636577\pi\)
−0.416024 + 0.909354i \(0.636577\pi\)
\(150\) −5.45473 −0.445377
\(151\) 14.5187 1.18152 0.590758 0.806849i \(-0.298829\pi\)
0.590758 + 0.806849i \(0.298829\pi\)
\(152\) −9.25236 −0.750465
\(153\) 0 0
\(154\) −0.527811 −0.0425322
\(155\) −26.4862 −2.12742
\(156\) −12.1129 −0.969808
\(157\) 6.53319 0.521405 0.260703 0.965419i \(-0.416046\pi\)
0.260703 + 0.965419i \(0.416046\pi\)
\(158\) −1.10321 −0.0877668
\(159\) −8.13706 −0.645311
\(160\) 20.5821 1.62716
\(161\) −2.02715 −0.159762
\(162\) −0.554958 −0.0436016
\(163\) 7.49396 0.586972 0.293486 0.955963i \(-0.405185\pi\)
0.293486 + 0.955963i \(0.405185\pi\)
\(164\) −3.31767 −0.259066
\(165\) −3.66248 −0.285124
\(166\) 2.80194 0.217473
\(167\) 15.1903 1.17546 0.587730 0.809057i \(-0.300022\pi\)
0.587730 + 0.809057i \(0.300022\pi\)
\(168\) 2.04892 0.158077
\(169\) 38.2489 2.94222
\(170\) 0 0
\(171\) −4.51573 −0.345326
\(172\) 15.7084 1.19776
\(173\) −19.5308 −1.48490 −0.742449 0.669902i \(-0.766336\pi\)
−0.742449 + 0.669902i \(0.766336\pi\)
\(174\) −5.42088 −0.410956
\(175\) 9.82908 0.743009
\(176\) 2.13706 0.161087
\(177\) −1.55496 −0.116878
\(178\) −1.84117 −0.138001
\(179\) 24.9191 1.86254 0.931272 0.364324i \(-0.118700\pi\)
0.931272 + 0.364324i \(0.118700\pi\)
\(180\) 6.51573 0.485654
\(181\) 5.59179 0.415635 0.207817 0.978168i \(-0.433364\pi\)
0.207817 + 0.978168i \(0.433364\pi\)
\(182\) −3.97285 −0.294487
\(183\) −6.14675 −0.454381
\(184\) −4.15346 −0.306197
\(185\) −13.9618 −1.02649
\(186\) −3.81700 −0.279876
\(187\) 0 0
\(188\) 13.9541 1.01770
\(189\) 1.00000 0.0727393
\(190\) −9.65040 −0.700114
\(191\) 22.4426 1.62389 0.811947 0.583732i \(-0.198408\pi\)
0.811947 + 0.583732i \(0.198408\pi\)
\(192\) −1.52781 −0.110260
\(193\) −10.6920 −0.769629 −0.384814 0.922994i \(-0.625735\pi\)
−0.384814 + 0.922994i \(0.625735\pi\)
\(194\) −8.20775 −0.589282
\(195\) −27.5676 −1.97416
\(196\) −1.69202 −0.120859
\(197\) 3.73125 0.265841 0.132920 0.991127i \(-0.457565\pi\)
0.132920 + 0.991127i \(0.457565\pi\)
\(198\) −0.527811 −0.0375099
\(199\) −1.10023 −0.0779931 −0.0389965 0.999239i \(-0.512416\pi\)
−0.0389965 + 0.999239i \(0.512416\pi\)
\(200\) 20.1390 1.42404
\(201\) 2.32975 0.164328
\(202\) −5.11960 −0.360214
\(203\) 9.76809 0.685585
\(204\) 0 0
\(205\) −7.55065 −0.527360
\(206\) −2.69873 −0.188029
\(207\) −2.02715 −0.140896
\(208\) 16.0858 1.11535
\(209\) −4.29483 −0.297080
\(210\) 2.13706 0.147471
\(211\) −8.22282 −0.566082 −0.283041 0.959108i \(-0.591343\pi\)
−0.283041 + 0.959108i \(0.591343\pi\)
\(212\) 13.7681 0.945596
\(213\) −4.38404 −0.300390
\(214\) −0.746316 −0.0510171
\(215\) 35.7506 2.43817
\(216\) 2.04892 0.139411
\(217\) 6.87800 0.466909
\(218\) −10.1129 −0.684932
\(219\) −2.16421 −0.146244
\(220\) 6.19700 0.417801
\(221\) 0 0
\(222\) −2.01208 −0.135042
\(223\) −3.46250 −0.231866 −0.115933 0.993257i \(-0.536986\pi\)
−0.115933 + 0.993257i \(0.536986\pi\)
\(224\) −5.34481 −0.357115
\(225\) 9.82908 0.655272
\(226\) 4.14914 0.275997
\(227\) −13.4058 −0.889775 −0.444888 0.895586i \(-0.646756\pi\)
−0.444888 + 0.895586i \(0.646756\pi\)
\(228\) 7.64071 0.506018
\(229\) −17.1618 −1.13408 −0.567042 0.823689i \(-0.691912\pi\)
−0.567042 + 0.823689i \(0.691912\pi\)
\(230\) −4.33214 −0.285653
\(231\) 0.951083 0.0625766
\(232\) 20.0140 1.31398
\(233\) −19.7453 −1.29355 −0.646777 0.762679i \(-0.723884\pi\)
−0.646777 + 0.762679i \(0.723884\pi\)
\(234\) −3.97285 −0.259714
\(235\) 31.7579 2.07166
\(236\) 2.63102 0.171265
\(237\) 1.98792 0.129129
\(238\) 0 0
\(239\) 23.2228 1.50216 0.751080 0.660212i \(-0.229533\pi\)
0.751080 + 0.660212i \(0.229533\pi\)
\(240\) −8.65279 −0.558535
\(241\) −14.0489 −0.904970 −0.452485 0.891772i \(-0.649462\pi\)
−0.452485 + 0.891772i \(0.649462\pi\)
\(242\) 5.60255 0.360145
\(243\) 1.00000 0.0641500
\(244\) 10.4004 0.665820
\(245\) −3.85086 −0.246022
\(246\) −1.08815 −0.0693777
\(247\) −32.3274 −2.05694
\(248\) 14.0925 0.894872
\(249\) −5.04892 −0.319962
\(250\) 10.3201 0.652698
\(251\) −26.3274 −1.66177 −0.830884 0.556446i \(-0.812165\pi\)
−0.830884 + 0.556446i \(0.812165\pi\)
\(252\) −1.69202 −0.106587
\(253\) −1.92798 −0.121211
\(254\) 8.17390 0.512876
\(255\) 0 0
\(256\) −3.34721 −0.209200
\(257\) 14.1317 0.881510 0.440755 0.897627i \(-0.354711\pi\)
0.440755 + 0.897627i \(0.354711\pi\)
\(258\) 5.15213 0.320758
\(259\) 3.62565 0.225287
\(260\) 46.6450 2.89280
\(261\) 9.76809 0.604629
\(262\) −5.80492 −0.358629
\(263\) −13.2121 −0.814691 −0.407345 0.913274i \(-0.633545\pi\)
−0.407345 + 0.913274i \(0.633545\pi\)
\(264\) 1.94869 0.119934
\(265\) 31.3347 1.92487
\(266\) 2.50604 0.153655
\(267\) 3.31767 0.203038
\(268\) −3.94198 −0.240795
\(269\) 30.7211 1.87310 0.936549 0.350537i \(-0.114001\pi\)
0.936549 + 0.350537i \(0.114001\pi\)
\(270\) 2.13706 0.130058
\(271\) 31.7071 1.92607 0.963034 0.269379i \(-0.0868185\pi\)
0.963034 + 0.269379i \(0.0868185\pi\)
\(272\) 0 0
\(273\) 7.15883 0.433272
\(274\) 5.19269 0.313702
\(275\) 9.34827 0.563722
\(276\) 3.42998 0.206460
\(277\) −24.4131 −1.46684 −0.733421 0.679775i \(-0.762077\pi\)
−0.733421 + 0.679775i \(0.762077\pi\)
\(278\) −9.75973 −0.585349
\(279\) 6.87800 0.411775
\(280\) −7.89008 −0.471523
\(281\) −16.5036 −0.984525 −0.492263 0.870447i \(-0.663830\pi\)
−0.492263 + 0.870447i \(0.663830\pi\)
\(282\) 4.57673 0.272540
\(283\) 17.3840 1.03337 0.516687 0.856174i \(-0.327165\pi\)
0.516687 + 0.856174i \(0.327165\pi\)
\(284\) 7.41789 0.440171
\(285\) 17.3894 1.03006
\(286\) −3.77851 −0.223428
\(287\) 1.96077 0.115741
\(288\) −5.34481 −0.314946
\(289\) 0 0
\(290\) 20.8750 1.22582
\(291\) 14.7899 0.866997
\(292\) 3.66189 0.214296
\(293\) −33.2301 −1.94132 −0.970662 0.240448i \(-0.922706\pi\)
−0.970662 + 0.240448i \(0.922706\pi\)
\(294\) −0.554958 −0.0323658
\(295\) 5.98792 0.348630
\(296\) 7.42865 0.431781
\(297\) 0.951083 0.0551874
\(298\) 5.63640 0.326508
\(299\) −14.5120 −0.839251
\(300\) −16.6310 −0.960193
\(301\) −9.28382 −0.535110
\(302\) −8.05728 −0.463644
\(303\) 9.22521 0.529974
\(304\) −10.1468 −0.581956
\(305\) 23.6703 1.35535
\(306\) 0 0
\(307\) −14.9825 −0.855099 −0.427549 0.903992i \(-0.640623\pi\)
−0.427549 + 0.903992i \(0.640623\pi\)
\(308\) −1.60925 −0.0916957
\(309\) 4.86294 0.276643
\(310\) 14.6987 0.834832
\(311\) 8.61356 0.488430 0.244215 0.969721i \(-0.421470\pi\)
0.244215 + 0.969721i \(0.421470\pi\)
\(312\) 14.6679 0.830404
\(313\) 12.3207 0.696404 0.348202 0.937419i \(-0.386792\pi\)
0.348202 + 0.937419i \(0.386792\pi\)
\(314\) −3.62565 −0.204607
\(315\) −3.85086 −0.216971
\(316\) −3.36360 −0.189217
\(317\) 16.7536 0.940977 0.470488 0.882406i \(-0.344078\pi\)
0.470488 + 0.882406i \(0.344078\pi\)
\(318\) 4.51573 0.253230
\(319\) 9.29026 0.520155
\(320\) 5.88338 0.328891
\(321\) 1.34481 0.0750602
\(322\) 1.12498 0.0626928
\(323\) 0 0
\(324\) −1.69202 −0.0940012
\(325\) 70.3648 3.90314
\(326\) −4.15883 −0.230336
\(327\) 18.2228 1.00772
\(328\) 4.01746 0.221827
\(329\) −8.24698 −0.454671
\(330\) 2.03252 0.111887
\(331\) 14.4547 0.794504 0.397252 0.917710i \(-0.369964\pi\)
0.397252 + 0.917710i \(0.369964\pi\)
\(332\) 8.54288 0.468851
\(333\) 3.62565 0.198684
\(334\) −8.42998 −0.461268
\(335\) −8.97152 −0.490167
\(336\) 2.24698 0.122583
\(337\) −2.32304 −0.126544 −0.0632721 0.997996i \(-0.520154\pi\)
−0.0632721 + 0.997996i \(0.520154\pi\)
\(338\) −21.2265 −1.15457
\(339\) −7.47650 −0.406068
\(340\) 0 0
\(341\) 6.54155 0.354245
\(342\) 2.50604 0.135511
\(343\) 1.00000 0.0539949
\(344\) −19.0218 −1.02559
\(345\) 7.80625 0.420274
\(346\) 10.8388 0.582696
\(347\) 26.2161 1.40735 0.703677 0.710520i \(-0.251540\pi\)
0.703677 + 0.710520i \(0.251540\pi\)
\(348\) −16.5278 −0.885984
\(349\) 29.6601 1.58767 0.793834 0.608134i \(-0.208082\pi\)
0.793834 + 0.608134i \(0.208082\pi\)
\(350\) −5.45473 −0.291568
\(351\) 7.15883 0.382110
\(352\) −5.08336 −0.270944
\(353\) −25.0301 −1.33222 −0.666110 0.745854i \(-0.732042\pi\)
−0.666110 + 0.745854i \(0.732042\pi\)
\(354\) 0.862937 0.0458646
\(355\) 16.8823 0.896020
\(356\) −5.61356 −0.297518
\(357\) 0 0
\(358\) −13.8291 −0.730890
\(359\) 0.987918 0.0521403 0.0260702 0.999660i \(-0.491701\pi\)
0.0260702 + 0.999660i \(0.491701\pi\)
\(360\) −7.89008 −0.415844
\(361\) 1.39181 0.0732533
\(362\) −3.10321 −0.163101
\(363\) −10.0954 −0.529873
\(364\) −12.1129 −0.634888
\(365\) 8.33406 0.436225
\(366\) 3.41119 0.178306
\(367\) 21.3086 1.11230 0.556149 0.831083i \(-0.312278\pi\)
0.556149 + 0.831083i \(0.312278\pi\)
\(368\) −4.55496 −0.237444
\(369\) 1.96077 0.102074
\(370\) 7.74823 0.402812
\(371\) −8.13706 −0.422455
\(372\) −11.6377 −0.603388
\(373\) −8.88040 −0.459809 −0.229905 0.973213i \(-0.573841\pi\)
−0.229905 + 0.973213i \(0.573841\pi\)
\(374\) 0 0
\(375\) −18.5961 −0.960299
\(376\) −16.8974 −0.871416
\(377\) 69.9281 3.60148
\(378\) −0.554958 −0.0285440
\(379\) 28.9976 1.48951 0.744754 0.667340i \(-0.232567\pi\)
0.744754 + 0.667340i \(0.232567\pi\)
\(380\) −29.4233 −1.50938
\(381\) −14.7289 −0.754582
\(382\) −12.4547 −0.637239
\(383\) 27.5163 1.40602 0.703009 0.711181i \(-0.251839\pi\)
0.703009 + 0.711181i \(0.251839\pi\)
\(384\) 11.5375 0.588771
\(385\) −3.66248 −0.186657
\(386\) 5.93362 0.302014
\(387\) −9.28382 −0.471923
\(388\) −25.0248 −1.27044
\(389\) −15.3220 −0.776855 −0.388428 0.921479i \(-0.626982\pi\)
−0.388428 + 0.921479i \(0.626982\pi\)
\(390\) 15.2989 0.774689
\(391\) 0 0
\(392\) 2.04892 0.103486
\(393\) 10.4601 0.527643
\(394\) −2.07069 −0.104320
\(395\) −7.65519 −0.385174
\(396\) −1.60925 −0.0808680
\(397\) 9.64742 0.484190 0.242095 0.970253i \(-0.422165\pi\)
0.242095 + 0.970253i \(0.422165\pi\)
\(398\) 0.610580 0.0306056
\(399\) −4.51573 −0.226069
\(400\) 22.0858 1.10429
\(401\) −19.1903 −0.958317 −0.479159 0.877728i \(-0.659058\pi\)
−0.479159 + 0.877728i \(0.659058\pi\)
\(402\) −1.29291 −0.0644846
\(403\) 49.2385 2.45274
\(404\) −15.6093 −0.776589
\(405\) −3.85086 −0.191351
\(406\) −5.42088 −0.269034
\(407\) 3.44829 0.170925
\(408\) 0 0
\(409\) 36.1812 1.78904 0.894522 0.447023i \(-0.147516\pi\)
0.894522 + 0.447023i \(0.147516\pi\)
\(410\) 4.19029 0.206944
\(411\) −9.35690 −0.461542
\(412\) −8.22819 −0.405374
\(413\) −1.55496 −0.0765145
\(414\) 1.12498 0.0552898
\(415\) 19.4426 0.954402
\(416\) −38.2626 −1.87598
\(417\) 17.5864 0.861211
\(418\) 2.38345 0.116578
\(419\) 35.8726 1.75249 0.876246 0.481864i \(-0.160040\pi\)
0.876246 + 0.481864i \(0.160040\pi\)
\(420\) 6.51573 0.317935
\(421\) −15.4015 −0.750623 −0.375312 0.926899i \(-0.622464\pi\)
−0.375312 + 0.926899i \(0.622464\pi\)
\(422\) 4.56332 0.222139
\(423\) −8.24698 −0.400982
\(424\) −16.6722 −0.809672
\(425\) 0 0
\(426\) 2.43296 0.117877
\(427\) −6.14675 −0.297462
\(428\) −2.27545 −0.109988
\(429\) 6.80864 0.328724
\(430\) −19.8401 −0.956775
\(431\) −11.8877 −0.572610 −0.286305 0.958139i \(-0.592427\pi\)
−0.286305 + 0.958139i \(0.592427\pi\)
\(432\) 2.24698 0.108108
\(433\) −6.15213 −0.295652 −0.147826 0.989013i \(-0.547228\pi\)
−0.147826 + 0.989013i \(0.547228\pi\)
\(434\) −3.81700 −0.183222
\(435\) −37.6155 −1.80352
\(436\) −30.8334 −1.47665
\(437\) 9.15405 0.437897
\(438\) 1.20105 0.0573882
\(439\) −8.52542 −0.406896 −0.203448 0.979086i \(-0.565215\pi\)
−0.203448 + 0.979086i \(0.565215\pi\)
\(440\) −7.50412 −0.357745
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 18.4155 0.874947 0.437473 0.899231i \(-0.355873\pi\)
0.437473 + 0.899231i \(0.355873\pi\)
\(444\) −6.13467 −0.291139
\(445\) −12.7759 −0.605634
\(446\) 1.92154 0.0909877
\(447\) −10.1564 −0.480383
\(448\) −1.52781 −0.0721823
\(449\) 28.3153 1.33628 0.668140 0.744035i \(-0.267091\pi\)
0.668140 + 0.744035i \(0.267091\pi\)
\(450\) −5.45473 −0.257138
\(451\) 1.86486 0.0878126
\(452\) 12.6504 0.595025
\(453\) 14.5187 0.682149
\(454\) 7.43967 0.349161
\(455\) −27.5676 −1.29239
\(456\) −9.25236 −0.433281
\(457\) 0.652793 0.0305364 0.0152682 0.999883i \(-0.495140\pi\)
0.0152682 + 0.999883i \(0.495140\pi\)
\(458\) 9.52409 0.445032
\(459\) 0 0
\(460\) −13.2083 −0.615842
\(461\) −0.292913 −0.0136423 −0.00682116 0.999977i \(-0.502171\pi\)
−0.00682116 + 0.999977i \(0.502171\pi\)
\(462\) −0.527811 −0.0245560
\(463\) 16.4969 0.766678 0.383339 0.923608i \(-0.374774\pi\)
0.383339 + 0.923608i \(0.374774\pi\)
\(464\) 21.9487 1.01894
\(465\) −26.4862 −1.22827
\(466\) 10.9578 0.507610
\(467\) 17.9801 0.832022 0.416011 0.909360i \(-0.363428\pi\)
0.416011 + 0.909360i \(0.363428\pi\)
\(468\) −12.1129 −0.559919
\(469\) 2.32975 0.107578
\(470\) −17.6243 −0.812949
\(471\) 6.53319 0.301033
\(472\) −3.18598 −0.146647
\(473\) −8.82968 −0.405989
\(474\) −1.10321 −0.0506722
\(475\) −44.3855 −2.03655
\(476\) 0 0
\(477\) −8.13706 −0.372571
\(478\) −12.8877 −0.589469
\(479\) −4.23596 −0.193546 −0.0967730 0.995306i \(-0.530852\pi\)
−0.0967730 + 0.995306i \(0.530852\pi\)
\(480\) 20.5821 0.939440
\(481\) 25.9554 1.18346
\(482\) 7.79656 0.355124
\(483\) −2.02715 −0.0922384
\(484\) 17.0817 0.776441
\(485\) −56.9536 −2.58613
\(486\) −0.554958 −0.0251734
\(487\) −3.47112 −0.157292 −0.0786458 0.996903i \(-0.525060\pi\)
−0.0786458 + 0.996903i \(0.525060\pi\)
\(488\) −12.5942 −0.570112
\(489\) 7.49396 0.338889
\(490\) 2.13706 0.0965427
\(491\) 11.0814 0.500098 0.250049 0.968233i \(-0.419553\pi\)
0.250049 + 0.968233i \(0.419553\pi\)
\(492\) −3.31767 −0.149572
\(493\) 0 0
\(494\) 17.9403 0.807174
\(495\) −3.66248 −0.164616
\(496\) 15.4547 0.693938
\(497\) −4.38404 −0.196651
\(498\) 2.80194 0.125558
\(499\) 6.10262 0.273191 0.136595 0.990627i \(-0.456384\pi\)
0.136595 + 0.990627i \(0.456384\pi\)
\(500\) 31.4650 1.40716
\(501\) 15.1903 0.678652
\(502\) 14.6106 0.652102
\(503\) 42.0140 1.87331 0.936656 0.350251i \(-0.113904\pi\)
0.936656 + 0.350251i \(0.113904\pi\)
\(504\) 2.04892 0.0912660
\(505\) −35.5249 −1.58084
\(506\) 1.06995 0.0475651
\(507\) 38.2489 1.69869
\(508\) 24.9215 1.10571
\(509\) −4.48858 −0.198953 −0.0994765 0.995040i \(-0.531717\pi\)
−0.0994765 + 0.995040i \(0.531717\pi\)
\(510\) 0 0
\(511\) −2.16421 −0.0957390
\(512\) −21.2174 −0.937687
\(513\) −4.51573 −0.199374
\(514\) −7.84249 −0.345918
\(515\) −18.7265 −0.825187
\(516\) 15.7084 0.691524
\(517\) −7.84356 −0.344959
\(518\) −2.01208 −0.0884058
\(519\) −19.5308 −0.857307
\(520\) −56.4838 −2.47698
\(521\) −4.80492 −0.210507 −0.105254 0.994445i \(-0.533565\pi\)
−0.105254 + 0.994445i \(0.533565\pi\)
\(522\) −5.42088 −0.237265
\(523\) 4.75600 0.207966 0.103983 0.994579i \(-0.466841\pi\)
0.103983 + 0.994579i \(0.466841\pi\)
\(524\) −17.6987 −0.773172
\(525\) 9.82908 0.428976
\(526\) 7.33214 0.319697
\(527\) 0 0
\(528\) 2.13706 0.0930037
\(529\) −18.8907 −0.821334
\(530\) −17.3894 −0.755348
\(531\) −1.55496 −0.0674794
\(532\) 7.64071 0.331267
\(533\) 14.0368 0.608003
\(534\) −1.84117 −0.0796751
\(535\) −5.17868 −0.223894
\(536\) 4.77346 0.206182
\(537\) 24.9191 1.07534
\(538\) −17.0489 −0.735031
\(539\) 0.951083 0.0409660
\(540\) 6.51573 0.280392
\(541\) −26.4620 −1.13769 −0.568846 0.822444i \(-0.692610\pi\)
−0.568846 + 0.822444i \(0.692610\pi\)
\(542\) −17.5961 −0.755817
\(543\) 5.59179 0.239967
\(544\) 0 0
\(545\) −70.1734 −3.00590
\(546\) −3.97285 −0.170022
\(547\) 16.3134 0.697509 0.348754 0.937214i \(-0.386605\pi\)
0.348754 + 0.937214i \(0.386605\pi\)
\(548\) 15.8321 0.676312
\(549\) −6.14675 −0.262337
\(550\) −5.18790 −0.221213
\(551\) −44.1100 −1.87915
\(552\) −4.15346 −0.176783
\(553\) 1.98792 0.0845349
\(554\) 13.5483 0.575610
\(555\) −13.9618 −0.592647
\(556\) −29.7566 −1.26196
\(557\) 1.43057 0.0606151 0.0303075 0.999541i \(-0.490351\pi\)
0.0303075 + 0.999541i \(0.490351\pi\)
\(558\) −3.81700 −0.161587
\(559\) −66.4613 −2.81101
\(560\) −8.65279 −0.365647
\(561\) 0 0
\(562\) 9.15883 0.386342
\(563\) −26.4969 −1.11671 −0.558357 0.829601i \(-0.688568\pi\)
−0.558357 + 0.829601i \(0.688568\pi\)
\(564\) 13.9541 0.587572
\(565\) 28.7909 1.21124
\(566\) −9.64742 −0.405511
\(567\) 1.00000 0.0419961
\(568\) −8.98254 −0.376899
\(569\) 18.8267 0.789256 0.394628 0.918841i \(-0.370873\pi\)
0.394628 + 0.918841i \(0.370873\pi\)
\(570\) −9.65040 −0.404211
\(571\) −29.4403 −1.23204 −0.616018 0.787732i \(-0.711255\pi\)
−0.616018 + 0.787732i \(0.711255\pi\)
\(572\) −11.5204 −0.481691
\(573\) 22.4426 0.937555
\(574\) −1.08815 −0.0454183
\(575\) −19.9250 −0.830930
\(576\) −1.52781 −0.0636588
\(577\) 15.8436 0.659576 0.329788 0.944055i \(-0.393023\pi\)
0.329788 + 0.944055i \(0.393023\pi\)
\(578\) 0 0
\(579\) −10.6920 −0.444345
\(580\) 63.6462 2.64276
\(581\) −5.04892 −0.209464
\(582\) −8.20775 −0.340222
\(583\) −7.73902 −0.320517
\(584\) −4.43429 −0.183492
\(585\) −27.5676 −1.13978
\(586\) 18.4413 0.761804
\(587\) −18.0151 −0.743561 −0.371781 0.928321i \(-0.621253\pi\)
−0.371781 + 0.928321i \(0.621253\pi\)
\(588\) −1.69202 −0.0697778
\(589\) −31.0592 −1.27977
\(590\) −3.32304 −0.136808
\(591\) 3.73125 0.153483
\(592\) 8.14675 0.334829
\(593\) −12.8086 −0.525988 −0.262994 0.964797i \(-0.584710\pi\)
−0.262994 + 0.964797i \(0.584710\pi\)
\(594\) −0.527811 −0.0216563
\(595\) 0 0
\(596\) 17.1849 0.703922
\(597\) −1.10023 −0.0450293
\(598\) 8.05356 0.329334
\(599\) −16.6160 −0.678910 −0.339455 0.940622i \(-0.610243\pi\)
−0.339455 + 0.940622i \(0.610243\pi\)
\(600\) 20.1390 0.822171
\(601\) 35.1094 1.43214 0.716072 0.698026i \(-0.245938\pi\)
0.716072 + 0.698026i \(0.245938\pi\)
\(602\) 5.15213 0.209985
\(603\) 2.32975 0.0948747
\(604\) −24.5660 −0.999575
\(605\) 38.8761 1.58054
\(606\) −5.11960 −0.207970
\(607\) 14.8702 0.603564 0.301782 0.953377i \(-0.402419\pi\)
0.301782 + 0.953377i \(0.402419\pi\)
\(608\) 24.1357 0.978833
\(609\) 9.76809 0.395823
\(610\) −13.1360 −0.531861
\(611\) −59.0388 −2.38845
\(612\) 0 0
\(613\) 22.6698 0.915624 0.457812 0.889049i \(-0.348633\pi\)
0.457812 + 0.889049i \(0.348633\pi\)
\(614\) 8.31468 0.335553
\(615\) −7.55065 −0.304471
\(616\) 1.94869 0.0785149
\(617\) 14.6571 0.590073 0.295036 0.955486i \(-0.404668\pi\)
0.295036 + 0.955486i \(0.404668\pi\)
\(618\) −2.69873 −0.108559
\(619\) −17.3599 −0.697752 −0.348876 0.937169i \(-0.613437\pi\)
−0.348876 + 0.937169i \(0.613437\pi\)
\(620\) 44.8152 1.79982
\(621\) −2.02715 −0.0813466
\(622\) −4.78017 −0.191667
\(623\) 3.31767 0.132920
\(624\) 16.0858 0.643945
\(625\) 22.4655 0.898619
\(626\) −6.83745 −0.273279
\(627\) −4.29483 −0.171519
\(628\) −11.0543 −0.441114
\(629\) 0 0
\(630\) 2.13706 0.0851426
\(631\) 13.4789 0.536586 0.268293 0.963337i \(-0.413540\pi\)
0.268293 + 0.963337i \(0.413540\pi\)
\(632\) 4.07308 0.162018
\(633\) −8.22282 −0.326828
\(634\) −9.29755 −0.369253
\(635\) 56.7187 2.25081
\(636\) 13.7681 0.545940
\(637\) 7.15883 0.283643
\(638\) −5.15570 −0.204116
\(639\) −4.38404 −0.173430
\(640\) −44.4292 −1.75622
\(641\) 2.20775 0.0872009 0.0436005 0.999049i \(-0.486117\pi\)
0.0436005 + 0.999049i \(0.486117\pi\)
\(642\) −0.746316 −0.0294547
\(643\) 10.7597 0.424322 0.212161 0.977235i \(-0.431950\pi\)
0.212161 + 0.977235i \(0.431950\pi\)
\(644\) 3.42998 0.135160
\(645\) 35.7506 1.40768
\(646\) 0 0
\(647\) 17.0067 0.668603 0.334301 0.942466i \(-0.391500\pi\)
0.334301 + 0.942466i \(0.391500\pi\)
\(648\) 2.04892 0.0804891
\(649\) −1.47889 −0.0580517
\(650\) −39.0495 −1.53165
\(651\) 6.87800 0.269570
\(652\) −12.6799 −0.496585
\(653\) −7.49934 −0.293472 −0.146736 0.989176i \(-0.546877\pi\)
−0.146736 + 0.989176i \(0.546877\pi\)
\(654\) −10.1129 −0.395446
\(655\) −40.2804 −1.57388
\(656\) 4.40581 0.172018
\(657\) −2.16421 −0.0844339
\(658\) 4.57673 0.178419
\(659\) 39.5013 1.53875 0.769375 0.638797i \(-0.220568\pi\)
0.769375 + 0.638797i \(0.220568\pi\)
\(660\) 6.19700 0.241218
\(661\) −0.587745 −0.0228606 −0.0114303 0.999935i \(-0.503638\pi\)
−0.0114303 + 0.999935i \(0.503638\pi\)
\(662\) −8.02177 −0.311775
\(663\) 0 0
\(664\) −10.3448 −0.401457
\(665\) 17.3894 0.674333
\(666\) −2.01208 −0.0779666
\(667\) −19.8013 −0.766711
\(668\) −25.7023 −0.994452
\(669\) −3.46250 −0.133868
\(670\) 4.97882 0.192349
\(671\) −5.84607 −0.225685
\(672\) −5.34481 −0.206181
\(673\) −32.2664 −1.24378 −0.621888 0.783106i \(-0.713634\pi\)
−0.621888 + 0.783106i \(0.713634\pi\)
\(674\) 1.28919 0.0496578
\(675\) 9.82908 0.378322
\(676\) −64.7180 −2.48915
\(677\) −35.4959 −1.36422 −0.682109 0.731251i \(-0.738937\pi\)
−0.682109 + 0.731251i \(0.738937\pi\)
\(678\) 4.14914 0.159347
\(679\) 14.7899 0.567583
\(680\) 0 0
\(681\) −13.4058 −0.513712
\(682\) −3.63029 −0.139011
\(683\) 22.8605 0.874734 0.437367 0.899283i \(-0.355911\pi\)
0.437367 + 0.899283i \(0.355911\pi\)
\(684\) 7.64071 0.292150
\(685\) 36.0320 1.37671
\(686\) −0.554958 −0.0211884
\(687\) −17.1618 −0.654764
\(688\) −20.8605 −0.795301
\(689\) −58.2519 −2.21922
\(690\) −4.33214 −0.164922
\(691\) 12.7269 0.484156 0.242078 0.970257i \(-0.422171\pi\)
0.242078 + 0.970257i \(0.422171\pi\)
\(692\) 33.0465 1.25624
\(693\) 0.951083 0.0361286
\(694\) −14.5488 −0.552267
\(695\) −67.7227 −2.56887
\(696\) 20.0140 0.758629
\(697\) 0 0
\(698\) −16.4601 −0.623024
\(699\) −19.7453 −0.746834
\(700\) −16.6310 −0.628594
\(701\) −30.1914 −1.14031 −0.570156 0.821537i \(-0.693117\pi\)
−0.570156 + 0.821537i \(0.693117\pi\)
\(702\) −3.97285 −0.149946
\(703\) −16.3724 −0.617498
\(704\) −1.45307 −0.0547648
\(705\) 31.7579 1.19607
\(706\) 13.8907 0.522782
\(707\) 9.22521 0.346950
\(708\) 2.63102 0.0988799
\(709\) 39.6034 1.48734 0.743668 0.668549i \(-0.233084\pi\)
0.743668 + 0.668549i \(0.233084\pi\)
\(710\) −9.36898 −0.351611
\(711\) 1.98792 0.0745528
\(712\) 6.79763 0.254752
\(713\) −13.9427 −0.522159
\(714\) 0 0
\(715\) −26.2191 −0.980539
\(716\) −42.1637 −1.57573
\(717\) 23.2228 0.867272
\(718\) −0.548253 −0.0204606
\(719\) −11.1787 −0.416895 −0.208447 0.978034i \(-0.566841\pi\)
−0.208447 + 0.978034i \(0.566841\pi\)
\(720\) −8.65279 −0.322471
\(721\) 4.86294 0.181105
\(722\) −0.772398 −0.0287457
\(723\) −14.0489 −0.522485
\(724\) −9.46144 −0.351631
\(725\) 96.0113 3.56577
\(726\) 5.60255 0.207930
\(727\) 16.3690 0.607092 0.303546 0.952817i \(-0.401829\pi\)
0.303546 + 0.952817i \(0.401829\pi\)
\(728\) 14.6679 0.543627
\(729\) 1.00000 0.0370370
\(730\) −4.62505 −0.171181
\(731\) 0 0
\(732\) 10.4004 0.384411
\(733\) 4.65950 0.172102 0.0860512 0.996291i \(-0.472575\pi\)
0.0860512 + 0.996291i \(0.472575\pi\)
\(734\) −11.8254 −0.436482
\(735\) −3.85086 −0.142041
\(736\) 10.8347 0.399373
\(737\) 2.21578 0.0816194
\(738\) −1.08815 −0.0400552
\(739\) −28.9903 −1.06643 −0.533213 0.845981i \(-0.679016\pi\)
−0.533213 + 0.845981i \(0.679016\pi\)
\(740\) 23.6237 0.868425
\(741\) −32.3274 −1.18758
\(742\) 4.51573 0.165778
\(743\) −12.0965 −0.443778 −0.221889 0.975072i \(-0.571222\pi\)
−0.221889 + 0.975072i \(0.571222\pi\)
\(744\) 14.0925 0.516655
\(745\) 39.1110 1.43292
\(746\) 4.92825 0.180436
\(747\) −5.04892 −0.184730
\(748\) 0 0
\(749\) 1.34481 0.0491384
\(750\) 10.3201 0.376835
\(751\) −17.4499 −0.636758 −0.318379 0.947964i \(-0.603138\pi\)
−0.318379 + 0.947964i \(0.603138\pi\)
\(752\) −18.5308 −0.675749
\(753\) −26.3274 −0.959422
\(754\) −38.8072 −1.41327
\(755\) −55.9095 −2.03475
\(756\) −1.69202 −0.0615382
\(757\) 18.1148 0.658394 0.329197 0.944261i \(-0.393222\pi\)
0.329197 + 0.944261i \(0.393222\pi\)
\(758\) −16.0925 −0.584504
\(759\) −1.92798 −0.0699814
\(760\) 35.6295 1.29242
\(761\) −19.0291 −0.689803 −0.344902 0.938639i \(-0.612088\pi\)
−0.344902 + 0.938639i \(0.612088\pi\)
\(762\) 8.17390 0.296109
\(763\) 18.2228 0.659710
\(764\) −37.9734 −1.37383
\(765\) 0 0
\(766\) −15.2704 −0.551742
\(767\) −11.1317 −0.401942
\(768\) −3.34721 −0.120782
\(769\) 7.64204 0.275579 0.137789 0.990462i \(-0.456000\pi\)
0.137789 + 0.990462i \(0.456000\pi\)
\(770\) 2.03252 0.0732471
\(771\) 14.1317 0.508940
\(772\) 18.0911 0.651114
\(773\) 28.3142 1.01839 0.509196 0.860651i \(-0.329943\pi\)
0.509196 + 0.860651i \(0.329943\pi\)
\(774\) 5.15213 0.185189
\(775\) 67.6045 2.42842
\(776\) 30.3032 1.08782
\(777\) 3.62565 0.130069
\(778\) 8.50306 0.304849
\(779\) −8.85431 −0.317239
\(780\) 46.6450 1.67016
\(781\) −4.16959 −0.149200
\(782\) 0 0
\(783\) 9.76809 0.349083
\(784\) 2.24698 0.0802493
\(785\) −25.1584 −0.897940
\(786\) −5.80492 −0.207055
\(787\) 26.9982 0.962382 0.481191 0.876616i \(-0.340204\pi\)
0.481191 + 0.876616i \(0.340204\pi\)
\(788\) −6.31336 −0.224904
\(789\) −13.2121 −0.470362
\(790\) 4.24831 0.151148
\(791\) −7.47650 −0.265834
\(792\) 1.94869 0.0692437
\(793\) −44.0036 −1.56261
\(794\) −5.35391 −0.190003
\(795\) 31.3347 1.11133
\(796\) 1.86161 0.0659830
\(797\) 4.55065 0.161192 0.0805961 0.996747i \(-0.474318\pi\)
0.0805961 + 0.996747i \(0.474318\pi\)
\(798\) 2.50604 0.0887129
\(799\) 0 0
\(800\) −52.5346 −1.85738
\(801\) 3.31767 0.117224
\(802\) 10.6498 0.376058
\(803\) −2.05834 −0.0726373
\(804\) −3.94198 −0.139023
\(805\) 7.80625 0.275134
\(806\) −27.3253 −0.962492
\(807\) 30.7211 1.08143
\(808\) 18.9017 0.664959
\(809\) 29.4010 1.03369 0.516843 0.856080i \(-0.327107\pi\)
0.516843 + 0.856080i \(0.327107\pi\)
\(810\) 2.13706 0.0750888
\(811\) −4.31229 −0.151425 −0.0757125 0.997130i \(-0.524123\pi\)
−0.0757125 + 0.997130i \(0.524123\pi\)
\(812\) −16.5278 −0.580012
\(813\) 31.7071 1.11202
\(814\) −1.91366 −0.0670736
\(815\) −28.8582 −1.01086
\(816\) 0 0
\(817\) 41.9232 1.46671
\(818\) −20.0790 −0.702047
\(819\) 7.15883 0.250150
\(820\) 12.7759 0.446152
\(821\) 0.165275 0.00576815 0.00288407 0.999996i \(-0.499082\pi\)
0.00288407 + 0.999996i \(0.499082\pi\)
\(822\) 5.19269 0.181116
\(823\) 14.7248 0.513275 0.256637 0.966508i \(-0.417385\pi\)
0.256637 + 0.966508i \(0.417385\pi\)
\(824\) 9.96376 0.347104
\(825\) 9.34827 0.325465
\(826\) 0.862937 0.0300254
\(827\) 16.7764 0.583374 0.291687 0.956514i \(-0.405783\pi\)
0.291687 + 0.956514i \(0.405783\pi\)
\(828\) 3.42998 0.119200
\(829\) 35.1672 1.22141 0.610704 0.791859i \(-0.290887\pi\)
0.610704 + 0.791859i \(0.290887\pi\)
\(830\) −10.7899 −0.374521
\(831\) −24.4131 −0.846881
\(832\) −10.9373 −0.379184
\(833\) 0 0
\(834\) −9.75973 −0.337952
\(835\) −58.4956 −2.02432
\(836\) 7.26695 0.251333
\(837\) 6.87800 0.237739
\(838\) −19.9078 −0.687704
\(839\) −22.6233 −0.781041 −0.390521 0.920594i \(-0.627705\pi\)
−0.390521 + 0.920594i \(0.627705\pi\)
\(840\) −7.89008 −0.272234
\(841\) 66.4155 2.29019
\(842\) 8.54719 0.294556
\(843\) −16.5036 −0.568416
\(844\) 13.9132 0.478911
\(845\) −147.291 −5.06696
\(846\) 4.57673 0.157351
\(847\) −10.0954 −0.346883
\(848\) −18.2838 −0.627869
\(849\) 17.3840 0.596619
\(850\) 0 0
\(851\) −7.34972 −0.251945
\(852\) 7.41789 0.254133
\(853\) −16.0941 −0.551052 −0.275526 0.961294i \(-0.588852\pi\)
−0.275526 + 0.961294i \(0.588852\pi\)
\(854\) 3.41119 0.116729
\(855\) 17.3894 0.594706
\(856\) 2.75541 0.0941781
\(857\) −6.55389 −0.223877 −0.111938 0.993715i \(-0.535706\pi\)
−0.111938 + 0.993715i \(0.535706\pi\)
\(858\) −3.77851 −0.128996
\(859\) 25.2704 0.862215 0.431108 0.902301i \(-0.358123\pi\)
0.431108 + 0.902301i \(0.358123\pi\)
\(860\) −60.4908 −2.06272
\(861\) 1.96077 0.0668229
\(862\) 6.59717 0.224701
\(863\) 10.0379 0.341694 0.170847 0.985298i \(-0.445350\pi\)
0.170847 + 0.985298i \(0.445350\pi\)
\(864\) −5.34481 −0.181834
\(865\) 75.2103 2.55723
\(866\) 3.41417 0.116018
\(867\) 0 0
\(868\) −11.6377 −0.395010
\(869\) 1.89067 0.0641367
\(870\) 20.8750 0.707729
\(871\) 16.6783 0.565122
\(872\) 37.3370 1.26439
\(873\) 14.7899 0.500561
\(874\) −5.08011 −0.171837
\(875\) −18.5961 −0.628663
\(876\) 3.66189 0.123724
\(877\) −15.2457 −0.514809 −0.257405 0.966304i \(-0.582867\pi\)
−0.257405 + 0.966304i \(0.582867\pi\)
\(878\) 4.73125 0.159672
\(879\) −33.2301 −1.12082
\(880\) −8.22952 −0.277417
\(881\) −3.21014 −0.108152 −0.0540762 0.998537i \(-0.517221\pi\)
−0.0540762 + 0.998537i \(0.517221\pi\)
\(882\) −0.554958 −0.0186864
\(883\) 23.9124 0.804718 0.402359 0.915482i \(-0.368190\pi\)
0.402359 + 0.915482i \(0.368190\pi\)
\(884\) 0 0
\(885\) 5.98792 0.201282
\(886\) −10.2198 −0.343342
\(887\) −2.39612 −0.0804540 −0.0402270 0.999191i \(-0.512808\pi\)
−0.0402270 + 0.999191i \(0.512808\pi\)
\(888\) 7.42865 0.249289
\(889\) −14.7289 −0.493990
\(890\) 7.09006 0.237660
\(891\) 0.951083 0.0318625
\(892\) 5.85862 0.196161
\(893\) 37.2411 1.24623
\(894\) 5.63640 0.188509
\(895\) −95.9600 −3.20759
\(896\) 11.5375 0.385441
\(897\) −14.5120 −0.484542
\(898\) −15.7138 −0.524376
\(899\) 67.1849 2.24074
\(900\) −16.6310 −0.554367
\(901\) 0 0
\(902\) −1.03492 −0.0344590
\(903\) −9.28382 −0.308946
\(904\) −15.3187 −0.509493
\(905\) −21.5332 −0.715787
\(906\) −8.05728 −0.267685
\(907\) −56.7464 −1.88423 −0.942117 0.335284i \(-0.891168\pi\)
−0.942117 + 0.335284i \(0.891168\pi\)
\(908\) 22.6829 0.752759
\(909\) 9.22521 0.305981
\(910\) 15.2989 0.507153
\(911\) −31.2825 −1.03644 −0.518218 0.855249i \(-0.673404\pi\)
−0.518218 + 0.855249i \(0.673404\pi\)
\(912\) −10.1468 −0.335993
\(913\) −4.80194 −0.158921
\(914\) −0.362273 −0.0119829
\(915\) 23.6703 0.782514
\(916\) 29.0382 0.959448
\(917\) 10.4601 0.345423
\(918\) 0 0
\(919\) −36.4838 −1.20349 −0.601745 0.798688i \(-0.705528\pi\)
−0.601745 + 0.798688i \(0.705528\pi\)
\(920\) 15.9944 0.527318
\(921\) −14.9825 −0.493692
\(922\) 0.162554 0.00535345
\(923\) −31.3846 −1.03304
\(924\) −1.60925 −0.0529405
\(925\) 35.6368 1.17173
\(926\) −9.15511 −0.300856
\(927\) 4.86294 0.159720
\(928\) −52.2086 −1.71383
\(929\) −1.46921 −0.0482031 −0.0241015 0.999710i \(-0.507672\pi\)
−0.0241015 + 0.999710i \(0.507672\pi\)
\(930\) 14.6987 0.481990
\(931\) −4.51573 −0.147997
\(932\) 33.4094 1.09436
\(933\) 8.61356 0.281995
\(934\) −9.97823 −0.326498
\(935\) 0 0
\(936\) 14.6679 0.479434
\(937\) 42.1347 1.37648 0.688240 0.725483i \(-0.258384\pi\)
0.688240 + 0.725483i \(0.258384\pi\)
\(938\) −1.29291 −0.0422151
\(939\) 12.3207 0.402069
\(940\) −53.7351 −1.75265
\(941\) 10.4480 0.340596 0.170298 0.985393i \(-0.445527\pi\)
0.170298 + 0.985393i \(0.445527\pi\)
\(942\) −3.62565 −0.118130
\(943\) −3.97477 −0.129436
\(944\) −3.49396 −0.113719
\(945\) −3.85086 −0.125268
\(946\) 4.90010 0.159316
\(947\) 42.1444 1.36951 0.684754 0.728774i \(-0.259910\pi\)
0.684754 + 0.728774i \(0.259910\pi\)
\(948\) −3.36360 −0.109245
\(949\) −15.4932 −0.502931
\(950\) 24.6321 0.799170
\(951\) 16.7536 0.543273
\(952\) 0 0
\(953\) −24.7571 −0.801960 −0.400980 0.916087i \(-0.631330\pi\)
−0.400980 + 0.916087i \(0.631330\pi\)
\(954\) 4.51573 0.146202
\(955\) −86.4234 −2.79660
\(956\) −39.2935 −1.27084
\(957\) 9.29026 0.300311
\(958\) 2.35078 0.0759503
\(959\) −9.35690 −0.302150
\(960\) 5.88338 0.189885
\(961\) 16.3069 0.526029
\(962\) −14.4042 −0.464409
\(963\) 1.34481 0.0433360
\(964\) 23.7711 0.765615
\(965\) 41.1734 1.32542
\(966\) 1.12498 0.0361957
\(967\) 0.0687686 0.00221145 0.00110573 0.999999i \(-0.499648\pi\)
0.00110573 + 0.999999i \(0.499648\pi\)
\(968\) −20.6847 −0.664832
\(969\) 0 0
\(970\) 31.6069 1.01484
\(971\) −41.5211 −1.33248 −0.666238 0.745739i \(-0.732096\pi\)
−0.666238 + 0.745739i \(0.732096\pi\)
\(972\) −1.69202 −0.0542716
\(973\) 17.5864 0.563795
\(974\) 1.92633 0.0617235
\(975\) 70.3648 2.25348
\(976\) −13.8116 −0.442099
\(977\) 10.7832 0.344984 0.172492 0.985011i \(-0.444818\pi\)
0.172492 + 0.985011i \(0.444818\pi\)
\(978\) −4.15883 −0.132985
\(979\) 3.15538 0.100846
\(980\) 6.51573 0.208137
\(981\) 18.2228 0.581810
\(982\) −6.14974 −0.196246
\(983\) −1.42327 −0.0453953 −0.0226977 0.999742i \(-0.507226\pi\)
−0.0226977 + 0.999742i \(0.507226\pi\)
\(984\) 4.01746 0.128072
\(985\) −14.3685 −0.457819
\(986\) 0 0
\(987\) −8.24698 −0.262504
\(988\) 54.6986 1.74019
\(989\) 18.8197 0.598430
\(990\) 2.03252 0.0645978
\(991\) 15.5418 0.493702 0.246851 0.969053i \(-0.420604\pi\)
0.246851 + 0.969053i \(0.420604\pi\)
\(992\) −36.7616 −1.16718
\(993\) 14.4547 0.458707
\(994\) 2.43296 0.0771688
\(995\) 4.23682 0.134316
\(996\) 8.54288 0.270691
\(997\) −1.02416 −0.0324356 −0.0162178 0.999868i \(-0.505163\pi\)
−0.0162178 + 0.999868i \(0.505163\pi\)
\(998\) −3.38670 −0.107204
\(999\) 3.62565 0.114710
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.l.1.2 yes 3
17.16 even 2 6069.2.a.j.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6069.2.a.j.1.2 3 17.16 even 2
6069.2.a.l.1.2 yes 3 1.1 even 1 trivial