Properties

Label 6125.2.a.r.1.6
Level $6125$
Weight $2$
Character 6125.1
Self dual yes
Analytic conductor $48.908$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6125,2,Mod(1,6125)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6125, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6125.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6125 = 5^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6125.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.9083712380\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.3438125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 6x^{4} + 12x^{3} + 6x^{2} - 15x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 875)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.07183\) of defining polynomial
Character \(\chi\) \(=\) 6125.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.07183 q^{2} +1.41684 q^{3} +2.29250 q^{4} +2.93546 q^{6} +0.606002 q^{8} -0.992564 q^{9} -5.64479 q^{11} +3.24810 q^{12} +2.66243 q^{13} -3.32946 q^{16} +3.53065 q^{17} -2.05643 q^{18} -7.65560 q^{19} -11.6951 q^{22} -1.96850 q^{23} +0.858608 q^{24} +5.51611 q^{26} -5.65682 q^{27} +4.22052 q^{29} +1.41712 q^{31} -8.11008 q^{32} -7.99777 q^{33} +7.31492 q^{34} -2.27545 q^{36} -7.73719 q^{37} -15.8611 q^{38} +3.77224 q^{39} -5.08612 q^{41} -9.51820 q^{43} -12.9407 q^{44} -4.07841 q^{46} -9.88720 q^{47} -4.71731 q^{48} +5.00237 q^{51} +6.10361 q^{52} -1.55322 q^{53} -11.7200 q^{54} -10.8468 q^{57} +8.74421 q^{58} +7.12144 q^{59} +7.41536 q^{61} +2.93603 q^{62} -10.1438 q^{64} -16.5701 q^{66} -1.63863 q^{67} +8.09400 q^{68} -2.78905 q^{69} +15.0816 q^{71} -0.601496 q^{72} +10.2736 q^{73} -16.0302 q^{74} -17.5504 q^{76} +7.81545 q^{78} -0.312520 q^{79} -5.03713 q^{81} -10.5376 q^{82} +5.65811 q^{83} -19.7201 q^{86} +5.97980 q^{87} -3.42076 q^{88} +0.145384 q^{89} -4.51278 q^{92} +2.00783 q^{93} -20.4846 q^{94} -11.4907 q^{96} -0.367025 q^{97} +5.60282 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 3 q^{3} + 4 q^{4} + 2 q^{6} + 3 q^{9} - 3 q^{11} + 3 q^{12} + 16 q^{13} - 8 q^{16} + 8 q^{17} - 16 q^{18} - 9 q^{19} - 9 q^{22} - 9 q^{23} - 5 q^{24} - 8 q^{26} - 9 q^{29} - 15 q^{31} - 7 q^{32}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.07183 1.46501 0.732504 0.680763i \(-0.238352\pi\)
0.732504 + 0.680763i \(0.238352\pi\)
\(3\) 1.41684 0.818013 0.409007 0.912531i \(-0.365875\pi\)
0.409007 + 0.912531i \(0.365875\pi\)
\(4\) 2.29250 1.14625
\(5\) 0 0
\(6\) 2.93546 1.19840
\(7\) 0 0
\(8\) 0.606002 0.214254
\(9\) −0.992564 −0.330855
\(10\) 0 0
\(11\) −5.64479 −1.70197 −0.850985 0.525191i \(-0.823994\pi\)
−0.850985 + 0.525191i \(0.823994\pi\)
\(12\) 3.24810 0.937646
\(13\) 2.66243 0.738425 0.369213 0.929345i \(-0.379627\pi\)
0.369213 + 0.929345i \(0.379627\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −3.32946 −0.832364
\(17\) 3.53065 0.856308 0.428154 0.903706i \(-0.359164\pi\)
0.428154 + 0.903706i \(0.359164\pi\)
\(18\) −2.05643 −0.484705
\(19\) −7.65560 −1.75632 −0.878158 0.478371i \(-0.841228\pi\)
−0.878158 + 0.478371i \(0.841228\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −11.6951 −2.49340
\(23\) −1.96850 −0.410461 −0.205230 0.978714i \(-0.565794\pi\)
−0.205230 + 0.978714i \(0.565794\pi\)
\(24\) 0.858608 0.175263
\(25\) 0 0
\(26\) 5.51611 1.08180
\(27\) −5.65682 −1.08866
\(28\) 0 0
\(29\) 4.22052 0.783730 0.391865 0.920023i \(-0.371830\pi\)
0.391865 + 0.920023i \(0.371830\pi\)
\(30\) 0 0
\(31\) 1.41712 0.254521 0.127261 0.991869i \(-0.459382\pi\)
0.127261 + 0.991869i \(0.459382\pi\)
\(32\) −8.11008 −1.43367
\(33\) −7.99777 −1.39223
\(34\) 7.31492 1.25450
\(35\) 0 0
\(36\) −2.27545 −0.379241
\(37\) −7.73719 −1.27199 −0.635993 0.771695i \(-0.719409\pi\)
−0.635993 + 0.771695i \(0.719409\pi\)
\(38\) −15.8611 −2.57302
\(39\) 3.77224 0.604041
\(40\) 0 0
\(41\) −5.08612 −0.794318 −0.397159 0.917750i \(-0.630004\pi\)
−0.397159 + 0.917750i \(0.630004\pi\)
\(42\) 0 0
\(43\) −9.51820 −1.45151 −0.725756 0.687952i \(-0.758510\pi\)
−0.725756 + 0.687952i \(0.758510\pi\)
\(44\) −12.9407 −1.95088
\(45\) 0 0
\(46\) −4.07841 −0.601328
\(47\) −9.88720 −1.44220 −0.721098 0.692833i \(-0.756362\pi\)
−0.721098 + 0.692833i \(0.756362\pi\)
\(48\) −4.71731 −0.680884
\(49\) 0 0
\(50\) 0 0
\(51\) 5.00237 0.700471
\(52\) 6.10361 0.846418
\(53\) −1.55322 −0.213351 −0.106675 0.994294i \(-0.534021\pi\)
−0.106675 + 0.994294i \(0.534021\pi\)
\(54\) −11.7200 −1.59489
\(55\) 0 0
\(56\) 0 0
\(57\) −10.8468 −1.43669
\(58\) 8.74421 1.14817
\(59\) 7.12144 0.927132 0.463566 0.886062i \(-0.346570\pi\)
0.463566 + 0.886062i \(0.346570\pi\)
\(60\) 0 0
\(61\) 7.41536 0.949440 0.474720 0.880137i \(-0.342549\pi\)
0.474720 + 0.880137i \(0.342549\pi\)
\(62\) 2.93603 0.372876
\(63\) 0 0
\(64\) −10.1438 −1.26798
\(65\) 0 0
\(66\) −16.5701 −2.03963
\(67\) −1.63863 −0.200191 −0.100095 0.994978i \(-0.531915\pi\)
−0.100095 + 0.994978i \(0.531915\pi\)
\(68\) 8.09400 0.981541
\(69\) −2.78905 −0.335762
\(70\) 0 0
\(71\) 15.0816 1.78985 0.894926 0.446214i \(-0.147228\pi\)
0.894926 + 0.446214i \(0.147228\pi\)
\(72\) −0.601496 −0.0708870
\(73\) 10.2736 1.20243 0.601215 0.799088i \(-0.294684\pi\)
0.601215 + 0.799088i \(0.294684\pi\)
\(74\) −16.0302 −1.86347
\(75\) 0 0
\(76\) −17.5504 −2.01317
\(77\) 0 0
\(78\) 7.81545 0.884925
\(79\) −0.312520 −0.0351612 −0.0175806 0.999845i \(-0.505596\pi\)
−0.0175806 + 0.999845i \(0.505596\pi\)
\(80\) 0 0
\(81\) −5.03713 −0.559681
\(82\) −10.5376 −1.16368
\(83\) 5.65811 0.621059 0.310529 0.950564i \(-0.399494\pi\)
0.310529 + 0.950564i \(0.399494\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −19.7201 −2.12648
\(87\) 5.97980 0.641102
\(88\) −3.42076 −0.364654
\(89\) 0.145384 0.0154107 0.00770536 0.999970i \(-0.497547\pi\)
0.00770536 + 0.999970i \(0.497547\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −4.51278 −0.470490
\(93\) 2.00783 0.208202
\(94\) −20.4846 −2.11283
\(95\) 0 0
\(96\) −11.4907 −1.17276
\(97\) −0.367025 −0.0372657 −0.0186329 0.999826i \(-0.505931\pi\)
−0.0186329 + 0.999826i \(0.505931\pi\)
\(98\) 0 0
\(99\) 5.60282 0.563104
\(100\) 0 0
\(101\) −1.66635 −0.165808 −0.0829038 0.996558i \(-0.526419\pi\)
−0.0829038 + 0.996558i \(0.526419\pi\)
\(102\) 10.3641 1.02620
\(103\) 3.31627 0.326761 0.163381 0.986563i \(-0.447760\pi\)
0.163381 + 0.986563i \(0.447760\pi\)
\(104\) 1.61344 0.158211
\(105\) 0 0
\(106\) −3.21801 −0.312560
\(107\) 15.7112 1.51886 0.759431 0.650588i \(-0.225477\pi\)
0.759431 + 0.650588i \(0.225477\pi\)
\(108\) −12.9682 −1.24787
\(109\) 6.17895 0.591836 0.295918 0.955213i \(-0.404374\pi\)
0.295918 + 0.955213i \(0.404374\pi\)
\(110\) 0 0
\(111\) −10.9624 −1.04050
\(112\) 0 0
\(113\) −9.50083 −0.893763 −0.446881 0.894593i \(-0.647465\pi\)
−0.446881 + 0.894593i \(0.647465\pi\)
\(114\) −22.4727 −2.10476
\(115\) 0 0
\(116\) 9.67552 0.898349
\(117\) −2.64263 −0.244311
\(118\) 14.7544 1.35826
\(119\) 0 0
\(120\) 0 0
\(121\) 20.8637 1.89670
\(122\) 15.3634 1.39094
\(123\) −7.20621 −0.649762
\(124\) 3.24873 0.291745
\(125\) 0 0
\(126\) 0 0
\(127\) −18.1670 −1.61206 −0.806031 0.591874i \(-0.798388\pi\)
−0.806031 + 0.591874i \(0.798388\pi\)
\(128\) −4.79617 −0.423926
\(129\) −13.4858 −1.18736
\(130\) 0 0
\(131\) −7.31187 −0.638841 −0.319420 0.947613i \(-0.603488\pi\)
−0.319420 + 0.947613i \(0.603488\pi\)
\(132\) −18.3349 −1.59584
\(133\) 0 0
\(134\) −3.39498 −0.293281
\(135\) 0 0
\(136\) 2.13958 0.183468
\(137\) −12.4190 −1.06103 −0.530514 0.847676i \(-0.678001\pi\)
−0.530514 + 0.847676i \(0.678001\pi\)
\(138\) −5.77845 −0.491894
\(139\) −15.7921 −1.33946 −0.669732 0.742603i \(-0.733591\pi\)
−0.669732 + 0.742603i \(0.733591\pi\)
\(140\) 0 0
\(141\) −14.0086 −1.17974
\(142\) 31.2465 2.62215
\(143\) −15.0289 −1.25678
\(144\) 3.30470 0.275391
\(145\) 0 0
\(146\) 21.2851 1.76157
\(147\) 0 0
\(148\) −17.7375 −1.45801
\(149\) −14.5889 −1.19517 −0.597585 0.801806i \(-0.703873\pi\)
−0.597585 + 0.801806i \(0.703873\pi\)
\(150\) 0 0
\(151\) −21.1896 −1.72439 −0.862195 0.506577i \(-0.830910\pi\)
−0.862195 + 0.506577i \(0.830910\pi\)
\(152\) −4.63931 −0.376298
\(153\) −3.50439 −0.283314
\(154\) 0 0
\(155\) 0 0
\(156\) 8.64784 0.692381
\(157\) 4.27712 0.341352 0.170676 0.985327i \(-0.445405\pi\)
0.170676 + 0.985327i \(0.445405\pi\)
\(158\) −0.647489 −0.0515114
\(159\) −2.20066 −0.174524
\(160\) 0 0
\(161\) 0 0
\(162\) −10.4361 −0.819936
\(163\) 10.8420 0.849208 0.424604 0.905379i \(-0.360413\pi\)
0.424604 + 0.905379i \(0.360413\pi\)
\(164\) −11.6599 −0.910485
\(165\) 0 0
\(166\) 11.7227 0.909856
\(167\) −21.6347 −1.67414 −0.837071 0.547094i \(-0.815734\pi\)
−0.837071 + 0.547094i \(0.815734\pi\)
\(168\) 0 0
\(169\) −5.91147 −0.454728
\(170\) 0 0
\(171\) 7.59868 0.581085
\(172\) −21.8204 −1.66379
\(173\) 2.10250 0.159850 0.0799250 0.996801i \(-0.474532\pi\)
0.0799250 + 0.996801i \(0.474532\pi\)
\(174\) 12.3891 0.939219
\(175\) 0 0
\(176\) 18.7941 1.41666
\(177\) 10.0899 0.758406
\(178\) 0.301212 0.0225768
\(179\) 4.83168 0.361137 0.180568 0.983562i \(-0.442206\pi\)
0.180568 + 0.983562i \(0.442206\pi\)
\(180\) 0 0
\(181\) 18.4553 1.37177 0.685884 0.727711i \(-0.259416\pi\)
0.685884 + 0.727711i \(0.259416\pi\)
\(182\) 0 0
\(183\) 10.5064 0.776654
\(184\) −1.19292 −0.0879429
\(185\) 0 0
\(186\) 4.15988 0.305017
\(187\) −19.9298 −1.45741
\(188\) −22.6664 −1.65311
\(189\) 0 0
\(190\) 0 0
\(191\) 0.201771 0.0145996 0.00729980 0.999973i \(-0.497676\pi\)
0.00729980 + 0.999973i \(0.497676\pi\)
\(192\) −14.3722 −1.03722
\(193\) 21.4027 1.54060 0.770298 0.637684i \(-0.220107\pi\)
0.770298 + 0.637684i \(0.220107\pi\)
\(194\) −0.760415 −0.0545946
\(195\) 0 0
\(196\) 0 0
\(197\) −1.13408 −0.0807997 −0.0403999 0.999184i \(-0.512863\pi\)
−0.0403999 + 0.999184i \(0.512863\pi\)
\(198\) 11.6081 0.824952
\(199\) −13.2595 −0.939942 −0.469971 0.882682i \(-0.655736\pi\)
−0.469971 + 0.882682i \(0.655736\pi\)
\(200\) 0 0
\(201\) −2.32168 −0.163759
\(202\) −3.45239 −0.242910
\(203\) 0 0
\(204\) 11.4679 0.802914
\(205\) 0 0
\(206\) 6.87075 0.478708
\(207\) 1.95386 0.135803
\(208\) −8.86444 −0.614638
\(209\) 43.2143 2.98920
\(210\) 0 0
\(211\) −8.00814 −0.551303 −0.275652 0.961258i \(-0.588894\pi\)
−0.275652 + 0.961258i \(0.588894\pi\)
\(212\) −3.56074 −0.244553
\(213\) 21.3682 1.46412
\(214\) 32.5511 2.22515
\(215\) 0 0
\(216\) −3.42805 −0.233249
\(217\) 0 0
\(218\) 12.8018 0.867045
\(219\) 14.5560 0.983603
\(220\) 0 0
\(221\) 9.40011 0.632319
\(222\) −22.7122 −1.52434
\(223\) 20.7848 1.39185 0.695926 0.718114i \(-0.254994\pi\)
0.695926 + 0.718114i \(0.254994\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −19.6841 −1.30937
\(227\) −15.2668 −1.01329 −0.506647 0.862153i \(-0.669115\pi\)
−0.506647 + 0.862153i \(0.669115\pi\)
\(228\) −24.8662 −1.64680
\(229\) 12.2904 0.812170 0.406085 0.913835i \(-0.366894\pi\)
0.406085 + 0.913835i \(0.366894\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.55764 0.167917
\(233\) −19.3493 −1.26762 −0.633808 0.773490i \(-0.718509\pi\)
−0.633808 + 0.773490i \(0.718509\pi\)
\(234\) −5.47509 −0.357918
\(235\) 0 0
\(236\) 16.3259 1.06272
\(237\) −0.442790 −0.0287623
\(238\) 0 0
\(239\) −22.9749 −1.48612 −0.743061 0.669224i \(-0.766627\pi\)
−0.743061 + 0.669224i \(0.766627\pi\)
\(240\) 0 0
\(241\) 21.8943 1.41033 0.705167 0.709042i \(-0.250872\pi\)
0.705167 + 0.709042i \(0.250872\pi\)
\(242\) 43.2261 2.77868
\(243\) 9.83367 0.630830
\(244\) 16.9997 1.08829
\(245\) 0 0
\(246\) −14.9301 −0.951907
\(247\) −20.3825 −1.29691
\(248\) 0.858775 0.0545323
\(249\) 8.01664 0.508034
\(250\) 0 0
\(251\) 16.4481 1.03819 0.519096 0.854716i \(-0.326269\pi\)
0.519096 + 0.854716i \(0.326269\pi\)
\(252\) 0 0
\(253\) 11.1118 0.698591
\(254\) −37.6390 −2.36168
\(255\) 0 0
\(256\) 10.3508 0.646925
\(257\) −12.8294 −0.800276 −0.400138 0.916455i \(-0.631038\pi\)
−0.400138 + 0.916455i \(0.631038\pi\)
\(258\) −27.9403 −1.73948
\(259\) 0 0
\(260\) 0 0
\(261\) −4.18913 −0.259301
\(262\) −15.1490 −0.935907
\(263\) 24.5042 1.51099 0.755496 0.655153i \(-0.227396\pi\)
0.755496 + 0.655153i \(0.227396\pi\)
\(264\) −4.84667 −0.298292
\(265\) 0 0
\(266\) 0 0
\(267\) 0.205986 0.0126062
\(268\) −3.75656 −0.229468
\(269\) −4.79818 −0.292550 −0.146275 0.989244i \(-0.546728\pi\)
−0.146275 + 0.989244i \(0.546728\pi\)
\(270\) 0 0
\(271\) −18.0445 −1.09613 −0.548064 0.836437i \(-0.684635\pi\)
−0.548064 + 0.836437i \(0.684635\pi\)
\(272\) −11.7551 −0.712760
\(273\) 0 0
\(274\) −25.7301 −1.55441
\(275\) 0 0
\(276\) −6.39389 −0.384867
\(277\) 3.55774 0.213764 0.106882 0.994272i \(-0.465913\pi\)
0.106882 + 0.994272i \(0.465913\pi\)
\(278\) −32.7185 −1.96233
\(279\) −1.40658 −0.0842096
\(280\) 0 0
\(281\) −18.5017 −1.10372 −0.551860 0.833937i \(-0.686082\pi\)
−0.551860 + 0.833937i \(0.686082\pi\)
\(282\) −29.0235 −1.72832
\(283\) 20.7504 1.23348 0.616742 0.787165i \(-0.288452\pi\)
0.616742 + 0.787165i \(0.288452\pi\)
\(284\) 34.5744 2.05161
\(285\) 0 0
\(286\) −31.1373 −1.84119
\(287\) 0 0
\(288\) 8.04978 0.474338
\(289\) −4.53452 −0.266736
\(290\) 0 0
\(291\) −0.520016 −0.0304839
\(292\) 23.5521 1.37828
\(293\) 17.5663 1.02623 0.513116 0.858319i \(-0.328491\pi\)
0.513116 + 0.858319i \(0.328491\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.68876 −0.272528
\(297\) 31.9316 1.85286
\(298\) −30.2258 −1.75093
\(299\) −5.24099 −0.303095
\(300\) 0 0
\(301\) 0 0
\(302\) −43.9014 −2.52624
\(303\) −2.36095 −0.135633
\(304\) 25.4890 1.46189
\(305\) 0 0
\(306\) −7.26052 −0.415057
\(307\) 1.11832 0.0638256 0.0319128 0.999491i \(-0.489840\pi\)
0.0319128 + 0.999491i \(0.489840\pi\)
\(308\) 0 0
\(309\) 4.69862 0.267295
\(310\) 0 0
\(311\) 6.81298 0.386329 0.193164 0.981166i \(-0.438125\pi\)
0.193164 + 0.981166i \(0.438125\pi\)
\(312\) 2.28598 0.129418
\(313\) 25.0853 1.41791 0.708954 0.705255i \(-0.249168\pi\)
0.708954 + 0.705255i \(0.249168\pi\)
\(314\) 8.86149 0.500083
\(315\) 0 0
\(316\) −0.716450 −0.0403035
\(317\) −11.6886 −0.656499 −0.328249 0.944591i \(-0.606459\pi\)
−0.328249 + 0.944591i \(0.606459\pi\)
\(318\) −4.55940 −0.255679
\(319\) −23.8239 −1.33388
\(320\) 0 0
\(321\) 22.2603 1.24245
\(322\) 0 0
\(323\) −27.0293 −1.50395
\(324\) −11.5476 −0.641533
\(325\) 0 0
\(326\) 22.4627 1.24410
\(327\) 8.75459 0.484130
\(328\) −3.08220 −0.170186
\(329\) 0 0
\(330\) 0 0
\(331\) −0.294057 −0.0161628 −0.00808140 0.999967i \(-0.502572\pi\)
−0.00808140 + 0.999967i \(0.502572\pi\)
\(332\) 12.9712 0.711887
\(333\) 7.67966 0.420843
\(334\) −44.8235 −2.45263
\(335\) 0 0
\(336\) 0 0
\(337\) 17.6896 0.963613 0.481806 0.876278i \(-0.339981\pi\)
0.481806 + 0.876278i \(0.339981\pi\)
\(338\) −12.2476 −0.666180
\(339\) −13.4612 −0.731110
\(340\) 0 0
\(341\) −7.99932 −0.433188
\(342\) 15.7432 0.851294
\(343\) 0 0
\(344\) −5.76805 −0.310992
\(345\) 0 0
\(346\) 4.35603 0.234182
\(347\) −20.7630 −1.11462 −0.557309 0.830305i \(-0.688166\pi\)
−0.557309 + 0.830305i \(0.688166\pi\)
\(348\) 13.7087 0.734861
\(349\) −2.08491 −0.111603 −0.0558013 0.998442i \(-0.517771\pi\)
−0.0558013 + 0.998442i \(0.517771\pi\)
\(350\) 0 0
\(351\) −15.0609 −0.803891
\(352\) 45.7797 2.44007
\(353\) −9.47731 −0.504426 −0.252213 0.967672i \(-0.581158\pi\)
−0.252213 + 0.967672i \(0.581158\pi\)
\(354\) 20.9047 1.11107
\(355\) 0 0
\(356\) 0.333293 0.0176645
\(357\) 0 0
\(358\) 10.0104 0.529068
\(359\) −11.0842 −0.585001 −0.292501 0.956265i \(-0.594487\pi\)
−0.292501 + 0.956265i \(0.594487\pi\)
\(360\) 0 0
\(361\) 39.6083 2.08465
\(362\) 38.2362 2.00965
\(363\) 29.5605 1.55152
\(364\) 0 0
\(365\) 0 0
\(366\) 21.7675 1.13780
\(367\) −3.17535 −0.165752 −0.0828759 0.996560i \(-0.526411\pi\)
−0.0828759 + 0.996560i \(0.526411\pi\)
\(368\) 6.55403 0.341653
\(369\) 5.04830 0.262804
\(370\) 0 0
\(371\) 0 0
\(372\) 4.60293 0.238651
\(373\) −8.77299 −0.454248 −0.227124 0.973866i \(-0.572932\pi\)
−0.227124 + 0.973866i \(0.572932\pi\)
\(374\) −41.2912 −2.13512
\(375\) 0 0
\(376\) −5.99166 −0.308996
\(377\) 11.2368 0.578726
\(378\) 0 0
\(379\) −34.8301 −1.78910 −0.894550 0.446968i \(-0.852504\pi\)
−0.894550 + 0.446968i \(0.852504\pi\)
\(380\) 0 0
\(381\) −25.7397 −1.31869
\(382\) 0.418035 0.0213885
\(383\) −36.4660 −1.86333 −0.931663 0.363323i \(-0.881642\pi\)
−0.931663 + 0.363323i \(0.881642\pi\)
\(384\) −6.79541 −0.346777
\(385\) 0 0
\(386\) 44.3427 2.25699
\(387\) 9.44742 0.480239
\(388\) −0.841403 −0.0427158
\(389\) 9.17665 0.465275 0.232637 0.972564i \(-0.425265\pi\)
0.232637 + 0.972564i \(0.425265\pi\)
\(390\) 0 0
\(391\) −6.95008 −0.351481
\(392\) 0 0
\(393\) −10.3597 −0.522580
\(394\) −2.34962 −0.118372
\(395\) 0 0
\(396\) 12.8444 0.645457
\(397\) −15.4092 −0.773368 −0.386684 0.922212i \(-0.626380\pi\)
−0.386684 + 0.922212i \(0.626380\pi\)
\(398\) −27.4715 −1.37702
\(399\) 0 0
\(400\) 0 0
\(401\) 9.05929 0.452400 0.226200 0.974081i \(-0.427370\pi\)
0.226200 + 0.974081i \(0.427370\pi\)
\(402\) −4.81014 −0.239908
\(403\) 3.77297 0.187945
\(404\) −3.82009 −0.190057
\(405\) 0 0
\(406\) 0 0
\(407\) 43.6749 2.16488
\(408\) 3.03144 0.150079
\(409\) 31.3284 1.54909 0.774544 0.632519i \(-0.217979\pi\)
0.774544 + 0.632519i \(0.217979\pi\)
\(410\) 0 0
\(411\) −17.5958 −0.867935
\(412\) 7.60253 0.374550
\(413\) 0 0
\(414\) 4.04808 0.198952
\(415\) 0 0
\(416\) −21.5925 −1.05866
\(417\) −22.3748 −1.09570
\(418\) 89.5328 4.37919
\(419\) 10.6205 0.518843 0.259421 0.965764i \(-0.416468\pi\)
0.259421 + 0.965764i \(0.416468\pi\)
\(420\) 0 0
\(421\) 13.6324 0.664404 0.332202 0.943208i \(-0.392208\pi\)
0.332202 + 0.943208i \(0.392208\pi\)
\(422\) −16.5915 −0.807664
\(423\) 9.81368 0.477157
\(424\) −0.941253 −0.0457113
\(425\) 0 0
\(426\) 44.2713 2.14495
\(427\) 0 0
\(428\) 36.0179 1.74099
\(429\) −21.2935 −1.02806
\(430\) 0 0
\(431\) 30.1719 1.45333 0.726664 0.686993i \(-0.241070\pi\)
0.726664 + 0.686993i \(0.241070\pi\)
\(432\) 18.8341 0.906158
\(433\) −34.7562 −1.67027 −0.835137 0.550042i \(-0.814612\pi\)
−0.835137 + 0.550042i \(0.814612\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 14.1652 0.678391
\(437\) 15.0701 0.720899
\(438\) 30.1576 1.44099
\(439\) −33.1711 −1.58317 −0.791586 0.611058i \(-0.790744\pi\)
−0.791586 + 0.611058i \(0.790744\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 19.4755 0.926353
\(443\) 21.5802 1.02531 0.512654 0.858595i \(-0.328662\pi\)
0.512654 + 0.858595i \(0.328662\pi\)
\(444\) −25.1312 −1.19267
\(445\) 0 0
\(446\) 43.0626 2.03907
\(447\) −20.6701 −0.977664
\(448\) 0 0
\(449\) 37.4583 1.76777 0.883883 0.467707i \(-0.154920\pi\)
0.883883 + 0.467707i \(0.154920\pi\)
\(450\) 0 0
\(451\) 28.7101 1.35190
\(452\) −21.7806 −1.02447
\(453\) −30.0223 −1.41057
\(454\) −31.6303 −1.48448
\(455\) 0 0
\(456\) −6.57316 −0.307817
\(457\) −10.6567 −0.498499 −0.249250 0.968439i \(-0.580184\pi\)
−0.249250 + 0.968439i \(0.580184\pi\)
\(458\) 25.4636 1.18984
\(459\) −19.9723 −0.932225
\(460\) 0 0
\(461\) −28.6007 −1.33207 −0.666033 0.745922i \(-0.732009\pi\)
−0.666033 + 0.745922i \(0.732009\pi\)
\(462\) 0 0
\(463\) 5.04199 0.234321 0.117161 0.993113i \(-0.462621\pi\)
0.117161 + 0.993113i \(0.462621\pi\)
\(464\) −14.0520 −0.652349
\(465\) 0 0
\(466\) −40.0886 −1.85707
\(467\) 18.2071 0.842522 0.421261 0.906939i \(-0.361588\pi\)
0.421261 + 0.906939i \(0.361588\pi\)
\(468\) −6.05822 −0.280041
\(469\) 0 0
\(470\) 0 0
\(471\) 6.06000 0.279230
\(472\) 4.31561 0.198642
\(473\) 53.7283 2.47043
\(474\) −0.917388 −0.0421370
\(475\) 0 0
\(476\) 0 0
\(477\) 1.54167 0.0705881
\(478\) −47.6001 −2.17718
\(479\) 13.6088 0.621800 0.310900 0.950443i \(-0.399370\pi\)
0.310900 + 0.950443i \(0.399370\pi\)
\(480\) 0 0
\(481\) −20.5997 −0.939267
\(482\) 45.3613 2.06615
\(483\) 0 0
\(484\) 47.8299 2.17409
\(485\) 0 0
\(486\) 20.3737 0.924172
\(487\) 18.4643 0.836695 0.418348 0.908287i \(-0.362609\pi\)
0.418348 + 0.908287i \(0.362609\pi\)
\(488\) 4.49373 0.203421
\(489\) 15.3613 0.694663
\(490\) 0 0
\(491\) −16.6303 −0.750513 −0.375257 0.926921i \(-0.622445\pi\)
−0.375257 + 0.926921i \(0.622445\pi\)
\(492\) −16.5202 −0.744789
\(493\) 14.9012 0.671115
\(494\) −42.2292 −1.89998
\(495\) 0 0
\(496\) −4.71822 −0.211854
\(497\) 0 0
\(498\) 16.6092 0.744274
\(499\) −21.2574 −0.951612 −0.475806 0.879550i \(-0.657844\pi\)
−0.475806 + 0.879550i \(0.657844\pi\)
\(500\) 0 0
\(501\) −30.6529 −1.36947
\(502\) 34.0777 1.52096
\(503\) 27.5789 1.22968 0.614841 0.788651i \(-0.289220\pi\)
0.614841 + 0.788651i \(0.289220\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 23.0218 1.02344
\(507\) −8.37561 −0.371974
\(508\) −41.6478 −1.84782
\(509\) 8.74846 0.387769 0.193884 0.981024i \(-0.437891\pi\)
0.193884 + 0.981024i \(0.437891\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 31.0375 1.37168
\(513\) 43.3064 1.91202
\(514\) −26.5804 −1.17241
\(515\) 0 0
\(516\) −30.9161 −1.36100
\(517\) 55.8112 2.45457
\(518\) 0 0
\(519\) 2.97890 0.130759
\(520\) 0 0
\(521\) 12.2800 0.537997 0.268998 0.963141i \(-0.413307\pi\)
0.268998 + 0.963141i \(0.413307\pi\)
\(522\) −8.67919 −0.379878
\(523\) −43.3065 −1.89366 −0.946831 0.321730i \(-0.895736\pi\)
−0.946831 + 0.321730i \(0.895736\pi\)
\(524\) −16.7624 −0.732270
\(525\) 0 0
\(526\) 50.7686 2.21362
\(527\) 5.00334 0.217949
\(528\) 26.6282 1.15884
\(529\) −19.1250 −0.831522
\(530\) 0 0
\(531\) −7.06848 −0.306746
\(532\) 0 0
\(533\) −13.5414 −0.586544
\(534\) 0.426770 0.0184681
\(535\) 0 0
\(536\) −0.993016 −0.0428917
\(537\) 6.84572 0.295415
\(538\) −9.94102 −0.428588
\(539\) 0 0
\(540\) 0 0
\(541\) −23.7452 −1.02088 −0.510442 0.859912i \(-0.670518\pi\)
−0.510442 + 0.859912i \(0.670518\pi\)
\(542\) −37.3853 −1.60584
\(543\) 26.1481 1.12212
\(544\) −28.6339 −1.22767
\(545\) 0 0
\(546\) 0 0
\(547\) 10.3120 0.440909 0.220455 0.975397i \(-0.429246\pi\)
0.220455 + 0.975397i \(0.429246\pi\)
\(548\) −28.4705 −1.21620
\(549\) −7.36022 −0.314127
\(550\) 0 0
\(551\) −32.3106 −1.37648
\(552\) −1.69017 −0.0719384
\(553\) 0 0
\(554\) 7.37104 0.313165
\(555\) 0 0
\(556\) −36.2032 −1.53536
\(557\) −12.7410 −0.539852 −0.269926 0.962881i \(-0.586999\pi\)
−0.269926 + 0.962881i \(0.586999\pi\)
\(558\) −2.91419 −0.123368
\(559\) −25.3415 −1.07183
\(560\) 0 0
\(561\) −28.2373 −1.19218
\(562\) −38.3325 −1.61696
\(563\) −5.61906 −0.236815 −0.118408 0.992965i \(-0.537779\pi\)
−0.118408 + 0.992965i \(0.537779\pi\)
\(564\) −32.1146 −1.35227
\(565\) 0 0
\(566\) 42.9914 1.80706
\(567\) 0 0
\(568\) 9.13946 0.383483
\(569\) 19.4497 0.815375 0.407687 0.913122i \(-0.366335\pi\)
0.407687 + 0.913122i \(0.366335\pi\)
\(570\) 0 0
\(571\) −21.8140 −0.912889 −0.456445 0.889752i \(-0.650877\pi\)
−0.456445 + 0.889752i \(0.650877\pi\)
\(572\) −34.4536 −1.44058
\(573\) 0.285877 0.0119427
\(574\) 0 0
\(575\) 0 0
\(576\) 10.0684 0.419517
\(577\) −12.6085 −0.524897 −0.262448 0.964946i \(-0.584530\pi\)
−0.262448 + 0.964946i \(0.584530\pi\)
\(578\) −9.39477 −0.390771
\(579\) 30.3241 1.26023
\(580\) 0 0
\(581\) 0 0
\(582\) −1.07739 −0.0446591
\(583\) 8.76759 0.363116
\(584\) 6.22580 0.257625
\(585\) 0 0
\(586\) 36.3944 1.50344
\(587\) 44.3430 1.83023 0.915115 0.403193i \(-0.132100\pi\)
0.915115 + 0.403193i \(0.132100\pi\)
\(588\) 0 0
\(589\) −10.8489 −0.447020
\(590\) 0 0
\(591\) −1.60681 −0.0660952
\(592\) 25.7606 1.05876
\(593\) 13.0923 0.537636 0.268818 0.963191i \(-0.413367\pi\)
0.268818 + 0.963191i \(0.413367\pi\)
\(594\) 66.1570 2.71445
\(595\) 0 0
\(596\) −33.4450 −1.36996
\(597\) −18.7866 −0.768885
\(598\) −10.8585 −0.444036
\(599\) 1.43860 0.0587794 0.0293897 0.999568i \(-0.490644\pi\)
0.0293897 + 0.999568i \(0.490644\pi\)
\(600\) 0 0
\(601\) −6.23535 −0.254345 −0.127173 0.991881i \(-0.540590\pi\)
−0.127173 + 0.991881i \(0.540590\pi\)
\(602\) 0 0
\(603\) 1.62645 0.0662341
\(604\) −48.5772 −1.97658
\(605\) 0 0
\(606\) −4.89149 −0.198703
\(607\) −28.1334 −1.14190 −0.570949 0.820985i \(-0.693425\pi\)
−0.570949 + 0.820985i \(0.693425\pi\)
\(608\) 62.0876 2.51798
\(609\) 0 0
\(610\) 0 0
\(611\) −26.3240 −1.06495
\(612\) −8.03381 −0.324748
\(613\) −36.2031 −1.46223 −0.731114 0.682255i \(-0.760999\pi\)
−0.731114 + 0.682255i \(0.760999\pi\)
\(614\) 2.31696 0.0935050
\(615\) 0 0
\(616\) 0 0
\(617\) −9.37570 −0.377451 −0.188726 0.982030i \(-0.560436\pi\)
−0.188726 + 0.982030i \(0.560436\pi\)
\(618\) 9.73476 0.391589
\(619\) −1.86560 −0.0749846 −0.0374923 0.999297i \(-0.511937\pi\)
−0.0374923 + 0.999297i \(0.511937\pi\)
\(620\) 0 0
\(621\) 11.1355 0.446851
\(622\) 14.1154 0.565974
\(623\) 0 0
\(624\) −12.5595 −0.502782
\(625\) 0 0
\(626\) 51.9727 2.07725
\(627\) 61.2278 2.44520
\(628\) 9.80528 0.391273
\(629\) −27.3173 −1.08921
\(630\) 0 0
\(631\) −28.5504 −1.13657 −0.568286 0.822831i \(-0.692393\pi\)
−0.568286 + 0.822831i \(0.692393\pi\)
\(632\) −0.189388 −0.00753343
\(633\) −11.3463 −0.450973
\(634\) −24.2169 −0.961776
\(635\) 0 0
\(636\) −5.04500 −0.200047
\(637\) 0 0
\(638\) −49.3593 −1.95415
\(639\) −14.9694 −0.592181
\(640\) 0 0
\(641\) 15.5304 0.613415 0.306708 0.951804i \(-0.400773\pi\)
0.306708 + 0.951804i \(0.400773\pi\)
\(642\) 46.1197 1.82020
\(643\) −27.3884 −1.08009 −0.540047 0.841635i \(-0.681593\pi\)
−0.540047 + 0.841635i \(0.681593\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −56.0001 −2.20330
\(647\) −35.1556 −1.38211 −0.691055 0.722802i \(-0.742854\pi\)
−0.691055 + 0.722802i \(0.742854\pi\)
\(648\) −3.05251 −0.119914
\(649\) −40.1990 −1.57795
\(650\) 0 0
\(651\) 0 0
\(652\) 24.8551 0.973402
\(653\) −36.3322 −1.42179 −0.710895 0.703298i \(-0.751710\pi\)
−0.710895 + 0.703298i \(0.751710\pi\)
\(654\) 18.1381 0.709254
\(655\) 0 0
\(656\) 16.9340 0.661162
\(657\) −10.1972 −0.397829
\(658\) 0 0
\(659\) 27.1360 1.05707 0.528534 0.848912i \(-0.322742\pi\)
0.528534 + 0.848912i \(0.322742\pi\)
\(660\) 0 0
\(661\) −24.7823 −0.963918 −0.481959 0.876194i \(-0.660075\pi\)
−0.481959 + 0.876194i \(0.660075\pi\)
\(662\) −0.609236 −0.0236786
\(663\) 13.3184 0.517246
\(664\) 3.42883 0.133064
\(665\) 0 0
\(666\) 15.9110 0.616538
\(667\) −8.30809 −0.321690
\(668\) −49.5974 −1.91898
\(669\) 29.4487 1.13855
\(670\) 0 0
\(671\) −41.8582 −1.61592
\(672\) 0 0
\(673\) −3.94512 −0.152073 −0.0760366 0.997105i \(-0.524227\pi\)
−0.0760366 + 0.997105i \(0.524227\pi\)
\(674\) 36.6499 1.41170
\(675\) 0 0
\(676\) −13.5520 −0.521231
\(677\) 48.4953 1.86383 0.931913 0.362683i \(-0.118139\pi\)
0.931913 + 0.362683i \(0.118139\pi\)
\(678\) −27.8893 −1.07108
\(679\) 0 0
\(680\) 0 0
\(681\) −21.6306 −0.828888
\(682\) −16.5733 −0.634623
\(683\) −8.26648 −0.316308 −0.158154 0.987414i \(-0.550554\pi\)
−0.158154 + 0.987414i \(0.550554\pi\)
\(684\) 17.4199 0.666068
\(685\) 0 0
\(686\) 0 0
\(687\) 17.4135 0.664366
\(688\) 31.6904 1.20819
\(689\) −4.13533 −0.157544
\(690\) 0 0
\(691\) 51.4752 1.95821 0.979105 0.203357i \(-0.0651851\pi\)
0.979105 + 0.203357i \(0.0651851\pi\)
\(692\) 4.81997 0.183228
\(693\) 0 0
\(694\) −43.0175 −1.63292
\(695\) 0 0
\(696\) 3.62377 0.137359
\(697\) −17.9573 −0.680181
\(698\) −4.31958 −0.163499
\(699\) −27.4149 −1.03693
\(700\) 0 0
\(701\) −1.42968 −0.0539983 −0.0269992 0.999635i \(-0.508595\pi\)
−0.0269992 + 0.999635i \(0.508595\pi\)
\(702\) −31.2037 −1.17771
\(703\) 59.2329 2.23401
\(704\) 57.2598 2.15806
\(705\) 0 0
\(706\) −19.6354 −0.738988
\(707\) 0 0
\(708\) 23.1311 0.869321
\(709\) −23.0609 −0.866069 −0.433034 0.901377i \(-0.642557\pi\)
−0.433034 + 0.901377i \(0.642557\pi\)
\(710\) 0 0
\(711\) 0.310196 0.0116332
\(712\) 0.0881033 0.00330181
\(713\) −2.78959 −0.104471
\(714\) 0 0
\(715\) 0 0
\(716\) 11.0766 0.413952
\(717\) −32.5517 −1.21567
\(718\) −22.9646 −0.857031
\(719\) 3.89005 0.145074 0.0725372 0.997366i \(-0.476890\pi\)
0.0725372 + 0.997366i \(0.476890\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 82.0618 3.05402
\(723\) 31.0207 1.15367
\(724\) 42.3086 1.57239
\(725\) 0 0
\(726\) 61.2445 2.27300
\(727\) −22.8374 −0.846994 −0.423497 0.905898i \(-0.639198\pi\)
−0.423497 + 0.905898i \(0.639198\pi\)
\(728\) 0 0
\(729\) 29.0441 1.07571
\(730\) 0 0
\(731\) −33.6054 −1.24294
\(732\) 24.0858 0.890238
\(733\) −0.906984 −0.0335002 −0.0167501 0.999860i \(-0.505332\pi\)
−0.0167501 + 0.999860i \(0.505332\pi\)
\(734\) −6.57879 −0.242828
\(735\) 0 0
\(736\) 15.9647 0.588467
\(737\) 9.24975 0.340719
\(738\) 10.4592 0.385010
\(739\) −28.6839 −1.05515 −0.527577 0.849507i \(-0.676899\pi\)
−0.527577 + 0.849507i \(0.676899\pi\)
\(740\) 0 0
\(741\) −28.8788 −1.06089
\(742\) 0 0
\(743\) 32.4052 1.18883 0.594416 0.804158i \(-0.297383\pi\)
0.594416 + 0.804158i \(0.297383\pi\)
\(744\) 1.21675 0.0446081
\(745\) 0 0
\(746\) −18.1762 −0.665477
\(747\) −5.61604 −0.205480
\(748\) −45.6889 −1.67055
\(749\) 0 0
\(750\) 0 0
\(751\) 21.8542 0.797471 0.398736 0.917066i \(-0.369449\pi\)
0.398736 + 0.917066i \(0.369449\pi\)
\(752\) 32.9190 1.20043
\(753\) 23.3043 0.849255
\(754\) 23.2808 0.847838
\(755\) 0 0
\(756\) 0 0
\(757\) 17.0985 0.621456 0.310728 0.950499i \(-0.399427\pi\)
0.310728 + 0.950499i \(0.399427\pi\)
\(758\) −72.1621 −2.62105
\(759\) 15.7436 0.571457
\(760\) 0 0
\(761\) −11.3866 −0.412763 −0.206382 0.978472i \(-0.566169\pi\)
−0.206382 + 0.978472i \(0.566169\pi\)
\(762\) −53.3285 −1.93189
\(763\) 0 0
\(764\) 0.462558 0.0167348
\(765\) 0 0
\(766\) −75.5515 −2.72979
\(767\) 18.9603 0.684618
\(768\) 14.6654 0.529193
\(769\) 12.7333 0.459174 0.229587 0.973288i \(-0.426262\pi\)
0.229587 + 0.973288i \(0.426262\pi\)
\(770\) 0 0
\(771\) −18.1772 −0.654636
\(772\) 49.0655 1.76591
\(773\) 19.4489 0.699527 0.349764 0.936838i \(-0.386262\pi\)
0.349764 + 0.936838i \(0.386262\pi\)
\(774\) 19.5735 0.703554
\(775\) 0 0
\(776\) −0.222418 −0.00798434
\(777\) 0 0
\(778\) 19.0125 0.681631
\(779\) 38.9373 1.39507
\(780\) 0 0
\(781\) −85.1323 −3.04627
\(782\) −14.3994 −0.514922
\(783\) −23.8747 −0.853213
\(784\) 0 0
\(785\) 0 0
\(786\) −21.4637 −0.765584
\(787\) 10.7453 0.383028 0.191514 0.981490i \(-0.438660\pi\)
0.191514 + 0.981490i \(0.438660\pi\)
\(788\) −2.59987 −0.0926165
\(789\) 34.7185 1.23601
\(790\) 0 0
\(791\) 0 0
\(792\) 3.39532 0.120647
\(793\) 19.7429 0.701090
\(794\) −31.9254 −1.13299
\(795\) 0 0
\(796\) −30.3974 −1.07741
\(797\) −27.0668 −0.958756 −0.479378 0.877609i \(-0.659138\pi\)
−0.479378 + 0.877609i \(0.659138\pi\)
\(798\) 0 0
\(799\) −34.9082 −1.23496
\(800\) 0 0
\(801\) −0.144303 −0.00509871
\(802\) 18.7694 0.662769
\(803\) −57.9921 −2.04650
\(804\) −5.32245 −0.187708
\(805\) 0 0
\(806\) 7.81697 0.275341
\(807\) −6.79825 −0.239310
\(808\) −1.00981 −0.0355250
\(809\) 50.7467 1.78416 0.892080 0.451877i \(-0.149245\pi\)
0.892080 + 0.451877i \(0.149245\pi\)
\(810\) 0 0
\(811\) −3.77490 −0.132555 −0.0662773 0.997801i \(-0.521112\pi\)
−0.0662773 + 0.997801i \(0.521112\pi\)
\(812\) 0 0
\(813\) −25.5662 −0.896647
\(814\) 90.4870 3.17157
\(815\) 0 0
\(816\) −16.6552 −0.583047
\(817\) 72.8675 2.54931
\(818\) 64.9072 2.26943
\(819\) 0 0
\(820\) 0 0
\(821\) 18.8686 0.658520 0.329260 0.944239i \(-0.393201\pi\)
0.329260 + 0.944239i \(0.393201\pi\)
\(822\) −36.4555 −1.27153
\(823\) 12.1906 0.424938 0.212469 0.977168i \(-0.431850\pi\)
0.212469 + 0.977168i \(0.431850\pi\)
\(824\) 2.00966 0.0700100
\(825\) 0 0
\(826\) 0 0
\(827\) 42.8315 1.48940 0.744698 0.667401i \(-0.232593\pi\)
0.744698 + 0.667401i \(0.232593\pi\)
\(828\) 4.47922 0.155664
\(829\) 0.686961 0.0238592 0.0119296 0.999929i \(-0.496203\pi\)
0.0119296 + 0.999929i \(0.496203\pi\)
\(830\) 0 0
\(831\) 5.04074 0.174861
\(832\) −27.0072 −0.936308
\(833\) 0 0
\(834\) −46.3569 −1.60521
\(835\) 0 0
\(836\) 99.0686 3.42636
\(837\) −8.01637 −0.277086
\(838\) 22.0038 0.760109
\(839\) 5.32102 0.183702 0.0918510 0.995773i \(-0.470722\pi\)
0.0918510 + 0.995773i \(0.470722\pi\)
\(840\) 0 0
\(841\) −11.1872 −0.385767
\(842\) 28.2441 0.973357
\(843\) −26.2140 −0.902857
\(844\) −18.3586 −0.631930
\(845\) 0 0
\(846\) 20.3323 0.699039
\(847\) 0 0
\(848\) 5.17137 0.177585
\(849\) 29.4000 1.00901
\(850\) 0 0
\(851\) 15.2307 0.522101
\(852\) 48.9864 1.67825
\(853\) 1.59236 0.0545213 0.0272607 0.999628i \(-0.491322\pi\)
0.0272607 + 0.999628i \(0.491322\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 9.52104 0.325423
\(857\) −12.4779 −0.426237 −0.213118 0.977026i \(-0.568362\pi\)
−0.213118 + 0.977026i \(0.568362\pi\)
\(858\) −44.1166 −1.50612
\(859\) −9.79301 −0.334133 −0.167067 0.985946i \(-0.553430\pi\)
−0.167067 + 0.985946i \(0.553430\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 62.5111 2.12914
\(863\) −28.8405 −0.981742 −0.490871 0.871232i \(-0.663321\pi\)
−0.490871 + 0.871232i \(0.663321\pi\)
\(864\) 45.8773 1.56078
\(865\) 0 0
\(866\) −72.0090 −2.44696
\(867\) −6.42469 −0.218194
\(868\) 0 0
\(869\) 1.76411 0.0598433
\(870\) 0 0
\(871\) −4.36275 −0.147826
\(872\) 3.74446 0.126803
\(873\) 0.364296 0.0123295
\(874\) 31.2227 1.05612
\(875\) 0 0
\(876\) 33.3696 1.12745
\(877\) −31.3594 −1.05893 −0.529466 0.848331i \(-0.677608\pi\)
−0.529466 + 0.848331i \(0.677608\pi\)
\(878\) −68.7251 −2.31936
\(879\) 24.8886 0.839472
\(880\) 0 0
\(881\) −44.6106 −1.50297 −0.751484 0.659751i \(-0.770662\pi\)
−0.751484 + 0.659751i \(0.770662\pi\)
\(882\) 0 0
\(883\) 5.27121 0.177390 0.0886952 0.996059i \(-0.471730\pi\)
0.0886952 + 0.996059i \(0.471730\pi\)
\(884\) 21.5497 0.724795
\(885\) 0 0
\(886\) 44.7107 1.50208
\(887\) −33.7405 −1.13290 −0.566448 0.824097i \(-0.691683\pi\)
−0.566448 + 0.824097i \(0.691683\pi\)
\(888\) −6.64322 −0.222932
\(889\) 0 0
\(890\) 0 0
\(891\) 28.4335 0.952559
\(892\) 47.6490 1.59541
\(893\) 75.6925 2.53295
\(894\) −42.8251 −1.43229
\(895\) 0 0
\(896\) 0 0
\(897\) −7.42565 −0.247935
\(898\) 77.6074 2.58979
\(899\) 5.98096 0.199476
\(900\) 0 0
\(901\) −5.48386 −0.182694
\(902\) 59.4825 1.98055
\(903\) 0 0
\(904\) −5.75752 −0.191492
\(905\) 0 0
\(906\) −62.2013 −2.06650
\(907\) −22.3236 −0.741243 −0.370621 0.928784i \(-0.620855\pi\)
−0.370621 + 0.928784i \(0.620855\pi\)
\(908\) −34.9991 −1.16149
\(909\) 1.65396 0.0548582
\(910\) 0 0
\(911\) 13.7738 0.456347 0.228173 0.973621i \(-0.426725\pi\)
0.228173 + 0.973621i \(0.426725\pi\)
\(912\) 36.1138 1.19585
\(913\) −31.9389 −1.05702
\(914\) −22.0789 −0.730305
\(915\) 0 0
\(916\) 28.1756 0.930948
\(917\) 0 0
\(918\) −41.3792 −1.36572
\(919\) 24.5320 0.809237 0.404619 0.914486i \(-0.367404\pi\)
0.404619 + 0.914486i \(0.367404\pi\)
\(920\) 0 0
\(921\) 1.58447 0.0522102
\(922\) −59.2559 −1.95149
\(923\) 40.1536 1.32167
\(924\) 0 0
\(925\) 0 0
\(926\) 10.4462 0.343282
\(927\) −3.29161 −0.108111
\(928\) −34.2287 −1.12361
\(929\) −16.7756 −0.550391 −0.275195 0.961388i \(-0.588743\pi\)
−0.275195 + 0.961388i \(0.588743\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −44.3582 −1.45300
\(933\) 9.65290 0.316022
\(934\) 37.7220 1.23430
\(935\) 0 0
\(936\) −1.60144 −0.0523447
\(937\) 20.4645 0.668545 0.334272 0.942477i \(-0.391509\pi\)
0.334272 + 0.942477i \(0.391509\pi\)
\(938\) 0 0
\(939\) 35.5419 1.15987
\(940\) 0 0
\(941\) 9.23872 0.301174 0.150587 0.988597i \(-0.451884\pi\)
0.150587 + 0.988597i \(0.451884\pi\)
\(942\) 12.5553 0.409074
\(943\) 10.0120 0.326036
\(944\) −23.7105 −0.771711
\(945\) 0 0
\(946\) 111.316 3.61920
\(947\) −18.7089 −0.607957 −0.303978 0.952679i \(-0.598315\pi\)
−0.303978 + 0.952679i \(0.598315\pi\)
\(948\) −1.01509 −0.0329687
\(949\) 27.3526 0.887904
\(950\) 0 0
\(951\) −16.5609 −0.537025
\(952\) 0 0
\(953\) 19.1469 0.620229 0.310114 0.950699i \(-0.399633\pi\)
0.310114 + 0.950699i \(0.399633\pi\)
\(954\) 3.19408 0.103412
\(955\) 0 0
\(956\) −52.6698 −1.70346
\(957\) −33.7547 −1.09114
\(958\) 28.1951 0.910941
\(959\) 0 0
\(960\) 0 0
\(961\) −28.9918 −0.935219
\(962\) −42.6792 −1.37603
\(963\) −15.5944 −0.502523
\(964\) 50.1925 1.61659
\(965\) 0 0
\(966\) 0 0
\(967\) −1.09729 −0.0352865 −0.0176433 0.999844i \(-0.505616\pi\)
−0.0176433 + 0.999844i \(0.505616\pi\)
\(968\) 12.6434 0.406376
\(969\) −38.2961 −1.23025
\(970\) 0 0
\(971\) 5.47636 0.175745 0.0878724 0.996132i \(-0.471993\pi\)
0.0878724 + 0.996132i \(0.471993\pi\)
\(972\) 22.5437 0.723088
\(973\) 0 0
\(974\) 38.2549 1.22576
\(975\) 0 0
\(976\) −24.6891 −0.790280
\(977\) 12.2420 0.391656 0.195828 0.980638i \(-0.437261\pi\)
0.195828 + 0.980638i \(0.437261\pi\)
\(978\) 31.8261 1.01769
\(979\) −0.820665 −0.0262286
\(980\) 0 0
\(981\) −6.13301 −0.195812
\(982\) −34.4551 −1.09951
\(983\) −12.6229 −0.402610 −0.201305 0.979529i \(-0.564518\pi\)
−0.201305 + 0.979529i \(0.564518\pi\)
\(984\) −4.36698 −0.139214
\(985\) 0 0
\(986\) 30.8727 0.983188
\(987\) 0 0
\(988\) −46.7268 −1.48658
\(989\) 18.7366 0.595788
\(990\) 0 0
\(991\) −20.8040 −0.660861 −0.330431 0.943830i \(-0.607194\pi\)
−0.330431 + 0.943830i \(0.607194\pi\)
\(992\) −11.4929 −0.364901
\(993\) −0.416631 −0.0132214
\(994\) 0 0
\(995\) 0 0
\(996\) 18.3781 0.582333
\(997\) 36.4050 1.15296 0.576478 0.817113i \(-0.304427\pi\)
0.576478 + 0.817113i \(0.304427\pi\)
\(998\) −44.0418 −1.39412
\(999\) 43.7679 1.38476
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6125.2.a.r.1.6 6
5.4 even 2 6125.2.a.u.1.1 6
7.6 odd 2 875.2.a.f.1.6 6
21.20 even 2 7875.2.a.s.1.1 6
35.13 even 4 875.2.b.d.624.2 12
35.27 even 4 875.2.b.d.624.11 12
35.34 odd 2 875.2.a.g.1.1 yes 6
105.104 even 2 7875.2.a.r.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
875.2.a.f.1.6 6 7.6 odd 2
875.2.a.g.1.1 yes 6 35.34 odd 2
875.2.b.d.624.2 12 35.13 even 4
875.2.b.d.624.11 12 35.27 even 4
6125.2.a.r.1.6 6 1.1 even 1 trivial
6125.2.a.u.1.1 6 5.4 even 2
7875.2.a.r.1.6 6 105.104 even 2
7875.2.a.s.1.1 6 21.20 even 2