Properties

Label 875.2.a.g.1.1
Level $875$
Weight $2$
Character 875.1
Self dual yes
Analytic conductor $6.987$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [875,2,Mod(1,875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 875 = 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.98691017686\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.3438125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 6x^{4} + 12x^{3} + 6x^{2} - 15x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.07183\) of defining polynomial
Character \(\chi\) \(=\) 875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.07183 q^{2} +1.41684 q^{3} +2.29250 q^{4} -2.93546 q^{6} +1.00000 q^{7} -0.606002 q^{8} -0.992564 q^{9} -5.64479 q^{11} +3.24810 q^{12} +2.66243 q^{13} -2.07183 q^{14} -3.32946 q^{16} +3.53065 q^{17} +2.05643 q^{18} +7.65560 q^{19} +1.41684 q^{21} +11.6951 q^{22} +1.96850 q^{23} -0.858608 q^{24} -5.51611 q^{26} -5.65682 q^{27} +2.29250 q^{28} +4.22052 q^{29} -1.41712 q^{31} +8.11008 q^{32} -7.99777 q^{33} -7.31492 q^{34} -2.27545 q^{36} +7.73719 q^{37} -15.8611 q^{38} +3.77224 q^{39} +5.08612 q^{41} -2.93546 q^{42} +9.51820 q^{43} -12.9407 q^{44} -4.07841 q^{46} -9.88720 q^{47} -4.71731 q^{48} +1.00000 q^{49} +5.00237 q^{51} +6.10361 q^{52} +1.55322 q^{53} +11.7200 q^{54} -0.606002 q^{56} +10.8468 q^{57} -8.74421 q^{58} -7.12144 q^{59} -7.41536 q^{61} +2.93603 q^{62} -0.992564 q^{63} -10.1438 q^{64} +16.5701 q^{66} +1.63863 q^{67} +8.09400 q^{68} +2.78905 q^{69} +15.0816 q^{71} +0.601496 q^{72} +10.2736 q^{73} -16.0302 q^{74} +17.5504 q^{76} -5.64479 q^{77} -7.81545 q^{78} -0.312520 q^{79} -5.03713 q^{81} -10.5376 q^{82} +5.65811 q^{83} +3.24810 q^{84} -19.7201 q^{86} +5.97980 q^{87} +3.42076 q^{88} -0.145384 q^{89} +2.66243 q^{91} +4.51278 q^{92} -2.00783 q^{93} +20.4846 q^{94} +11.4907 q^{96} -0.367025 q^{97} -2.07183 q^{98} +5.60282 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 3 q^{3} + 4 q^{4} - 2 q^{6} + 6 q^{7} + 3 q^{9} - 3 q^{11} + 3 q^{12} + 16 q^{13} + 2 q^{14} - 8 q^{16} + 8 q^{17} + 16 q^{18} + 9 q^{19} + 3 q^{21} + 9 q^{22} + 9 q^{23} + 5 q^{24} + 8 q^{26}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.07183 −1.46501 −0.732504 0.680763i \(-0.761648\pi\)
−0.732504 + 0.680763i \(0.761648\pi\)
\(3\) 1.41684 0.818013 0.409007 0.912531i \(-0.365875\pi\)
0.409007 + 0.912531i \(0.365875\pi\)
\(4\) 2.29250 1.14625
\(5\) 0 0
\(6\) −2.93546 −1.19840
\(7\) 1.00000 0.377964
\(8\) −0.606002 −0.214254
\(9\) −0.992564 −0.330855
\(10\) 0 0
\(11\) −5.64479 −1.70197 −0.850985 0.525191i \(-0.823994\pi\)
−0.850985 + 0.525191i \(0.823994\pi\)
\(12\) 3.24810 0.937646
\(13\) 2.66243 0.738425 0.369213 0.929345i \(-0.379627\pi\)
0.369213 + 0.929345i \(0.379627\pi\)
\(14\) −2.07183 −0.553721
\(15\) 0 0
\(16\) −3.32946 −0.832364
\(17\) 3.53065 0.856308 0.428154 0.903706i \(-0.359164\pi\)
0.428154 + 0.903706i \(0.359164\pi\)
\(18\) 2.05643 0.484705
\(19\) 7.65560 1.75632 0.878158 0.478371i \(-0.158772\pi\)
0.878158 + 0.478371i \(0.158772\pi\)
\(20\) 0 0
\(21\) 1.41684 0.309180
\(22\) 11.6951 2.49340
\(23\) 1.96850 0.410461 0.205230 0.978714i \(-0.434206\pi\)
0.205230 + 0.978714i \(0.434206\pi\)
\(24\) −0.858608 −0.175263
\(25\) 0 0
\(26\) −5.51611 −1.08180
\(27\) −5.65682 −1.08866
\(28\) 2.29250 0.433241
\(29\) 4.22052 0.783730 0.391865 0.920023i \(-0.371830\pi\)
0.391865 + 0.920023i \(0.371830\pi\)
\(30\) 0 0
\(31\) −1.41712 −0.254521 −0.127261 0.991869i \(-0.540618\pi\)
−0.127261 + 0.991869i \(0.540618\pi\)
\(32\) 8.11008 1.43367
\(33\) −7.99777 −1.39223
\(34\) −7.31492 −1.25450
\(35\) 0 0
\(36\) −2.27545 −0.379241
\(37\) 7.73719 1.27199 0.635993 0.771695i \(-0.280591\pi\)
0.635993 + 0.771695i \(0.280591\pi\)
\(38\) −15.8611 −2.57302
\(39\) 3.77224 0.604041
\(40\) 0 0
\(41\) 5.08612 0.794318 0.397159 0.917750i \(-0.369996\pi\)
0.397159 + 0.917750i \(0.369996\pi\)
\(42\) −2.93546 −0.452951
\(43\) 9.51820 1.45151 0.725756 0.687952i \(-0.241490\pi\)
0.725756 + 0.687952i \(0.241490\pi\)
\(44\) −12.9407 −1.95088
\(45\) 0 0
\(46\) −4.07841 −0.601328
\(47\) −9.88720 −1.44220 −0.721098 0.692833i \(-0.756362\pi\)
−0.721098 + 0.692833i \(0.756362\pi\)
\(48\) −4.71731 −0.680884
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 5.00237 0.700471
\(52\) 6.10361 0.846418
\(53\) 1.55322 0.213351 0.106675 0.994294i \(-0.465979\pi\)
0.106675 + 0.994294i \(0.465979\pi\)
\(54\) 11.7200 1.59489
\(55\) 0 0
\(56\) −0.606002 −0.0809804
\(57\) 10.8468 1.43669
\(58\) −8.74421 −1.14817
\(59\) −7.12144 −0.927132 −0.463566 0.886062i \(-0.653430\pi\)
−0.463566 + 0.886062i \(0.653430\pi\)
\(60\) 0 0
\(61\) −7.41536 −0.949440 −0.474720 0.880137i \(-0.657451\pi\)
−0.474720 + 0.880137i \(0.657451\pi\)
\(62\) 2.93603 0.372876
\(63\) −0.992564 −0.125051
\(64\) −10.1438 −1.26798
\(65\) 0 0
\(66\) 16.5701 2.03963
\(67\) 1.63863 0.200191 0.100095 0.994978i \(-0.468085\pi\)
0.100095 + 0.994978i \(0.468085\pi\)
\(68\) 8.09400 0.981541
\(69\) 2.78905 0.335762
\(70\) 0 0
\(71\) 15.0816 1.78985 0.894926 0.446214i \(-0.147228\pi\)
0.894926 + 0.446214i \(0.147228\pi\)
\(72\) 0.601496 0.0708870
\(73\) 10.2736 1.20243 0.601215 0.799088i \(-0.294684\pi\)
0.601215 + 0.799088i \(0.294684\pi\)
\(74\) −16.0302 −1.86347
\(75\) 0 0
\(76\) 17.5504 2.01317
\(77\) −5.64479 −0.643284
\(78\) −7.81545 −0.884925
\(79\) −0.312520 −0.0351612 −0.0175806 0.999845i \(-0.505596\pi\)
−0.0175806 + 0.999845i \(0.505596\pi\)
\(80\) 0 0
\(81\) −5.03713 −0.559681
\(82\) −10.5376 −1.16368
\(83\) 5.65811 0.621059 0.310529 0.950564i \(-0.399494\pi\)
0.310529 + 0.950564i \(0.399494\pi\)
\(84\) 3.24810 0.354397
\(85\) 0 0
\(86\) −19.7201 −2.12648
\(87\) 5.97980 0.641102
\(88\) 3.42076 0.364654
\(89\) −0.145384 −0.0154107 −0.00770536 0.999970i \(-0.502453\pi\)
−0.00770536 + 0.999970i \(0.502453\pi\)
\(90\) 0 0
\(91\) 2.66243 0.279098
\(92\) 4.51278 0.470490
\(93\) −2.00783 −0.208202
\(94\) 20.4846 2.11283
\(95\) 0 0
\(96\) 11.4907 1.17276
\(97\) −0.367025 −0.0372657 −0.0186329 0.999826i \(-0.505931\pi\)
−0.0186329 + 0.999826i \(0.505931\pi\)
\(98\) −2.07183 −0.209287
\(99\) 5.60282 0.563104
\(100\) 0 0
\(101\) 1.66635 0.165808 0.0829038 0.996558i \(-0.473581\pi\)
0.0829038 + 0.996558i \(0.473581\pi\)
\(102\) −10.3641 −1.02620
\(103\) 3.31627 0.326761 0.163381 0.986563i \(-0.447760\pi\)
0.163381 + 0.986563i \(0.447760\pi\)
\(104\) −1.61344 −0.158211
\(105\) 0 0
\(106\) −3.21801 −0.312560
\(107\) −15.7112 −1.51886 −0.759431 0.650588i \(-0.774523\pi\)
−0.759431 + 0.650588i \(0.774523\pi\)
\(108\) −12.9682 −1.24787
\(109\) 6.17895 0.591836 0.295918 0.955213i \(-0.404374\pi\)
0.295918 + 0.955213i \(0.404374\pi\)
\(110\) 0 0
\(111\) 10.9624 1.04050
\(112\) −3.32946 −0.314604
\(113\) 9.50083 0.893763 0.446881 0.894593i \(-0.352535\pi\)
0.446881 + 0.894593i \(0.352535\pi\)
\(114\) −22.4727 −2.10476
\(115\) 0 0
\(116\) 9.67552 0.898349
\(117\) −2.64263 −0.244311
\(118\) 14.7544 1.35826
\(119\) 3.53065 0.323654
\(120\) 0 0
\(121\) 20.8637 1.89670
\(122\) 15.3634 1.39094
\(123\) 7.20621 0.649762
\(124\) −3.24873 −0.291745
\(125\) 0 0
\(126\) 2.05643 0.183201
\(127\) 18.1670 1.61206 0.806031 0.591874i \(-0.201612\pi\)
0.806031 + 0.591874i \(0.201612\pi\)
\(128\) 4.79617 0.423926
\(129\) 13.4858 1.18736
\(130\) 0 0
\(131\) 7.31187 0.638841 0.319420 0.947613i \(-0.396512\pi\)
0.319420 + 0.947613i \(0.396512\pi\)
\(132\) −18.3349 −1.59584
\(133\) 7.65560 0.663825
\(134\) −3.39498 −0.293281
\(135\) 0 0
\(136\) −2.13958 −0.183468
\(137\) 12.4190 1.06103 0.530514 0.847676i \(-0.321999\pi\)
0.530514 + 0.847676i \(0.321999\pi\)
\(138\) −5.77845 −0.491894
\(139\) 15.7921 1.33946 0.669732 0.742603i \(-0.266409\pi\)
0.669732 + 0.742603i \(0.266409\pi\)
\(140\) 0 0
\(141\) −14.0086 −1.17974
\(142\) −31.2465 −2.62215
\(143\) −15.0289 −1.25678
\(144\) 3.30470 0.275391
\(145\) 0 0
\(146\) −21.2851 −1.76157
\(147\) 1.41684 0.116859
\(148\) 17.7375 1.45801
\(149\) −14.5889 −1.19517 −0.597585 0.801806i \(-0.703873\pi\)
−0.597585 + 0.801806i \(0.703873\pi\)
\(150\) 0 0
\(151\) −21.1896 −1.72439 −0.862195 0.506577i \(-0.830910\pi\)
−0.862195 + 0.506577i \(0.830910\pi\)
\(152\) −4.63931 −0.376298
\(153\) −3.50439 −0.283314
\(154\) 11.6951 0.942416
\(155\) 0 0
\(156\) 8.64784 0.692381
\(157\) 4.27712 0.341352 0.170676 0.985327i \(-0.445405\pi\)
0.170676 + 0.985327i \(0.445405\pi\)
\(158\) 0.647489 0.0515114
\(159\) 2.20066 0.174524
\(160\) 0 0
\(161\) 1.96850 0.155140
\(162\) 10.4361 0.819936
\(163\) −10.8420 −0.849208 −0.424604 0.905379i \(-0.639587\pi\)
−0.424604 + 0.905379i \(0.639587\pi\)
\(164\) 11.6599 0.910485
\(165\) 0 0
\(166\) −11.7227 −0.909856
\(167\) −21.6347 −1.67414 −0.837071 0.547094i \(-0.815734\pi\)
−0.837071 + 0.547094i \(0.815734\pi\)
\(168\) −0.858608 −0.0662431
\(169\) −5.91147 −0.454728
\(170\) 0 0
\(171\) −7.59868 −0.581085
\(172\) 21.8204 1.66379
\(173\) 2.10250 0.159850 0.0799250 0.996801i \(-0.474532\pi\)
0.0799250 + 0.996801i \(0.474532\pi\)
\(174\) −12.3891 −0.939219
\(175\) 0 0
\(176\) 18.7941 1.41666
\(177\) −10.0899 −0.758406
\(178\) 0.301212 0.0225768
\(179\) 4.83168 0.361137 0.180568 0.983562i \(-0.442206\pi\)
0.180568 + 0.983562i \(0.442206\pi\)
\(180\) 0 0
\(181\) −18.4553 −1.37177 −0.685884 0.727711i \(-0.740584\pi\)
−0.685884 + 0.727711i \(0.740584\pi\)
\(182\) −5.51611 −0.408881
\(183\) −10.5064 −0.776654
\(184\) −1.19292 −0.0879429
\(185\) 0 0
\(186\) 4.15988 0.305017
\(187\) −19.9298 −1.45741
\(188\) −22.6664 −1.65311
\(189\) −5.65682 −0.411473
\(190\) 0 0
\(191\) 0.201771 0.0145996 0.00729980 0.999973i \(-0.497676\pi\)
0.00729980 + 0.999973i \(0.497676\pi\)
\(192\) −14.3722 −1.03722
\(193\) −21.4027 −1.54060 −0.770298 0.637684i \(-0.779893\pi\)
−0.770298 + 0.637684i \(0.779893\pi\)
\(194\) 0.760415 0.0545946
\(195\) 0 0
\(196\) 2.29250 0.163750
\(197\) 1.13408 0.0807997 0.0403999 0.999184i \(-0.487137\pi\)
0.0403999 + 0.999184i \(0.487137\pi\)
\(198\) −11.6081 −0.824952
\(199\) 13.2595 0.939942 0.469971 0.882682i \(-0.344264\pi\)
0.469971 + 0.882682i \(0.344264\pi\)
\(200\) 0 0
\(201\) 2.32168 0.163759
\(202\) −3.45239 −0.242910
\(203\) 4.22052 0.296222
\(204\) 11.4679 0.802914
\(205\) 0 0
\(206\) −6.87075 −0.478708
\(207\) −1.95386 −0.135803
\(208\) −8.86444 −0.614638
\(209\) −43.2143 −2.98920
\(210\) 0 0
\(211\) −8.00814 −0.551303 −0.275652 0.961258i \(-0.588894\pi\)
−0.275652 + 0.961258i \(0.588894\pi\)
\(212\) 3.56074 0.244553
\(213\) 21.3682 1.46412
\(214\) 32.5511 2.22515
\(215\) 0 0
\(216\) 3.42805 0.233249
\(217\) −1.41712 −0.0962000
\(218\) −12.8018 −0.867045
\(219\) 14.5560 0.983603
\(220\) 0 0
\(221\) 9.40011 0.632319
\(222\) −22.7122 −1.52434
\(223\) 20.7848 1.39185 0.695926 0.718114i \(-0.254994\pi\)
0.695926 + 0.718114i \(0.254994\pi\)
\(224\) 8.11008 0.541878
\(225\) 0 0
\(226\) −19.6841 −1.30937
\(227\) −15.2668 −1.01329 −0.506647 0.862153i \(-0.669115\pi\)
−0.506647 + 0.862153i \(0.669115\pi\)
\(228\) 24.8662 1.64680
\(229\) −12.2904 −0.812170 −0.406085 0.913835i \(-0.633106\pi\)
−0.406085 + 0.913835i \(0.633106\pi\)
\(230\) 0 0
\(231\) −7.99777 −0.526215
\(232\) −2.55764 −0.167917
\(233\) 19.3493 1.26762 0.633808 0.773490i \(-0.281491\pi\)
0.633808 + 0.773490i \(0.281491\pi\)
\(234\) 5.47509 0.357918
\(235\) 0 0
\(236\) −16.3259 −1.06272
\(237\) −0.442790 −0.0287623
\(238\) −7.31492 −0.474156
\(239\) −22.9749 −1.48612 −0.743061 0.669224i \(-0.766627\pi\)
−0.743061 + 0.669224i \(0.766627\pi\)
\(240\) 0 0
\(241\) −21.8943 −1.41033 −0.705167 0.709042i \(-0.749128\pi\)
−0.705167 + 0.709042i \(0.749128\pi\)
\(242\) −43.2261 −2.77868
\(243\) 9.83367 0.630830
\(244\) −16.9997 −1.08829
\(245\) 0 0
\(246\) −14.9301 −0.951907
\(247\) 20.3825 1.29691
\(248\) 0.858775 0.0545323
\(249\) 8.01664 0.508034
\(250\) 0 0
\(251\) −16.4481 −1.03819 −0.519096 0.854716i \(-0.673731\pi\)
−0.519096 + 0.854716i \(0.673731\pi\)
\(252\) −2.27545 −0.143340
\(253\) −11.1118 −0.698591
\(254\) −37.6390 −2.36168
\(255\) 0 0
\(256\) 10.3508 0.646925
\(257\) −12.8294 −0.800276 −0.400138 0.916455i \(-0.631038\pi\)
−0.400138 + 0.916455i \(0.631038\pi\)
\(258\) −27.9403 −1.73948
\(259\) 7.73719 0.480766
\(260\) 0 0
\(261\) −4.18913 −0.259301
\(262\) −15.1490 −0.935907
\(263\) −24.5042 −1.51099 −0.755496 0.655153i \(-0.772604\pi\)
−0.755496 + 0.655153i \(0.772604\pi\)
\(264\) 4.84667 0.298292
\(265\) 0 0
\(266\) −15.8611 −0.972509
\(267\) −0.205986 −0.0126062
\(268\) 3.75656 0.229468
\(269\) 4.79818 0.292550 0.146275 0.989244i \(-0.453272\pi\)
0.146275 + 0.989244i \(0.453272\pi\)
\(270\) 0 0
\(271\) 18.0445 1.09613 0.548064 0.836437i \(-0.315365\pi\)
0.548064 + 0.836437i \(0.315365\pi\)
\(272\) −11.7551 −0.712760
\(273\) 3.77224 0.228306
\(274\) −25.7301 −1.55441
\(275\) 0 0
\(276\) 6.39389 0.384867
\(277\) −3.55774 −0.213764 −0.106882 0.994272i \(-0.534087\pi\)
−0.106882 + 0.994272i \(0.534087\pi\)
\(278\) −32.7185 −1.96233
\(279\) 1.40658 0.0842096
\(280\) 0 0
\(281\) −18.5017 −1.10372 −0.551860 0.833937i \(-0.686082\pi\)
−0.551860 + 0.833937i \(0.686082\pi\)
\(282\) 29.0235 1.72832
\(283\) 20.7504 1.23348 0.616742 0.787165i \(-0.288452\pi\)
0.616742 + 0.787165i \(0.288452\pi\)
\(284\) 34.5744 2.05161
\(285\) 0 0
\(286\) 31.1373 1.84119
\(287\) 5.08612 0.300224
\(288\) −8.04978 −0.474338
\(289\) −4.53452 −0.266736
\(290\) 0 0
\(291\) −0.520016 −0.0304839
\(292\) 23.5521 1.37828
\(293\) 17.5663 1.02623 0.513116 0.858319i \(-0.328491\pi\)
0.513116 + 0.858319i \(0.328491\pi\)
\(294\) −2.93546 −0.171199
\(295\) 0 0
\(296\) −4.68876 −0.272528
\(297\) 31.9316 1.85286
\(298\) 30.2258 1.75093
\(299\) 5.24099 0.303095
\(300\) 0 0
\(301\) 9.51820 0.548620
\(302\) 43.9014 2.52624
\(303\) 2.36095 0.135633
\(304\) −25.4890 −1.46189
\(305\) 0 0
\(306\) 7.26052 0.415057
\(307\) 1.11832 0.0638256 0.0319128 0.999491i \(-0.489840\pi\)
0.0319128 + 0.999491i \(0.489840\pi\)
\(308\) −12.9407 −0.737363
\(309\) 4.69862 0.267295
\(310\) 0 0
\(311\) −6.81298 −0.386329 −0.193164 0.981166i \(-0.561875\pi\)
−0.193164 + 0.981166i \(0.561875\pi\)
\(312\) −2.28598 −0.129418
\(313\) 25.0853 1.41791 0.708954 0.705255i \(-0.249168\pi\)
0.708954 + 0.705255i \(0.249168\pi\)
\(314\) −8.86149 −0.500083
\(315\) 0 0
\(316\) −0.716450 −0.0403035
\(317\) 11.6886 0.656499 0.328249 0.944591i \(-0.393541\pi\)
0.328249 + 0.944591i \(0.393541\pi\)
\(318\) −4.55940 −0.255679
\(319\) −23.8239 −1.33388
\(320\) 0 0
\(321\) −22.2603 −1.24245
\(322\) −4.07841 −0.227281
\(323\) 27.0293 1.50395
\(324\) −11.5476 −0.641533
\(325\) 0 0
\(326\) 22.4627 1.24410
\(327\) 8.75459 0.484130
\(328\) −3.08220 −0.170186
\(329\) −9.88720 −0.545099
\(330\) 0 0
\(331\) −0.294057 −0.0161628 −0.00808140 0.999967i \(-0.502572\pi\)
−0.00808140 + 0.999967i \(0.502572\pi\)
\(332\) 12.9712 0.711887
\(333\) −7.67966 −0.420843
\(334\) 44.8235 2.45263
\(335\) 0 0
\(336\) −4.71731 −0.257350
\(337\) −17.6896 −0.963613 −0.481806 0.876278i \(-0.660019\pi\)
−0.481806 + 0.876278i \(0.660019\pi\)
\(338\) 12.2476 0.666180
\(339\) 13.4612 0.731110
\(340\) 0 0
\(341\) 7.99932 0.433188
\(342\) 15.7432 0.851294
\(343\) 1.00000 0.0539949
\(344\) −5.76805 −0.310992
\(345\) 0 0
\(346\) −4.35603 −0.234182
\(347\) 20.7630 1.11462 0.557309 0.830305i \(-0.311834\pi\)
0.557309 + 0.830305i \(0.311834\pi\)
\(348\) 13.7087 0.734861
\(349\) 2.08491 0.111603 0.0558013 0.998442i \(-0.482229\pi\)
0.0558013 + 0.998442i \(0.482229\pi\)
\(350\) 0 0
\(351\) −15.0609 −0.803891
\(352\) −45.7797 −2.44007
\(353\) −9.47731 −0.504426 −0.252213 0.967672i \(-0.581158\pi\)
−0.252213 + 0.967672i \(0.581158\pi\)
\(354\) 20.9047 1.11107
\(355\) 0 0
\(356\) −0.333293 −0.0176645
\(357\) 5.00237 0.264753
\(358\) −10.0104 −0.529068
\(359\) −11.0842 −0.585001 −0.292501 0.956265i \(-0.594487\pi\)
−0.292501 + 0.956265i \(0.594487\pi\)
\(360\) 0 0
\(361\) 39.6083 2.08465
\(362\) 38.2362 2.00965
\(363\) 29.5605 1.55152
\(364\) 6.10361 0.319916
\(365\) 0 0
\(366\) 21.7675 1.13780
\(367\) −3.17535 −0.165752 −0.0828759 0.996560i \(-0.526411\pi\)
−0.0828759 + 0.996560i \(0.526411\pi\)
\(368\) −6.55403 −0.341653
\(369\) −5.04830 −0.262804
\(370\) 0 0
\(371\) 1.55322 0.0806390
\(372\) −4.60293 −0.238651
\(373\) 8.77299 0.454248 0.227124 0.973866i \(-0.427068\pi\)
0.227124 + 0.973866i \(0.427068\pi\)
\(374\) 41.2912 2.13512
\(375\) 0 0
\(376\) 5.99166 0.308996
\(377\) 11.2368 0.578726
\(378\) 11.7200 0.602812
\(379\) −34.8301 −1.78910 −0.894550 0.446968i \(-0.852504\pi\)
−0.894550 + 0.446968i \(0.852504\pi\)
\(380\) 0 0
\(381\) 25.7397 1.31869
\(382\) −0.418035 −0.0213885
\(383\) −36.4660 −1.86333 −0.931663 0.363323i \(-0.881642\pi\)
−0.931663 + 0.363323i \(0.881642\pi\)
\(384\) 6.79541 0.346777
\(385\) 0 0
\(386\) 44.3427 2.25699
\(387\) −9.44742 −0.480239
\(388\) −0.841403 −0.0427158
\(389\) 9.17665 0.465275 0.232637 0.972564i \(-0.425265\pi\)
0.232637 + 0.972564i \(0.425265\pi\)
\(390\) 0 0
\(391\) 6.95008 0.351481
\(392\) −0.606002 −0.0306077
\(393\) 10.3597 0.522580
\(394\) −2.34962 −0.118372
\(395\) 0 0
\(396\) 12.8444 0.645457
\(397\) −15.4092 −0.773368 −0.386684 0.922212i \(-0.626380\pi\)
−0.386684 + 0.922212i \(0.626380\pi\)
\(398\) −27.4715 −1.37702
\(399\) 10.8468 0.543018
\(400\) 0 0
\(401\) 9.05929 0.452400 0.226200 0.974081i \(-0.427370\pi\)
0.226200 + 0.974081i \(0.427370\pi\)
\(402\) −4.81014 −0.239908
\(403\) −3.77297 −0.187945
\(404\) 3.82009 0.190057
\(405\) 0 0
\(406\) −8.74421 −0.433968
\(407\) −43.6749 −2.16488
\(408\) −3.03144 −0.150079
\(409\) −31.3284 −1.54909 −0.774544 0.632519i \(-0.782021\pi\)
−0.774544 + 0.632519i \(0.782021\pi\)
\(410\) 0 0
\(411\) 17.5958 0.867935
\(412\) 7.60253 0.374550
\(413\) −7.12144 −0.350423
\(414\) 4.04808 0.198952
\(415\) 0 0
\(416\) 21.5925 1.05866
\(417\) 22.3748 1.09570
\(418\) 89.5328 4.37919
\(419\) −10.6205 −0.518843 −0.259421 0.965764i \(-0.583532\pi\)
−0.259421 + 0.965764i \(0.583532\pi\)
\(420\) 0 0
\(421\) 13.6324 0.664404 0.332202 0.943208i \(-0.392208\pi\)
0.332202 + 0.943208i \(0.392208\pi\)
\(422\) 16.5915 0.807664
\(423\) 9.81368 0.477157
\(424\) −0.941253 −0.0457113
\(425\) 0 0
\(426\) −44.2713 −2.14495
\(427\) −7.41536 −0.358855
\(428\) −36.0179 −1.74099
\(429\) −21.2935 −1.02806
\(430\) 0 0
\(431\) 30.1719 1.45333 0.726664 0.686993i \(-0.241070\pi\)
0.726664 + 0.686993i \(0.241070\pi\)
\(432\) 18.8341 0.906158
\(433\) −34.7562 −1.67027 −0.835137 0.550042i \(-0.814612\pi\)
−0.835137 + 0.550042i \(0.814612\pi\)
\(434\) 2.93603 0.140934
\(435\) 0 0
\(436\) 14.1652 0.678391
\(437\) 15.0701 0.720899
\(438\) −30.1576 −1.44099
\(439\) 33.1711 1.58317 0.791586 0.611058i \(-0.209256\pi\)
0.791586 + 0.611058i \(0.209256\pi\)
\(440\) 0 0
\(441\) −0.992564 −0.0472649
\(442\) −19.4755 −0.926353
\(443\) −21.5802 −1.02531 −0.512654 0.858595i \(-0.671338\pi\)
−0.512654 + 0.858595i \(0.671338\pi\)
\(444\) 25.1312 1.19267
\(445\) 0 0
\(446\) −43.0626 −2.03907
\(447\) −20.6701 −0.977664
\(448\) −10.1438 −0.479251
\(449\) 37.4583 1.76777 0.883883 0.467707i \(-0.154920\pi\)
0.883883 + 0.467707i \(0.154920\pi\)
\(450\) 0 0
\(451\) −28.7101 −1.35190
\(452\) 21.7806 1.02447
\(453\) −30.0223 −1.41057
\(454\) 31.6303 1.48448
\(455\) 0 0
\(456\) −6.57316 −0.307817
\(457\) 10.6567 0.498499 0.249250 0.968439i \(-0.419816\pi\)
0.249250 + 0.968439i \(0.419816\pi\)
\(458\) 25.4636 1.18984
\(459\) −19.9723 −0.932225
\(460\) 0 0
\(461\) 28.6007 1.33207 0.666033 0.745922i \(-0.267991\pi\)
0.666033 + 0.745922i \(0.267991\pi\)
\(462\) 16.5701 0.770908
\(463\) −5.04199 −0.234321 −0.117161 0.993113i \(-0.537379\pi\)
−0.117161 + 0.993113i \(0.537379\pi\)
\(464\) −14.0520 −0.652349
\(465\) 0 0
\(466\) −40.0886 −1.85707
\(467\) 18.2071 0.842522 0.421261 0.906939i \(-0.361588\pi\)
0.421261 + 0.906939i \(0.361588\pi\)
\(468\) −6.05822 −0.280041
\(469\) 1.63863 0.0756651
\(470\) 0 0
\(471\) 6.06000 0.279230
\(472\) 4.31561 0.198642
\(473\) −53.7283 −2.47043
\(474\) 0.917388 0.0421370
\(475\) 0 0
\(476\) 8.09400 0.370988
\(477\) −1.54167 −0.0705881
\(478\) 47.6001 2.17718
\(479\) −13.6088 −0.621800 −0.310900 0.950443i \(-0.600630\pi\)
−0.310900 + 0.950443i \(0.600630\pi\)
\(480\) 0 0
\(481\) 20.5997 0.939267
\(482\) 45.3613 2.06615
\(483\) 2.78905 0.126906
\(484\) 47.8299 2.17409
\(485\) 0 0
\(486\) −20.3737 −0.924172
\(487\) −18.4643 −0.836695 −0.418348 0.908287i \(-0.637391\pi\)
−0.418348 + 0.908287i \(0.637391\pi\)
\(488\) 4.49373 0.203421
\(489\) −15.3613 −0.694663
\(490\) 0 0
\(491\) −16.6303 −0.750513 −0.375257 0.926921i \(-0.622445\pi\)
−0.375257 + 0.926921i \(0.622445\pi\)
\(492\) 16.5202 0.744789
\(493\) 14.9012 0.671115
\(494\) −42.2292 −1.89998
\(495\) 0 0
\(496\) 4.71822 0.211854
\(497\) 15.0816 0.676501
\(498\) −16.6092 −0.744274
\(499\) −21.2574 −0.951612 −0.475806 0.879550i \(-0.657844\pi\)
−0.475806 + 0.879550i \(0.657844\pi\)
\(500\) 0 0
\(501\) −30.6529 −1.36947
\(502\) 34.0777 1.52096
\(503\) 27.5789 1.22968 0.614841 0.788651i \(-0.289220\pi\)
0.614841 + 0.788651i \(0.289220\pi\)
\(504\) 0.601496 0.0267928
\(505\) 0 0
\(506\) 23.0218 1.02344
\(507\) −8.37561 −0.371974
\(508\) 41.6478 1.84782
\(509\) −8.74846 −0.387769 −0.193884 0.981024i \(-0.562109\pi\)
−0.193884 + 0.981024i \(0.562109\pi\)
\(510\) 0 0
\(511\) 10.2736 0.454476
\(512\) −31.0375 −1.37168
\(513\) −43.3064 −1.91202
\(514\) 26.5804 1.17241
\(515\) 0 0
\(516\) 30.9161 1.36100
\(517\) 55.8112 2.45457
\(518\) −16.0302 −0.704326
\(519\) 2.97890 0.130759
\(520\) 0 0
\(521\) −12.2800 −0.537997 −0.268998 0.963141i \(-0.586693\pi\)
−0.268998 + 0.963141i \(0.586693\pi\)
\(522\) 8.67919 0.379878
\(523\) −43.3065 −1.89366 −0.946831 0.321730i \(-0.895736\pi\)
−0.946831 + 0.321730i \(0.895736\pi\)
\(524\) 16.7624 0.732270
\(525\) 0 0
\(526\) 50.7686 2.21362
\(527\) −5.00334 −0.217949
\(528\) 26.6282 1.15884
\(529\) −19.1250 −0.831522
\(530\) 0 0
\(531\) 7.06848 0.306746
\(532\) 17.5504 0.760908
\(533\) 13.5414 0.586544
\(534\) 0.426770 0.0184681
\(535\) 0 0
\(536\) −0.993016 −0.0428917
\(537\) 6.84572 0.295415
\(538\) −9.94102 −0.428588
\(539\) −5.64479 −0.243138
\(540\) 0 0
\(541\) −23.7452 −1.02088 −0.510442 0.859912i \(-0.670518\pi\)
−0.510442 + 0.859912i \(0.670518\pi\)
\(542\) −37.3853 −1.60584
\(543\) −26.1481 −1.12212
\(544\) 28.6339 1.22767
\(545\) 0 0
\(546\) −7.81545 −0.334470
\(547\) −10.3120 −0.440909 −0.220455 0.975397i \(-0.570754\pi\)
−0.220455 + 0.975397i \(0.570754\pi\)
\(548\) 28.4705 1.21620
\(549\) 7.36022 0.314127
\(550\) 0 0
\(551\) 32.3106 1.37648
\(552\) −1.69017 −0.0719384
\(553\) −0.312520 −0.0132897
\(554\) 7.37104 0.313165
\(555\) 0 0
\(556\) 36.2032 1.53536
\(557\) 12.7410 0.539852 0.269926 0.962881i \(-0.413001\pi\)
0.269926 + 0.962881i \(0.413001\pi\)
\(558\) −2.91419 −0.123368
\(559\) 25.3415 1.07183
\(560\) 0 0
\(561\) −28.2373 −1.19218
\(562\) 38.3325 1.61696
\(563\) −5.61906 −0.236815 −0.118408 0.992965i \(-0.537779\pi\)
−0.118408 + 0.992965i \(0.537779\pi\)
\(564\) −32.1146 −1.35227
\(565\) 0 0
\(566\) −42.9914 −1.80706
\(567\) −5.03713 −0.211539
\(568\) −9.13946 −0.383483
\(569\) 19.4497 0.815375 0.407687 0.913122i \(-0.366335\pi\)
0.407687 + 0.913122i \(0.366335\pi\)
\(570\) 0 0
\(571\) −21.8140 −0.912889 −0.456445 0.889752i \(-0.650877\pi\)
−0.456445 + 0.889752i \(0.650877\pi\)
\(572\) −34.4536 −1.44058
\(573\) 0.285877 0.0119427
\(574\) −10.5376 −0.439830
\(575\) 0 0
\(576\) 10.0684 0.419517
\(577\) −12.6085 −0.524897 −0.262448 0.964946i \(-0.584530\pi\)
−0.262448 + 0.964946i \(0.584530\pi\)
\(578\) 9.39477 0.390771
\(579\) −30.3241 −1.26023
\(580\) 0 0
\(581\) 5.65811 0.234738
\(582\) 1.07739 0.0446591
\(583\) −8.76759 −0.363116
\(584\) −6.22580 −0.257625
\(585\) 0 0
\(586\) −36.3944 −1.50344
\(587\) 44.3430 1.83023 0.915115 0.403193i \(-0.132100\pi\)
0.915115 + 0.403193i \(0.132100\pi\)
\(588\) 3.24810 0.133949
\(589\) −10.8489 −0.447020
\(590\) 0 0
\(591\) 1.60681 0.0660952
\(592\) −25.7606 −1.05876
\(593\) 13.0923 0.537636 0.268818 0.963191i \(-0.413367\pi\)
0.268818 + 0.963191i \(0.413367\pi\)
\(594\) −66.1570 −2.71445
\(595\) 0 0
\(596\) −33.4450 −1.36996
\(597\) 18.7866 0.768885
\(598\) −10.8585 −0.444036
\(599\) 1.43860 0.0587794 0.0293897 0.999568i \(-0.490644\pi\)
0.0293897 + 0.999568i \(0.490644\pi\)
\(600\) 0 0
\(601\) 6.23535 0.254345 0.127173 0.991881i \(-0.459410\pi\)
0.127173 + 0.991881i \(0.459410\pi\)
\(602\) −19.7201 −0.803732
\(603\) −1.62645 −0.0662341
\(604\) −48.5772 −1.97658
\(605\) 0 0
\(606\) −4.89149 −0.198703
\(607\) −28.1334 −1.14190 −0.570949 0.820985i \(-0.693425\pi\)
−0.570949 + 0.820985i \(0.693425\pi\)
\(608\) 62.0876 2.51798
\(609\) 5.97980 0.242314
\(610\) 0 0
\(611\) −26.3240 −1.06495
\(612\) −8.03381 −0.324748
\(613\) 36.2031 1.46223 0.731114 0.682255i \(-0.239001\pi\)
0.731114 + 0.682255i \(0.239001\pi\)
\(614\) −2.31696 −0.0935050
\(615\) 0 0
\(616\) 3.42076 0.137826
\(617\) 9.37570 0.377451 0.188726 0.982030i \(-0.439564\pi\)
0.188726 + 0.982030i \(0.439564\pi\)
\(618\) −9.73476 −0.391589
\(619\) 1.86560 0.0749846 0.0374923 0.999297i \(-0.488063\pi\)
0.0374923 + 0.999297i \(0.488063\pi\)
\(620\) 0 0
\(621\) −11.1355 −0.446851
\(622\) 14.1154 0.565974
\(623\) −0.145384 −0.00582470
\(624\) −12.5595 −0.502782
\(625\) 0 0
\(626\) −51.9727 −2.07725
\(627\) −61.2278 −2.44520
\(628\) 9.80528 0.391273
\(629\) 27.3173 1.08921
\(630\) 0 0
\(631\) −28.5504 −1.13657 −0.568286 0.822831i \(-0.692393\pi\)
−0.568286 + 0.822831i \(0.692393\pi\)
\(632\) 0.189388 0.00753343
\(633\) −11.3463 −0.450973
\(634\) −24.2169 −0.961776
\(635\) 0 0
\(636\) 5.04500 0.200047
\(637\) 2.66243 0.105489
\(638\) 49.3593 1.95415
\(639\) −14.9694 −0.592181
\(640\) 0 0
\(641\) 15.5304 0.613415 0.306708 0.951804i \(-0.400773\pi\)
0.306708 + 0.951804i \(0.400773\pi\)
\(642\) 46.1197 1.82020
\(643\) −27.3884 −1.08009 −0.540047 0.841635i \(-0.681593\pi\)
−0.540047 + 0.841635i \(0.681593\pi\)
\(644\) 4.51278 0.177828
\(645\) 0 0
\(646\) −56.0001 −2.20330
\(647\) −35.1556 −1.38211 −0.691055 0.722802i \(-0.742854\pi\)
−0.691055 + 0.722802i \(0.742854\pi\)
\(648\) 3.05251 0.119914
\(649\) 40.1990 1.57795
\(650\) 0 0
\(651\) −2.00783 −0.0786929
\(652\) −24.8551 −0.973402
\(653\) 36.3322 1.42179 0.710895 0.703298i \(-0.248290\pi\)
0.710895 + 0.703298i \(0.248290\pi\)
\(654\) −18.1381 −0.709254
\(655\) 0 0
\(656\) −16.9340 −0.661162
\(657\) −10.1972 −0.397829
\(658\) 20.4846 0.798574
\(659\) 27.1360 1.05707 0.528534 0.848912i \(-0.322742\pi\)
0.528534 + 0.848912i \(0.322742\pi\)
\(660\) 0 0
\(661\) 24.7823 0.963918 0.481959 0.876194i \(-0.339925\pi\)
0.481959 + 0.876194i \(0.339925\pi\)
\(662\) 0.609236 0.0236786
\(663\) 13.3184 0.517246
\(664\) −3.42883 −0.133064
\(665\) 0 0
\(666\) 15.9110 0.616538
\(667\) 8.30809 0.321690
\(668\) −49.5974 −1.91898
\(669\) 29.4487 1.13855
\(670\) 0 0
\(671\) 41.8582 1.61592
\(672\) 11.4907 0.443263
\(673\) 3.94512 0.152073 0.0760366 0.997105i \(-0.475773\pi\)
0.0760366 + 0.997105i \(0.475773\pi\)
\(674\) 36.6499 1.41170
\(675\) 0 0
\(676\) −13.5520 −0.521231
\(677\) 48.4953 1.86383 0.931913 0.362683i \(-0.118139\pi\)
0.931913 + 0.362683i \(0.118139\pi\)
\(678\) −27.8893 −1.07108
\(679\) −0.367025 −0.0140851
\(680\) 0 0
\(681\) −21.6306 −0.828888
\(682\) −16.5733 −0.634623
\(683\) 8.26648 0.316308 0.158154 0.987414i \(-0.449446\pi\)
0.158154 + 0.987414i \(0.449446\pi\)
\(684\) −17.4199 −0.666068
\(685\) 0 0
\(686\) −2.07183 −0.0791030
\(687\) −17.4135 −0.664366
\(688\) −31.6904 −1.20819
\(689\) 4.13533 0.157544
\(690\) 0 0
\(691\) −51.4752 −1.95821 −0.979105 0.203357i \(-0.934815\pi\)
−0.979105 + 0.203357i \(0.934815\pi\)
\(692\) 4.81997 0.183228
\(693\) 5.60282 0.212833
\(694\) −43.0175 −1.63292
\(695\) 0 0
\(696\) −3.62377 −0.137359
\(697\) 17.9573 0.680181
\(698\) −4.31958 −0.163499
\(699\) 27.4149 1.03693
\(700\) 0 0
\(701\) −1.42968 −0.0539983 −0.0269992 0.999635i \(-0.508595\pi\)
−0.0269992 + 0.999635i \(0.508595\pi\)
\(702\) 31.2037 1.17771
\(703\) 59.2329 2.23401
\(704\) 57.2598 2.15806
\(705\) 0 0
\(706\) 19.6354 0.738988
\(707\) 1.66635 0.0626694
\(708\) −23.1311 −0.869321
\(709\) −23.0609 −0.866069 −0.433034 0.901377i \(-0.642557\pi\)
−0.433034 + 0.901377i \(0.642557\pi\)
\(710\) 0 0
\(711\) 0.310196 0.0116332
\(712\) 0.0881033 0.00330181
\(713\) −2.78959 −0.104471
\(714\) −10.3641 −0.387866
\(715\) 0 0
\(716\) 11.0766 0.413952
\(717\) −32.5517 −1.21567
\(718\) 22.9646 0.857031
\(719\) −3.89005 −0.145074 −0.0725372 0.997366i \(-0.523110\pi\)
−0.0725372 + 0.997366i \(0.523110\pi\)
\(720\) 0 0
\(721\) 3.31627 0.123504
\(722\) −82.0618 −3.05402
\(723\) −31.0207 −1.15367
\(724\) −42.3086 −1.57239
\(725\) 0 0
\(726\) −61.2445 −2.27300
\(727\) −22.8374 −0.846994 −0.423497 0.905898i \(-0.639198\pi\)
−0.423497 + 0.905898i \(0.639198\pi\)
\(728\) −1.61344 −0.0597980
\(729\) 29.0441 1.07571
\(730\) 0 0
\(731\) 33.6054 1.24294
\(732\) −24.0858 −0.890238
\(733\) −0.906984 −0.0335002 −0.0167501 0.999860i \(-0.505332\pi\)
−0.0167501 + 0.999860i \(0.505332\pi\)
\(734\) 6.57879 0.242828
\(735\) 0 0
\(736\) 15.9647 0.588467
\(737\) −9.24975 −0.340719
\(738\) 10.4592 0.385010
\(739\) −28.6839 −1.05515 −0.527577 0.849507i \(-0.676899\pi\)
−0.527577 + 0.849507i \(0.676899\pi\)
\(740\) 0 0
\(741\) 28.8788 1.06089
\(742\) −3.21801 −0.118137
\(743\) −32.4052 −1.18883 −0.594416 0.804158i \(-0.702617\pi\)
−0.594416 + 0.804158i \(0.702617\pi\)
\(744\) 1.21675 0.0446081
\(745\) 0 0
\(746\) −18.1762 −0.665477
\(747\) −5.61604 −0.205480
\(748\) −45.6889 −1.67055
\(749\) −15.7112 −0.574076
\(750\) 0 0
\(751\) 21.8542 0.797471 0.398736 0.917066i \(-0.369449\pi\)
0.398736 + 0.917066i \(0.369449\pi\)
\(752\) 32.9190 1.20043
\(753\) −23.3043 −0.849255
\(754\) −23.2808 −0.847838
\(755\) 0 0
\(756\) −12.9682 −0.471651
\(757\) −17.0985 −0.621456 −0.310728 0.950499i \(-0.600573\pi\)
−0.310728 + 0.950499i \(0.600573\pi\)
\(758\) 72.1621 2.62105
\(759\) −15.7436 −0.571457
\(760\) 0 0
\(761\) 11.3866 0.412763 0.206382 0.978472i \(-0.433831\pi\)
0.206382 + 0.978472i \(0.433831\pi\)
\(762\) −53.3285 −1.93189
\(763\) 6.17895 0.223693
\(764\) 0.462558 0.0167348
\(765\) 0 0
\(766\) 75.5515 2.72979
\(767\) −18.9603 −0.684618
\(768\) 14.6654 0.529193
\(769\) −12.7333 −0.459174 −0.229587 0.973288i \(-0.573738\pi\)
−0.229587 + 0.973288i \(0.573738\pi\)
\(770\) 0 0
\(771\) −18.1772 −0.654636
\(772\) −49.0655 −1.76591
\(773\) 19.4489 0.699527 0.349764 0.936838i \(-0.386262\pi\)
0.349764 + 0.936838i \(0.386262\pi\)
\(774\) 19.5735 0.703554
\(775\) 0 0
\(776\) 0.222418 0.00798434
\(777\) 10.9624 0.393273
\(778\) −19.0125 −0.681631
\(779\) 38.9373 1.39507
\(780\) 0 0
\(781\) −85.1323 −3.04627
\(782\) −14.3994 −0.514922
\(783\) −23.8747 −0.853213
\(784\) −3.32946 −0.118909
\(785\) 0 0
\(786\) −21.4637 −0.765584
\(787\) 10.7453 0.383028 0.191514 0.981490i \(-0.438660\pi\)
0.191514 + 0.981490i \(0.438660\pi\)
\(788\) 2.59987 0.0926165
\(789\) −34.7185 −1.23601
\(790\) 0 0
\(791\) 9.50083 0.337811
\(792\) −3.39532 −0.120647
\(793\) −19.7429 −0.701090
\(794\) 31.9254 1.13299
\(795\) 0 0
\(796\) 30.3974 1.07741
\(797\) −27.0668 −0.958756 −0.479378 0.877609i \(-0.659138\pi\)
−0.479378 + 0.877609i \(0.659138\pi\)
\(798\) −22.4727 −0.795525
\(799\) −34.9082 −1.23496
\(800\) 0 0
\(801\) 0.144303 0.00509871
\(802\) −18.7694 −0.662769
\(803\) −57.9921 −2.04650
\(804\) 5.32245 0.187708
\(805\) 0 0
\(806\) 7.81697 0.275341
\(807\) 6.79825 0.239310
\(808\) −1.00981 −0.0355250
\(809\) 50.7467 1.78416 0.892080 0.451877i \(-0.149245\pi\)
0.892080 + 0.451877i \(0.149245\pi\)
\(810\) 0 0
\(811\) 3.77490 0.132555 0.0662773 0.997801i \(-0.478888\pi\)
0.0662773 + 0.997801i \(0.478888\pi\)
\(812\) 9.67552 0.339544
\(813\) 25.5662 0.896647
\(814\) 90.4870 3.17157
\(815\) 0 0
\(816\) −16.6552 −0.583047
\(817\) 72.8675 2.54931
\(818\) 64.9072 2.26943
\(819\) −2.64263 −0.0923410
\(820\) 0 0
\(821\) 18.8686 0.658520 0.329260 0.944239i \(-0.393201\pi\)
0.329260 + 0.944239i \(0.393201\pi\)
\(822\) −36.4555 −1.27153
\(823\) −12.1906 −0.424938 −0.212469 0.977168i \(-0.568150\pi\)
−0.212469 + 0.977168i \(0.568150\pi\)
\(824\) −2.00966 −0.0700100
\(825\) 0 0
\(826\) 14.7544 0.513372
\(827\) −42.8315 −1.48940 −0.744698 0.667401i \(-0.767407\pi\)
−0.744698 + 0.667401i \(0.767407\pi\)
\(828\) −4.47922 −0.155664
\(829\) −0.686961 −0.0238592 −0.0119296 0.999929i \(-0.503797\pi\)
−0.0119296 + 0.999929i \(0.503797\pi\)
\(830\) 0 0
\(831\) −5.04074 −0.174861
\(832\) −27.0072 −0.936308
\(833\) 3.53065 0.122330
\(834\) −46.3569 −1.60521
\(835\) 0 0
\(836\) −99.0686 −3.42636
\(837\) 8.01637 0.277086
\(838\) 22.0038 0.760109
\(839\) −5.32102 −0.183702 −0.0918510 0.995773i \(-0.529278\pi\)
−0.0918510 + 0.995773i \(0.529278\pi\)
\(840\) 0 0
\(841\) −11.1872 −0.385767
\(842\) −28.2441 −0.973357
\(843\) −26.2140 −0.902857
\(844\) −18.3586 −0.631930
\(845\) 0 0
\(846\) −20.3323 −0.699039
\(847\) 20.8637 0.716885
\(848\) −5.17137 −0.177585
\(849\) 29.4000 1.00901
\(850\) 0 0
\(851\) 15.2307 0.522101
\(852\) 48.9864 1.67825
\(853\) 1.59236 0.0545213 0.0272607 0.999628i \(-0.491322\pi\)
0.0272607 + 0.999628i \(0.491322\pi\)
\(854\) 15.3634 0.525725
\(855\) 0 0
\(856\) 9.52104 0.325423
\(857\) −12.4779 −0.426237 −0.213118 0.977026i \(-0.568362\pi\)
−0.213118 + 0.977026i \(0.568362\pi\)
\(858\) 44.1166 1.50612
\(859\) 9.79301 0.334133 0.167067 0.985946i \(-0.446570\pi\)
0.167067 + 0.985946i \(0.446570\pi\)
\(860\) 0 0
\(861\) 7.20621 0.245587
\(862\) −62.5111 −2.12914
\(863\) 28.8405 0.981742 0.490871 0.871232i \(-0.336679\pi\)
0.490871 + 0.871232i \(0.336679\pi\)
\(864\) −45.8773 −1.56078
\(865\) 0 0
\(866\) 72.0090 2.44696
\(867\) −6.42469 −0.218194
\(868\) −3.24873 −0.110269
\(869\) 1.76411 0.0598433
\(870\) 0 0
\(871\) 4.36275 0.147826
\(872\) −3.74446 −0.126803
\(873\) 0.364296 0.0123295
\(874\) −31.2227 −1.05612
\(875\) 0 0
\(876\) 33.3696 1.12745
\(877\) 31.3594 1.05893 0.529466 0.848331i \(-0.322392\pi\)
0.529466 + 0.848331i \(0.322392\pi\)
\(878\) −68.7251 −2.31936
\(879\) 24.8886 0.839472
\(880\) 0 0
\(881\) 44.6106 1.50297 0.751484 0.659751i \(-0.229338\pi\)
0.751484 + 0.659751i \(0.229338\pi\)
\(882\) 2.05643 0.0692435
\(883\) −5.27121 −0.177390 −0.0886952 0.996059i \(-0.528270\pi\)
−0.0886952 + 0.996059i \(0.528270\pi\)
\(884\) 21.5497 0.724795
\(885\) 0 0
\(886\) 44.7107 1.50208
\(887\) −33.7405 −1.13290 −0.566448 0.824097i \(-0.691683\pi\)
−0.566448 + 0.824097i \(0.691683\pi\)
\(888\) −6.64322 −0.222932
\(889\) 18.1670 0.609302
\(890\) 0 0
\(891\) 28.4335 0.952559
\(892\) 47.6490 1.59541
\(893\) −75.6925 −2.53295
\(894\) 42.8251 1.43229
\(895\) 0 0
\(896\) 4.79617 0.160229
\(897\) 7.42565 0.247935
\(898\) −77.6074 −2.58979
\(899\) −5.98096 −0.199476
\(900\) 0 0
\(901\) 5.48386 0.182694
\(902\) 59.4825 1.98055
\(903\) 13.4858 0.448778
\(904\) −5.75752 −0.191492
\(905\) 0 0
\(906\) 62.2013 2.06650
\(907\) 22.3236 0.741243 0.370621 0.928784i \(-0.379145\pi\)
0.370621 + 0.928784i \(0.379145\pi\)
\(908\) −34.9991 −1.16149
\(909\) −1.65396 −0.0548582
\(910\) 0 0
\(911\) 13.7738 0.456347 0.228173 0.973621i \(-0.426725\pi\)
0.228173 + 0.973621i \(0.426725\pi\)
\(912\) −36.1138 −1.19585
\(913\) −31.9389 −1.05702
\(914\) −22.0789 −0.730305
\(915\) 0 0
\(916\) −28.1756 −0.930948
\(917\) 7.31187 0.241459
\(918\) 41.3792 1.36572
\(919\) 24.5320 0.809237 0.404619 0.914486i \(-0.367404\pi\)
0.404619 + 0.914486i \(0.367404\pi\)
\(920\) 0 0
\(921\) 1.58447 0.0522102
\(922\) −59.2559 −1.95149
\(923\) 40.1536 1.32167
\(924\) −18.3349 −0.603172
\(925\) 0 0
\(926\) 10.4462 0.343282
\(927\) −3.29161 −0.108111
\(928\) 34.2287 1.12361
\(929\) 16.7756 0.550391 0.275195 0.961388i \(-0.411257\pi\)
0.275195 + 0.961388i \(0.411257\pi\)
\(930\) 0 0
\(931\) 7.65560 0.250902
\(932\) 44.3582 1.45300
\(933\) −9.65290 −0.316022
\(934\) −37.7220 −1.23430
\(935\) 0 0
\(936\) 1.60144 0.0523447
\(937\) 20.4645 0.668545 0.334272 0.942477i \(-0.391509\pi\)
0.334272 + 0.942477i \(0.391509\pi\)
\(938\) −3.39498 −0.110850
\(939\) 35.5419 1.15987
\(940\) 0 0
\(941\) −9.23872 −0.301174 −0.150587 0.988597i \(-0.548116\pi\)
−0.150587 + 0.988597i \(0.548116\pi\)
\(942\) −12.5553 −0.409074
\(943\) 10.0120 0.326036
\(944\) 23.7105 0.771711
\(945\) 0 0
\(946\) 111.316 3.61920
\(947\) 18.7089 0.607957 0.303978 0.952679i \(-0.401685\pi\)
0.303978 + 0.952679i \(0.401685\pi\)
\(948\) −1.01509 −0.0329687
\(949\) 27.3526 0.887904
\(950\) 0 0
\(951\) 16.5609 0.537025
\(952\) −2.13958 −0.0693442
\(953\) −19.1469 −0.620229 −0.310114 0.950699i \(-0.600367\pi\)
−0.310114 + 0.950699i \(0.600367\pi\)
\(954\) 3.19408 0.103412
\(955\) 0 0
\(956\) −52.6698 −1.70346
\(957\) −33.7547 −1.09114
\(958\) 28.1951 0.910941
\(959\) 12.4190 0.401031
\(960\) 0 0
\(961\) −28.9918 −0.935219
\(962\) −42.6792 −1.37603
\(963\) 15.5944 0.502523
\(964\) −50.1925 −1.61659
\(965\) 0 0
\(966\) −5.77845 −0.185919
\(967\) 1.09729 0.0352865 0.0176433 0.999844i \(-0.494384\pi\)
0.0176433 + 0.999844i \(0.494384\pi\)
\(968\) −12.6434 −0.406376
\(969\) 38.2961 1.23025
\(970\) 0 0
\(971\) −5.47636 −0.175745 −0.0878724 0.996132i \(-0.528007\pi\)
−0.0878724 + 0.996132i \(0.528007\pi\)
\(972\) 22.5437 0.723088
\(973\) 15.7921 0.506270
\(974\) 38.2549 1.22576
\(975\) 0 0
\(976\) 24.6891 0.790280
\(977\) −12.2420 −0.391656 −0.195828 0.980638i \(-0.562739\pi\)
−0.195828 + 0.980638i \(0.562739\pi\)
\(978\) 31.8261 1.01769
\(979\) 0.820665 0.0262286
\(980\) 0 0
\(981\) −6.13301 −0.195812
\(982\) 34.4551 1.09951
\(983\) −12.6229 −0.402610 −0.201305 0.979529i \(-0.564518\pi\)
−0.201305 + 0.979529i \(0.564518\pi\)
\(984\) −4.36698 −0.139214
\(985\) 0 0
\(986\) −30.8727 −0.983188
\(987\) −14.0086 −0.445898
\(988\) 46.7268 1.48658
\(989\) 18.7366 0.595788
\(990\) 0 0
\(991\) −20.8040 −0.660861 −0.330431 0.943830i \(-0.607194\pi\)
−0.330431 + 0.943830i \(0.607194\pi\)
\(992\) −11.4929 −0.364901
\(993\) −0.416631 −0.0132214
\(994\) −31.2465 −0.991079
\(995\) 0 0
\(996\) 18.3781 0.582333
\(997\) 36.4050 1.15296 0.576478 0.817113i \(-0.304427\pi\)
0.576478 + 0.817113i \(0.304427\pi\)
\(998\) 44.0418 1.39412
\(999\) −43.7679 −1.38476
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 875.2.a.g.1.1 yes 6
3.2 odd 2 7875.2.a.r.1.6 6
5.2 odd 4 875.2.b.d.624.2 12
5.3 odd 4 875.2.b.d.624.11 12
5.4 even 2 875.2.a.f.1.6 6
7.6 odd 2 6125.2.a.u.1.1 6
15.14 odd 2 7875.2.a.s.1.1 6
35.34 odd 2 6125.2.a.r.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
875.2.a.f.1.6 6 5.4 even 2
875.2.a.g.1.1 yes 6 1.1 even 1 trivial
875.2.b.d.624.2 12 5.2 odd 4
875.2.b.d.624.11 12 5.3 odd 4
6125.2.a.r.1.6 6 35.34 odd 2
6125.2.a.u.1.1 6 7.6 odd 2
7875.2.a.r.1.6 6 3.2 odd 2
7875.2.a.s.1.1 6 15.14 odd 2