Properties

Label 7875.2.a.r.1.6
Level $7875$
Weight $2$
Character 7875.1
Self dual yes
Analytic conductor $62.882$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7875,2,Mod(1,7875)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7875, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7875.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7875 = 3^{2} \cdot 5^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7875.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.8821915918\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.3438125.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 6x^{4} + 12x^{3} + 6x^{2} - 15x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 875)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.07183\) of defining polynomial
Character \(\chi\) \(=\) 7875.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.07183 q^{2} +2.29250 q^{4} +1.00000 q^{7} +0.606002 q^{8} +5.64479 q^{11} +2.66243 q^{13} +2.07183 q^{14} -3.32946 q^{16} -3.53065 q^{17} +7.65560 q^{19} +11.6951 q^{22} -1.96850 q^{23} +5.51611 q^{26} +2.29250 q^{28} -4.22052 q^{29} -1.41712 q^{31} -8.11008 q^{32} -7.31492 q^{34} +7.73719 q^{37} +15.8611 q^{38} -5.08612 q^{41} +9.51820 q^{43} +12.9407 q^{44} -4.07841 q^{46} +9.88720 q^{47} +1.00000 q^{49} +6.10361 q^{52} -1.55322 q^{53} +0.606002 q^{56} -8.74421 q^{58} +7.12144 q^{59} -7.41536 q^{61} -2.93603 q^{62} -10.1438 q^{64} +1.63863 q^{67} -8.09400 q^{68} -15.0816 q^{71} +10.2736 q^{73} +16.0302 q^{74} +17.5504 q^{76} +5.64479 q^{77} -0.312520 q^{79} -10.5376 q^{82} -5.65811 q^{83} +19.7201 q^{86} +3.42076 q^{88} +0.145384 q^{89} +2.66243 q^{91} -4.51278 q^{92} +20.4846 q^{94} -0.367025 q^{97} +2.07183 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 4 q^{4} + 6 q^{7} + 3 q^{11} + 16 q^{13} - 2 q^{14} - 8 q^{16} - 8 q^{17} + 9 q^{19} + 9 q^{22} - 9 q^{23} - 8 q^{26} + 4 q^{28} + 9 q^{29} + 15 q^{31} - 7 q^{32} - 4 q^{34} + 31 q^{37}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.07183 1.46501 0.732504 0.680763i \(-0.238352\pi\)
0.732504 + 0.680763i \(0.238352\pi\)
\(3\) 0 0
\(4\) 2.29250 1.14625
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0.606002 0.214254
\(9\) 0 0
\(10\) 0 0
\(11\) 5.64479 1.70197 0.850985 0.525191i \(-0.176006\pi\)
0.850985 + 0.525191i \(0.176006\pi\)
\(12\) 0 0
\(13\) 2.66243 0.738425 0.369213 0.929345i \(-0.379627\pi\)
0.369213 + 0.929345i \(0.379627\pi\)
\(14\) 2.07183 0.553721
\(15\) 0 0
\(16\) −3.32946 −0.832364
\(17\) −3.53065 −0.856308 −0.428154 0.903706i \(-0.640836\pi\)
−0.428154 + 0.903706i \(0.640836\pi\)
\(18\) 0 0
\(19\) 7.65560 1.75632 0.878158 0.478371i \(-0.158772\pi\)
0.878158 + 0.478371i \(0.158772\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 11.6951 2.49340
\(23\) −1.96850 −0.410461 −0.205230 0.978714i \(-0.565794\pi\)
−0.205230 + 0.978714i \(0.565794\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 5.51611 1.08180
\(27\) 0 0
\(28\) 2.29250 0.433241
\(29\) −4.22052 −0.783730 −0.391865 0.920023i \(-0.628170\pi\)
−0.391865 + 0.920023i \(0.628170\pi\)
\(30\) 0 0
\(31\) −1.41712 −0.254521 −0.127261 0.991869i \(-0.540618\pi\)
−0.127261 + 0.991869i \(0.540618\pi\)
\(32\) −8.11008 −1.43367
\(33\) 0 0
\(34\) −7.31492 −1.25450
\(35\) 0 0
\(36\) 0 0
\(37\) 7.73719 1.27199 0.635993 0.771695i \(-0.280591\pi\)
0.635993 + 0.771695i \(0.280591\pi\)
\(38\) 15.8611 2.57302
\(39\) 0 0
\(40\) 0 0
\(41\) −5.08612 −0.794318 −0.397159 0.917750i \(-0.630004\pi\)
−0.397159 + 0.917750i \(0.630004\pi\)
\(42\) 0 0
\(43\) 9.51820 1.45151 0.725756 0.687952i \(-0.241490\pi\)
0.725756 + 0.687952i \(0.241490\pi\)
\(44\) 12.9407 1.95088
\(45\) 0 0
\(46\) −4.07841 −0.601328
\(47\) 9.88720 1.44220 0.721098 0.692833i \(-0.243638\pi\)
0.721098 + 0.692833i \(0.243638\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 6.10361 0.846418
\(53\) −1.55322 −0.213351 −0.106675 0.994294i \(-0.534021\pi\)
−0.106675 + 0.994294i \(0.534021\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0.606002 0.0809804
\(57\) 0 0
\(58\) −8.74421 −1.14817
\(59\) 7.12144 0.927132 0.463566 0.886062i \(-0.346570\pi\)
0.463566 + 0.886062i \(0.346570\pi\)
\(60\) 0 0
\(61\) −7.41536 −0.949440 −0.474720 0.880137i \(-0.657451\pi\)
−0.474720 + 0.880137i \(0.657451\pi\)
\(62\) −2.93603 −0.372876
\(63\) 0 0
\(64\) −10.1438 −1.26798
\(65\) 0 0
\(66\) 0 0
\(67\) 1.63863 0.200191 0.100095 0.994978i \(-0.468085\pi\)
0.100095 + 0.994978i \(0.468085\pi\)
\(68\) −8.09400 −0.981541
\(69\) 0 0
\(70\) 0 0
\(71\) −15.0816 −1.78985 −0.894926 0.446214i \(-0.852772\pi\)
−0.894926 + 0.446214i \(0.852772\pi\)
\(72\) 0 0
\(73\) 10.2736 1.20243 0.601215 0.799088i \(-0.294684\pi\)
0.601215 + 0.799088i \(0.294684\pi\)
\(74\) 16.0302 1.86347
\(75\) 0 0
\(76\) 17.5504 2.01317
\(77\) 5.64479 0.643284
\(78\) 0 0
\(79\) −0.312520 −0.0351612 −0.0175806 0.999845i \(-0.505596\pi\)
−0.0175806 + 0.999845i \(0.505596\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −10.5376 −1.16368
\(83\) −5.65811 −0.621059 −0.310529 0.950564i \(-0.600506\pi\)
−0.310529 + 0.950564i \(0.600506\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 19.7201 2.12648
\(87\) 0 0
\(88\) 3.42076 0.364654
\(89\) 0.145384 0.0154107 0.00770536 0.999970i \(-0.497547\pi\)
0.00770536 + 0.999970i \(0.497547\pi\)
\(90\) 0 0
\(91\) 2.66243 0.279098
\(92\) −4.51278 −0.470490
\(93\) 0 0
\(94\) 20.4846 2.11283
\(95\) 0 0
\(96\) 0 0
\(97\) −0.367025 −0.0372657 −0.0186329 0.999826i \(-0.505931\pi\)
−0.0186329 + 0.999826i \(0.505931\pi\)
\(98\) 2.07183 0.209287
\(99\) 0 0
\(100\) 0 0
\(101\) −1.66635 −0.165808 −0.0829038 0.996558i \(-0.526419\pi\)
−0.0829038 + 0.996558i \(0.526419\pi\)
\(102\) 0 0
\(103\) 3.31627 0.326761 0.163381 0.986563i \(-0.447760\pi\)
0.163381 + 0.986563i \(0.447760\pi\)
\(104\) 1.61344 0.158211
\(105\) 0 0
\(106\) −3.21801 −0.312560
\(107\) 15.7112 1.51886 0.759431 0.650588i \(-0.225477\pi\)
0.759431 + 0.650588i \(0.225477\pi\)
\(108\) 0 0
\(109\) 6.17895 0.591836 0.295918 0.955213i \(-0.404374\pi\)
0.295918 + 0.955213i \(0.404374\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −3.32946 −0.314604
\(113\) −9.50083 −0.893763 −0.446881 0.894593i \(-0.647465\pi\)
−0.446881 + 0.894593i \(0.647465\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −9.67552 −0.898349
\(117\) 0 0
\(118\) 14.7544 1.35826
\(119\) −3.53065 −0.323654
\(120\) 0 0
\(121\) 20.8637 1.89670
\(122\) −15.3634 −1.39094
\(123\) 0 0
\(124\) −3.24873 −0.291745
\(125\) 0 0
\(126\) 0 0
\(127\) 18.1670 1.61206 0.806031 0.591874i \(-0.201612\pi\)
0.806031 + 0.591874i \(0.201612\pi\)
\(128\) −4.79617 −0.423926
\(129\) 0 0
\(130\) 0 0
\(131\) −7.31187 −0.638841 −0.319420 0.947613i \(-0.603488\pi\)
−0.319420 + 0.947613i \(0.603488\pi\)
\(132\) 0 0
\(133\) 7.65560 0.663825
\(134\) 3.39498 0.293281
\(135\) 0 0
\(136\) −2.13958 −0.183468
\(137\) −12.4190 −1.06103 −0.530514 0.847676i \(-0.678001\pi\)
−0.530514 + 0.847676i \(0.678001\pi\)
\(138\) 0 0
\(139\) 15.7921 1.33946 0.669732 0.742603i \(-0.266409\pi\)
0.669732 + 0.742603i \(0.266409\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −31.2465 −2.62215
\(143\) 15.0289 1.25678
\(144\) 0 0
\(145\) 0 0
\(146\) 21.2851 1.76157
\(147\) 0 0
\(148\) 17.7375 1.45801
\(149\) 14.5889 1.19517 0.597585 0.801806i \(-0.296127\pi\)
0.597585 + 0.801806i \(0.296127\pi\)
\(150\) 0 0
\(151\) −21.1896 −1.72439 −0.862195 0.506577i \(-0.830910\pi\)
−0.862195 + 0.506577i \(0.830910\pi\)
\(152\) 4.63931 0.376298
\(153\) 0 0
\(154\) 11.6951 0.942416
\(155\) 0 0
\(156\) 0 0
\(157\) 4.27712 0.341352 0.170676 0.985327i \(-0.445405\pi\)
0.170676 + 0.985327i \(0.445405\pi\)
\(158\) −0.647489 −0.0515114
\(159\) 0 0
\(160\) 0 0
\(161\) −1.96850 −0.155140
\(162\) 0 0
\(163\) −10.8420 −0.849208 −0.424604 0.905379i \(-0.639587\pi\)
−0.424604 + 0.905379i \(0.639587\pi\)
\(164\) −11.6599 −0.910485
\(165\) 0 0
\(166\) −11.7227 −0.909856
\(167\) 21.6347 1.67414 0.837071 0.547094i \(-0.184266\pi\)
0.837071 + 0.547094i \(0.184266\pi\)
\(168\) 0 0
\(169\) −5.91147 −0.454728
\(170\) 0 0
\(171\) 0 0
\(172\) 21.8204 1.66379
\(173\) −2.10250 −0.159850 −0.0799250 0.996801i \(-0.525468\pi\)
−0.0799250 + 0.996801i \(0.525468\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −18.7941 −1.41666
\(177\) 0 0
\(178\) 0.301212 0.0225768
\(179\) −4.83168 −0.361137 −0.180568 0.983562i \(-0.557794\pi\)
−0.180568 + 0.983562i \(0.557794\pi\)
\(180\) 0 0
\(181\) −18.4553 −1.37177 −0.685884 0.727711i \(-0.740584\pi\)
−0.685884 + 0.727711i \(0.740584\pi\)
\(182\) 5.51611 0.408881
\(183\) 0 0
\(184\) −1.19292 −0.0879429
\(185\) 0 0
\(186\) 0 0
\(187\) −19.9298 −1.45741
\(188\) 22.6664 1.65311
\(189\) 0 0
\(190\) 0 0
\(191\) −0.201771 −0.0145996 −0.00729980 0.999973i \(-0.502324\pi\)
−0.00729980 + 0.999973i \(0.502324\pi\)
\(192\) 0 0
\(193\) −21.4027 −1.54060 −0.770298 0.637684i \(-0.779893\pi\)
−0.770298 + 0.637684i \(0.779893\pi\)
\(194\) −0.760415 −0.0545946
\(195\) 0 0
\(196\) 2.29250 0.163750
\(197\) −1.13408 −0.0807997 −0.0403999 0.999184i \(-0.512863\pi\)
−0.0403999 + 0.999184i \(0.512863\pi\)
\(198\) 0 0
\(199\) 13.2595 0.939942 0.469971 0.882682i \(-0.344264\pi\)
0.469971 + 0.882682i \(0.344264\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −3.45239 −0.242910
\(203\) −4.22052 −0.296222
\(204\) 0 0
\(205\) 0 0
\(206\) 6.87075 0.478708
\(207\) 0 0
\(208\) −8.86444 −0.614638
\(209\) 43.2143 2.98920
\(210\) 0 0
\(211\) −8.00814 −0.551303 −0.275652 0.961258i \(-0.588894\pi\)
−0.275652 + 0.961258i \(0.588894\pi\)
\(212\) −3.56074 −0.244553
\(213\) 0 0
\(214\) 32.5511 2.22515
\(215\) 0 0
\(216\) 0 0
\(217\) −1.41712 −0.0962000
\(218\) 12.8018 0.867045
\(219\) 0 0
\(220\) 0 0
\(221\) −9.40011 −0.632319
\(222\) 0 0
\(223\) 20.7848 1.39185 0.695926 0.718114i \(-0.254994\pi\)
0.695926 + 0.718114i \(0.254994\pi\)
\(224\) −8.11008 −0.541878
\(225\) 0 0
\(226\) −19.6841 −1.30937
\(227\) 15.2668 1.01329 0.506647 0.862153i \(-0.330885\pi\)
0.506647 + 0.862153i \(0.330885\pi\)
\(228\) 0 0
\(229\) −12.2904 −0.812170 −0.406085 0.913835i \(-0.633106\pi\)
−0.406085 + 0.913835i \(0.633106\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.55764 −0.167917
\(233\) −19.3493 −1.26762 −0.633808 0.773490i \(-0.718509\pi\)
−0.633808 + 0.773490i \(0.718509\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 16.3259 1.06272
\(237\) 0 0
\(238\) −7.31492 −0.474156
\(239\) 22.9749 1.48612 0.743061 0.669224i \(-0.233373\pi\)
0.743061 + 0.669224i \(0.233373\pi\)
\(240\) 0 0
\(241\) −21.8943 −1.41033 −0.705167 0.709042i \(-0.749128\pi\)
−0.705167 + 0.709042i \(0.749128\pi\)
\(242\) 43.2261 2.77868
\(243\) 0 0
\(244\) −16.9997 −1.08829
\(245\) 0 0
\(246\) 0 0
\(247\) 20.3825 1.29691
\(248\) −0.858775 −0.0545323
\(249\) 0 0
\(250\) 0 0
\(251\) 16.4481 1.03819 0.519096 0.854716i \(-0.326269\pi\)
0.519096 + 0.854716i \(0.326269\pi\)
\(252\) 0 0
\(253\) −11.1118 −0.698591
\(254\) 37.6390 2.36168
\(255\) 0 0
\(256\) 10.3508 0.646925
\(257\) 12.8294 0.800276 0.400138 0.916455i \(-0.368962\pi\)
0.400138 + 0.916455i \(0.368962\pi\)
\(258\) 0 0
\(259\) 7.73719 0.480766
\(260\) 0 0
\(261\) 0 0
\(262\) −15.1490 −0.935907
\(263\) 24.5042 1.51099 0.755496 0.655153i \(-0.227396\pi\)
0.755496 + 0.655153i \(0.227396\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 15.8611 0.972509
\(267\) 0 0
\(268\) 3.75656 0.229468
\(269\) −4.79818 −0.292550 −0.146275 0.989244i \(-0.546728\pi\)
−0.146275 + 0.989244i \(0.546728\pi\)
\(270\) 0 0
\(271\) 18.0445 1.09613 0.548064 0.836437i \(-0.315365\pi\)
0.548064 + 0.836437i \(0.315365\pi\)
\(272\) 11.7551 0.712760
\(273\) 0 0
\(274\) −25.7301 −1.55441
\(275\) 0 0
\(276\) 0 0
\(277\) −3.55774 −0.213764 −0.106882 0.994272i \(-0.534087\pi\)
−0.106882 + 0.994272i \(0.534087\pi\)
\(278\) 32.7185 1.96233
\(279\) 0 0
\(280\) 0 0
\(281\) 18.5017 1.10372 0.551860 0.833937i \(-0.313918\pi\)
0.551860 + 0.833937i \(0.313918\pi\)
\(282\) 0 0
\(283\) 20.7504 1.23348 0.616742 0.787165i \(-0.288452\pi\)
0.616742 + 0.787165i \(0.288452\pi\)
\(284\) −34.5744 −2.05161
\(285\) 0 0
\(286\) 31.1373 1.84119
\(287\) −5.08612 −0.300224
\(288\) 0 0
\(289\) −4.53452 −0.266736
\(290\) 0 0
\(291\) 0 0
\(292\) 23.5521 1.37828
\(293\) −17.5663 −1.02623 −0.513116 0.858319i \(-0.671509\pi\)
−0.513116 + 0.858319i \(0.671509\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 4.68876 0.272528
\(297\) 0 0
\(298\) 30.2258 1.75093
\(299\) −5.24099 −0.303095
\(300\) 0 0
\(301\) 9.51820 0.548620
\(302\) −43.9014 −2.52624
\(303\) 0 0
\(304\) −25.4890 −1.46189
\(305\) 0 0
\(306\) 0 0
\(307\) 1.11832 0.0638256 0.0319128 0.999491i \(-0.489840\pi\)
0.0319128 + 0.999491i \(0.489840\pi\)
\(308\) 12.9407 0.737363
\(309\) 0 0
\(310\) 0 0
\(311\) 6.81298 0.386329 0.193164 0.981166i \(-0.438125\pi\)
0.193164 + 0.981166i \(0.438125\pi\)
\(312\) 0 0
\(313\) 25.0853 1.41791 0.708954 0.705255i \(-0.249168\pi\)
0.708954 + 0.705255i \(0.249168\pi\)
\(314\) 8.86149 0.500083
\(315\) 0 0
\(316\) −0.716450 −0.0403035
\(317\) −11.6886 −0.656499 −0.328249 0.944591i \(-0.606459\pi\)
−0.328249 + 0.944591i \(0.606459\pi\)
\(318\) 0 0
\(319\) −23.8239 −1.33388
\(320\) 0 0
\(321\) 0 0
\(322\) −4.07841 −0.227281
\(323\) −27.0293 −1.50395
\(324\) 0 0
\(325\) 0 0
\(326\) −22.4627 −1.24410
\(327\) 0 0
\(328\) −3.08220 −0.170186
\(329\) 9.88720 0.545099
\(330\) 0 0
\(331\) −0.294057 −0.0161628 −0.00808140 0.999967i \(-0.502572\pi\)
−0.00808140 + 0.999967i \(0.502572\pi\)
\(332\) −12.9712 −0.711887
\(333\) 0 0
\(334\) 44.8235 2.45263
\(335\) 0 0
\(336\) 0 0
\(337\) −17.6896 −0.963613 −0.481806 0.876278i \(-0.660019\pi\)
−0.481806 + 0.876278i \(0.660019\pi\)
\(338\) −12.2476 −0.666180
\(339\) 0 0
\(340\) 0 0
\(341\) −7.99932 −0.433188
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 5.76805 0.310992
\(345\) 0 0
\(346\) −4.35603 −0.234182
\(347\) −20.7630 −1.11462 −0.557309 0.830305i \(-0.688166\pi\)
−0.557309 + 0.830305i \(0.688166\pi\)
\(348\) 0 0
\(349\) 2.08491 0.111603 0.0558013 0.998442i \(-0.482229\pi\)
0.0558013 + 0.998442i \(0.482229\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −45.7797 −2.44007
\(353\) 9.47731 0.504426 0.252213 0.967672i \(-0.418842\pi\)
0.252213 + 0.967672i \(0.418842\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0.333293 0.0176645
\(357\) 0 0
\(358\) −10.0104 −0.529068
\(359\) 11.0842 0.585001 0.292501 0.956265i \(-0.405513\pi\)
0.292501 + 0.956265i \(0.405513\pi\)
\(360\) 0 0
\(361\) 39.6083 2.08465
\(362\) −38.2362 −2.00965
\(363\) 0 0
\(364\) 6.10361 0.319916
\(365\) 0 0
\(366\) 0 0
\(367\) −3.17535 −0.165752 −0.0828759 0.996560i \(-0.526411\pi\)
−0.0828759 + 0.996560i \(0.526411\pi\)
\(368\) 6.55403 0.341653
\(369\) 0 0
\(370\) 0 0
\(371\) −1.55322 −0.0806390
\(372\) 0 0
\(373\) 8.77299 0.454248 0.227124 0.973866i \(-0.427068\pi\)
0.227124 + 0.973866i \(0.427068\pi\)
\(374\) −41.2912 −2.13512
\(375\) 0 0
\(376\) 5.99166 0.308996
\(377\) −11.2368 −0.578726
\(378\) 0 0
\(379\) −34.8301 −1.78910 −0.894550 0.446968i \(-0.852504\pi\)
−0.894550 + 0.446968i \(0.852504\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −0.418035 −0.0213885
\(383\) 36.4660 1.86333 0.931663 0.363323i \(-0.118358\pi\)
0.931663 + 0.363323i \(0.118358\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −44.3427 −2.25699
\(387\) 0 0
\(388\) −0.841403 −0.0427158
\(389\) −9.17665 −0.465275 −0.232637 0.972564i \(-0.574735\pi\)
−0.232637 + 0.972564i \(0.574735\pi\)
\(390\) 0 0
\(391\) 6.95008 0.351481
\(392\) 0.606002 0.0306077
\(393\) 0 0
\(394\) −2.34962 −0.118372
\(395\) 0 0
\(396\) 0 0
\(397\) −15.4092 −0.773368 −0.386684 0.922212i \(-0.626380\pi\)
−0.386684 + 0.922212i \(0.626380\pi\)
\(398\) 27.4715 1.37702
\(399\) 0 0
\(400\) 0 0
\(401\) −9.05929 −0.452400 −0.226200 0.974081i \(-0.572630\pi\)
−0.226200 + 0.974081i \(0.572630\pi\)
\(402\) 0 0
\(403\) −3.77297 −0.187945
\(404\) −3.82009 −0.190057
\(405\) 0 0
\(406\) −8.74421 −0.433968
\(407\) 43.6749 2.16488
\(408\) 0 0
\(409\) −31.3284 −1.54909 −0.774544 0.632519i \(-0.782021\pi\)
−0.774544 + 0.632519i \(0.782021\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 7.60253 0.374550
\(413\) 7.12144 0.350423
\(414\) 0 0
\(415\) 0 0
\(416\) −21.5925 −1.05866
\(417\) 0 0
\(418\) 89.5328 4.37919
\(419\) 10.6205 0.518843 0.259421 0.965764i \(-0.416468\pi\)
0.259421 + 0.965764i \(0.416468\pi\)
\(420\) 0 0
\(421\) 13.6324 0.664404 0.332202 0.943208i \(-0.392208\pi\)
0.332202 + 0.943208i \(0.392208\pi\)
\(422\) −16.5915 −0.807664
\(423\) 0 0
\(424\) −0.941253 −0.0457113
\(425\) 0 0
\(426\) 0 0
\(427\) −7.41536 −0.358855
\(428\) 36.0179 1.74099
\(429\) 0 0
\(430\) 0 0
\(431\) −30.1719 −1.45333 −0.726664 0.686993i \(-0.758930\pi\)
−0.726664 + 0.686993i \(0.758930\pi\)
\(432\) 0 0
\(433\) −34.7562 −1.67027 −0.835137 0.550042i \(-0.814612\pi\)
−0.835137 + 0.550042i \(0.814612\pi\)
\(434\) −2.93603 −0.140934
\(435\) 0 0
\(436\) 14.1652 0.678391
\(437\) −15.0701 −0.720899
\(438\) 0 0
\(439\) 33.1711 1.58317 0.791586 0.611058i \(-0.209256\pi\)
0.791586 + 0.611058i \(0.209256\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −19.4755 −0.926353
\(443\) 21.5802 1.02531 0.512654 0.858595i \(-0.328662\pi\)
0.512654 + 0.858595i \(0.328662\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 43.0626 2.03907
\(447\) 0 0
\(448\) −10.1438 −0.479251
\(449\) −37.4583 −1.76777 −0.883883 0.467707i \(-0.845080\pi\)
−0.883883 + 0.467707i \(0.845080\pi\)
\(450\) 0 0
\(451\) −28.7101 −1.35190
\(452\) −21.7806 −1.02447
\(453\) 0 0
\(454\) 31.6303 1.48448
\(455\) 0 0
\(456\) 0 0
\(457\) 10.6567 0.498499 0.249250 0.968439i \(-0.419816\pi\)
0.249250 + 0.968439i \(0.419816\pi\)
\(458\) −25.4636 −1.18984
\(459\) 0 0
\(460\) 0 0
\(461\) −28.6007 −1.33207 −0.666033 0.745922i \(-0.732009\pi\)
−0.666033 + 0.745922i \(0.732009\pi\)
\(462\) 0 0
\(463\) −5.04199 −0.234321 −0.117161 0.993113i \(-0.537379\pi\)
−0.117161 + 0.993113i \(0.537379\pi\)
\(464\) 14.0520 0.652349
\(465\) 0 0
\(466\) −40.0886 −1.85707
\(467\) −18.2071 −0.842522 −0.421261 0.906939i \(-0.638412\pi\)
−0.421261 + 0.906939i \(0.638412\pi\)
\(468\) 0 0
\(469\) 1.63863 0.0756651
\(470\) 0 0
\(471\) 0 0
\(472\) 4.31561 0.198642
\(473\) 53.7283 2.47043
\(474\) 0 0
\(475\) 0 0
\(476\) −8.09400 −0.370988
\(477\) 0 0
\(478\) 47.6001 2.17718
\(479\) 13.6088 0.621800 0.310900 0.950443i \(-0.399370\pi\)
0.310900 + 0.950443i \(0.399370\pi\)
\(480\) 0 0
\(481\) 20.5997 0.939267
\(482\) −45.3613 −2.06615
\(483\) 0 0
\(484\) 47.8299 2.17409
\(485\) 0 0
\(486\) 0 0
\(487\) −18.4643 −0.836695 −0.418348 0.908287i \(-0.637391\pi\)
−0.418348 + 0.908287i \(0.637391\pi\)
\(488\) −4.49373 −0.203421
\(489\) 0 0
\(490\) 0 0
\(491\) 16.6303 0.750513 0.375257 0.926921i \(-0.377555\pi\)
0.375257 + 0.926921i \(0.377555\pi\)
\(492\) 0 0
\(493\) 14.9012 0.671115
\(494\) 42.2292 1.89998
\(495\) 0 0
\(496\) 4.71822 0.211854
\(497\) −15.0816 −0.676501
\(498\) 0 0
\(499\) −21.2574 −0.951612 −0.475806 0.879550i \(-0.657844\pi\)
−0.475806 + 0.879550i \(0.657844\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 34.0777 1.52096
\(503\) −27.5789 −1.22968 −0.614841 0.788651i \(-0.710780\pi\)
−0.614841 + 0.788651i \(0.710780\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −23.0218 −1.02344
\(507\) 0 0
\(508\) 41.6478 1.84782
\(509\) 8.74846 0.387769 0.193884 0.981024i \(-0.437891\pi\)
0.193884 + 0.981024i \(0.437891\pi\)
\(510\) 0 0
\(511\) 10.2736 0.454476
\(512\) 31.0375 1.37168
\(513\) 0 0
\(514\) 26.5804 1.17241
\(515\) 0 0
\(516\) 0 0
\(517\) 55.8112 2.45457
\(518\) 16.0302 0.704326
\(519\) 0 0
\(520\) 0 0
\(521\) 12.2800 0.537997 0.268998 0.963141i \(-0.413307\pi\)
0.268998 + 0.963141i \(0.413307\pi\)
\(522\) 0 0
\(523\) −43.3065 −1.89366 −0.946831 0.321730i \(-0.895736\pi\)
−0.946831 + 0.321730i \(0.895736\pi\)
\(524\) −16.7624 −0.732270
\(525\) 0 0
\(526\) 50.7686 2.21362
\(527\) 5.00334 0.217949
\(528\) 0 0
\(529\) −19.1250 −0.831522
\(530\) 0 0
\(531\) 0 0
\(532\) 17.5504 0.760908
\(533\) −13.5414 −0.586544
\(534\) 0 0
\(535\) 0 0
\(536\) 0.993016 0.0428917
\(537\) 0 0
\(538\) −9.94102 −0.428588
\(539\) 5.64479 0.243138
\(540\) 0 0
\(541\) −23.7452 −1.02088 −0.510442 0.859912i \(-0.670518\pi\)
−0.510442 + 0.859912i \(0.670518\pi\)
\(542\) 37.3853 1.60584
\(543\) 0 0
\(544\) 28.6339 1.22767
\(545\) 0 0
\(546\) 0 0
\(547\) −10.3120 −0.440909 −0.220455 0.975397i \(-0.570754\pi\)
−0.220455 + 0.975397i \(0.570754\pi\)
\(548\) −28.4705 −1.21620
\(549\) 0 0
\(550\) 0 0
\(551\) −32.3106 −1.37648
\(552\) 0 0
\(553\) −0.312520 −0.0132897
\(554\) −7.37104 −0.313165
\(555\) 0 0
\(556\) 36.2032 1.53536
\(557\) −12.7410 −0.539852 −0.269926 0.962881i \(-0.586999\pi\)
−0.269926 + 0.962881i \(0.586999\pi\)
\(558\) 0 0
\(559\) 25.3415 1.07183
\(560\) 0 0
\(561\) 0 0
\(562\) 38.3325 1.61696
\(563\) 5.61906 0.236815 0.118408 0.992965i \(-0.462221\pi\)
0.118408 + 0.992965i \(0.462221\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 42.9914 1.80706
\(567\) 0 0
\(568\) −9.13946 −0.383483
\(569\) −19.4497 −0.815375 −0.407687 0.913122i \(-0.633665\pi\)
−0.407687 + 0.913122i \(0.633665\pi\)
\(570\) 0 0
\(571\) −21.8140 −0.912889 −0.456445 0.889752i \(-0.650877\pi\)
−0.456445 + 0.889752i \(0.650877\pi\)
\(572\) 34.4536 1.44058
\(573\) 0 0
\(574\) −10.5376 −0.439830
\(575\) 0 0
\(576\) 0 0
\(577\) −12.6085 −0.524897 −0.262448 0.964946i \(-0.584530\pi\)
−0.262448 + 0.964946i \(0.584530\pi\)
\(578\) −9.39477 −0.390771
\(579\) 0 0
\(580\) 0 0
\(581\) −5.65811 −0.234738
\(582\) 0 0
\(583\) −8.76759 −0.363116
\(584\) 6.22580 0.257625
\(585\) 0 0
\(586\) −36.3944 −1.50344
\(587\) −44.3430 −1.83023 −0.915115 0.403193i \(-0.867900\pi\)
−0.915115 + 0.403193i \(0.867900\pi\)
\(588\) 0 0
\(589\) −10.8489 −0.447020
\(590\) 0 0
\(591\) 0 0
\(592\) −25.7606 −1.05876
\(593\) −13.0923 −0.537636 −0.268818 0.963191i \(-0.586633\pi\)
−0.268818 + 0.963191i \(0.586633\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 33.4450 1.36996
\(597\) 0 0
\(598\) −10.8585 −0.444036
\(599\) −1.43860 −0.0587794 −0.0293897 0.999568i \(-0.509356\pi\)
−0.0293897 + 0.999568i \(0.509356\pi\)
\(600\) 0 0
\(601\) 6.23535 0.254345 0.127173 0.991881i \(-0.459410\pi\)
0.127173 + 0.991881i \(0.459410\pi\)
\(602\) 19.7201 0.803732
\(603\) 0 0
\(604\) −48.5772 −1.97658
\(605\) 0 0
\(606\) 0 0
\(607\) −28.1334 −1.14190 −0.570949 0.820985i \(-0.693425\pi\)
−0.570949 + 0.820985i \(0.693425\pi\)
\(608\) −62.0876 −2.51798
\(609\) 0 0
\(610\) 0 0
\(611\) 26.3240 1.06495
\(612\) 0 0
\(613\) 36.2031 1.46223 0.731114 0.682255i \(-0.239001\pi\)
0.731114 + 0.682255i \(0.239001\pi\)
\(614\) 2.31696 0.0935050
\(615\) 0 0
\(616\) 3.42076 0.137826
\(617\) −9.37570 −0.377451 −0.188726 0.982030i \(-0.560436\pi\)
−0.188726 + 0.982030i \(0.560436\pi\)
\(618\) 0 0
\(619\) 1.86560 0.0749846 0.0374923 0.999297i \(-0.488063\pi\)
0.0374923 + 0.999297i \(0.488063\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 14.1154 0.565974
\(623\) 0.145384 0.00582470
\(624\) 0 0
\(625\) 0 0
\(626\) 51.9727 2.07725
\(627\) 0 0
\(628\) 9.80528 0.391273
\(629\) −27.3173 −1.08921
\(630\) 0 0
\(631\) −28.5504 −1.13657 −0.568286 0.822831i \(-0.692393\pi\)
−0.568286 + 0.822831i \(0.692393\pi\)
\(632\) −0.189388 −0.00753343
\(633\) 0 0
\(634\) −24.2169 −0.961776
\(635\) 0 0
\(636\) 0 0
\(637\) 2.66243 0.105489
\(638\) −49.3593 −1.95415
\(639\) 0 0
\(640\) 0 0
\(641\) −15.5304 −0.613415 −0.306708 0.951804i \(-0.599227\pi\)
−0.306708 + 0.951804i \(0.599227\pi\)
\(642\) 0 0
\(643\) −27.3884 −1.08009 −0.540047 0.841635i \(-0.681593\pi\)
−0.540047 + 0.841635i \(0.681593\pi\)
\(644\) −4.51278 −0.177828
\(645\) 0 0
\(646\) −56.0001 −2.20330
\(647\) 35.1556 1.38211 0.691055 0.722802i \(-0.257146\pi\)
0.691055 + 0.722802i \(0.257146\pi\)
\(648\) 0 0
\(649\) 40.1990 1.57795
\(650\) 0 0
\(651\) 0 0
\(652\) −24.8551 −0.973402
\(653\) −36.3322 −1.42179 −0.710895 0.703298i \(-0.751710\pi\)
−0.710895 + 0.703298i \(0.751710\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 16.9340 0.661162
\(657\) 0 0
\(658\) 20.4846 0.798574
\(659\) −27.1360 −1.05707 −0.528534 0.848912i \(-0.677258\pi\)
−0.528534 + 0.848912i \(0.677258\pi\)
\(660\) 0 0
\(661\) 24.7823 0.963918 0.481959 0.876194i \(-0.339925\pi\)
0.481959 + 0.876194i \(0.339925\pi\)
\(662\) −0.609236 −0.0236786
\(663\) 0 0
\(664\) −3.42883 −0.133064
\(665\) 0 0
\(666\) 0 0
\(667\) 8.30809 0.321690
\(668\) 49.5974 1.91898
\(669\) 0 0
\(670\) 0 0
\(671\) −41.8582 −1.61592
\(672\) 0 0
\(673\) 3.94512 0.152073 0.0760366 0.997105i \(-0.475773\pi\)
0.0760366 + 0.997105i \(0.475773\pi\)
\(674\) −36.6499 −1.41170
\(675\) 0 0
\(676\) −13.5520 −0.521231
\(677\) −48.4953 −1.86383 −0.931913 0.362683i \(-0.881861\pi\)
−0.931913 + 0.362683i \(0.881861\pi\)
\(678\) 0 0
\(679\) −0.367025 −0.0140851
\(680\) 0 0
\(681\) 0 0
\(682\) −16.5733 −0.634623
\(683\) −8.26648 −0.316308 −0.158154 0.987414i \(-0.550554\pi\)
−0.158154 + 0.987414i \(0.550554\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 2.07183 0.0791030
\(687\) 0 0
\(688\) −31.6904 −1.20819
\(689\) −4.13533 −0.157544
\(690\) 0 0
\(691\) −51.4752 −1.95821 −0.979105 0.203357i \(-0.934815\pi\)
−0.979105 + 0.203357i \(0.934815\pi\)
\(692\) −4.81997 −0.183228
\(693\) 0 0
\(694\) −43.0175 −1.63292
\(695\) 0 0
\(696\) 0 0
\(697\) 17.9573 0.680181
\(698\) 4.31958 0.163499
\(699\) 0 0
\(700\) 0 0
\(701\) 1.42968 0.0539983 0.0269992 0.999635i \(-0.491405\pi\)
0.0269992 + 0.999635i \(0.491405\pi\)
\(702\) 0 0
\(703\) 59.2329 2.23401
\(704\) −57.2598 −2.15806
\(705\) 0 0
\(706\) 19.6354 0.738988
\(707\) −1.66635 −0.0626694
\(708\) 0 0
\(709\) −23.0609 −0.866069 −0.433034 0.901377i \(-0.642557\pi\)
−0.433034 + 0.901377i \(0.642557\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0.0881033 0.00330181
\(713\) 2.78959 0.104471
\(714\) 0 0
\(715\) 0 0
\(716\) −11.0766 −0.413952
\(717\) 0 0
\(718\) 22.9646 0.857031
\(719\) 3.89005 0.145074 0.0725372 0.997366i \(-0.476890\pi\)
0.0725372 + 0.997366i \(0.476890\pi\)
\(720\) 0 0
\(721\) 3.31627 0.123504
\(722\) 82.0618 3.05402
\(723\) 0 0
\(724\) −42.3086 −1.57239
\(725\) 0 0
\(726\) 0 0
\(727\) −22.8374 −0.846994 −0.423497 0.905898i \(-0.639198\pi\)
−0.423497 + 0.905898i \(0.639198\pi\)
\(728\) 1.61344 0.0597980
\(729\) 0 0
\(730\) 0 0
\(731\) −33.6054 −1.24294
\(732\) 0 0
\(733\) −0.906984 −0.0335002 −0.0167501 0.999860i \(-0.505332\pi\)
−0.0167501 + 0.999860i \(0.505332\pi\)
\(734\) −6.57879 −0.242828
\(735\) 0 0
\(736\) 15.9647 0.588467
\(737\) 9.24975 0.340719
\(738\) 0 0
\(739\) −28.6839 −1.05515 −0.527577 0.849507i \(-0.676899\pi\)
−0.527577 + 0.849507i \(0.676899\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −3.21801 −0.118137
\(743\) 32.4052 1.18883 0.594416 0.804158i \(-0.297383\pi\)
0.594416 + 0.804158i \(0.297383\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 18.1762 0.665477
\(747\) 0 0
\(748\) −45.6889 −1.67055
\(749\) 15.7112 0.574076
\(750\) 0 0
\(751\) 21.8542 0.797471 0.398736 0.917066i \(-0.369449\pi\)
0.398736 + 0.917066i \(0.369449\pi\)
\(752\) −32.9190 −1.20043
\(753\) 0 0
\(754\) −23.2808 −0.847838
\(755\) 0 0
\(756\) 0 0
\(757\) −17.0985 −0.621456 −0.310728 0.950499i \(-0.600573\pi\)
−0.310728 + 0.950499i \(0.600573\pi\)
\(758\) −72.1621 −2.62105
\(759\) 0 0
\(760\) 0 0
\(761\) −11.3866 −0.412763 −0.206382 0.978472i \(-0.566169\pi\)
−0.206382 + 0.978472i \(0.566169\pi\)
\(762\) 0 0
\(763\) 6.17895 0.223693
\(764\) −0.462558 −0.0167348
\(765\) 0 0
\(766\) 75.5515 2.72979
\(767\) 18.9603 0.684618
\(768\) 0 0
\(769\) −12.7333 −0.459174 −0.229587 0.973288i \(-0.573738\pi\)
−0.229587 + 0.973288i \(0.573738\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −49.0655 −1.76591
\(773\) −19.4489 −0.699527 −0.349764 0.936838i \(-0.613738\pi\)
−0.349764 + 0.936838i \(0.613738\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.222418 −0.00798434
\(777\) 0 0
\(778\) −19.0125 −0.681631
\(779\) −38.9373 −1.39507
\(780\) 0 0
\(781\) −85.1323 −3.04627
\(782\) 14.3994 0.514922
\(783\) 0 0
\(784\) −3.32946 −0.118909
\(785\) 0 0
\(786\) 0 0
\(787\) 10.7453 0.383028 0.191514 0.981490i \(-0.438660\pi\)
0.191514 + 0.981490i \(0.438660\pi\)
\(788\) −2.59987 −0.0926165
\(789\) 0 0
\(790\) 0 0
\(791\) −9.50083 −0.337811
\(792\) 0 0
\(793\) −19.7429 −0.701090
\(794\) −31.9254 −1.13299
\(795\) 0 0
\(796\) 30.3974 1.07741
\(797\) 27.0668 0.958756 0.479378 0.877609i \(-0.340862\pi\)
0.479378 + 0.877609i \(0.340862\pi\)
\(798\) 0 0
\(799\) −34.9082 −1.23496
\(800\) 0 0
\(801\) 0 0
\(802\) −18.7694 −0.662769
\(803\) 57.9921 2.04650
\(804\) 0 0
\(805\) 0 0
\(806\) −7.81697 −0.275341
\(807\) 0 0
\(808\) −1.00981 −0.0355250
\(809\) −50.7467 −1.78416 −0.892080 0.451877i \(-0.850755\pi\)
−0.892080 + 0.451877i \(0.850755\pi\)
\(810\) 0 0
\(811\) 3.77490 0.132555 0.0662773 0.997801i \(-0.478888\pi\)
0.0662773 + 0.997801i \(0.478888\pi\)
\(812\) −9.67552 −0.339544
\(813\) 0 0
\(814\) 90.4870 3.17157
\(815\) 0 0
\(816\) 0 0
\(817\) 72.8675 2.54931
\(818\) −64.9072 −2.26943
\(819\) 0 0
\(820\) 0 0
\(821\) −18.8686 −0.658520 −0.329260 0.944239i \(-0.606799\pi\)
−0.329260 + 0.944239i \(0.606799\pi\)
\(822\) 0 0
\(823\) −12.1906 −0.424938 −0.212469 0.977168i \(-0.568150\pi\)
−0.212469 + 0.977168i \(0.568150\pi\)
\(824\) 2.00966 0.0700100
\(825\) 0 0
\(826\) 14.7544 0.513372
\(827\) 42.8315 1.48940 0.744698 0.667401i \(-0.232593\pi\)
0.744698 + 0.667401i \(0.232593\pi\)
\(828\) 0 0
\(829\) −0.686961 −0.0238592 −0.0119296 0.999929i \(-0.503797\pi\)
−0.0119296 + 0.999929i \(0.503797\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −27.0072 −0.936308
\(833\) −3.53065 −0.122330
\(834\) 0 0
\(835\) 0 0
\(836\) 99.0686 3.42636
\(837\) 0 0
\(838\) 22.0038 0.760109
\(839\) 5.32102 0.183702 0.0918510 0.995773i \(-0.470722\pi\)
0.0918510 + 0.995773i \(0.470722\pi\)
\(840\) 0 0
\(841\) −11.1872 −0.385767
\(842\) 28.2441 0.973357
\(843\) 0 0
\(844\) −18.3586 −0.631930
\(845\) 0 0
\(846\) 0 0
\(847\) 20.8637 0.716885
\(848\) 5.17137 0.177585
\(849\) 0 0
\(850\) 0 0
\(851\) −15.2307 −0.522101
\(852\) 0 0
\(853\) 1.59236 0.0545213 0.0272607 0.999628i \(-0.491322\pi\)
0.0272607 + 0.999628i \(0.491322\pi\)
\(854\) −15.3634 −0.525725
\(855\) 0 0
\(856\) 9.52104 0.325423
\(857\) 12.4779 0.426237 0.213118 0.977026i \(-0.431638\pi\)
0.213118 + 0.977026i \(0.431638\pi\)
\(858\) 0 0
\(859\) 9.79301 0.334133 0.167067 0.985946i \(-0.446570\pi\)
0.167067 + 0.985946i \(0.446570\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −62.5111 −2.12914
\(863\) −28.8405 −0.981742 −0.490871 0.871232i \(-0.663321\pi\)
−0.490871 + 0.871232i \(0.663321\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −72.0090 −2.44696
\(867\) 0 0
\(868\) −3.24873 −0.110269
\(869\) −1.76411 −0.0598433
\(870\) 0 0
\(871\) 4.36275 0.147826
\(872\) 3.74446 0.126803
\(873\) 0 0
\(874\) −31.2227 −1.05612
\(875\) 0 0
\(876\) 0 0
\(877\) 31.3594 1.05893 0.529466 0.848331i \(-0.322392\pi\)
0.529466 + 0.848331i \(0.322392\pi\)
\(878\) 68.7251 2.31936
\(879\) 0 0
\(880\) 0 0
\(881\) −44.6106 −1.50297 −0.751484 0.659751i \(-0.770662\pi\)
−0.751484 + 0.659751i \(0.770662\pi\)
\(882\) 0 0
\(883\) −5.27121 −0.177390 −0.0886952 0.996059i \(-0.528270\pi\)
−0.0886952 + 0.996059i \(0.528270\pi\)
\(884\) −21.5497 −0.724795
\(885\) 0 0
\(886\) 44.7107 1.50208
\(887\) 33.7405 1.13290 0.566448 0.824097i \(-0.308317\pi\)
0.566448 + 0.824097i \(0.308317\pi\)
\(888\) 0 0
\(889\) 18.1670 0.609302
\(890\) 0 0
\(891\) 0 0
\(892\) 47.6490 1.59541
\(893\) 75.6925 2.53295
\(894\) 0 0
\(895\) 0 0
\(896\) −4.79617 −0.160229
\(897\) 0 0
\(898\) −77.6074 −2.58979
\(899\) 5.98096 0.199476
\(900\) 0 0
\(901\) 5.48386 0.182694
\(902\) −59.4825 −1.98055
\(903\) 0 0
\(904\) −5.75752 −0.191492
\(905\) 0 0
\(906\) 0 0
\(907\) 22.3236 0.741243 0.370621 0.928784i \(-0.379145\pi\)
0.370621 + 0.928784i \(0.379145\pi\)
\(908\) 34.9991 1.16149
\(909\) 0 0
\(910\) 0 0
\(911\) −13.7738 −0.456347 −0.228173 0.973621i \(-0.573275\pi\)
−0.228173 + 0.973621i \(0.573275\pi\)
\(912\) 0 0
\(913\) −31.9389 −1.05702
\(914\) 22.0789 0.730305
\(915\) 0 0
\(916\) −28.1756 −0.930948
\(917\) −7.31187 −0.241459
\(918\) 0 0
\(919\) 24.5320 0.809237 0.404619 0.914486i \(-0.367404\pi\)
0.404619 + 0.914486i \(0.367404\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −59.2559 −1.95149
\(923\) −40.1536 −1.32167
\(924\) 0 0
\(925\) 0 0
\(926\) −10.4462 −0.343282
\(927\) 0 0
\(928\) 34.2287 1.12361
\(929\) −16.7756 −0.550391 −0.275195 0.961388i \(-0.588743\pi\)
−0.275195 + 0.961388i \(0.588743\pi\)
\(930\) 0 0
\(931\) 7.65560 0.250902
\(932\) −44.3582 −1.45300
\(933\) 0 0
\(934\) −37.7220 −1.23430
\(935\) 0 0
\(936\) 0 0
\(937\) 20.4645 0.668545 0.334272 0.942477i \(-0.391509\pi\)
0.334272 + 0.942477i \(0.391509\pi\)
\(938\) 3.39498 0.110850
\(939\) 0 0
\(940\) 0 0
\(941\) 9.23872 0.301174 0.150587 0.988597i \(-0.451884\pi\)
0.150587 + 0.988597i \(0.451884\pi\)
\(942\) 0 0
\(943\) 10.0120 0.326036
\(944\) −23.7105 −0.771711
\(945\) 0 0
\(946\) 111.316 3.61920
\(947\) −18.7089 −0.607957 −0.303978 0.952679i \(-0.598315\pi\)
−0.303978 + 0.952679i \(0.598315\pi\)
\(948\) 0 0
\(949\) 27.3526 0.887904
\(950\) 0 0
\(951\) 0 0
\(952\) −2.13958 −0.0693442
\(953\) 19.1469 0.620229 0.310114 0.950699i \(-0.399633\pi\)
0.310114 + 0.950699i \(0.399633\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 52.6698 1.70346
\(957\) 0 0
\(958\) 28.1951 0.910941
\(959\) −12.4190 −0.401031
\(960\) 0 0
\(961\) −28.9918 −0.935219
\(962\) 42.6792 1.37603
\(963\) 0 0
\(964\) −50.1925 −1.61659
\(965\) 0 0
\(966\) 0 0
\(967\) 1.09729 0.0352865 0.0176433 0.999844i \(-0.494384\pi\)
0.0176433 + 0.999844i \(0.494384\pi\)
\(968\) 12.6434 0.406376
\(969\) 0 0
\(970\) 0 0
\(971\) 5.47636 0.175745 0.0878724 0.996132i \(-0.471993\pi\)
0.0878724 + 0.996132i \(0.471993\pi\)
\(972\) 0 0
\(973\) 15.7921 0.506270
\(974\) −38.2549 −1.22576
\(975\) 0 0
\(976\) 24.6891 0.790280
\(977\) 12.2420 0.391656 0.195828 0.980638i \(-0.437261\pi\)
0.195828 + 0.980638i \(0.437261\pi\)
\(978\) 0 0
\(979\) 0.820665 0.0262286
\(980\) 0 0
\(981\) 0 0
\(982\) 34.4551 1.09951
\(983\) 12.6229 0.402610 0.201305 0.979529i \(-0.435482\pi\)
0.201305 + 0.979529i \(0.435482\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 30.8727 0.983188
\(987\) 0 0
\(988\) 46.7268 1.48658
\(989\) −18.7366 −0.595788
\(990\) 0 0
\(991\) −20.8040 −0.660861 −0.330431 0.943830i \(-0.607194\pi\)
−0.330431 + 0.943830i \(0.607194\pi\)
\(992\) 11.4929 0.364901
\(993\) 0 0
\(994\) −31.2465 −0.991079
\(995\) 0 0
\(996\) 0 0
\(997\) 36.4050 1.15296 0.576478 0.817113i \(-0.304427\pi\)
0.576478 + 0.817113i \(0.304427\pi\)
\(998\) −44.0418 −1.39412
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7875.2.a.r.1.6 6
3.2 odd 2 875.2.a.g.1.1 yes 6
5.4 even 2 7875.2.a.s.1.1 6
15.2 even 4 875.2.b.d.624.2 12
15.8 even 4 875.2.b.d.624.11 12
15.14 odd 2 875.2.a.f.1.6 6
21.20 even 2 6125.2.a.u.1.1 6
105.104 even 2 6125.2.a.r.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
875.2.a.f.1.6 6 15.14 odd 2
875.2.a.g.1.1 yes 6 3.2 odd 2
875.2.b.d.624.2 12 15.2 even 4
875.2.b.d.624.11 12 15.8 even 4
6125.2.a.r.1.6 6 105.104 even 2
6125.2.a.u.1.1 6 21.20 even 2
7875.2.a.r.1.6 6 1.1 even 1 trivial
7875.2.a.s.1.1 6 5.4 even 2