Properties

Label 6128.2.a.m.1.14
Level $6128$
Weight $2$
Character 6128.1
Self dual yes
Analytic conductor $48.932$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6128,2,Mod(1,6128)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6128, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6128.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6128 = 2^{4} \cdot 383 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6128.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.9323263586\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} - 19 x^{14} + 120 x^{13} + 105 x^{12} - 1092 x^{11} - 28 x^{10} + 4827 x^{9} + \cdots + 293 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1532)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(2.38050\) of defining polynomial
Character \(\chi\) \(=\) 6128.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.38050 q^{3} +4.04378 q^{5} +2.78993 q^{7} +2.66676 q^{9} -4.46988 q^{11} -4.31680 q^{13} +9.62621 q^{15} -2.15383 q^{17} +8.54424 q^{19} +6.64141 q^{21} +6.75020 q^{23} +11.3522 q^{25} -0.793271 q^{27} +2.42636 q^{29} -4.50352 q^{31} -10.6405 q^{33} +11.2819 q^{35} +5.66652 q^{37} -10.2761 q^{39} -3.29859 q^{41} +4.92655 q^{43} +10.7838 q^{45} +9.35379 q^{47} +0.783691 q^{49} -5.12718 q^{51} -12.5578 q^{53} -18.0752 q^{55} +20.3395 q^{57} -10.0714 q^{59} +5.19987 q^{61} +7.44007 q^{63} -17.4562 q^{65} -5.00463 q^{67} +16.0688 q^{69} +10.2827 q^{71} -5.99128 q^{73} +27.0238 q^{75} -12.4706 q^{77} +14.5735 q^{79} -9.88867 q^{81} +4.74526 q^{83} -8.70961 q^{85} +5.77595 q^{87} +7.15537 q^{89} -12.0435 q^{91} -10.7206 q^{93} +34.5511 q^{95} +8.19376 q^{97} -11.9201 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{3} - 3 q^{5} + 18 q^{7} + 15 q^{9} + 6 q^{11} - 14 q^{13} + 18 q^{15} - q^{17} + 18 q^{19} - 12 q^{21} + 20 q^{23} + 11 q^{25} + 20 q^{27} - 13 q^{29} + 19 q^{31} - 12 q^{33} + 22 q^{35} - 23 q^{37}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.38050 1.37438 0.687190 0.726478i \(-0.258844\pi\)
0.687190 + 0.726478i \(0.258844\pi\)
\(4\) 0 0
\(5\) 4.04378 1.80843 0.904217 0.427072i \(-0.140455\pi\)
0.904217 + 0.427072i \(0.140455\pi\)
\(6\) 0 0
\(7\) 2.78993 1.05449 0.527247 0.849712i \(-0.323224\pi\)
0.527247 + 0.849712i \(0.323224\pi\)
\(8\) 0 0
\(9\) 2.66676 0.888921
\(10\) 0 0
\(11\) −4.46988 −1.34772 −0.673859 0.738860i \(-0.735365\pi\)
−0.673859 + 0.738860i \(0.735365\pi\)
\(12\) 0 0
\(13\) −4.31680 −1.19726 −0.598632 0.801024i \(-0.704289\pi\)
−0.598632 + 0.801024i \(0.704289\pi\)
\(14\) 0 0
\(15\) 9.62621 2.48548
\(16\) 0 0
\(17\) −2.15383 −0.522380 −0.261190 0.965287i \(-0.584115\pi\)
−0.261190 + 0.965287i \(0.584115\pi\)
\(18\) 0 0
\(19\) 8.54424 1.96018 0.980091 0.198547i \(-0.0636222\pi\)
0.980091 + 0.198547i \(0.0636222\pi\)
\(20\) 0 0
\(21\) 6.64141 1.44927
\(22\) 0 0
\(23\) 6.75020 1.40751 0.703756 0.710441i \(-0.251505\pi\)
0.703756 + 0.710441i \(0.251505\pi\)
\(24\) 0 0
\(25\) 11.3522 2.27044
\(26\) 0 0
\(27\) −0.793271 −0.152665
\(28\) 0 0
\(29\) 2.42636 0.450564 0.225282 0.974294i \(-0.427670\pi\)
0.225282 + 0.974294i \(0.427670\pi\)
\(30\) 0 0
\(31\) −4.50352 −0.808856 −0.404428 0.914570i \(-0.632529\pi\)
−0.404428 + 0.914570i \(0.632529\pi\)
\(32\) 0 0
\(33\) −10.6405 −1.85228
\(34\) 0 0
\(35\) 11.2819 1.90698
\(36\) 0 0
\(37\) 5.66652 0.931571 0.465785 0.884898i \(-0.345772\pi\)
0.465785 + 0.884898i \(0.345772\pi\)
\(38\) 0 0
\(39\) −10.2761 −1.64550
\(40\) 0 0
\(41\) −3.29859 −0.515154 −0.257577 0.966258i \(-0.582924\pi\)
−0.257577 + 0.966258i \(0.582924\pi\)
\(42\) 0 0
\(43\) 4.92655 0.751291 0.375646 0.926763i \(-0.377421\pi\)
0.375646 + 0.926763i \(0.377421\pi\)
\(44\) 0 0
\(45\) 10.7838 1.60756
\(46\) 0 0
\(47\) 9.35379 1.36439 0.682195 0.731170i \(-0.261025\pi\)
0.682195 + 0.731170i \(0.261025\pi\)
\(48\) 0 0
\(49\) 0.783691 0.111956
\(50\) 0 0
\(51\) −5.12718 −0.717948
\(52\) 0 0
\(53\) −12.5578 −1.72494 −0.862472 0.506104i \(-0.831085\pi\)
−0.862472 + 0.506104i \(0.831085\pi\)
\(54\) 0 0
\(55\) −18.0752 −2.43726
\(56\) 0 0
\(57\) 20.3395 2.69404
\(58\) 0 0
\(59\) −10.0714 −1.31119 −0.655595 0.755113i \(-0.727582\pi\)
−0.655595 + 0.755113i \(0.727582\pi\)
\(60\) 0 0
\(61\) 5.19987 0.665775 0.332887 0.942967i \(-0.391977\pi\)
0.332887 + 0.942967i \(0.391977\pi\)
\(62\) 0 0
\(63\) 7.44007 0.937361
\(64\) 0 0
\(65\) −17.4562 −2.16517
\(66\) 0 0
\(67\) −5.00463 −0.611413 −0.305707 0.952126i \(-0.598893\pi\)
−0.305707 + 0.952126i \(0.598893\pi\)
\(68\) 0 0
\(69\) 16.0688 1.93446
\(70\) 0 0
\(71\) 10.2827 1.22033 0.610166 0.792274i \(-0.291103\pi\)
0.610166 + 0.792274i \(0.291103\pi\)
\(72\) 0 0
\(73\) −5.99128 −0.701226 −0.350613 0.936520i \(-0.614027\pi\)
−0.350613 + 0.936520i \(0.614027\pi\)
\(74\) 0 0
\(75\) 27.0238 3.12044
\(76\) 0 0
\(77\) −12.4706 −1.42116
\(78\) 0 0
\(79\) 14.5735 1.63964 0.819821 0.572620i \(-0.194073\pi\)
0.819821 + 0.572620i \(0.194073\pi\)
\(80\) 0 0
\(81\) −9.88867 −1.09874
\(82\) 0 0
\(83\) 4.74526 0.520860 0.260430 0.965493i \(-0.416136\pi\)
0.260430 + 0.965493i \(0.416136\pi\)
\(84\) 0 0
\(85\) −8.70961 −0.944690
\(86\) 0 0
\(87\) 5.77595 0.619247
\(88\) 0 0
\(89\) 7.15537 0.758467 0.379234 0.925301i \(-0.376188\pi\)
0.379234 + 0.925301i \(0.376188\pi\)
\(90\) 0 0
\(91\) −12.0435 −1.26251
\(92\) 0 0
\(93\) −10.7206 −1.11168
\(94\) 0 0
\(95\) 34.5511 3.54486
\(96\) 0 0
\(97\) 8.19376 0.831950 0.415975 0.909376i \(-0.363440\pi\)
0.415975 + 0.909376i \(0.363440\pi\)
\(98\) 0 0
\(99\) −11.9201 −1.19802
\(100\) 0 0
\(101\) −1.88995 −0.188057 −0.0940285 0.995570i \(-0.529974\pi\)
−0.0940285 + 0.995570i \(0.529974\pi\)
\(102\) 0 0
\(103\) −7.22991 −0.712384 −0.356192 0.934413i \(-0.615925\pi\)
−0.356192 + 0.934413i \(0.615925\pi\)
\(104\) 0 0
\(105\) 26.8564 2.62092
\(106\) 0 0
\(107\) −3.76456 −0.363934 −0.181967 0.983305i \(-0.558246\pi\)
−0.181967 + 0.983305i \(0.558246\pi\)
\(108\) 0 0
\(109\) −19.2306 −1.84195 −0.920977 0.389618i \(-0.872607\pi\)
−0.920977 + 0.389618i \(0.872607\pi\)
\(110\) 0 0
\(111\) 13.4891 1.28033
\(112\) 0 0
\(113\) −10.8173 −1.01761 −0.508803 0.860883i \(-0.669912\pi\)
−0.508803 + 0.860883i \(0.669912\pi\)
\(114\) 0 0
\(115\) 27.2963 2.54540
\(116\) 0 0
\(117\) −11.5119 −1.06427
\(118\) 0 0
\(119\) −6.00902 −0.550846
\(120\) 0 0
\(121\) 8.97981 0.816346
\(122\) 0 0
\(123\) −7.85229 −0.708017
\(124\) 0 0
\(125\) 25.6869 2.29750
\(126\) 0 0
\(127\) 19.6650 1.74499 0.872493 0.488627i \(-0.162502\pi\)
0.872493 + 0.488627i \(0.162502\pi\)
\(128\) 0 0
\(129\) 11.7276 1.03256
\(130\) 0 0
\(131\) 13.2426 1.15701 0.578504 0.815680i \(-0.303637\pi\)
0.578504 + 0.815680i \(0.303637\pi\)
\(132\) 0 0
\(133\) 23.8378 2.06700
\(134\) 0 0
\(135\) −3.20782 −0.276085
\(136\) 0 0
\(137\) −16.8269 −1.43762 −0.718810 0.695207i \(-0.755313\pi\)
−0.718810 + 0.695207i \(0.755313\pi\)
\(138\) 0 0
\(139\) −17.5665 −1.48997 −0.744986 0.667080i \(-0.767544\pi\)
−0.744986 + 0.667080i \(0.767544\pi\)
\(140\) 0 0
\(141\) 22.2667 1.87519
\(142\) 0 0
\(143\) 19.2956 1.61358
\(144\) 0 0
\(145\) 9.81169 0.814816
\(146\) 0 0
\(147\) 1.86557 0.153870
\(148\) 0 0
\(149\) 2.66547 0.218364 0.109182 0.994022i \(-0.465177\pi\)
0.109182 + 0.994022i \(0.465177\pi\)
\(150\) 0 0
\(151\) 17.3820 1.41453 0.707265 0.706949i \(-0.249929\pi\)
0.707265 + 0.706949i \(0.249929\pi\)
\(152\) 0 0
\(153\) −5.74374 −0.464354
\(154\) 0 0
\(155\) −18.2113 −1.46276
\(156\) 0 0
\(157\) 16.7488 1.33670 0.668351 0.743846i \(-0.267001\pi\)
0.668351 + 0.743846i \(0.267001\pi\)
\(158\) 0 0
\(159\) −29.8938 −2.37073
\(160\) 0 0
\(161\) 18.8325 1.48421
\(162\) 0 0
\(163\) 13.3462 1.04535 0.522677 0.852531i \(-0.324933\pi\)
0.522677 + 0.852531i \(0.324933\pi\)
\(164\) 0 0
\(165\) −43.0280 −3.34972
\(166\) 0 0
\(167\) −19.1412 −1.48119 −0.740593 0.671953i \(-0.765456\pi\)
−0.740593 + 0.671953i \(0.765456\pi\)
\(168\) 0 0
\(169\) 5.63474 0.433442
\(170\) 0 0
\(171\) 22.7855 1.74245
\(172\) 0 0
\(173\) −14.8116 −1.12610 −0.563052 0.826422i \(-0.690373\pi\)
−0.563052 + 0.826422i \(0.690373\pi\)
\(174\) 0 0
\(175\) 31.6718 2.39416
\(176\) 0 0
\(177\) −23.9750 −1.80207
\(178\) 0 0
\(179\) −8.71207 −0.651171 −0.325585 0.945513i \(-0.605561\pi\)
−0.325585 + 0.945513i \(0.605561\pi\)
\(180\) 0 0
\(181\) −18.5073 −1.37563 −0.687817 0.725884i \(-0.741431\pi\)
−0.687817 + 0.725884i \(0.741431\pi\)
\(182\) 0 0
\(183\) 12.3783 0.915028
\(184\) 0 0
\(185\) 22.9142 1.68469
\(186\) 0 0
\(187\) 9.62734 0.704021
\(188\) 0 0
\(189\) −2.21317 −0.160984
\(190\) 0 0
\(191\) −4.87908 −0.353038 −0.176519 0.984297i \(-0.556484\pi\)
−0.176519 + 0.984297i \(0.556484\pi\)
\(192\) 0 0
\(193\) 16.4546 1.18443 0.592213 0.805781i \(-0.298254\pi\)
0.592213 + 0.805781i \(0.298254\pi\)
\(194\) 0 0
\(195\) −41.5544 −2.97577
\(196\) 0 0
\(197\) −1.18437 −0.0843826 −0.0421913 0.999110i \(-0.513434\pi\)
−0.0421913 + 0.999110i \(0.513434\pi\)
\(198\) 0 0
\(199\) 9.04190 0.640963 0.320482 0.947255i \(-0.396155\pi\)
0.320482 + 0.947255i \(0.396155\pi\)
\(200\) 0 0
\(201\) −11.9135 −0.840314
\(202\) 0 0
\(203\) 6.76937 0.475117
\(204\) 0 0
\(205\) −13.3388 −0.931622
\(206\) 0 0
\(207\) 18.0012 1.25117
\(208\) 0 0
\(209\) −38.1917 −2.64178
\(210\) 0 0
\(211\) 7.82219 0.538502 0.269251 0.963070i \(-0.413224\pi\)
0.269251 + 0.963070i \(0.413224\pi\)
\(212\) 0 0
\(213\) 24.4779 1.67720
\(214\) 0 0
\(215\) 19.9219 1.35866
\(216\) 0 0
\(217\) −12.5645 −0.852933
\(218\) 0 0
\(219\) −14.2622 −0.963751
\(220\) 0 0
\(221\) 9.29763 0.625426
\(222\) 0 0
\(223\) −27.0520 −1.81153 −0.905767 0.423776i \(-0.860704\pi\)
−0.905767 + 0.423776i \(0.860704\pi\)
\(224\) 0 0
\(225\) 30.2736 2.01824
\(226\) 0 0
\(227\) −0.984948 −0.0653733 −0.0326867 0.999466i \(-0.510406\pi\)
−0.0326867 + 0.999466i \(0.510406\pi\)
\(228\) 0 0
\(229\) −3.00397 −0.198508 −0.0992540 0.995062i \(-0.531646\pi\)
−0.0992540 + 0.995062i \(0.531646\pi\)
\(230\) 0 0
\(231\) −29.6863 −1.95321
\(232\) 0 0
\(233\) −1.63612 −0.107186 −0.0535930 0.998563i \(-0.517067\pi\)
−0.0535930 + 0.998563i \(0.517067\pi\)
\(234\) 0 0
\(235\) 37.8247 2.46741
\(236\) 0 0
\(237\) 34.6920 2.25349
\(238\) 0 0
\(239\) −29.4506 −1.90500 −0.952500 0.304540i \(-0.901497\pi\)
−0.952500 + 0.304540i \(0.901497\pi\)
\(240\) 0 0
\(241\) 10.8878 0.701345 0.350672 0.936498i \(-0.385953\pi\)
0.350672 + 0.936498i \(0.385953\pi\)
\(242\) 0 0
\(243\) −21.1601 −1.35742
\(244\) 0 0
\(245\) 3.16908 0.202465
\(246\) 0 0
\(247\) −36.8837 −2.34686
\(248\) 0 0
\(249\) 11.2961 0.715860
\(250\) 0 0
\(251\) 7.70049 0.486050 0.243025 0.970020i \(-0.421860\pi\)
0.243025 + 0.970020i \(0.421860\pi\)
\(252\) 0 0
\(253\) −30.1725 −1.89693
\(254\) 0 0
\(255\) −20.7332 −1.29836
\(256\) 0 0
\(257\) 2.39675 0.149505 0.0747525 0.997202i \(-0.476183\pi\)
0.0747525 + 0.997202i \(0.476183\pi\)
\(258\) 0 0
\(259\) 15.8092 0.982335
\(260\) 0 0
\(261\) 6.47053 0.400516
\(262\) 0 0
\(263\) −1.27804 −0.0788074 −0.0394037 0.999223i \(-0.512546\pi\)
−0.0394037 + 0.999223i \(0.512546\pi\)
\(264\) 0 0
\(265\) −50.7810 −3.11945
\(266\) 0 0
\(267\) 17.0333 1.04242
\(268\) 0 0
\(269\) 11.0291 0.672458 0.336229 0.941780i \(-0.390848\pi\)
0.336229 + 0.941780i \(0.390848\pi\)
\(270\) 0 0
\(271\) −20.8958 −1.26933 −0.634666 0.772787i \(-0.718862\pi\)
−0.634666 + 0.772787i \(0.718862\pi\)
\(272\) 0 0
\(273\) −28.6696 −1.73516
\(274\) 0 0
\(275\) −50.7429 −3.05991
\(276\) 0 0
\(277\) −19.1837 −1.15264 −0.576318 0.817225i \(-0.695511\pi\)
−0.576318 + 0.817225i \(0.695511\pi\)
\(278\) 0 0
\(279\) −12.0098 −0.719009
\(280\) 0 0
\(281\) −8.84861 −0.527864 −0.263932 0.964541i \(-0.585019\pi\)
−0.263932 + 0.964541i \(0.585019\pi\)
\(282\) 0 0
\(283\) −17.9862 −1.06917 −0.534584 0.845115i \(-0.679532\pi\)
−0.534584 + 0.845115i \(0.679532\pi\)
\(284\) 0 0
\(285\) 82.2486 4.87199
\(286\) 0 0
\(287\) −9.20284 −0.543226
\(288\) 0 0
\(289\) −12.3610 −0.727120
\(290\) 0 0
\(291\) 19.5052 1.14342
\(292\) 0 0
\(293\) −3.80150 −0.222086 −0.111043 0.993816i \(-0.535419\pi\)
−0.111043 + 0.993816i \(0.535419\pi\)
\(294\) 0 0
\(295\) −40.7267 −2.37120
\(296\) 0 0
\(297\) 3.54583 0.205750
\(298\) 0 0
\(299\) −29.1392 −1.68516
\(300\) 0 0
\(301\) 13.7447 0.792232
\(302\) 0 0
\(303\) −4.49902 −0.258462
\(304\) 0 0
\(305\) 21.0271 1.20401
\(306\) 0 0
\(307\) 1.99827 0.114047 0.0570236 0.998373i \(-0.481839\pi\)
0.0570236 + 0.998373i \(0.481839\pi\)
\(308\) 0 0
\(309\) −17.2108 −0.979086
\(310\) 0 0
\(311\) −18.5645 −1.05270 −0.526348 0.850269i \(-0.676439\pi\)
−0.526348 + 0.850269i \(0.676439\pi\)
\(312\) 0 0
\(313\) −8.26229 −0.467012 −0.233506 0.972355i \(-0.575020\pi\)
−0.233506 + 0.972355i \(0.575020\pi\)
\(314\) 0 0
\(315\) 30.0860 1.69516
\(316\) 0 0
\(317\) 20.5266 1.15289 0.576443 0.817137i \(-0.304440\pi\)
0.576443 + 0.817137i \(0.304440\pi\)
\(318\) 0 0
\(319\) −10.8455 −0.607234
\(320\) 0 0
\(321\) −8.96153 −0.500184
\(322\) 0 0
\(323\) −18.4028 −1.02396
\(324\) 0 0
\(325\) −49.0051 −2.71831
\(326\) 0 0
\(327\) −45.7783 −2.53154
\(328\) 0 0
\(329\) 26.0964 1.43874
\(330\) 0 0
\(331\) −32.4095 −1.78139 −0.890694 0.454604i \(-0.849781\pi\)
−0.890694 + 0.454604i \(0.849781\pi\)
\(332\) 0 0
\(333\) 15.1113 0.828093
\(334\) 0 0
\(335\) −20.2376 −1.10570
\(336\) 0 0
\(337\) 4.34808 0.236855 0.118427 0.992963i \(-0.462215\pi\)
0.118427 + 0.992963i \(0.462215\pi\)
\(338\) 0 0
\(339\) −25.7505 −1.39858
\(340\) 0 0
\(341\) 20.1302 1.09011
\(342\) 0 0
\(343\) −17.3430 −0.936436
\(344\) 0 0
\(345\) 64.9788 3.49834
\(346\) 0 0
\(347\) 28.4894 1.52939 0.764696 0.644391i \(-0.222889\pi\)
0.764696 + 0.644391i \(0.222889\pi\)
\(348\) 0 0
\(349\) −2.91987 −0.156297 −0.0781485 0.996942i \(-0.524901\pi\)
−0.0781485 + 0.996942i \(0.524901\pi\)
\(350\) 0 0
\(351\) 3.42439 0.182780
\(352\) 0 0
\(353\) −2.59932 −0.138348 −0.0691740 0.997605i \(-0.522036\pi\)
−0.0691740 + 0.997605i \(0.522036\pi\)
\(354\) 0 0
\(355\) 41.5810 2.20689
\(356\) 0 0
\(357\) −14.3044 −0.757071
\(358\) 0 0
\(359\) −5.95711 −0.314404 −0.157202 0.987566i \(-0.550247\pi\)
−0.157202 + 0.987566i \(0.550247\pi\)
\(360\) 0 0
\(361\) 54.0040 2.84232
\(362\) 0 0
\(363\) 21.3764 1.12197
\(364\) 0 0
\(365\) −24.2274 −1.26812
\(366\) 0 0
\(367\) −14.5124 −0.757542 −0.378771 0.925490i \(-0.623653\pi\)
−0.378771 + 0.925490i \(0.623653\pi\)
\(368\) 0 0
\(369\) −8.79657 −0.457931
\(370\) 0 0
\(371\) −35.0353 −1.81894
\(372\) 0 0
\(373\) 7.97191 0.412770 0.206385 0.978471i \(-0.433830\pi\)
0.206385 + 0.978471i \(0.433830\pi\)
\(374\) 0 0
\(375\) 61.1475 3.15764
\(376\) 0 0
\(377\) −10.4741 −0.539444
\(378\) 0 0
\(379\) 20.9066 1.07390 0.536949 0.843615i \(-0.319577\pi\)
0.536949 + 0.843615i \(0.319577\pi\)
\(380\) 0 0
\(381\) 46.8124 2.39827
\(382\) 0 0
\(383\) −1.00000 −0.0510976
\(384\) 0 0
\(385\) −50.4285 −2.57008
\(386\) 0 0
\(387\) 13.1379 0.667839
\(388\) 0 0
\(389\) −26.9030 −1.36404 −0.682019 0.731334i \(-0.738898\pi\)
−0.682019 + 0.731334i \(0.738898\pi\)
\(390\) 0 0
\(391\) −14.5387 −0.735256
\(392\) 0 0
\(393\) 31.5239 1.59017
\(394\) 0 0
\(395\) 58.9319 2.96519
\(396\) 0 0
\(397\) −17.3967 −0.873116 −0.436558 0.899676i \(-0.643803\pi\)
−0.436558 + 0.899676i \(0.643803\pi\)
\(398\) 0 0
\(399\) 56.7458 2.84084
\(400\) 0 0
\(401\) 12.7831 0.638359 0.319180 0.947694i \(-0.396593\pi\)
0.319180 + 0.947694i \(0.396593\pi\)
\(402\) 0 0
\(403\) 19.4408 0.968415
\(404\) 0 0
\(405\) −39.9876 −1.98700
\(406\) 0 0
\(407\) −25.3287 −1.25550
\(408\) 0 0
\(409\) 13.0575 0.645652 0.322826 0.946458i \(-0.395367\pi\)
0.322826 + 0.946458i \(0.395367\pi\)
\(410\) 0 0
\(411\) −40.0564 −1.97584
\(412\) 0 0
\(413\) −28.0986 −1.38264
\(414\) 0 0
\(415\) 19.1888 0.941942
\(416\) 0 0
\(417\) −41.8170 −2.04779
\(418\) 0 0
\(419\) 20.7601 1.01420 0.507099 0.861888i \(-0.330718\pi\)
0.507099 + 0.861888i \(0.330718\pi\)
\(420\) 0 0
\(421\) −2.49579 −0.121637 −0.0608187 0.998149i \(-0.519371\pi\)
−0.0608187 + 0.998149i \(0.519371\pi\)
\(422\) 0 0
\(423\) 24.9443 1.21284
\(424\) 0 0
\(425\) −24.4506 −1.18603
\(426\) 0 0
\(427\) 14.5072 0.702055
\(428\) 0 0
\(429\) 45.9330 2.21767
\(430\) 0 0
\(431\) 5.76858 0.277863 0.138931 0.990302i \(-0.455633\pi\)
0.138931 + 0.990302i \(0.455633\pi\)
\(432\) 0 0
\(433\) 7.12656 0.342481 0.171240 0.985229i \(-0.445223\pi\)
0.171240 + 0.985229i \(0.445223\pi\)
\(434\) 0 0
\(435\) 23.3567 1.11987
\(436\) 0 0
\(437\) 57.6753 2.75898
\(438\) 0 0
\(439\) −4.09215 −0.195308 −0.0976538 0.995220i \(-0.531134\pi\)
−0.0976538 + 0.995220i \(0.531134\pi\)
\(440\) 0 0
\(441\) 2.08992 0.0995199
\(442\) 0 0
\(443\) 13.2905 0.631451 0.315726 0.948851i \(-0.397752\pi\)
0.315726 + 0.948851i \(0.397752\pi\)
\(444\) 0 0
\(445\) 28.9347 1.37164
\(446\) 0 0
\(447\) 6.34514 0.300115
\(448\) 0 0
\(449\) 30.3153 1.43067 0.715333 0.698784i \(-0.246275\pi\)
0.715333 + 0.698784i \(0.246275\pi\)
\(450\) 0 0
\(451\) 14.7443 0.694283
\(452\) 0 0
\(453\) 41.3779 1.94410
\(454\) 0 0
\(455\) −48.7015 −2.28316
\(456\) 0 0
\(457\) 3.35955 0.157153 0.0785765 0.996908i \(-0.474963\pi\)
0.0785765 + 0.996908i \(0.474963\pi\)
\(458\) 0 0
\(459\) 1.70857 0.0797492
\(460\) 0 0
\(461\) −28.0322 −1.30559 −0.652795 0.757534i \(-0.726404\pi\)
−0.652795 + 0.757534i \(0.726404\pi\)
\(462\) 0 0
\(463\) 25.6607 1.19255 0.596277 0.802779i \(-0.296646\pi\)
0.596277 + 0.802779i \(0.296646\pi\)
\(464\) 0 0
\(465\) −43.3518 −2.01039
\(466\) 0 0
\(467\) −1.23076 −0.0569526 −0.0284763 0.999594i \(-0.509066\pi\)
−0.0284763 + 0.999594i \(0.509066\pi\)
\(468\) 0 0
\(469\) −13.9626 −0.644731
\(470\) 0 0
\(471\) 39.8705 1.83714
\(472\) 0 0
\(473\) −22.0211 −1.01253
\(474\) 0 0
\(475\) 96.9958 4.45047
\(476\) 0 0
\(477\) −33.4886 −1.53334
\(478\) 0 0
\(479\) 11.6237 0.531100 0.265550 0.964097i \(-0.414447\pi\)
0.265550 + 0.964097i \(0.414447\pi\)
\(480\) 0 0
\(481\) −24.4612 −1.11534
\(482\) 0 0
\(483\) 44.8308 2.03987
\(484\) 0 0
\(485\) 33.1338 1.50453
\(486\) 0 0
\(487\) −1.67659 −0.0759737 −0.0379869 0.999278i \(-0.512095\pi\)
−0.0379869 + 0.999278i \(0.512095\pi\)
\(488\) 0 0
\(489\) 31.7706 1.43671
\(490\) 0 0
\(491\) 4.35654 0.196608 0.0983040 0.995156i \(-0.468658\pi\)
0.0983040 + 0.995156i \(0.468658\pi\)
\(492\) 0 0
\(493\) −5.22596 −0.235366
\(494\) 0 0
\(495\) −48.2023 −2.16653
\(496\) 0 0
\(497\) 28.6880 1.28683
\(498\) 0 0
\(499\) 0.650046 0.0291001 0.0145500 0.999894i \(-0.495368\pi\)
0.0145500 + 0.999894i \(0.495368\pi\)
\(500\) 0 0
\(501\) −45.5654 −2.03571
\(502\) 0 0
\(503\) 19.3179 0.861344 0.430672 0.902508i \(-0.358277\pi\)
0.430672 + 0.902508i \(0.358277\pi\)
\(504\) 0 0
\(505\) −7.64254 −0.340089
\(506\) 0 0
\(507\) 13.4135 0.595713
\(508\) 0 0
\(509\) −22.3434 −0.990355 −0.495177 0.868792i \(-0.664897\pi\)
−0.495177 + 0.868792i \(0.664897\pi\)
\(510\) 0 0
\(511\) −16.7152 −0.739438
\(512\) 0 0
\(513\) −6.77790 −0.299252
\(514\) 0 0
\(515\) −29.2362 −1.28830
\(516\) 0 0
\(517\) −41.8103 −1.83882
\(518\) 0 0
\(519\) −35.2589 −1.54769
\(520\) 0 0
\(521\) −31.6603 −1.38706 −0.693532 0.720426i \(-0.743946\pi\)
−0.693532 + 0.720426i \(0.743946\pi\)
\(522\) 0 0
\(523\) −39.5563 −1.72968 −0.864839 0.502049i \(-0.832580\pi\)
−0.864839 + 0.502049i \(0.832580\pi\)
\(524\) 0 0
\(525\) 75.3945 3.29049
\(526\) 0 0
\(527\) 9.69980 0.422530
\(528\) 0 0
\(529\) 22.5651 0.981093
\(530\) 0 0
\(531\) −26.8581 −1.16554
\(532\) 0 0
\(533\) 14.2394 0.616775
\(534\) 0 0
\(535\) −15.2231 −0.658151
\(536\) 0 0
\(537\) −20.7391 −0.894956
\(538\) 0 0
\(539\) −3.50300 −0.150885
\(540\) 0 0
\(541\) 17.6660 0.759521 0.379760 0.925085i \(-0.376006\pi\)
0.379760 + 0.925085i \(0.376006\pi\)
\(542\) 0 0
\(543\) −44.0565 −1.89064
\(544\) 0 0
\(545\) −77.7642 −3.33105
\(546\) 0 0
\(547\) 12.0615 0.515713 0.257856 0.966183i \(-0.416984\pi\)
0.257856 + 0.966183i \(0.416984\pi\)
\(548\) 0 0
\(549\) 13.8668 0.591821
\(550\) 0 0
\(551\) 20.7314 0.883188
\(552\) 0 0
\(553\) 40.6589 1.72899
\(554\) 0 0
\(555\) 54.5472 2.31540
\(556\) 0 0
\(557\) 14.3543 0.608209 0.304105 0.952639i \(-0.401643\pi\)
0.304105 + 0.952639i \(0.401643\pi\)
\(558\) 0 0
\(559\) −21.2669 −0.899494
\(560\) 0 0
\(561\) 22.9178 0.967592
\(562\) 0 0
\(563\) −26.1327 −1.10136 −0.550682 0.834715i \(-0.685632\pi\)
−0.550682 + 0.834715i \(0.685632\pi\)
\(564\) 0 0
\(565\) −43.7428 −1.84027
\(566\) 0 0
\(567\) −27.5887 −1.15861
\(568\) 0 0
\(569\) −25.4846 −1.06837 −0.534186 0.845367i \(-0.679382\pi\)
−0.534186 + 0.845367i \(0.679382\pi\)
\(570\) 0 0
\(571\) −5.48714 −0.229630 −0.114815 0.993387i \(-0.536627\pi\)
−0.114815 + 0.993387i \(0.536627\pi\)
\(572\) 0 0
\(573\) −11.6146 −0.485209
\(574\) 0 0
\(575\) 76.6295 3.19567
\(576\) 0 0
\(577\) 16.7915 0.699038 0.349519 0.936929i \(-0.386345\pi\)
0.349519 + 0.936929i \(0.386345\pi\)
\(578\) 0 0
\(579\) 39.1701 1.62785
\(580\) 0 0
\(581\) 13.2389 0.549244
\(582\) 0 0
\(583\) 56.1318 2.32474
\(584\) 0 0
\(585\) −46.5515 −1.92467
\(586\) 0 0
\(587\) 9.38292 0.387274 0.193637 0.981073i \(-0.437972\pi\)
0.193637 + 0.981073i \(0.437972\pi\)
\(588\) 0 0
\(589\) −38.4792 −1.58551
\(590\) 0 0
\(591\) −2.81938 −0.115974
\(592\) 0 0
\(593\) −5.11281 −0.209958 −0.104979 0.994474i \(-0.533478\pi\)
−0.104979 + 0.994474i \(0.533478\pi\)
\(594\) 0 0
\(595\) −24.2992 −0.996169
\(596\) 0 0
\(597\) 21.5242 0.880927
\(598\) 0 0
\(599\) −41.0792 −1.67845 −0.839226 0.543782i \(-0.816992\pi\)
−0.839226 + 0.543782i \(0.816992\pi\)
\(600\) 0 0
\(601\) −2.58762 −0.105551 −0.0527756 0.998606i \(-0.516807\pi\)
−0.0527756 + 0.998606i \(0.516807\pi\)
\(602\) 0 0
\(603\) −13.3462 −0.543498
\(604\) 0 0
\(605\) 36.3124 1.47631
\(606\) 0 0
\(607\) −18.6836 −0.758344 −0.379172 0.925326i \(-0.623791\pi\)
−0.379172 + 0.925326i \(0.623791\pi\)
\(608\) 0 0
\(609\) 16.1145 0.652991
\(610\) 0 0
\(611\) −40.3784 −1.63354
\(612\) 0 0
\(613\) 12.1431 0.490456 0.245228 0.969465i \(-0.421137\pi\)
0.245228 + 0.969465i \(0.421137\pi\)
\(614\) 0 0
\(615\) −31.7530 −1.28040
\(616\) 0 0
\(617\) −4.43471 −0.178535 −0.0892673 0.996008i \(-0.528453\pi\)
−0.0892673 + 0.996008i \(0.528453\pi\)
\(618\) 0 0
\(619\) 4.16552 0.167426 0.0837132 0.996490i \(-0.473322\pi\)
0.0837132 + 0.996490i \(0.473322\pi\)
\(620\) 0 0
\(621\) −5.35474 −0.214878
\(622\) 0 0
\(623\) 19.9629 0.799798
\(624\) 0 0
\(625\) 47.1112 1.88445
\(626\) 0 0
\(627\) −90.9152 −3.63080
\(628\) 0 0
\(629\) −12.2047 −0.486634
\(630\) 0 0
\(631\) −1.02429 −0.0407762 −0.0203881 0.999792i \(-0.506490\pi\)
−0.0203881 + 0.999792i \(0.506490\pi\)
\(632\) 0 0
\(633\) 18.6207 0.740106
\(634\) 0 0
\(635\) 79.5210 3.15569
\(636\) 0 0
\(637\) −3.38304 −0.134041
\(638\) 0 0
\(639\) 27.4215 1.08478
\(640\) 0 0
\(641\) 24.1346 0.953260 0.476630 0.879104i \(-0.341858\pi\)
0.476630 + 0.879104i \(0.341858\pi\)
\(642\) 0 0
\(643\) −8.95871 −0.353297 −0.176649 0.984274i \(-0.556526\pi\)
−0.176649 + 0.984274i \(0.556526\pi\)
\(644\) 0 0
\(645\) 47.4240 1.86732
\(646\) 0 0
\(647\) −25.2632 −0.993199 −0.496600 0.867980i \(-0.665418\pi\)
−0.496600 + 0.867980i \(0.665418\pi\)
\(648\) 0 0
\(649\) 45.0181 1.76711
\(650\) 0 0
\(651\) −29.9097 −1.17225
\(652\) 0 0
\(653\) −13.2596 −0.518890 −0.259445 0.965758i \(-0.583540\pi\)
−0.259445 + 0.965758i \(0.583540\pi\)
\(654\) 0 0
\(655\) 53.5500 2.09237
\(656\) 0 0
\(657\) −15.9773 −0.623334
\(658\) 0 0
\(659\) −13.0807 −0.509553 −0.254776 0.967000i \(-0.582002\pi\)
−0.254776 + 0.967000i \(0.582002\pi\)
\(660\) 0 0
\(661\) −32.5761 −1.26706 −0.633531 0.773717i \(-0.718395\pi\)
−0.633531 + 0.773717i \(0.718395\pi\)
\(662\) 0 0
\(663\) 22.1330 0.859574
\(664\) 0 0
\(665\) 96.3949 3.73803
\(666\) 0 0
\(667\) 16.3784 0.634175
\(668\) 0 0
\(669\) −64.3971 −2.48974
\(670\) 0 0
\(671\) −23.2428 −0.897277
\(672\) 0 0
\(673\) −5.54244 −0.213645 −0.106823 0.994278i \(-0.534068\pi\)
−0.106823 + 0.994278i \(0.534068\pi\)
\(674\) 0 0
\(675\) −9.00536 −0.346617
\(676\) 0 0
\(677\) 8.88977 0.341661 0.170831 0.985300i \(-0.445355\pi\)
0.170831 + 0.985300i \(0.445355\pi\)
\(678\) 0 0
\(679\) 22.8600 0.877286
\(680\) 0 0
\(681\) −2.34467 −0.0898478
\(682\) 0 0
\(683\) 9.44506 0.361405 0.180703 0.983538i \(-0.442163\pi\)
0.180703 + 0.983538i \(0.442163\pi\)
\(684\) 0 0
\(685\) −68.0444 −2.59984
\(686\) 0 0
\(687\) −7.15094 −0.272826
\(688\) 0 0
\(689\) 54.2094 2.06521
\(690\) 0 0
\(691\) −48.3900 −1.84084 −0.920422 0.390927i \(-0.872154\pi\)
−0.920422 + 0.390927i \(0.872154\pi\)
\(692\) 0 0
\(693\) −33.2562 −1.26330
\(694\) 0 0
\(695\) −71.0351 −2.69452
\(696\) 0 0
\(697\) 7.10460 0.269106
\(698\) 0 0
\(699\) −3.89479 −0.147314
\(700\) 0 0
\(701\) 37.9341 1.43275 0.716376 0.697714i \(-0.245799\pi\)
0.716376 + 0.697714i \(0.245799\pi\)
\(702\) 0 0
\(703\) 48.4161 1.82605
\(704\) 0 0
\(705\) 90.0416 3.39116
\(706\) 0 0
\(707\) −5.27282 −0.198305
\(708\) 0 0
\(709\) −25.7664 −0.967677 −0.483839 0.875157i \(-0.660758\pi\)
−0.483839 + 0.875157i \(0.660758\pi\)
\(710\) 0 0
\(711\) 38.8639 1.45751
\(712\) 0 0
\(713\) −30.3996 −1.13848
\(714\) 0 0
\(715\) 78.0271 2.91805
\(716\) 0 0
\(717\) −70.1070 −2.61819
\(718\) 0 0
\(719\) −38.0635 −1.41953 −0.709765 0.704438i \(-0.751199\pi\)
−0.709765 + 0.704438i \(0.751199\pi\)
\(720\) 0 0
\(721\) −20.1709 −0.751204
\(722\) 0 0
\(723\) 25.9184 0.963914
\(724\) 0 0
\(725\) 27.5445 1.02298
\(726\) 0 0
\(727\) −23.1162 −0.857332 −0.428666 0.903463i \(-0.641016\pi\)
−0.428666 + 0.903463i \(0.641016\pi\)
\(728\) 0 0
\(729\) −20.7056 −0.766873
\(730\) 0 0
\(731\) −10.6109 −0.392459
\(732\) 0 0
\(733\) −18.1098 −0.668900 −0.334450 0.942414i \(-0.608550\pi\)
−0.334450 + 0.942414i \(0.608550\pi\)
\(734\) 0 0
\(735\) 7.54397 0.278264
\(736\) 0 0
\(737\) 22.3701 0.824013
\(738\) 0 0
\(739\) 18.6316 0.685374 0.342687 0.939450i \(-0.388663\pi\)
0.342687 + 0.939450i \(0.388663\pi\)
\(740\) 0 0
\(741\) −87.8016 −3.22547
\(742\) 0 0
\(743\) 10.4833 0.384596 0.192298 0.981337i \(-0.438406\pi\)
0.192298 + 0.981337i \(0.438406\pi\)
\(744\) 0 0
\(745\) 10.7786 0.394897
\(746\) 0 0
\(747\) 12.6545 0.463003
\(748\) 0 0
\(749\) −10.5029 −0.383766
\(750\) 0 0
\(751\) −0.549296 −0.0200441 −0.0100221 0.999950i \(-0.503190\pi\)
−0.0100221 + 0.999950i \(0.503190\pi\)
\(752\) 0 0
\(753\) 18.3310 0.668018
\(754\) 0 0
\(755\) 70.2892 2.55809
\(756\) 0 0
\(757\) 11.3745 0.413415 0.206708 0.978403i \(-0.433725\pi\)
0.206708 + 0.978403i \(0.433725\pi\)
\(758\) 0 0
\(759\) −71.8256 −2.60711
\(760\) 0 0
\(761\) 0.184189 0.00667684 0.00333842 0.999994i \(-0.498937\pi\)
0.00333842 + 0.999994i \(0.498937\pi\)
\(762\) 0 0
\(763\) −53.6518 −1.94233
\(764\) 0 0
\(765\) −23.2265 −0.839754
\(766\) 0 0
\(767\) 43.4763 1.56984
\(768\) 0 0
\(769\) −7.87222 −0.283879 −0.141940 0.989875i \(-0.545334\pi\)
−0.141940 + 0.989875i \(0.545334\pi\)
\(770\) 0 0
\(771\) 5.70545 0.205477
\(772\) 0 0
\(773\) −16.8402 −0.605701 −0.302850 0.953038i \(-0.597938\pi\)
−0.302850 + 0.953038i \(0.597938\pi\)
\(774\) 0 0
\(775\) −51.1248 −1.83646
\(776\) 0 0
\(777\) 37.6337 1.35010
\(778\) 0 0
\(779\) −28.1840 −1.00980
\(780\) 0 0
\(781\) −45.9624 −1.64466
\(782\) 0 0
\(783\) −1.92476 −0.0687855
\(784\) 0 0
\(785\) 67.7286 2.41734
\(786\) 0 0
\(787\) 20.4008 0.727212 0.363606 0.931553i \(-0.381545\pi\)
0.363606 + 0.931553i \(0.381545\pi\)
\(788\) 0 0
\(789\) −3.04237 −0.108311
\(790\) 0 0
\(791\) −30.1794 −1.07306
\(792\) 0 0
\(793\) −22.4468 −0.797108
\(794\) 0 0
\(795\) −120.884 −4.28731
\(796\) 0 0
\(797\) 18.6999 0.662386 0.331193 0.943563i \(-0.392549\pi\)
0.331193 + 0.943563i \(0.392549\pi\)
\(798\) 0 0
\(799\) −20.1464 −0.712730
\(800\) 0 0
\(801\) 19.0817 0.674217
\(802\) 0 0
\(803\) 26.7803 0.945056
\(804\) 0 0
\(805\) 76.1548 2.68410
\(806\) 0 0
\(807\) 26.2548 0.924213
\(808\) 0 0
\(809\) −13.3498 −0.469353 −0.234676 0.972074i \(-0.575403\pi\)
−0.234676 + 0.972074i \(0.575403\pi\)
\(810\) 0 0
\(811\) 34.4575 1.20997 0.604983 0.796238i \(-0.293180\pi\)
0.604983 + 0.796238i \(0.293180\pi\)
\(812\) 0 0
\(813\) −49.7425 −1.74454
\(814\) 0 0
\(815\) 53.9691 1.89046
\(816\) 0 0
\(817\) 42.0936 1.47267
\(818\) 0 0
\(819\) −32.1173 −1.12227
\(820\) 0 0
\(821\) 46.7732 1.63240 0.816198 0.577773i \(-0.196078\pi\)
0.816198 + 0.577773i \(0.196078\pi\)
\(822\) 0 0
\(823\) 46.6188 1.62503 0.812515 0.582940i \(-0.198098\pi\)
0.812515 + 0.582940i \(0.198098\pi\)
\(824\) 0 0
\(825\) −120.793 −4.20548
\(826\) 0 0
\(827\) −16.8462 −0.585799 −0.292899 0.956143i \(-0.594620\pi\)
−0.292899 + 0.956143i \(0.594620\pi\)
\(828\) 0 0
\(829\) 22.6075 0.785192 0.392596 0.919711i \(-0.371577\pi\)
0.392596 + 0.919711i \(0.371577\pi\)
\(830\) 0 0
\(831\) −45.6667 −1.58416
\(832\) 0 0
\(833\) −1.68793 −0.0584835
\(834\) 0 0
\(835\) −77.4027 −2.67863
\(836\) 0 0
\(837\) 3.57251 0.123484
\(838\) 0 0
\(839\) 28.6006 0.987402 0.493701 0.869632i \(-0.335644\pi\)
0.493701 + 0.869632i \(0.335644\pi\)
\(840\) 0 0
\(841\) −23.1128 −0.796992
\(842\) 0 0
\(843\) −21.0641 −0.725486
\(844\) 0 0
\(845\) 22.7857 0.783851
\(846\) 0 0
\(847\) 25.0530 0.860831
\(848\) 0 0
\(849\) −42.8161 −1.46944
\(850\) 0 0
\(851\) 38.2501 1.31120
\(852\) 0 0
\(853\) −12.7677 −0.437157 −0.218578 0.975819i \(-0.570142\pi\)
−0.218578 + 0.975819i \(0.570142\pi\)
\(854\) 0 0
\(855\) 92.1394 3.15110
\(856\) 0 0
\(857\) −9.77950 −0.334061 −0.167031 0.985952i \(-0.553418\pi\)
−0.167031 + 0.985952i \(0.553418\pi\)
\(858\) 0 0
\(859\) 18.7336 0.639181 0.319591 0.947556i \(-0.396455\pi\)
0.319591 + 0.947556i \(0.396455\pi\)
\(860\) 0 0
\(861\) −21.9073 −0.746599
\(862\) 0 0
\(863\) −51.9818 −1.76948 −0.884741 0.466083i \(-0.845665\pi\)
−0.884741 + 0.466083i \(0.845665\pi\)
\(864\) 0 0
\(865\) −59.8948 −2.03649
\(866\) 0 0
\(867\) −29.4254 −0.999339
\(868\) 0 0
\(869\) −65.1416 −2.20978
\(870\) 0 0
\(871\) 21.6040 0.732023
\(872\) 0 0
\(873\) 21.8508 0.739538
\(874\) 0 0
\(875\) 71.6645 2.42270
\(876\) 0 0
\(877\) 6.96991 0.235357 0.117679 0.993052i \(-0.462455\pi\)
0.117679 + 0.993052i \(0.462455\pi\)
\(878\) 0 0
\(879\) −9.04946 −0.305231
\(880\) 0 0
\(881\) −9.71126 −0.327181 −0.163590 0.986528i \(-0.552307\pi\)
−0.163590 + 0.986528i \(0.552307\pi\)
\(882\) 0 0
\(883\) 31.2027 1.05006 0.525028 0.851085i \(-0.324055\pi\)
0.525028 + 0.851085i \(0.324055\pi\)
\(884\) 0 0
\(885\) −96.9498 −3.25893
\(886\) 0 0
\(887\) 9.79707 0.328953 0.164477 0.986381i \(-0.447406\pi\)
0.164477 + 0.986381i \(0.447406\pi\)
\(888\) 0 0
\(889\) 54.8639 1.84008
\(890\) 0 0
\(891\) 44.2011 1.48079
\(892\) 0 0
\(893\) 79.9210 2.67446
\(894\) 0 0
\(895\) −35.2297 −1.17760
\(896\) 0 0
\(897\) −69.3658 −2.31606
\(898\) 0 0
\(899\) −10.9272 −0.364442
\(900\) 0 0
\(901\) 27.0473 0.901076
\(902\) 0 0
\(903\) 32.7192 1.08883
\(904\) 0 0
\(905\) −74.8393 −2.48774
\(906\) 0 0
\(907\) −58.2183 −1.93311 −0.966553 0.256466i \(-0.917442\pi\)
−0.966553 + 0.256466i \(0.917442\pi\)
\(908\) 0 0
\(909\) −5.04004 −0.167168
\(910\) 0 0
\(911\) 43.7554 1.44968 0.724841 0.688916i \(-0.241913\pi\)
0.724841 + 0.688916i \(0.241913\pi\)
\(912\) 0 0
\(913\) −21.2107 −0.701973
\(914\) 0 0
\(915\) 50.0550 1.65477
\(916\) 0 0
\(917\) 36.9458 1.22006
\(918\) 0 0
\(919\) 29.5558 0.974956 0.487478 0.873135i \(-0.337917\pi\)
0.487478 + 0.873135i \(0.337917\pi\)
\(920\) 0 0
\(921\) 4.75687 0.156744
\(922\) 0 0
\(923\) −44.3883 −1.46106
\(924\) 0 0
\(925\) 64.3274 2.11507
\(926\) 0 0
\(927\) −19.2804 −0.633253
\(928\) 0 0
\(929\) −5.71408 −0.187473 −0.0937364 0.995597i \(-0.529881\pi\)
−0.0937364 + 0.995597i \(0.529881\pi\)
\(930\) 0 0
\(931\) 6.69604 0.219454
\(932\) 0 0
\(933\) −44.1927 −1.44680
\(934\) 0 0
\(935\) 38.9309 1.27318
\(936\) 0 0
\(937\) 34.3809 1.12318 0.561588 0.827417i \(-0.310191\pi\)
0.561588 + 0.827417i \(0.310191\pi\)
\(938\) 0 0
\(939\) −19.6683 −0.641852
\(940\) 0 0
\(941\) −7.35681 −0.239825 −0.119913 0.992784i \(-0.538261\pi\)
−0.119913 + 0.992784i \(0.538261\pi\)
\(942\) 0 0
\(943\) −22.2662 −0.725086
\(944\) 0 0
\(945\) −8.94958 −0.291130
\(946\) 0 0
\(947\) 26.4564 0.859717 0.429859 0.902896i \(-0.358563\pi\)
0.429859 + 0.902896i \(0.358563\pi\)
\(948\) 0 0
\(949\) 25.8631 0.839553
\(950\) 0 0
\(951\) 48.8634 1.58450
\(952\) 0 0
\(953\) 31.7894 1.02976 0.514879 0.857263i \(-0.327837\pi\)
0.514879 + 0.857263i \(0.327837\pi\)
\(954\) 0 0
\(955\) −19.7300 −0.638446
\(956\) 0 0
\(957\) −25.8178 −0.834570
\(958\) 0 0
\(959\) −46.9458 −1.51596
\(960\) 0 0
\(961\) −10.7183 −0.345752
\(962\) 0 0
\(963\) −10.0392 −0.323509
\(964\) 0 0
\(965\) 66.5387 2.14196
\(966\) 0 0
\(967\) 6.40932 0.206110 0.103055 0.994676i \(-0.467138\pi\)
0.103055 + 0.994676i \(0.467138\pi\)
\(968\) 0 0
\(969\) −43.8078 −1.40731
\(970\) 0 0
\(971\) 17.4388 0.559639 0.279820 0.960053i \(-0.409725\pi\)
0.279820 + 0.960053i \(0.409725\pi\)
\(972\) 0 0
\(973\) −49.0093 −1.57116
\(974\) 0 0
\(975\) −116.656 −3.73600
\(976\) 0 0
\(977\) −24.7820 −0.792845 −0.396423 0.918068i \(-0.629748\pi\)
−0.396423 + 0.918068i \(0.629748\pi\)
\(978\) 0 0
\(979\) −31.9836 −1.02220
\(980\) 0 0
\(981\) −51.2833 −1.63735
\(982\) 0 0
\(983\) −32.3085 −1.03048 −0.515241 0.857045i \(-0.672298\pi\)
−0.515241 + 0.857045i \(0.672298\pi\)
\(984\) 0 0
\(985\) −4.78932 −0.152600
\(986\) 0 0
\(987\) 62.1224 1.97738
\(988\) 0 0
\(989\) 33.2552 1.05745
\(990\) 0 0
\(991\) 62.7375 1.99292 0.996461 0.0840547i \(-0.0267870\pi\)
0.996461 + 0.0840547i \(0.0267870\pi\)
\(992\) 0 0
\(993\) −77.1507 −2.44830
\(994\) 0 0
\(995\) 36.5635 1.15914
\(996\) 0 0
\(997\) 5.89546 0.186711 0.0933556 0.995633i \(-0.470241\pi\)
0.0933556 + 0.995633i \(0.470241\pi\)
\(998\) 0 0
\(999\) −4.49509 −0.142218
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6128.2.a.m.1.14 16
4.3 odd 2 1532.2.a.c.1.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1532.2.a.c.1.3 16 4.3 odd 2
6128.2.a.m.1.14 16 1.1 even 1 trivial