Properties

Label 616.2.bs.a.41.19
Level $616$
Weight $2$
Character 616.41
Analytic conductor $4.919$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [616,2,Mod(41,616)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(616, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("616.41");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 616.bs (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.91878476451\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 41.19
Character \(\chi\) \(=\) 616.41
Dual form 616.2.bs.a.601.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.74058 - 0.565549i) q^{3} +(2.00195 - 2.75545i) q^{5} +(2.13612 - 1.56108i) q^{7} +(0.282723 - 0.205410i) q^{9} +(1.95412 + 2.67981i) q^{11} +(-3.12180 + 2.26812i) q^{13} +(1.92622 - 5.92829i) q^{15} +(5.18566 + 3.76761i) q^{17} +(-1.35921 - 4.18322i) q^{19} +(2.83523 - 3.92527i) q^{21} -8.95339 q^{23} +(-2.03962 - 6.27729i) q^{25} +(-2.85128 + 3.92445i) q^{27} +(-2.95805 - 0.961130i) q^{29} +(-0.176454 - 0.242868i) q^{31} +(4.91687 + 3.55928i) q^{33} +(-0.0250589 - 9.01120i) q^{35} +(0.331607 - 1.02058i) q^{37} +(-4.15102 + 5.71338i) q^{39} +(0.131310 + 0.404129i) q^{41} +9.11292i q^{43} -1.19025i q^{45} +(-2.54609 + 0.827275i) q^{47} +(2.12606 - 6.66932i) q^{49} +(11.1568 + 3.62507i) q^{51} +(10.0478 - 7.30017i) q^{53} +(11.2962 - 0.0196264i) q^{55} +(-4.73163 - 6.51254i) q^{57} +(-3.66163 - 1.18974i) q^{59} +(8.45547 + 6.14326i) q^{61} +(0.283270 - 0.880135i) q^{63} +13.1427i q^{65} -1.32838 q^{67} +(-15.5841 + 5.06358i) q^{69} +(-12.9080 - 9.37823i) q^{71} +(-2.20202 + 6.77713i) q^{73} +(-7.10023 - 9.77263i) q^{75} +(8.35765 + 2.67388i) q^{77} +(4.31766 + 5.94275i) q^{79} +(-3.06739 + 9.44044i) q^{81} +(-0.928477 - 0.674578i) q^{83} +(20.7629 - 6.74628i) q^{85} -5.69230 q^{87} -3.59000i q^{89} +(-3.12784 + 9.71838i) q^{91} +(-0.444485 - 0.322937i) q^{93} +(-14.2478 - 4.62938i) q^{95} +(-1.20391 - 1.65704i) q^{97} +(1.10294 + 0.356248i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 24 q^{9} + 4 q^{11} + 12 q^{15} - 24 q^{23} + 36 q^{25} + 20 q^{29} - 30 q^{35} + 16 q^{37} - 60 q^{39} - 30 q^{49} + 60 q^{51} - 80 q^{57} + 40 q^{63} + 64 q^{67} - 24 q^{71} + 50 q^{77} - 8 q^{81}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/616\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(309\) \(353\) \(463\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.74058 0.565549i 1.00492 0.326520i 0.240093 0.970750i \(-0.422822\pi\)
0.764832 + 0.644230i \(0.222822\pi\)
\(4\) 0 0
\(5\) 2.00195 2.75545i 0.895301 1.23228i −0.0766420 0.997059i \(-0.524420\pi\)
0.971943 0.235217i \(-0.0755801\pi\)
\(6\) 0 0
\(7\) 2.13612 1.56108i 0.807379 0.590033i
\(8\) 0 0
\(9\) 0.282723 0.205410i 0.0942410 0.0684701i
\(10\) 0 0
\(11\) 1.95412 + 2.67981i 0.589190 + 0.807995i
\(12\) 0 0
\(13\) −3.12180 + 2.26812i −0.865833 + 0.629064i −0.929465 0.368909i \(-0.879731\pi\)
0.0636328 + 0.997973i \(0.479731\pi\)
\(14\) 0 0
\(15\) 1.92622 5.92829i 0.497347 1.53068i
\(16\) 0 0
\(17\) 5.18566 + 3.76761i 1.25771 + 0.913779i 0.998643 0.0520811i \(-0.0165854\pi\)
0.259066 + 0.965860i \(0.416585\pi\)
\(18\) 0 0
\(19\) −1.35921 4.18322i −0.311825 0.959697i −0.977042 0.213048i \(-0.931661\pi\)
0.665217 0.746650i \(-0.268339\pi\)
\(20\) 0 0
\(21\) 2.83523 3.92527i 0.618698 0.856564i
\(22\) 0 0
\(23\) −8.95339 −1.86691 −0.933455 0.358694i \(-0.883222\pi\)
−0.933455 + 0.358694i \(0.883222\pi\)
\(24\) 0 0
\(25\) −2.03962 6.27729i −0.407923 1.25546i
\(26\) 0 0
\(27\) −2.85128 + 3.92445i −0.548729 + 0.755261i
\(28\) 0 0
\(29\) −2.95805 0.961130i −0.549297 0.178477i 0.0212028 0.999775i \(-0.493250\pi\)
−0.570500 + 0.821298i \(0.693250\pi\)
\(30\) 0 0
\(31\) −0.176454 0.242868i −0.0316920 0.0436203i 0.792877 0.609382i \(-0.208582\pi\)
−0.824569 + 0.565761i \(0.808582\pi\)
\(32\) 0 0
\(33\) 4.91687 + 3.55928i 0.855918 + 0.619591i
\(34\) 0 0
\(35\) −0.0250589 9.01120i −0.00423572 1.52317i
\(36\) 0 0
\(37\) 0.331607 1.02058i 0.0545158 0.167783i −0.920091 0.391704i \(-0.871886\pi\)
0.974607 + 0.223921i \(0.0718858\pi\)
\(38\) 0 0
\(39\) −4.15102 + 5.71338i −0.664694 + 0.914873i
\(40\) 0 0
\(41\) 0.131310 + 0.404129i 0.0205071 + 0.0631144i 0.960786 0.277290i \(-0.0894362\pi\)
−0.940279 + 0.340404i \(0.889436\pi\)
\(42\) 0 0
\(43\) 9.11292i 1.38971i 0.719151 + 0.694854i \(0.244531\pi\)
−0.719151 + 0.694854i \(0.755469\pi\)
\(44\) 0 0
\(45\) 1.19025i 0.177432i
\(46\) 0 0
\(47\) −2.54609 + 0.827275i −0.371385 + 0.120670i −0.488762 0.872417i \(-0.662551\pi\)
0.117377 + 0.993087i \(0.462551\pi\)
\(48\) 0 0
\(49\) 2.12606 6.66932i 0.303723 0.952760i
\(50\) 0 0
\(51\) 11.1568 + 3.62507i 1.56227 + 0.507612i
\(52\) 0 0
\(53\) 10.0478 7.30017i 1.38017 1.00275i 0.383310 0.923620i \(-0.374784\pi\)
0.996864 0.0791352i \(-0.0252159\pi\)
\(54\) 0 0
\(55\) 11.2962 0.0196264i 1.52317 0.00264643i
\(56\) 0 0
\(57\) −4.73163 6.51254i −0.626720 0.862607i
\(58\) 0 0
\(59\) −3.66163 1.18974i −0.476703 0.154890i 0.0608034 0.998150i \(-0.480634\pi\)
−0.537507 + 0.843259i \(0.680634\pi\)
\(60\) 0 0
\(61\) 8.45547 + 6.14326i 1.08261 + 0.786564i 0.978137 0.207964i \(-0.0666837\pi\)
0.104475 + 0.994527i \(0.466684\pi\)
\(62\) 0 0
\(63\) 0.283270 0.880135i 0.0356886 0.110887i
\(64\) 0 0
\(65\) 13.1427i 1.63015i
\(66\) 0 0
\(67\) −1.32838 −0.162287 −0.0811435 0.996702i \(-0.525857\pi\)
−0.0811435 + 0.996702i \(0.525857\pi\)
\(68\) 0 0
\(69\) −15.5841 + 5.06358i −1.87610 + 0.609583i
\(70\) 0 0
\(71\) −12.9080 9.37823i −1.53190 1.11299i −0.955170 0.296056i \(-0.904328\pi\)
−0.576730 0.816935i \(-0.695672\pi\)
\(72\) 0 0
\(73\) −2.20202 + 6.77713i −0.257727 + 0.793203i 0.735553 + 0.677468i \(0.236923\pi\)
−0.993280 + 0.115736i \(0.963077\pi\)
\(74\) 0 0
\(75\) −7.10023 9.77263i −0.819864 1.12845i
\(76\) 0 0
\(77\) 8.35765 + 2.67388i 0.952443 + 0.304717i
\(78\) 0 0
\(79\) 4.31766 + 5.94275i 0.485774 + 0.668611i 0.979602 0.200949i \(-0.0644025\pi\)
−0.493827 + 0.869560i \(0.664403\pi\)
\(80\) 0 0
\(81\) −3.06739 + 9.44044i −0.340821 + 1.04894i
\(82\) 0 0
\(83\) −0.928477 0.674578i −0.101914 0.0740446i 0.535661 0.844433i \(-0.320062\pi\)
−0.637575 + 0.770388i \(0.720062\pi\)
\(84\) 0 0
\(85\) 20.7629 6.74628i 2.25205 0.731737i
\(86\) 0 0
\(87\) −5.69230 −0.610278
\(88\) 0 0
\(89\) 3.59000i 0.380539i −0.981732 0.190270i \(-0.939064\pi\)
0.981732 0.190270i \(-0.0609362\pi\)
\(90\) 0 0
\(91\) −3.12784 + 9.71838i −0.327887 + 1.01876i
\(92\) 0 0
\(93\) −0.444485 0.322937i −0.0460910 0.0334870i
\(94\) 0 0
\(95\) −14.2478 4.62938i −1.46179 0.474964i
\(96\) 0 0
\(97\) −1.20391 1.65704i −0.122238 0.168247i 0.743512 0.668722i \(-0.233158\pi\)
−0.865751 + 0.500476i \(0.833158\pi\)
\(98\) 0 0
\(99\) 1.10294 + 0.356248i 0.110849 + 0.0358043i
\(100\) 0 0
\(101\) 11.7244 8.51826i 1.16662 0.847599i 0.176020 0.984387i \(-0.443678\pi\)
0.990600 + 0.136788i \(0.0436778\pi\)
\(102\) 0 0
\(103\) −7.31257 2.37600i −0.720529 0.234114i −0.0742764 0.997238i \(-0.523665\pi\)
−0.646252 + 0.763124i \(0.723665\pi\)
\(104\) 0 0
\(105\) −5.13989 15.6705i −0.501602 1.52929i
\(106\) 0 0
\(107\) 4.00359 1.30085i 0.387042 0.125758i −0.109031 0.994038i \(-0.534775\pi\)
0.496073 + 0.868281i \(0.334775\pi\)
\(108\) 0 0
\(109\) 10.7133i 1.02615i 0.858344 + 0.513075i \(0.171494\pi\)
−0.858344 + 0.513075i \(0.828506\pi\)
\(110\) 0 0
\(111\) 1.96394i 0.186409i
\(112\) 0 0
\(113\) −1.38832 4.27282i −0.130603 0.401953i 0.864278 0.503015i \(-0.167776\pi\)
−0.994880 + 0.101062i \(0.967776\pi\)
\(114\) 0 0
\(115\) −17.9243 + 24.6706i −1.67145 + 2.30055i
\(116\) 0 0
\(117\) −0.416710 + 1.28250i −0.0385248 + 0.118567i
\(118\) 0 0
\(119\) 16.9588 0.0471599i 1.55461 0.00432314i
\(120\) 0 0
\(121\) −3.36281 + 10.4734i −0.305710 + 0.952125i
\(122\) 0 0
\(123\) 0.457109 + 0.629157i 0.0412162 + 0.0567292i
\(124\) 0 0
\(125\) −5.18385 1.68434i −0.463658 0.150652i
\(126\) 0 0
\(127\) 5.83622 8.03287i 0.517881 0.712802i −0.467343 0.884076i \(-0.654789\pi\)
0.985223 + 0.171275i \(0.0547885\pi\)
\(128\) 0 0
\(129\) 5.15380 + 15.8618i 0.453767 + 1.39655i
\(130\) 0 0
\(131\) −3.37722 −0.295069 −0.147534 0.989057i \(-0.547134\pi\)
−0.147534 + 0.989057i \(0.547134\pi\)
\(132\) 0 0
\(133\) −9.43379 6.81405i −0.818014 0.590853i
\(134\) 0 0
\(135\) 5.10551 + 15.7131i 0.439412 + 1.35237i
\(136\) 0 0
\(137\) 9.37496 + 6.81131i 0.800957 + 0.581930i 0.911195 0.411976i \(-0.135161\pi\)
−0.110238 + 0.993905i \(0.535161\pi\)
\(138\) 0 0
\(139\) 2.43146 7.48327i 0.206234 0.634722i −0.793427 0.608666i \(-0.791705\pi\)
0.999660 0.0260565i \(-0.00829498\pi\)
\(140\) 0 0
\(141\) −3.96381 + 2.87988i −0.333813 + 0.242529i
\(142\) 0 0
\(143\) −12.1785 3.93367i −1.01842 0.328950i
\(144\) 0 0
\(145\) −8.57023 + 6.22664i −0.711719 + 0.517094i
\(146\) 0 0
\(147\) −0.0712510 12.8109i −0.00587668 1.05662i
\(148\) 0 0
\(149\) −14.0868 + 19.3888i −1.15404 + 1.58839i −0.422879 + 0.906186i \(0.638980\pi\)
−0.731158 + 0.682209i \(0.761020\pi\)
\(150\) 0 0
\(151\) −6.30442 + 2.04843i −0.513047 + 0.166699i −0.554087 0.832458i \(-0.686933\pi\)
0.0410407 + 0.999157i \(0.486933\pi\)
\(152\) 0 0
\(153\) 2.24001 0.181094
\(154\) 0 0
\(155\) −1.02246 −0.0821261
\(156\) 0 0
\(157\) 4.24211 1.37835i 0.338557 0.110004i −0.134804 0.990872i \(-0.543040\pi\)
0.473361 + 0.880868i \(0.343040\pi\)
\(158\) 0 0
\(159\) 13.3604 18.3891i 1.05955 1.45835i
\(160\) 0 0
\(161\) −19.1256 + 13.9770i −1.50731 + 1.10154i
\(162\) 0 0
\(163\) −17.4850 + 12.7036i −1.36953 + 0.995023i −0.371758 + 0.928330i \(0.621245\pi\)
−0.997774 + 0.0666930i \(0.978755\pi\)
\(164\) 0 0
\(165\) 19.6508 6.42269i 1.52981 0.500006i
\(166\) 0 0
\(167\) 14.9260 10.8444i 1.15501 0.839163i 0.165870 0.986148i \(-0.446957\pi\)
0.989139 + 0.146984i \(0.0469567\pi\)
\(168\) 0 0
\(169\) 0.584055 1.79754i 0.0449273 0.138272i
\(170\) 0 0
\(171\) −1.24356 0.903497i −0.0950972 0.0690922i
\(172\) 0 0
\(173\) −6.28216 19.3345i −0.477624 1.46997i −0.842386 0.538874i \(-0.818850\pi\)
0.364762 0.931101i \(-0.381150\pi\)
\(174\) 0 0
\(175\) −14.1562 10.2251i −1.07011 0.772943i
\(176\) 0 0
\(177\) −7.04621 −0.529626
\(178\) 0 0
\(179\) 5.85667 + 18.0250i 0.437748 + 1.34725i 0.890244 + 0.455484i \(0.150534\pi\)
−0.452496 + 0.891766i \(0.649466\pi\)
\(180\) 0 0
\(181\) −7.50624 + 10.3315i −0.557935 + 0.767931i −0.991062 0.133402i \(-0.957410\pi\)
0.433128 + 0.901333i \(0.357410\pi\)
\(182\) 0 0
\(183\) 18.1917 + 5.91085i 1.34477 + 0.436943i
\(184\) 0 0
\(185\) −2.14830 2.95688i −0.157946 0.217394i
\(186\) 0 0
\(187\) 0.0369363 + 21.2590i 0.00270105 + 1.55461i
\(188\) 0 0
\(189\) 0.0356901 + 12.8342i 0.00259607 + 0.933550i
\(190\) 0 0
\(191\) 3.28372 10.1063i 0.237602 0.731263i −0.759164 0.650899i \(-0.774392\pi\)
0.996766 0.0803633i \(-0.0256080\pi\)
\(192\) 0 0
\(193\) 6.40859 8.82066i 0.461300 0.634925i −0.513478 0.858103i \(-0.671643\pi\)
0.974778 + 0.223178i \(0.0716431\pi\)
\(194\) 0 0
\(195\) 7.43282 + 22.8759i 0.532275 + 1.63817i
\(196\) 0 0
\(197\) 2.87020i 0.204493i 0.994759 + 0.102247i \(0.0326031\pi\)
−0.994759 + 0.102247i \(0.967397\pi\)
\(198\) 0 0
\(199\) 14.6219i 1.03652i −0.855224 0.518259i \(-0.826580\pi\)
0.855224 0.518259i \(-0.173420\pi\)
\(200\) 0 0
\(201\) −2.31215 + 0.751262i −0.163086 + 0.0529899i
\(202\) 0 0
\(203\) −7.81917 + 2.56466i −0.548798 + 0.180004i
\(204\) 0 0
\(205\) 1.37643 + 0.447231i 0.0961343 + 0.0312359i
\(206\) 0 0
\(207\) −2.53133 + 1.83912i −0.175939 + 0.127828i
\(208\) 0 0
\(209\) 8.55420 11.8170i 0.591706 0.817397i
\(210\) 0 0
\(211\) −6.28539 8.65110i −0.432704 0.595566i 0.535867 0.844302i \(-0.319985\pi\)
−0.968571 + 0.248736i \(0.919985\pi\)
\(212\) 0 0
\(213\) −27.7713 9.02344i −1.90286 0.618276i
\(214\) 0 0
\(215\) 25.1102 + 18.2436i 1.71250 + 1.24421i
\(216\) 0 0
\(217\) −0.756063 0.243337i −0.0513249 0.0165188i
\(218\) 0 0
\(219\) 13.0415i 0.881263i
\(220\) 0 0
\(221\) −24.7340 −1.66379
\(222\) 0 0
\(223\) 16.7185 5.43215i 1.11955 0.363764i 0.309954 0.950751i \(-0.399686\pi\)
0.809596 + 0.586988i \(0.199686\pi\)
\(224\) 0 0
\(225\) −1.86607 1.35578i −0.124404 0.0903851i
\(226\) 0 0
\(227\) −3.20035 + 9.84966i −0.212415 + 0.653745i 0.786912 + 0.617065i \(0.211678\pi\)
−0.999327 + 0.0366803i \(0.988322\pi\)
\(228\) 0 0
\(229\) 8.25603 + 11.3634i 0.545574 + 0.750918i 0.989403 0.145194i \(-0.0463805\pi\)
−0.443830 + 0.896111i \(0.646381\pi\)
\(230\) 0 0
\(231\) 16.0594 0.0725614i 1.05663 0.00477419i
\(232\) 0 0
\(233\) −3.84035 5.28579i −0.251590 0.346283i 0.664478 0.747308i \(-0.268654\pi\)
−0.916067 + 0.401025i \(0.868654\pi\)
\(234\) 0 0
\(235\) −2.81764 + 8.67180i −0.183802 + 0.565686i
\(236\) 0 0
\(237\) 10.8761 + 7.90198i 0.706481 + 0.513289i
\(238\) 0 0
\(239\) −10.7878 + 3.50518i −0.697807 + 0.226731i −0.636375 0.771380i \(-0.719567\pi\)
−0.0614325 + 0.998111i \(0.519567\pi\)
\(240\) 0 0
\(241\) −12.4668 −0.803060 −0.401530 0.915846i \(-0.631521\pi\)
−0.401530 + 0.915846i \(0.631521\pi\)
\(242\) 0 0
\(243\) 3.61394i 0.231834i
\(244\) 0 0
\(245\) −14.1207 19.2099i −0.902140 1.22728i
\(246\) 0 0
\(247\) 13.7313 + 9.97635i 0.873699 + 0.634780i
\(248\) 0 0
\(249\) −1.99760 0.649058i −0.126592 0.0411324i
\(250\) 0 0
\(251\) −9.05092 12.4575i −0.571289 0.786312i 0.421417 0.906867i \(-0.361533\pi\)
−0.992707 + 0.120555i \(0.961533\pi\)
\(252\) 0 0
\(253\) −17.4960 23.9934i −1.09997 1.50845i
\(254\) 0 0
\(255\) 32.3242 23.4849i 2.02422 1.47068i
\(256\) 0 0
\(257\) −6.68910 2.17342i −0.417255 0.135574i 0.0928629 0.995679i \(-0.470398\pi\)
−0.510118 + 0.860105i \(0.670398\pi\)
\(258\) 0 0
\(259\) −0.884855 2.69775i −0.0549822 0.167630i
\(260\) 0 0
\(261\) −1.03374 + 0.335881i −0.0639866 + 0.0207905i
\(262\) 0 0
\(263\) 3.48330i 0.214789i 0.994216 + 0.107395i \(0.0342509\pi\)
−0.994216 + 0.107395i \(0.965749\pi\)
\(264\) 0 0
\(265\) 42.3009i 2.59852i
\(266\) 0 0
\(267\) −2.03032 6.24868i −0.124254 0.382413i
\(268\) 0 0
\(269\) 17.1132 23.5542i 1.04341 1.43613i 0.149020 0.988834i \(-0.452388\pi\)
0.894387 0.447293i \(-0.147612\pi\)
\(270\) 0 0
\(271\) −3.81905 + 11.7538i −0.231991 + 0.713993i 0.765516 + 0.643417i \(0.222484\pi\)
−0.997506 + 0.0705764i \(0.977516\pi\)
\(272\) 0 0
\(273\) 0.0519591 + 18.6846i 0.00314471 + 1.13084i
\(274\) 0 0
\(275\) 12.8363 17.7324i 0.774059 1.06930i
\(276\) 0 0
\(277\) −3.09097 4.25436i −0.185719 0.255620i 0.705998 0.708214i \(-0.250499\pi\)
−0.891717 + 0.452594i \(0.850499\pi\)
\(278\) 0 0
\(279\) −0.0997750 0.0324189i −0.00597337 0.00194087i
\(280\) 0 0
\(281\) 18.2340 25.0969i 1.08775 1.49716i 0.237054 0.971496i \(-0.423818\pi\)
0.850694 0.525661i \(-0.176182\pi\)
\(282\) 0 0
\(283\) 4.23133 + 13.0227i 0.251526 + 0.774118i 0.994494 + 0.104791i \(0.0334174\pi\)
−0.742968 + 0.669327i \(0.766583\pi\)
\(284\) 0 0
\(285\) −27.4175 −1.62407
\(286\) 0 0
\(287\) 0.911371 + 0.658286i 0.0537965 + 0.0388574i
\(288\) 0 0
\(289\) 7.44297 + 22.9071i 0.437822 + 1.34748i
\(290\) 0 0
\(291\) −3.03263 2.20334i −0.177776 0.129162i
\(292\) 0 0
\(293\) −2.30824 + 7.10403i −0.134849 + 0.415022i −0.995566 0.0940607i \(-0.970015\pi\)
0.860718 + 0.509083i \(0.170015\pi\)
\(294\) 0 0
\(295\) −10.6087 + 7.70765i −0.617660 + 0.448757i
\(296\) 0 0
\(297\) −16.0886 + 0.0279529i −0.933553 + 0.00162199i
\(298\) 0 0
\(299\) 27.9507 20.3074i 1.61643 1.17441i
\(300\) 0 0
\(301\) 14.2260 + 19.4663i 0.819973 + 1.12202i
\(302\) 0 0
\(303\) 15.5897 21.4574i 0.895607 1.23270i
\(304\) 0 0
\(305\) 33.8549 11.0001i 1.93853 0.629865i
\(306\) 0 0
\(307\) 5.04115 0.287714 0.143857 0.989599i \(-0.454050\pi\)
0.143857 + 0.989599i \(0.454050\pi\)
\(308\) 0 0
\(309\) −14.0719 −0.800520
\(310\) 0 0
\(311\) 26.1908 8.50992i 1.48515 0.482553i 0.549500 0.835494i \(-0.314818\pi\)
0.935646 + 0.352940i \(0.114818\pi\)
\(312\) 0 0
\(313\) 3.57851 4.92539i 0.202269 0.278400i −0.695817 0.718219i \(-0.744958\pi\)
0.898086 + 0.439819i \(0.144958\pi\)
\(314\) 0 0
\(315\) −1.85808 2.54253i −0.104691 0.143255i
\(316\) 0 0
\(317\) −0.0366660 + 0.0266394i −0.00205937 + 0.00149622i −0.588814 0.808268i \(-0.700405\pi\)
0.586755 + 0.809764i \(0.300405\pi\)
\(318\) 0 0
\(319\) −3.20475 9.80520i −0.179431 0.548986i
\(320\) 0 0
\(321\) 6.23288 4.52845i 0.347886 0.252754i
\(322\) 0 0
\(323\) 8.71232 26.8138i 0.484767 1.49196i
\(324\) 0 0
\(325\) 20.6050 + 14.9704i 1.14296 + 0.830407i
\(326\) 0 0
\(327\) 6.05891 + 18.6474i 0.335058 + 1.03120i
\(328\) 0 0
\(329\) −4.14733 + 5.74181i −0.228649 + 0.316556i
\(330\) 0 0
\(331\) 16.6993 0.917878 0.458939 0.888468i \(-0.348230\pi\)
0.458939 + 0.888468i \(0.348230\pi\)
\(332\) 0 0
\(333\) −0.115885 0.356657i −0.00635046 0.0195447i
\(334\) 0 0
\(335\) −2.65935 + 3.66028i −0.145296 + 0.199982i
\(336\) 0 0
\(337\) 9.24849 + 3.00502i 0.503797 + 0.163694i 0.549880 0.835244i \(-0.314674\pi\)
−0.0460822 + 0.998938i \(0.514674\pi\)
\(338\) 0 0
\(339\) −4.83298 6.65203i −0.262491 0.361289i
\(340\) 0 0
\(341\) 0.306028 0.947456i 0.0165724 0.0513076i
\(342\) 0 0
\(343\) −5.86982 17.5655i −0.316940 0.948445i
\(344\) 0 0
\(345\) −17.2462 + 53.0783i −0.928503 + 2.85764i
\(346\) 0 0
\(347\) −4.83159 + 6.65011i −0.259373 + 0.356997i −0.918766 0.394802i \(-0.870813\pi\)
0.659393 + 0.751798i \(0.270813\pi\)
\(348\) 0 0
\(349\) 1.58539 + 4.87934i 0.0848642 + 0.261185i 0.984480 0.175497i \(-0.0561533\pi\)
−0.899616 + 0.436682i \(0.856153\pi\)
\(350\) 0 0
\(351\) 18.7184i 0.999116i
\(352\) 0 0
\(353\) 26.8998i 1.43173i −0.698238 0.715866i \(-0.746032\pi\)
0.698238 0.715866i \(-0.253968\pi\)
\(354\) 0 0
\(355\) −51.6825 + 16.7927i −2.74302 + 0.891262i
\(356\) 0 0
\(357\) 29.4914 9.67309i 1.56085 0.511954i
\(358\) 0 0
\(359\) −24.9077 8.09300i −1.31458 0.427132i −0.433949 0.900938i \(-0.642880\pi\)
−0.880630 + 0.473805i \(0.842880\pi\)
\(360\) 0 0
\(361\) −0.280584 + 0.203856i −0.0147676 + 0.0107293i
\(362\) 0 0
\(363\) 0.0699551 + 20.1316i 0.00367169 + 1.05663i
\(364\) 0 0
\(365\) 14.2657 + 19.6351i 0.746702 + 1.02775i
\(366\) 0 0
\(367\) 11.9245 + 3.87449i 0.622452 + 0.202247i 0.603228 0.797568i \(-0.293881\pi\)
0.0192232 + 0.999815i \(0.493881\pi\)
\(368\) 0 0
\(369\) 0.120136 + 0.0872843i 0.00625405 + 0.00454384i
\(370\) 0 0
\(371\) 10.0672 31.2795i 0.522666 1.62395i
\(372\) 0 0
\(373\) 5.31859i 0.275386i −0.990475 0.137693i \(-0.956031\pi\)
0.990475 0.137693i \(-0.0439688\pi\)
\(374\) 0 0
\(375\) −9.97549 −0.515132
\(376\) 0 0
\(377\) 11.4144 3.70877i 0.587873 0.191011i
\(378\) 0 0
\(379\) 8.36679 + 6.07883i 0.429773 + 0.312248i 0.781558 0.623832i \(-0.214425\pi\)
−0.351785 + 0.936081i \(0.614425\pi\)
\(380\) 0 0
\(381\) 5.61543 17.2825i 0.287687 0.885410i
\(382\) 0 0
\(383\) 0.495500 + 0.681997i 0.0253188 + 0.0348484i 0.821489 0.570225i \(-0.193144\pi\)
−0.796170 + 0.605073i \(0.793144\pi\)
\(384\) 0 0
\(385\) 24.0994 17.6761i 1.22822 0.900859i
\(386\) 0 0
\(387\) 1.87189 + 2.57643i 0.0951534 + 0.130967i
\(388\) 0 0
\(389\) 0.705746 2.17206i 0.0357827 0.110128i −0.931570 0.363563i \(-0.881560\pi\)
0.967353 + 0.253435i \(0.0815603\pi\)
\(390\) 0 0
\(391\) −46.4293 33.7328i −2.34803 1.70594i
\(392\) 0 0
\(393\) −5.87832 + 1.90998i −0.296522 + 0.0963458i
\(394\) 0 0
\(395\) 25.0187 1.25883
\(396\) 0 0
\(397\) 23.8577i 1.19738i 0.800979 + 0.598692i \(0.204313\pi\)
−0.800979 + 0.598692i \(0.795687\pi\)
\(398\) 0 0
\(399\) −20.2740 6.52513i −1.01497 0.326665i
\(400\) 0 0
\(401\) −12.0439 8.75039i −0.601443 0.436974i 0.244948 0.969536i \(-0.421229\pi\)
−0.846391 + 0.532563i \(0.821229\pi\)
\(402\) 0 0
\(403\) 1.10171 + 0.357966i 0.0548799 + 0.0178316i
\(404\) 0 0
\(405\) 19.8719 + 27.3514i 0.987444 + 1.35910i
\(406\) 0 0
\(407\) 3.38297 1.10570i 0.167688 0.0548073i
\(408\) 0 0
\(409\) 12.8887 9.36422i 0.637307 0.463031i −0.221617 0.975134i \(-0.571133\pi\)
0.858924 + 0.512103i \(0.171133\pi\)
\(410\) 0 0
\(411\) 20.1700 + 6.55363i 0.994913 + 0.323267i
\(412\) 0 0
\(413\) −9.67897 + 3.17467i −0.476271 + 0.156215i
\(414\) 0 0
\(415\) −3.71754 + 1.20790i −0.182487 + 0.0592935i
\(416\) 0 0
\(417\) 14.4003i 0.705187i
\(418\) 0 0
\(419\) 11.9321i 0.582921i −0.956583 0.291461i \(-0.905859\pi\)
0.956583 0.291461i \(-0.0941412\pi\)
\(420\) 0 0
\(421\) 10.2174 + 31.4459i 0.497965 + 1.53258i 0.812284 + 0.583262i \(0.198224\pi\)
−0.314319 + 0.949317i \(0.601776\pi\)
\(422\) 0 0
\(423\) −0.549907 + 0.756883i −0.0267374 + 0.0368009i
\(424\) 0 0
\(425\) 13.0736 40.2364i 0.634163 1.95175i
\(426\) 0 0
\(427\) 27.6521 0.0768964i 1.33818 0.00372128i
\(428\) 0 0
\(429\) −23.4224 + 0.0406951i −1.13084 + 0.00196478i
\(430\) 0 0
\(431\) −5.08495 6.99883i −0.244933 0.337122i 0.668796 0.743446i \(-0.266810\pi\)
−0.913729 + 0.406325i \(0.866810\pi\)
\(432\) 0 0
\(433\) 15.6779 + 5.09405i 0.753430 + 0.244804i 0.660457 0.750864i \(-0.270363\pi\)
0.0929737 + 0.995669i \(0.470363\pi\)
\(434\) 0 0
\(435\) −11.3957 + 15.6849i −0.546383 + 0.752031i
\(436\) 0 0
\(437\) 12.1696 + 37.4540i 0.582149 + 1.79167i
\(438\) 0 0
\(439\) −10.1008 −0.482086 −0.241043 0.970514i \(-0.577489\pi\)
−0.241043 + 0.970514i \(0.577489\pi\)
\(440\) 0 0
\(441\) −0.768862 2.32228i −0.0366125 0.110585i
\(442\) 0 0
\(443\) −1.23368 3.79689i −0.0586141 0.180396i 0.917463 0.397822i \(-0.130234\pi\)
−0.976077 + 0.217426i \(0.930234\pi\)
\(444\) 0 0
\(445\) −9.89207 7.18701i −0.468929 0.340697i
\(446\) 0 0
\(447\) −13.5539 + 41.7146i −0.641077 + 1.97303i
\(448\) 0 0
\(449\) −3.36424 + 2.44426i −0.158768 + 0.115352i −0.664333 0.747437i \(-0.731284\pi\)
0.505565 + 0.862789i \(0.331284\pi\)
\(450\) 0 0
\(451\) −0.826396 + 1.14160i −0.0389135 + 0.0537560i
\(452\) 0 0
\(453\) −9.81487 + 7.13092i −0.461143 + 0.335040i
\(454\) 0 0
\(455\) 20.5167 + 28.0744i 0.961840 + 1.31615i
\(456\) 0 0
\(457\) 8.43325 11.6074i 0.394491 0.542970i −0.564860 0.825187i \(-0.691070\pi\)
0.959351 + 0.282217i \(0.0910697\pi\)
\(458\) 0 0
\(459\) −29.5716 + 9.60839i −1.38028 + 0.448481i
\(460\) 0 0
\(461\) −38.8150 −1.80780 −0.903898 0.427747i \(-0.859307\pi\)
−0.903898 + 0.427747i \(0.859307\pi\)
\(462\) 0 0
\(463\) −18.9223 −0.879394 −0.439697 0.898146i \(-0.644914\pi\)
−0.439697 + 0.898146i \(0.644914\pi\)
\(464\) 0 0
\(465\) −1.77968 + 0.578252i −0.0825306 + 0.0268158i
\(466\) 0 0
\(467\) 18.7492 25.8061i 0.867611 1.19416i −0.112090 0.993698i \(-0.535754\pi\)
0.979701 0.200466i \(-0.0642456\pi\)
\(468\) 0 0
\(469\) −2.83758 + 2.07370i −0.131027 + 0.0957547i
\(470\) 0 0
\(471\) 6.60421 4.79824i 0.304306 0.221091i
\(472\) 0 0
\(473\) −24.4209 + 17.8078i −1.12288 + 0.818802i
\(474\) 0 0
\(475\) −23.4871 + 17.0643i −1.07766 + 0.782966i
\(476\) 0 0
\(477\) 1.34122 4.12785i 0.0614102 0.189001i
\(478\) 0 0
\(479\) −17.3848 12.6308i −0.794332 0.577116i 0.114914 0.993375i \(-0.463341\pi\)
−0.909246 + 0.416260i \(0.863341\pi\)
\(480\) 0 0
\(481\) 1.27959 + 3.93818i 0.0583444 + 0.179566i
\(482\) 0 0
\(483\) −25.3849 + 35.1444i −1.15505 + 1.59913i
\(484\) 0 0
\(485\) −6.97606 −0.316766
\(486\) 0 0
\(487\) −2.06634 6.35956i −0.0936350 0.288179i 0.893261 0.449539i \(-0.148412\pi\)
−0.986896 + 0.161360i \(0.948412\pi\)
\(488\) 0 0
\(489\) −23.2495 + 32.0003i −1.05138 + 1.44710i
\(490\) 0 0
\(491\) 13.9756 + 4.54096i 0.630712 + 0.204931i 0.606891 0.794785i \(-0.292417\pi\)
0.0238217 + 0.999716i \(0.492417\pi\)
\(492\) 0 0
\(493\) −11.7183 16.1289i −0.527766 0.726408i
\(494\) 0 0
\(495\) 3.18965 2.32590i 0.143364 0.104541i
\(496\) 0 0
\(497\) −42.2133 + 0.117389i −1.89353 + 0.00526563i
\(498\) 0 0
\(499\) −5.98148 + 18.4091i −0.267768 + 0.824104i 0.723275 + 0.690560i \(0.242636\pi\)
−0.991043 + 0.133544i \(0.957364\pi\)
\(500\) 0 0
\(501\) 19.8469 27.3169i 0.886694 1.22043i
\(502\) 0 0
\(503\) 0.293100 + 0.902069i 0.0130687 + 0.0402213i 0.957378 0.288837i \(-0.0932687\pi\)
−0.944310 + 0.329059i \(0.893269\pi\)
\(504\) 0 0
\(505\) 49.3592i 2.19645i
\(506\) 0 0
\(507\) 3.45907i 0.153623i
\(508\) 0 0
\(509\) −37.7006 + 12.2497i −1.67105 + 0.542957i −0.983142 0.182841i \(-0.941471\pi\)
−0.687908 + 0.725798i \(0.741471\pi\)
\(510\) 0 0
\(511\) 5.87585 + 17.9143i 0.259932 + 0.792484i
\(512\) 0 0
\(513\) 20.2924 + 6.59339i 0.895929 + 0.291105i
\(514\) 0 0
\(515\) −21.1864 + 15.3928i −0.933583 + 0.678288i
\(516\) 0 0
\(517\) −7.19232 5.20645i −0.316318 0.228980i
\(518\) 0 0
\(519\) −21.8692 30.1004i −0.959952 1.32126i
\(520\) 0 0
\(521\) −36.9475 12.0050i −1.61870 0.525948i −0.647066 0.762434i \(-0.724004\pi\)
−0.971635 + 0.236486i \(0.924004\pi\)
\(522\) 0 0
\(523\) 7.31919 + 5.31770i 0.320046 + 0.232527i 0.736195 0.676769i \(-0.236621\pi\)
−0.416149 + 0.909296i \(0.636621\pi\)
\(524\) 0 0
\(525\) −30.4228 9.79153i −1.32776 0.427337i
\(526\) 0 0
\(527\) 1.92424i 0.0838211i
\(528\) 0 0
\(529\) 57.1632 2.48536
\(530\) 0 0
\(531\) −1.27961 + 0.415770i −0.0555303 + 0.0180429i
\(532\) 0 0
\(533\) −1.32654 0.963786i −0.0574587 0.0417462i
\(534\) 0 0
\(535\) 4.43059 13.6359i 0.191551 0.589533i
\(536\) 0 0
\(537\) 20.3880 + 28.0617i 0.879808 + 1.21095i
\(538\) 0 0
\(539\) 22.0271 7.33523i 0.948776 0.315951i
\(540\) 0 0
\(541\) −13.1552 18.1066i −0.565587 0.778464i 0.426436 0.904518i \(-0.359769\pi\)
−0.992023 + 0.126053i \(0.959769\pi\)
\(542\) 0 0
\(543\) −7.22227 + 22.2279i −0.309937 + 0.953889i
\(544\) 0 0
\(545\) 29.5201 + 21.4476i 1.26450 + 0.918713i
\(546\) 0 0
\(547\) 12.6499 4.11021i 0.540872 0.175740i −0.0258247 0.999666i \(-0.508221\pi\)
0.566697 + 0.823927i \(0.308221\pi\)
\(548\) 0 0
\(549\) 3.65244 0.155882
\(550\) 0 0
\(551\) 13.6806i 0.582812i
\(552\) 0 0
\(553\) 18.5002 + 5.95424i 0.786707 + 0.253200i
\(554\) 0 0
\(555\) −5.41155 3.93172i −0.229708 0.166892i
\(556\) 0 0
\(557\) 36.9227 + 11.9969i 1.56446 + 0.508325i 0.957996 0.286782i \(-0.0925855\pi\)
0.606469 + 0.795107i \(0.292585\pi\)
\(558\) 0 0
\(559\) −20.6692 28.4488i −0.874215 1.20325i
\(560\) 0 0
\(561\) 12.0873 + 36.9821i 0.510325 + 1.56138i
\(562\) 0 0
\(563\) −14.6910 + 10.6737i −0.619153 + 0.449841i −0.852626 0.522522i \(-0.824991\pi\)
0.233472 + 0.972363i \(0.424991\pi\)
\(564\) 0 0
\(565\) −14.5529 4.72853i −0.612246 0.198931i
\(566\) 0 0
\(567\) 8.18497 + 24.9544i 0.343736 + 1.04799i
\(568\) 0 0
\(569\) 12.3540 4.01405i 0.517906 0.168278i −0.0383889 0.999263i \(-0.512223\pi\)
0.556295 + 0.830985i \(0.312223\pi\)
\(570\) 0 0
\(571\) 34.4792i 1.44291i 0.692462 + 0.721454i \(0.256526\pi\)
−0.692462 + 0.721454i \(0.743474\pi\)
\(572\) 0 0
\(573\) 19.4478i 0.812445i
\(574\) 0 0
\(575\) 18.2615 + 56.2030i 0.761556 + 2.34383i
\(576\) 0 0
\(577\) −6.05240 + 8.33041i −0.251965 + 0.346799i −0.916198 0.400726i \(-0.868758\pi\)
0.664234 + 0.747525i \(0.268758\pi\)
\(578\) 0 0
\(579\) 6.16614 18.9774i 0.256256 0.788675i
\(580\) 0 0
\(581\) −3.03641 + 0.00844383i −0.125972 + 0.000350309i
\(582\) 0 0
\(583\) 39.1978 + 12.6609i 1.62341 + 0.524360i
\(584\) 0 0
\(585\) 2.69964 + 3.71573i 0.111616 + 0.153627i
\(586\) 0 0
\(587\) −29.5852 9.61282i −1.22111 0.396764i −0.373626 0.927580i \(-0.621886\pi\)
−0.847487 + 0.530816i \(0.821886\pi\)
\(588\) 0 0
\(589\) −0.776132 + 1.06825i −0.0319799 + 0.0440166i
\(590\) 0 0
\(591\) 1.62324 + 4.99581i 0.0667711 + 0.205500i
\(592\) 0 0
\(593\) −16.1102 −0.661567 −0.330783 0.943707i \(-0.607313\pi\)
−0.330783 + 0.943707i \(0.607313\pi\)
\(594\) 0 0
\(595\) 33.8207 46.8235i 1.38651 1.91958i
\(596\) 0 0
\(597\) −8.26939 25.4506i −0.338444 1.04162i
\(598\) 0 0
\(599\) 18.3095 + 13.3027i 0.748108 + 0.543532i 0.895240 0.445585i \(-0.147004\pi\)
−0.147132 + 0.989117i \(0.547004\pi\)
\(600\) 0 0
\(601\) 3.11936 9.60039i 0.127241 0.391608i −0.867062 0.498201i \(-0.833994\pi\)
0.994303 + 0.106593i \(0.0339942\pi\)
\(602\) 0 0
\(603\) −0.375563 + 0.272862i −0.0152941 + 0.0111118i
\(604\) 0 0
\(605\) 22.1267 + 30.2333i 0.899577 + 1.22916i
\(606\) 0 0
\(607\) −5.45860 + 3.96591i −0.221558 + 0.160971i −0.693028 0.720911i \(-0.743724\pi\)
0.471470 + 0.881882i \(0.343724\pi\)
\(608\) 0 0
\(609\) −12.1595 + 8.88613i −0.492726 + 0.360084i
\(610\) 0 0
\(611\) 6.07203 8.35744i 0.245648 0.338106i
\(612\) 0 0
\(613\) −11.5257 + 3.74493i −0.465519 + 0.151256i −0.532379 0.846506i \(-0.678702\pi\)
0.0668601 + 0.997762i \(0.478702\pi\)
\(614\) 0 0
\(615\) 2.64872 0.106807
\(616\) 0 0
\(617\) −40.8433 −1.64429 −0.822144 0.569279i \(-0.807222\pi\)
−0.822144 + 0.569279i \(0.807222\pi\)
\(618\) 0 0
\(619\) −20.5276 + 6.66981i −0.825073 + 0.268082i −0.690968 0.722885i \(-0.742816\pi\)
−0.134104 + 0.990967i \(0.542816\pi\)
\(620\) 0 0
\(621\) 25.5286 35.1371i 1.02443 1.41000i
\(622\) 0 0
\(623\) −5.60427 7.66868i −0.224531 0.307239i
\(624\) 0 0
\(625\) 11.6800 8.48600i 0.467199 0.339440i
\(626\) 0 0
\(627\) 8.20620 25.4062i 0.327724 1.01463i
\(628\) 0 0
\(629\) 5.56475 4.04303i 0.221881 0.161206i
\(630\) 0 0
\(631\) −8.14269 + 25.0606i −0.324155 + 0.997648i 0.647665 + 0.761925i \(0.275746\pi\)
−0.971820 + 0.235723i \(0.924254\pi\)
\(632\) 0 0
\(633\) −15.8328 11.5032i −0.629299 0.457213i
\(634\) 0 0
\(635\) −10.4503 32.1629i −0.414709 1.27634i
\(636\) 0 0
\(637\) 8.48971 + 25.6425i 0.336374 + 1.01599i
\(638\) 0 0
\(639\) −5.57578 −0.220574
\(640\) 0 0
\(641\) −0.281105 0.865152i −0.0111030 0.0341715i 0.945352 0.326053i \(-0.105719\pi\)
−0.956455 + 0.291881i \(0.905719\pi\)
\(642\) 0 0
\(643\) 12.2102 16.8059i 0.481523 0.662760i −0.497274 0.867594i \(-0.665666\pi\)
0.978797 + 0.204834i \(0.0656655\pi\)
\(644\) 0 0
\(645\) 54.0240 + 17.5535i 2.12719 + 0.691167i
\(646\) 0 0
\(647\) −14.4142 19.8394i −0.566680 0.779967i 0.425477 0.904969i \(-0.360106\pi\)
−0.992157 + 0.125002i \(0.960106\pi\)
\(648\) 0 0
\(649\) −3.96700 12.1374i −0.155718 0.476434i
\(650\) 0 0
\(651\) −1.45361 + 0.00404227i −0.0569713 + 0.000158429i
\(652\) 0 0
\(653\) 14.1720 43.6168i 0.554592 1.70686i −0.142428 0.989805i \(-0.545491\pi\)
0.697020 0.717052i \(-0.254509\pi\)
\(654\) 0 0
\(655\) −6.76103 + 9.30577i −0.264175 + 0.363606i
\(656\) 0 0
\(657\) 0.769530 + 2.36837i 0.0300222 + 0.0923989i
\(658\) 0 0
\(659\) 3.41699i 0.133107i 0.997783 + 0.0665535i \(0.0212003\pi\)
−0.997783 + 0.0665535i \(0.978800\pi\)
\(660\) 0 0
\(661\) 3.03335i 0.117983i −0.998258 0.0589917i \(-0.981211\pi\)
0.998258 0.0589917i \(-0.0187886\pi\)
\(662\) 0 0
\(663\) −43.0515 + 13.9883i −1.67198 + 0.543260i
\(664\) 0 0
\(665\) −37.6618 + 12.3530i −1.46046 + 0.479027i
\(666\) 0 0
\(667\) 26.4846 + 8.60537i 1.02549 + 0.333201i
\(668\) 0 0
\(669\) 26.0277 18.9102i 1.00629 0.731111i
\(670\) 0 0
\(671\) 0.0602263 + 34.6638i 0.00232501 + 1.33818i
\(672\) 0 0
\(673\) 6.12312 + 8.42776i 0.236029 + 0.324866i 0.910557 0.413383i \(-0.135653\pi\)
−0.674528 + 0.738249i \(0.735653\pi\)
\(674\) 0 0
\(675\) 30.4504 + 9.89395i 1.17204 + 0.380818i
\(676\) 0 0
\(677\) 35.7156 + 25.9489i 1.37266 + 0.997298i 0.997524 + 0.0703294i \(0.0224050\pi\)
0.375139 + 0.926969i \(0.377595\pi\)
\(678\) 0 0
\(679\) −5.15847 1.66024i −0.197964 0.0637142i
\(680\) 0 0
\(681\) 18.9541i 0.726322i
\(682\) 0 0
\(683\) 12.7927 0.489499 0.244749 0.969586i \(-0.421294\pi\)
0.244749 + 0.969586i \(0.421294\pi\)
\(684\) 0 0
\(685\) 37.5365 12.1963i 1.43420 0.465998i
\(686\) 0 0
\(687\) 20.7969 + 15.1098i 0.793450 + 0.576475i
\(688\) 0 0
\(689\) −14.8096 + 45.5794i −0.564202 + 1.73644i
\(690\) 0 0
\(691\) −12.6032 17.3469i −0.479450 0.659906i 0.498949 0.866631i \(-0.333719\pi\)
−0.978399 + 0.206725i \(0.933719\pi\)
\(692\) 0 0
\(693\) 2.91214 0.960781i 0.110623 0.0364970i
\(694\) 0 0
\(695\) −15.7521 21.6809i −0.597512 0.822404i
\(696\) 0 0
\(697\) −0.841672 + 2.59040i −0.0318806 + 0.0981184i
\(698\) 0 0
\(699\) −9.67381 7.02843i −0.365897 0.265840i
\(700\) 0 0
\(701\) −30.1589 + 9.79922i −1.13909 + 0.370111i −0.817022 0.576607i \(-0.804377\pi\)
−0.322064 + 0.946718i \(0.604377\pi\)
\(702\) 0 0
\(703\) −4.72004 −0.178020
\(704\) 0 0
\(705\) 16.6875i 0.628486i
\(706\) 0 0
\(707\) 11.7471 36.4988i 0.441794 1.37268i
\(708\) 0 0
\(709\) −2.31499 1.68194i −0.0869412 0.0631665i 0.543466 0.839431i \(-0.317112\pi\)
−0.630407 + 0.776265i \(0.717112\pi\)
\(710\) 0 0
\(711\) 2.44140 + 0.793259i 0.0915597 + 0.0297496i
\(712\) 0 0
\(713\) 1.57986 + 2.17449i 0.0591661 + 0.0814352i
\(714\) 0 0
\(715\) −35.2199 + 25.6824i −1.31715 + 0.960466i
\(716\) 0 0
\(717\) −16.7948 + 12.2021i −0.627211 + 0.455696i
\(718\) 0 0
\(719\) −1.17630 0.382203i −0.0438686 0.0142538i 0.287001 0.957930i \(-0.407342\pi\)
−0.330869 + 0.943677i \(0.607342\pi\)
\(720\) 0 0
\(721\) −19.3297 + 6.34008i −0.719875 + 0.236117i
\(722\) 0 0
\(723\) −21.6995 + 7.05061i −0.807014 + 0.262215i
\(724\) 0 0
\(725\) 20.5289i 0.762424i
\(726\) 0 0
\(727\) 10.5201i 0.390170i −0.980786 0.195085i \(-0.937502\pi\)
0.980786 0.195085i \(-0.0624982\pi\)
\(728\) 0 0
\(729\) −7.15830 22.0310i −0.265122 0.815962i
\(730\) 0 0
\(731\) −34.3339 + 47.2566i −1.26989 + 1.74785i
\(732\) 0 0
\(733\) 9.82660 30.2432i 0.362954 1.11706i −0.588299 0.808644i \(-0.700202\pi\)
0.951252 0.308413i \(-0.0997980\pi\)
\(734\) 0 0
\(735\) −35.4424 25.4505i −1.30731 0.938754i
\(736\) 0 0
\(737\) −2.59581 3.55980i −0.0956179 0.131127i
\(738\) 0 0
\(739\) −23.8766 32.8634i −0.878316 1.20890i −0.976884 0.213768i \(-0.931426\pi\)
0.0985683 0.995130i \(-0.468574\pi\)
\(740\) 0 0
\(741\) 29.5425 + 9.59893i 1.08527 + 0.352626i
\(742\) 0 0
\(743\) −13.1338 + 18.0771i −0.481832 + 0.663185i −0.978856 0.204552i \(-0.934426\pi\)
0.497024 + 0.867737i \(0.334426\pi\)
\(744\) 0 0
\(745\) 25.2239 + 77.6311i 0.924131 + 2.84418i
\(746\) 0 0
\(747\) −0.401067 −0.0146743
\(748\) 0 0
\(749\) 6.52145 9.02870i 0.238289 0.329901i
\(750\) 0 0
\(751\) −9.01810 27.7549i −0.329075 1.01279i −0.969567 0.244825i \(-0.921270\pi\)
0.640492 0.767965i \(-0.278730\pi\)
\(752\) 0 0
\(753\) −22.7992 16.5646i −0.830849 0.603647i
\(754\) 0 0
\(755\) −6.97681 + 21.4724i −0.253912 + 0.781461i
\(756\) 0 0
\(757\) 14.7917 10.7468i 0.537613 0.390599i −0.285585 0.958353i \(-0.592188\pi\)
0.823198 + 0.567755i \(0.192188\pi\)
\(758\) 0 0
\(759\) −44.0227 31.8676i −1.59792 1.15672i
\(760\) 0 0
\(761\) 13.9804 10.1573i 0.506788 0.368203i −0.304816 0.952411i \(-0.598595\pi\)
0.811604 + 0.584208i \(0.198595\pi\)
\(762\) 0 0
\(763\) 16.7244 + 22.8850i 0.605462 + 0.828493i
\(764\) 0 0
\(765\) 4.48440 6.17224i 0.162134 0.223158i
\(766\) 0 0
\(767\) 14.1294 4.59090i 0.510181 0.165768i
\(768\) 0 0
\(769\) −4.28390 −0.154481 −0.0772407 0.997012i \(-0.524611\pi\)
−0.0772407 + 0.997012i \(0.524611\pi\)
\(770\) 0 0
\(771\) −12.8721 −0.463577
\(772\) 0 0
\(773\) −3.68810 + 1.19834i −0.132652 + 0.0431012i −0.374591 0.927190i \(-0.622217\pi\)
0.241939 + 0.970292i \(0.422217\pi\)
\(774\) 0 0
\(775\) −1.16465 + 1.60301i −0.0418356 + 0.0575817i
\(776\) 0 0
\(777\) −3.06587 4.19523i −0.109988 0.150503i
\(778\) 0 0
\(779\) 1.51209 1.09859i 0.0541761 0.0393612i
\(780\) 0 0
\(781\) −0.0919408 52.9173i −0.00328990 1.89353i
\(782\) 0 0
\(783\) 12.2061 8.86829i 0.436212 0.316927i
\(784\) 0 0
\(785\) 4.69454 14.4483i 0.167555 0.515683i
\(786\) 0 0
\(787\) 40.6129 + 29.5070i 1.44770 + 1.05181i 0.986363 + 0.164585i \(0.0526284\pi\)
0.461332 + 0.887227i \(0.347372\pi\)
\(788\) 0 0
\(789\) 1.96998 + 6.06296i 0.0701330 + 0.215847i
\(790\) 0 0
\(791\) −9.63585 6.96000i −0.342612 0.247469i
\(792\) 0 0
\(793\) −40.3300 −1.43216
\(794\) 0 0
\(795\) −23.9232 73.6281i −0.848469 2.61132i
\(796\) 0 0
\(797\) 13.6428 18.7777i 0.483254 0.665141i −0.495873 0.868395i \(-0.665152\pi\)
0.979126 + 0.203254i \(0.0651517\pi\)
\(798\) 0 0
\(799\) −16.3200 5.30270i −0.577361 0.187596i
\(800\) 0 0
\(801\) −0.737422 1.01497i −0.0260555 0.0358624i
\(802\) 0 0
\(803\) −22.4645 + 7.34233i −0.792754 + 0.259105i
\(804\) 0 0
\(805\) 0.224362 + 80.6808i 0.00790771 + 2.84362i
\(806\) 0 0
\(807\) 16.4657 50.6764i 0.579622 1.78389i
\(808\) 0 0
\(809\) −30.8117 + 42.4087i −1.08328 + 1.49101i −0.227425 + 0.973796i \(0.573031\pi\)
−0.855856 + 0.517213i \(0.826969\pi\)
\(810\) 0 0
\(811\) −5.05077 15.5447i −0.177356 0.545847i 0.822377 0.568943i \(-0.192648\pi\)
−0.999733 + 0.0230963i \(0.992648\pi\)
\(812\) 0 0
\(813\) 22.6183i 0.793259i
\(814\) 0 0
\(815\) 73.6111i 2.57849i
\(816\) 0 0
\(817\) 38.1214 12.3864i 1.33370 0.433345i
\(818\) 0 0
\(819\) 1.11194 + 3.39010i 0.0388544 + 0.118460i
\(820\) 0 0
\(821\) −21.9198 7.12218i −0.765007 0.248566i −0.0995807 0.995029i \(-0.531750\pi\)
−0.665426 + 0.746464i \(0.731750\pi\)
\(822\) 0 0
\(823\) −6.41986 + 4.66430i −0.223782 + 0.162587i −0.694028 0.719948i \(-0.744165\pi\)
0.470245 + 0.882536i \(0.344165\pi\)
\(824\) 0 0
\(825\) 12.3141 38.1242i 0.428723 1.32731i
\(826\) 0 0
\(827\) 7.07734 + 9.74113i 0.246103 + 0.338732i 0.914142 0.405395i \(-0.132866\pi\)
−0.668038 + 0.744127i \(0.732866\pi\)
\(828\) 0 0
\(829\) −50.8525 16.5230i −1.76618 0.573866i −0.768369 0.640008i \(-0.778931\pi\)
−0.997810 + 0.0661413i \(0.978931\pi\)
\(830\) 0 0
\(831\) −7.78613 5.65696i −0.270098 0.196238i
\(832\) 0 0
\(833\) 36.1524 26.5747i 1.25261 0.920759i
\(834\) 0 0
\(835\) 62.8379i 2.17459i
\(836\) 0 0
\(837\) 1.45624 0.0503350
\(838\) 0 0
\(839\) 9.35230 3.03875i 0.322877 0.104909i −0.143094 0.989709i \(-0.545705\pi\)
0.465971 + 0.884800i \(0.345705\pi\)
\(840\) 0 0
\(841\) −15.6352 11.3596i −0.539144 0.391711i
\(842\) 0 0
\(843\) 17.5442 53.9954i 0.604254 1.85970i
\(844\) 0 0
\(845\) −3.78378 5.20792i −0.130166 0.179158i
\(846\) 0 0
\(847\) 9.16638 + 27.6220i 0.314960 + 0.949105i
\(848\) 0 0
\(849\) 14.7299 + 20.2740i 0.505530 + 0.695802i
\(850\) 0 0
\(851\) −2.96901 + 9.13766i −0.101776 + 0.313235i
\(852\) 0 0
\(853\) −9.55822 6.94445i −0.327267 0.237774i 0.412003 0.911182i \(-0.364829\pi\)
−0.739270 + 0.673409i \(0.764829\pi\)
\(854\) 0 0
\(855\) −4.97909 + 1.61780i −0.170281 + 0.0553277i
\(856\) 0 0
\(857\) 43.0370 1.47011 0.735057 0.678005i \(-0.237155\pi\)
0.735057 + 0.678005i \(0.237155\pi\)
\(858\) 0 0
\(859\) 4.02650i 0.137383i 0.997638 + 0.0686913i \(0.0218823\pi\)
−0.997638 + 0.0686913i \(0.978118\pi\)
\(860\) 0 0
\(861\) 1.95861 + 0.630374i 0.0667492 + 0.0214831i
\(862\) 0 0
\(863\) −4.12740 2.99873i −0.140498 0.102078i 0.515316 0.857000i \(-0.327675\pi\)
−0.655814 + 0.754922i \(0.727675\pi\)
\(864\) 0 0
\(865\) −65.8519 21.3966i −2.23903 0.727505i
\(866\) 0 0
\(867\) 25.9102 + 35.6623i 0.879956 + 1.21116i
\(868\) 0 0
\(869\) −7.48823 + 23.1834i −0.254021 + 0.786442i
\(870\) 0 0
\(871\) 4.14693 3.01292i 0.140513 0.102089i
\(872\) 0 0
\(873\) −0.680745 0.221187i −0.0230397 0.00748606i
\(874\) 0 0
\(875\) −13.7027 + 4.49446i −0.463237 + 0.151940i
\(876\) 0 0
\(877\) −6.04823 + 1.96519i −0.204234 + 0.0663597i −0.409348 0.912379i \(-0.634244\pi\)
0.205114 + 0.978738i \(0.434244\pi\)
\(878\) 0 0
\(879\) 13.6706i 0.461096i
\(880\) 0 0
\(881\) 9.57826i 0.322700i 0.986897 + 0.161350i \(0.0515848\pi\)
−0.986897 + 0.161350i \(0.948415\pi\)
\(882\) 0 0
\(883\) 16.8872 + 51.9735i 0.568300 + 1.74905i 0.657936 + 0.753073i \(0.271430\pi\)
−0.0896363 + 0.995975i \(0.528570\pi\)
\(884\) 0 0
\(885\) −14.1062 + 19.4155i −0.474174 + 0.652645i
\(886\) 0 0
\(887\) 6.54781 20.1521i 0.219854 0.676641i −0.778919 0.627124i \(-0.784232\pi\)
0.998773 0.0495169i \(-0.0157682\pi\)
\(888\) 0 0
\(889\) −0.0730532 26.2700i −0.00245012 0.881068i
\(890\) 0 0
\(891\) −31.2927 + 10.2278i −1.04834 + 0.342643i
\(892\) 0 0
\(893\) 6.92135 + 9.52643i 0.231614 + 0.318790i
\(894\) 0 0
\(895\) 61.3918 + 19.9474i 2.05210 + 0.666768i
\(896\) 0 0
\(897\) 37.1657 51.1541i 1.24093 1.70799i
\(898\) 0 0
\(899\) 0.288532 + 0.888010i 0.00962308 + 0.0296168i
\(900\) 0 0
\(901\) 79.6088 2.65215
\(902\) 0 0
\(903\) 35.7707 + 25.8372i 1.19037 + 0.859809i
\(904\) 0 0
\(905\) 13.4407 + 41.3662i 0.446784 + 1.37506i
\(906\) 0 0
\(907\) −7.61281 5.53103i −0.252779 0.183655i 0.454178 0.890911i \(-0.349933\pi\)
−0.706958 + 0.707256i \(0.749933\pi\)
\(908\) 0 0
\(909\) 1.56501 4.81662i 0.0519082 0.159757i
\(910\) 0 0
\(911\) 41.2238 29.9508i 1.36580 0.992315i 0.367752 0.929924i \(-0.380128\pi\)
0.998052 0.0623907i \(-0.0198725\pi\)
\(912\) 0 0
\(913\) −0.00661333 3.80636i −0.000218869 0.125972i
\(914\) 0 0
\(915\) 52.7061 38.2932i 1.74241 1.26593i
\(916\) 0 0
\(917\) −7.21416 + 5.27211i −0.238233 + 0.174100i
\(918\) 0 0
\(919\) −14.0763 + 19.3743i −0.464333 + 0.639100i −0.975400 0.220441i \(-0.929250\pi\)
0.511067 + 0.859541i \(0.329250\pi\)
\(920\) 0 0
\(921\) 8.77452 2.85102i 0.289130 0.0939442i
\(922\) 0 0
\(923\) 61.5673 2.02651
\(924\) 0 0
\(925\) −7.08284 −0.232882
\(926\) 0 0
\(927\) −2.55549 + 0.830328i −0.0839332 + 0.0272715i
\(928\) 0 0
\(929\) 5.51443 7.58996i 0.180922 0.249018i −0.708917 0.705292i \(-0.750816\pi\)
0.889840 + 0.456273i \(0.150816\pi\)
\(930\) 0 0
\(931\) −30.7890 + 0.171241i −1.00907 + 0.00561220i
\(932\) 0 0
\(933\) 40.7745 29.6244i 1.33490 0.969859i
\(934\) 0 0
\(935\) 58.6521 + 42.4577i 1.91813 + 1.38852i
\(936\) 0 0
\(937\) −10.0139 + 7.27549i −0.327138 + 0.237680i −0.739215 0.673469i \(-0.764803\pi\)
0.412077 + 0.911149i \(0.364803\pi\)
\(938\) 0 0
\(939\) 3.44313 10.5969i 0.112362 0.345815i
\(940\) 0 0
\(941\) −13.9610 10.1432i −0.455115 0.330660i 0.336497 0.941685i \(-0.390758\pi\)
−0.791612 + 0.611024i \(0.790758\pi\)
\(942\) 0 0
\(943\) −1.17567 3.61833i −0.0382849 0.117829i
\(944\) 0 0
\(945\) 35.4355 + 25.5951i 1.15272 + 0.832609i
\(946\) 0 0
\(947\) 22.3782 0.727195 0.363598 0.931556i \(-0.381548\pi\)
0.363598 + 0.931556i \(0.381548\pi\)
\(948\) 0 0
\(949\) −8.49709 26.1513i −0.275827 0.848909i
\(950\) 0 0
\(951\) −0.0487542 + 0.0671044i −0.00158096 + 0.00217601i
\(952\) 0 0
\(953\) 37.6110 + 12.2206i 1.21834 + 0.395863i 0.846477 0.532425i \(-0.178719\pi\)
0.371863 + 0.928288i \(0.378719\pi\)
\(954\) 0 0
\(955\) −21.2734 29.2804i −0.688392 0.947491i
\(956\) 0 0
\(957\) −11.1234 15.2543i −0.359570 0.493101i
\(958\) 0 0
\(959\) 30.6591 0.0852586i 0.990034 0.00275314i
\(960\) 0 0
\(961\) 9.55168 29.3970i 0.308119 0.948292i
\(962\) 0 0
\(963\) 0.864700 1.19016i 0.0278646 0.0383523i
\(964\) 0 0
\(965\) −11.4752 35.3171i −0.369401 1.13690i
\(966\) 0 0
\(967\) 30.8881i 0.993293i −0.867953 0.496647i \(-0.834565\pi\)
0.867953 0.496647i \(-0.165435\pi\)
\(968\) 0 0
\(969\) 51.5988i 1.65759i
\(970\) 0 0
\(971\) 7.58840 2.46562i 0.243523 0.0791256i −0.184712 0.982793i \(-0.559135\pi\)
0.428236 + 0.903667i \(0.359135\pi\)
\(972\) 0 0
\(973\) −6.48807 19.7809i −0.207998 0.634146i
\(974\) 0 0
\(975\) 44.3311 + 14.4040i 1.41973 + 0.461298i
\(976\) 0 0
\(977\) 37.1630 27.0005i 1.18895 0.863823i 0.195798 0.980644i \(-0.437270\pi\)
0.993153 + 0.116821i \(0.0372703\pi\)
\(978\) 0 0
\(979\) 9.62053 7.01530i 0.307473 0.224210i
\(980\) 0 0
\(981\) 2.20063 + 3.02890i 0.0702606 + 0.0967054i
\(982\) 0 0
\(983\) −16.4568 5.34714i −0.524890 0.170547i 0.0345731 0.999402i \(-0.488993\pi\)
−0.559464 + 0.828855i \(0.688993\pi\)
\(984\) 0 0
\(985\) 7.90870 + 5.74601i 0.251992 + 0.183083i
\(986\) 0 0
\(987\) −3.97148 + 12.3396i −0.126413 + 0.392774i
\(988\) 0 0
\(989\) 81.5915i 2.59446i
\(990\) 0 0
\(991\) −1.30584 −0.0414815 −0.0207407 0.999785i \(-0.506602\pi\)
−0.0207407 + 0.999785i \(0.506602\pi\)
\(992\) 0 0
\(993\) 29.0665 9.44428i 0.922398 0.299705i
\(994\) 0 0
\(995\) −40.2899 29.2723i −1.27728 0.927995i
\(996\) 0 0
\(997\) 2.78145 8.56043i 0.0880895 0.271112i −0.897302 0.441418i \(-0.854476\pi\)
0.985391 + 0.170306i \(0.0544757\pi\)
\(998\) 0 0
\(999\) 3.05972 + 4.21134i 0.0968051 + 0.133241i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 616.2.bs.a.41.19 yes 96
7.6 odd 2 inner 616.2.bs.a.41.6 96
11.7 odd 10 inner 616.2.bs.a.601.6 yes 96
77.62 even 10 inner 616.2.bs.a.601.19 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.2.bs.a.41.6 96 7.6 odd 2 inner
616.2.bs.a.41.19 yes 96 1.1 even 1 trivial
616.2.bs.a.601.6 yes 96 11.7 odd 10 inner
616.2.bs.a.601.19 yes 96 77.62 even 10 inner