Properties

Label 624.4.bc.d.31.1
Level $624$
Weight $4$
Character 624.31
Analytic conductor $36.817$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(31,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.31");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.bc (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 31.1
Character \(\chi\) \(=\) 624.31
Dual form 624.4.bc.d.463.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} +(-13.9138 + 13.9138i) q^{5} +(3.70358 - 3.70358i) q^{7} -9.00000 q^{9} +(47.9147 - 47.9147i) q^{11} +(-44.1297 + 15.7977i) q^{13} +(-41.7413 - 41.7413i) q^{15} -16.9316i q^{17} +(4.73512 + 4.73512i) q^{19} +(11.1107 + 11.1107i) q^{21} -185.659 q^{23} -262.186i q^{25} -27.0000i q^{27} -63.8055 q^{29} +(40.5024 + 40.5024i) q^{31} +(143.744 + 143.744i) q^{33} +103.062i q^{35} +(-153.900 - 153.900i) q^{37} +(-47.3932 - 132.389i) q^{39} +(244.160 - 244.160i) q^{41} +204.154 q^{43} +(125.224 - 125.224i) q^{45} +(163.090 - 163.090i) q^{47} +315.567i q^{49} +50.7948 q^{51} +745.175 q^{53} +1333.35i q^{55} +(-14.2054 + 14.2054i) q^{57} +(356.309 - 356.309i) q^{59} +633.349 q^{61} +(-33.3322 + 33.3322i) q^{63} +(394.205 - 833.817i) q^{65} +(254.501 + 254.501i) q^{67} -556.977i q^{69} +(-638.833 - 638.833i) q^{71} +(-239.652 - 239.652i) q^{73} +786.558 q^{75} -354.912i q^{77} +638.294i q^{79} +81.0000 q^{81} +(718.687 + 718.687i) q^{83} +(235.582 + 235.582i) q^{85} -191.416i q^{87} +(34.5610 + 34.5610i) q^{89} +(-104.930 + 221.946i) q^{91} +(-121.507 + 121.507i) q^{93} -131.767 q^{95} +(-346.192 + 346.192i) q^{97} +(-431.232 + 431.232i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 4 q^{5} + 8 q^{7} - 252 q^{9} - 64 q^{11} - 32 q^{13} + 12 q^{15} - 56 q^{19} + 24 q^{21} - 384 q^{23} - 32 q^{29} + 168 q^{31} - 192 q^{33} + 412 q^{37} - 252 q^{39} + 1340 q^{41} - 624 q^{43} - 36 q^{45}+ \cdots + 576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) −13.9138 + 13.9138i −1.24449 + 1.24449i −0.286365 + 0.958121i \(0.592447\pi\)
−0.958121 + 0.286365i \(0.907553\pi\)
\(6\) 0 0
\(7\) 3.70358 3.70358i 0.199975 0.199975i −0.600015 0.799989i \(-0.704839\pi\)
0.799989 + 0.600015i \(0.204839\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 47.9147 47.9147i 1.31335 1.31335i 0.394416 0.918932i \(-0.370947\pi\)
0.918932 0.394416i \(-0.129053\pi\)
\(12\) 0 0
\(13\) −44.1297 + 15.7977i −0.941491 + 0.337038i
\(14\) 0 0
\(15\) −41.7413 41.7413i −0.718504 0.718504i
\(16\) 0 0
\(17\) 16.9316i 0.241560i −0.992679 0.120780i \(-0.961460\pi\)
0.992679 0.120780i \(-0.0385395\pi\)
\(18\) 0 0
\(19\) 4.73512 + 4.73512i 0.0571743 + 0.0571743i 0.735116 0.677942i \(-0.237128\pi\)
−0.677942 + 0.735116i \(0.737128\pi\)
\(20\) 0 0
\(21\) 11.1107 + 11.1107i 0.115455 + 0.115455i
\(22\) 0 0
\(23\) −185.659 −1.68316 −0.841578 0.540135i \(-0.818373\pi\)
−0.841578 + 0.540135i \(0.818373\pi\)
\(24\) 0 0
\(25\) 262.186i 2.09749i
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) −63.8055 −0.408565 −0.204282 0.978912i \(-0.565486\pi\)
−0.204282 + 0.978912i \(0.565486\pi\)
\(30\) 0 0
\(31\) 40.5024 + 40.5024i 0.234660 + 0.234660i 0.814634 0.579975i \(-0.196938\pi\)
−0.579975 + 0.814634i \(0.696938\pi\)
\(32\) 0 0
\(33\) 143.744 + 143.744i 0.758262 + 0.758262i
\(34\) 0 0
\(35\) 103.062i 0.497731i
\(36\) 0 0
\(37\) −153.900 153.900i −0.683811 0.683811i 0.277046 0.960857i \(-0.410645\pi\)
−0.960857 + 0.277046i \(0.910645\pi\)
\(38\) 0 0
\(39\) −47.3932 132.389i −0.194589 0.543570i
\(40\) 0 0
\(41\) 244.160 244.160i 0.930034 0.930034i −0.0676732 0.997708i \(-0.521558\pi\)
0.997708 + 0.0676732i \(0.0215575\pi\)
\(42\) 0 0
\(43\) 204.154 0.724030 0.362015 0.932172i \(-0.382089\pi\)
0.362015 + 0.932172i \(0.382089\pi\)
\(44\) 0 0
\(45\) 125.224 125.224i 0.414828 0.414828i
\(46\) 0 0
\(47\) 163.090 163.090i 0.506151 0.506151i −0.407192 0.913343i \(-0.633492\pi\)
0.913343 + 0.407192i \(0.133492\pi\)
\(48\) 0 0
\(49\) 315.567i 0.920020i
\(50\) 0 0
\(51\) 50.7948 0.139465
\(52\) 0 0
\(53\) 745.175 1.93128 0.965638 0.259890i \(-0.0836864\pi\)
0.965638 + 0.259890i \(0.0836864\pi\)
\(54\) 0 0
\(55\) 1333.35i 3.26889i
\(56\) 0 0
\(57\) −14.2054 + 14.2054i −0.0330096 + 0.0330096i
\(58\) 0 0
\(59\) 356.309 356.309i 0.786228 0.786228i −0.194646 0.980874i \(-0.562356\pi\)
0.980874 + 0.194646i \(0.0623557\pi\)
\(60\) 0 0
\(61\) 633.349 1.32938 0.664689 0.747120i \(-0.268564\pi\)
0.664689 + 0.747120i \(0.268564\pi\)
\(62\) 0 0
\(63\) −33.3322 + 33.3322i −0.0666582 + 0.0666582i
\(64\) 0 0
\(65\) 394.205 833.817i 0.752232 1.59111i
\(66\) 0 0
\(67\) 254.501 + 254.501i 0.464063 + 0.464063i 0.899985 0.435922i \(-0.143577\pi\)
−0.435922 + 0.899985i \(0.643577\pi\)
\(68\) 0 0
\(69\) 556.977i 0.971771i
\(70\) 0 0
\(71\) −638.833 638.833i −1.06782 1.06782i −0.997526 0.0702975i \(-0.977605\pi\)
−0.0702975 0.997526i \(-0.522395\pi\)
\(72\) 0 0
\(73\) −239.652 239.652i −0.384235 0.384235i 0.488390 0.872625i \(-0.337584\pi\)
−0.872625 + 0.488390i \(0.837584\pi\)
\(74\) 0 0
\(75\) 786.558 1.21099
\(76\) 0 0
\(77\) 354.912i 0.525273i
\(78\) 0 0
\(79\) 638.294i 0.909034i 0.890738 + 0.454517i \(0.150188\pi\)
−0.890738 + 0.454517i \(0.849812\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 718.687 + 718.687i 0.950435 + 0.950435i 0.998828 0.0483931i \(-0.0154100\pi\)
−0.0483931 + 0.998828i \(0.515410\pi\)
\(84\) 0 0
\(85\) 235.582 + 235.582i 0.300618 + 0.300618i
\(86\) 0 0
\(87\) 191.416i 0.235885i
\(88\) 0 0
\(89\) 34.5610 + 34.5610i 0.0411625 + 0.0411625i 0.727388 0.686226i \(-0.240734\pi\)
−0.686226 + 0.727388i \(0.740734\pi\)
\(90\) 0 0
\(91\) −104.930 + 221.946i −0.120875 + 0.255673i
\(92\) 0 0
\(93\) −121.507 + 121.507i −0.135481 + 0.135481i
\(94\) 0 0
\(95\) −131.767 −0.142305
\(96\) 0 0
\(97\) −346.192 + 346.192i −0.362376 + 0.362376i −0.864687 0.502311i \(-0.832483\pi\)
0.502311 + 0.864687i \(0.332483\pi\)
\(98\) 0 0
\(99\) −431.232 + 431.232i −0.437783 + 0.437783i
\(100\) 0 0
\(101\) 1452.70i 1.43117i −0.698523 0.715587i \(-0.746159\pi\)
0.698523 0.715587i \(-0.253841\pi\)
\(102\) 0 0
\(103\) 119.648 0.114458 0.0572292 0.998361i \(-0.481773\pi\)
0.0572292 + 0.998361i \(0.481773\pi\)
\(104\) 0 0
\(105\) −309.185 −0.287365
\(106\) 0 0
\(107\) 763.111i 0.689465i 0.938701 + 0.344732i \(0.112030\pi\)
−0.938701 + 0.344732i \(0.887970\pi\)
\(108\) 0 0
\(109\) −654.709 + 654.709i −0.575319 + 0.575319i −0.933610 0.358291i \(-0.883360\pi\)
0.358291 + 0.933610i \(0.383360\pi\)
\(110\) 0 0
\(111\) 461.700 461.700i 0.394798 0.394798i
\(112\) 0 0
\(113\) −1855.80 −1.54495 −0.772474 0.635046i \(-0.780981\pi\)
−0.772474 + 0.635046i \(0.780981\pi\)
\(114\) 0 0
\(115\) 2583.22 2583.22i 2.09466 2.09466i
\(116\) 0 0
\(117\) 397.167 142.179i 0.313830 0.112346i
\(118\) 0 0
\(119\) −62.7075 62.7075i −0.0483058 0.0483058i
\(120\) 0 0
\(121\) 3260.64i 2.44977i
\(122\) 0 0
\(123\) 732.480 + 732.480i 0.536956 + 0.536956i
\(124\) 0 0
\(125\) 1908.77 + 1908.77i 1.36581 + 1.36581i
\(126\) 0 0
\(127\) 322.009 0.224990 0.112495 0.993652i \(-0.464116\pi\)
0.112495 + 0.993652i \(0.464116\pi\)
\(128\) 0 0
\(129\) 612.463i 0.418019i
\(130\) 0 0
\(131\) 2282.35i 1.52221i −0.648629 0.761105i \(-0.724657\pi\)
0.648629 0.761105i \(-0.275343\pi\)
\(132\) 0 0
\(133\) 35.0738 0.0228668
\(134\) 0 0
\(135\) 375.672 + 375.672i 0.239501 + 0.239501i
\(136\) 0 0
\(137\) 8.27752 + 8.27752i 0.00516201 + 0.00516201i 0.709683 0.704521i \(-0.248838\pi\)
−0.704521 + 0.709683i \(0.748838\pi\)
\(138\) 0 0
\(139\) 430.200i 0.262511i 0.991349 + 0.131256i \(0.0419009\pi\)
−0.991349 + 0.131256i \(0.958099\pi\)
\(140\) 0 0
\(141\) 489.270 + 489.270i 0.292227 + 0.292227i
\(142\) 0 0
\(143\) −1357.52 + 2871.41i −0.793857 + 1.67915i
\(144\) 0 0
\(145\) 887.775 887.775i 0.508453 0.508453i
\(146\) 0 0
\(147\) −946.701 −0.531174
\(148\) 0 0
\(149\) 1427.12 1427.12i 0.784661 0.784661i −0.195953 0.980613i \(-0.562780\pi\)
0.980613 + 0.195953i \(0.0627799\pi\)
\(150\) 0 0
\(151\) −855.610 + 855.610i −0.461116 + 0.461116i −0.899021 0.437905i \(-0.855721\pi\)
0.437905 + 0.899021i \(0.355721\pi\)
\(152\) 0 0
\(153\) 152.384i 0.0805199i
\(154\) 0 0
\(155\) −1127.08 −0.584061
\(156\) 0 0
\(157\) 2438.43 1.23954 0.619772 0.784782i \(-0.287225\pi\)
0.619772 + 0.784782i \(0.287225\pi\)
\(158\) 0 0
\(159\) 2235.52i 1.11502i
\(160\) 0 0
\(161\) −687.604 + 687.604i −0.336589 + 0.336589i
\(162\) 0 0
\(163\) 236.605 236.605i 0.113695 0.113695i −0.647970 0.761666i \(-0.724382\pi\)
0.761666 + 0.647970i \(0.224382\pi\)
\(164\) 0 0
\(165\) −4000.05 −1.88729
\(166\) 0 0
\(167\) 130.558 130.558i 0.0604962 0.0604962i −0.676211 0.736708i \(-0.736379\pi\)
0.736708 + 0.676211i \(0.236379\pi\)
\(168\) 0 0
\(169\) 1697.86 1394.30i 0.772810 0.634637i
\(170\) 0 0
\(171\) −42.6161 42.6161i −0.0190581 0.0190581i
\(172\) 0 0
\(173\) 4274.55i 1.87854i −0.343173 0.939272i \(-0.611502\pi\)
0.343173 0.939272i \(-0.388498\pi\)
\(174\) 0 0
\(175\) −971.027 971.027i −0.419444 0.419444i
\(176\) 0 0
\(177\) 1068.93 + 1068.93i 0.453929 + 0.453929i
\(178\) 0 0
\(179\) −2595.26 −1.08368 −0.541840 0.840482i \(-0.682272\pi\)
−0.541840 + 0.840482i \(0.682272\pi\)
\(180\) 0 0
\(181\) 68.1614i 0.0279911i 0.999902 + 0.0139956i \(0.00445507\pi\)
−0.999902 + 0.0139956i \(0.995545\pi\)
\(182\) 0 0
\(183\) 1900.05i 0.767517i
\(184\) 0 0
\(185\) 4282.66 1.70198
\(186\) 0 0
\(187\) −811.273 811.273i −0.317252 0.317252i
\(188\) 0 0
\(189\) −99.9967 99.9967i −0.0384851 0.0384851i
\(190\) 0 0
\(191\) 4946.82i 1.87403i −0.349293 0.937013i \(-0.613578\pi\)
0.349293 0.937013i \(-0.386422\pi\)
\(192\) 0 0
\(193\) 22.2809 + 22.2809i 0.00830990 + 0.00830990i 0.711250 0.702940i \(-0.248130\pi\)
−0.702940 + 0.711250i \(0.748130\pi\)
\(194\) 0 0
\(195\) 2501.45 + 1182.61i 0.918628 + 0.434302i
\(196\) 0 0
\(197\) −2098.27 + 2098.27i −0.758861 + 0.758861i −0.976115 0.217254i \(-0.930290\pi\)
0.217254 + 0.976115i \(0.430290\pi\)
\(198\) 0 0
\(199\) 2678.59 0.954174 0.477087 0.878856i \(-0.341693\pi\)
0.477087 + 0.878856i \(0.341693\pi\)
\(200\) 0 0
\(201\) −763.503 + 763.503i −0.267927 + 0.267927i
\(202\) 0 0
\(203\) −236.309 + 236.309i −0.0817026 + 0.0817026i
\(204\) 0 0
\(205\) 6794.38i 2.31483i
\(206\) 0 0
\(207\) 1670.93 0.561052
\(208\) 0 0
\(209\) 453.764 0.150180
\(210\) 0 0
\(211\) 4048.59i 1.32093i −0.750856 0.660466i \(-0.770359\pi\)
0.750856 0.660466i \(-0.229641\pi\)
\(212\) 0 0
\(213\) 1916.50 1916.50i 0.616508 0.616508i
\(214\) 0 0
\(215\) −2840.56 + 2840.56i −0.901044 + 0.901044i
\(216\) 0 0
\(217\) 300.008 0.0938520
\(218\) 0 0
\(219\) 718.957 718.957i 0.221838 0.221838i
\(220\) 0 0
\(221\) 267.481 + 747.186i 0.0814149 + 0.227426i
\(222\) 0 0
\(223\) 157.101 + 157.101i 0.0471760 + 0.0471760i 0.730301 0.683125i \(-0.239380\pi\)
−0.683125 + 0.730301i \(0.739380\pi\)
\(224\) 0 0
\(225\) 2359.67i 0.699163i
\(226\) 0 0
\(227\) −2012.14 2012.14i −0.588327 0.588327i 0.348851 0.937178i \(-0.386572\pi\)
−0.937178 + 0.348851i \(0.886572\pi\)
\(228\) 0 0
\(229\) 1174.51 + 1174.51i 0.338926 + 0.338926i 0.855963 0.517037i \(-0.172965\pi\)
−0.517037 + 0.855963i \(0.672965\pi\)
\(230\) 0 0
\(231\) 1064.74 0.303266
\(232\) 0 0
\(233\) 2022.45i 0.568648i −0.958728 0.284324i \(-0.908231\pi\)
0.958728 0.284324i \(-0.0917692\pi\)
\(234\) 0 0
\(235\) 4538.39i 1.25980i
\(236\) 0 0
\(237\) −1914.88 −0.524831
\(238\) 0 0
\(239\) −3061.00 3061.00i −0.828452 0.828452i 0.158851 0.987303i \(-0.449221\pi\)
−0.987303 + 0.158851i \(0.949221\pi\)
\(240\) 0 0
\(241\) −2138.76 2138.76i −0.571659 0.571659i 0.360933 0.932592i \(-0.382458\pi\)
−0.932592 + 0.360933i \(0.882458\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) −4390.73 4390.73i −1.14495 1.14495i
\(246\) 0 0
\(247\) −283.764 134.155i −0.0730990 0.0345591i
\(248\) 0 0
\(249\) −2156.06 + 2156.06i −0.548734 + 0.548734i
\(250\) 0 0
\(251\) 1878.74 0.472449 0.236225 0.971698i \(-0.424090\pi\)
0.236225 + 0.971698i \(0.424090\pi\)
\(252\) 0 0
\(253\) −8895.80 + 8895.80i −2.21057 + 2.21057i
\(254\) 0 0
\(255\) −706.747 + 706.747i −0.173562 + 0.173562i
\(256\) 0 0
\(257\) 1025.01i 0.248787i −0.992233 0.124393i \(-0.960301\pi\)
0.992233 0.124393i \(-0.0396985\pi\)
\(258\) 0 0
\(259\) −1139.96 −0.273490
\(260\) 0 0
\(261\) 574.249 0.136188
\(262\) 0 0
\(263\) 873.537i 0.204808i 0.994743 + 0.102404i \(0.0326535\pi\)
−0.994743 + 0.102404i \(0.967347\pi\)
\(264\) 0 0
\(265\) −10368.2 + 10368.2i −2.40345 + 2.40345i
\(266\) 0 0
\(267\) −103.683 + 103.683i −0.0237652 + 0.0237652i
\(268\) 0 0
\(269\) −5959.94 −1.35087 −0.675435 0.737420i \(-0.736044\pi\)
−0.675435 + 0.737420i \(0.736044\pi\)
\(270\) 0 0
\(271\) 3050.09 3050.09i 0.683690 0.683690i −0.277139 0.960830i \(-0.589386\pi\)
0.960830 + 0.277139i \(0.0893864\pi\)
\(272\) 0 0
\(273\) −665.838 314.790i −0.147613 0.0697873i
\(274\) 0 0
\(275\) −12562.6 12562.6i −2.75473 2.75473i
\(276\) 0 0
\(277\) 6987.78i 1.51572i −0.652416 0.757861i \(-0.726245\pi\)
0.652416 0.757861i \(-0.273755\pi\)
\(278\) 0 0
\(279\) −364.522 364.522i −0.0782199 0.0782199i
\(280\) 0 0
\(281\) 2229.86 + 2229.86i 0.473390 + 0.473390i 0.903010 0.429620i \(-0.141352\pi\)
−0.429620 + 0.903010i \(0.641352\pi\)
\(282\) 0 0
\(283\) −6950.34 −1.45991 −0.729955 0.683495i \(-0.760459\pi\)
−0.729955 + 0.683495i \(0.760459\pi\)
\(284\) 0 0
\(285\) 395.300i 0.0821599i
\(286\) 0 0
\(287\) 1808.53i 0.371966i
\(288\) 0 0
\(289\) 4626.32 0.941649
\(290\) 0 0
\(291\) −1038.58 1038.58i −0.209218 0.209218i
\(292\) 0 0
\(293\) 5684.18 + 5684.18i 1.13336 + 1.13336i 0.989616 + 0.143740i \(0.0459129\pi\)
0.143740 + 0.989616i \(0.454087\pi\)
\(294\) 0 0
\(295\) 9915.20i 1.95690i
\(296\) 0 0
\(297\) −1293.70 1293.70i −0.252754 0.252754i
\(298\) 0 0
\(299\) 8193.08 2932.99i 1.58468 0.567288i
\(300\) 0 0
\(301\) 756.103 756.103i 0.144787 0.144787i
\(302\) 0 0
\(303\) 4358.09 0.826289
\(304\) 0 0
\(305\) −8812.28 + 8812.28i −1.65439 + 1.65439i
\(306\) 0 0
\(307\) −248.466 + 248.466i −0.0461912 + 0.0461912i −0.729825 0.683634i \(-0.760399\pi\)
0.683634 + 0.729825i \(0.260399\pi\)
\(308\) 0 0
\(309\) 358.943i 0.0660826i
\(310\) 0 0
\(311\) 510.392 0.0930600 0.0465300 0.998917i \(-0.485184\pi\)
0.0465300 + 0.998917i \(0.485184\pi\)
\(312\) 0 0
\(313\) −7639.87 −1.37965 −0.689826 0.723975i \(-0.742313\pi\)
−0.689826 + 0.723975i \(0.742313\pi\)
\(314\) 0 0
\(315\) 927.554i 0.165910i
\(316\) 0 0
\(317\) 4695.69 4695.69i 0.831975 0.831975i −0.155812 0.987787i \(-0.549799\pi\)
0.987787 + 0.155812i \(0.0497993\pi\)
\(318\) 0 0
\(319\) −3057.22 + 3057.22i −0.536588 + 0.536588i
\(320\) 0 0
\(321\) −2289.33 −0.398063
\(322\) 0 0
\(323\) 80.1732 80.1732i 0.0138110 0.0138110i
\(324\) 0 0
\(325\) 4141.94 + 11570.2i 0.706934 + 1.97477i
\(326\) 0 0
\(327\) −1964.13 1964.13i −0.332161 0.332161i
\(328\) 0 0
\(329\) 1208.03i 0.202435i
\(330\) 0 0
\(331\) 7147.38 + 7147.38i 1.18688 + 1.18688i 0.977927 + 0.208949i \(0.0670042\pi\)
0.208949 + 0.977927i \(0.432996\pi\)
\(332\) 0 0
\(333\) 1385.10 + 1385.10i 0.227937 + 0.227937i
\(334\) 0 0
\(335\) −7082.13 −1.15504
\(336\) 0 0
\(337\) 606.819i 0.0980877i −0.998797 0.0490438i \(-0.984383\pi\)
0.998797 0.0490438i \(-0.0156174\pi\)
\(338\) 0 0
\(339\) 5567.41i 0.891976i
\(340\) 0 0
\(341\) 3881.33 0.616380
\(342\) 0 0
\(343\) 2439.06 + 2439.06i 0.383955 + 0.383955i
\(344\) 0 0
\(345\) 7749.65 + 7749.65i 1.20935 + 1.20935i
\(346\) 0 0
\(347\) 857.609i 0.132677i −0.997797 0.0663384i \(-0.978868\pi\)
0.997797 0.0663384i \(-0.0211317\pi\)
\(348\) 0 0
\(349\) −5371.11 5371.11i −0.823808 0.823808i 0.162844 0.986652i \(-0.447933\pi\)
−0.986652 + 0.162844i \(0.947933\pi\)
\(350\) 0 0
\(351\) 426.538 + 1191.50i 0.0648631 + 0.181190i
\(352\) 0 0
\(353\) 4317.37 4317.37i 0.650965 0.650965i −0.302260 0.953225i \(-0.597741\pi\)
0.953225 + 0.302260i \(0.0977412\pi\)
\(354\) 0 0
\(355\) 17777.1 2.65778
\(356\) 0 0
\(357\) 188.123 188.123i 0.0278894 0.0278894i
\(358\) 0 0
\(359\) −8644.26 + 8644.26i −1.27083 + 1.27083i −0.325171 + 0.945655i \(0.605422\pi\)
−0.945655 + 0.325171i \(0.894578\pi\)
\(360\) 0 0
\(361\) 6814.16i 0.993462i
\(362\) 0 0
\(363\) 9781.92 1.41437
\(364\) 0 0
\(365\) 6668.93 0.956350
\(366\) 0 0
\(367\) 2722.03i 0.387164i −0.981084 0.193582i \(-0.937990\pi\)
0.981084 0.193582i \(-0.0620105\pi\)
\(368\) 0 0
\(369\) −2197.44 + 2197.44i −0.310011 + 0.310011i
\(370\) 0 0
\(371\) 2759.82 2759.82i 0.386206 0.386206i
\(372\) 0 0
\(373\) −9.55862 −0.00132688 −0.000663440 1.00000i \(-0.500211\pi\)
−0.000663440 1.00000i \(0.500211\pi\)
\(374\) 0 0
\(375\) −5726.32 + 5726.32i −0.788550 + 0.788550i
\(376\) 0 0
\(377\) 2815.72 1007.98i 0.384660 0.137702i
\(378\) 0 0
\(379\) 7403.27 + 7403.27i 1.00338 + 1.00338i 0.999994 + 0.00338379i \(0.00107710\pi\)
0.00338379 + 0.999994i \(0.498923\pi\)
\(380\) 0 0
\(381\) 966.028i 0.129898i
\(382\) 0 0
\(383\) −2840.27 2840.27i −0.378932 0.378932i 0.491785 0.870717i \(-0.336345\pi\)
−0.870717 + 0.491785i \(0.836345\pi\)
\(384\) 0 0
\(385\) 4938.17 + 4938.17i 0.653694 + 0.653694i
\(386\) 0 0
\(387\) −1837.39 −0.241343
\(388\) 0 0
\(389\) 2814.71i 0.366868i 0.983032 + 0.183434i \(0.0587214\pi\)
−0.983032 + 0.183434i \(0.941279\pi\)
\(390\) 0 0
\(391\) 3143.50i 0.406583i
\(392\) 0 0
\(393\) 6847.04 0.878848
\(394\) 0 0
\(395\) −8881.07 8881.07i −1.13128 1.13128i
\(396\) 0 0
\(397\) −6247.09 6247.09i −0.789754 0.789754i 0.191699 0.981454i \(-0.438600\pi\)
−0.981454 + 0.191699i \(0.938600\pi\)
\(398\) 0 0
\(399\) 105.221i 0.0132022i
\(400\) 0 0
\(401\) 2415.38 + 2415.38i 0.300794 + 0.300794i 0.841324 0.540531i \(-0.181776\pi\)
−0.540531 + 0.841324i \(0.681776\pi\)
\(402\) 0 0
\(403\) −2427.21 1147.52i −0.300019 0.141841i
\(404\) 0 0
\(405\) −1127.02 + 1127.02i −0.138276 + 0.138276i
\(406\) 0 0
\(407\) −14748.1 −1.79616
\(408\) 0 0
\(409\) 9169.65 9169.65i 1.10858 1.10858i 0.115245 0.993337i \(-0.463235\pi\)
0.993337 0.115245i \(-0.0367652\pi\)
\(410\) 0 0
\(411\) −24.8325 + 24.8325i −0.00298029 + 0.00298029i
\(412\) 0 0
\(413\) 2639.24i 0.314451i
\(414\) 0 0
\(415\) −19999.3 −2.36561
\(416\) 0 0
\(417\) −1290.60 −0.151561
\(418\) 0 0
\(419\) 5630.26i 0.656458i −0.944598 0.328229i \(-0.893548\pi\)
0.944598 0.328229i \(-0.106452\pi\)
\(420\) 0 0
\(421\) −5823.08 + 5823.08i −0.674108 + 0.674108i −0.958661 0.284552i \(-0.908155\pi\)
0.284552 + 0.958661i \(0.408155\pi\)
\(422\) 0 0
\(423\) −1467.81 + 1467.81i −0.168717 + 0.168717i
\(424\) 0 0
\(425\) −4439.23 −0.506669
\(426\) 0 0
\(427\) 2345.66 2345.66i 0.265842 0.265842i
\(428\) 0 0
\(429\) −8614.22 4072.56i −0.969460 0.458333i
\(430\) 0 0
\(431\) 4828.81 + 4828.81i 0.539665 + 0.539665i 0.923431 0.383766i \(-0.125373\pi\)
−0.383766 + 0.923431i \(0.625373\pi\)
\(432\) 0 0
\(433\) 8140.76i 0.903510i −0.892142 0.451755i \(-0.850798\pi\)
0.892142 0.451755i \(-0.149202\pi\)
\(434\) 0 0
\(435\) 2663.32 + 2663.32i 0.293555 + 0.293555i
\(436\) 0 0
\(437\) −879.119 879.119i −0.0962333 0.0962333i
\(438\) 0 0
\(439\) −5202.19 −0.565574 −0.282787 0.959183i \(-0.591259\pi\)
−0.282787 + 0.959183i \(0.591259\pi\)
\(440\) 0 0
\(441\) 2840.10i 0.306673i
\(442\) 0 0
\(443\) 4780.70i 0.512727i −0.966580 0.256364i \(-0.917476\pi\)
0.966580 0.256364i \(-0.0825244\pi\)
\(444\) 0 0
\(445\) −961.748 −0.102452
\(446\) 0 0
\(447\) 4281.37 + 4281.37i 0.453024 + 0.453024i
\(448\) 0 0
\(449\) −5127.82 5127.82i −0.538969 0.538969i 0.384257 0.923226i \(-0.374458\pi\)
−0.923226 + 0.384257i \(0.874458\pi\)
\(450\) 0 0
\(451\) 23397.7i 2.44292i
\(452\) 0 0
\(453\) −2566.83 2566.83i −0.266225 0.266225i
\(454\) 0 0
\(455\) −1628.14 4548.08i −0.167754 0.468609i
\(456\) 0 0
\(457\) −10547.1 + 10547.1i −1.07959 + 1.07959i −0.0830452 + 0.996546i \(0.526465\pi\)
−0.996546 + 0.0830452i \(0.973535\pi\)
\(458\) 0 0
\(459\) −457.153 −0.0464882
\(460\) 0 0
\(461\) 7482.40 7482.40i 0.755944 0.755944i −0.219638 0.975582i \(-0.570487\pi\)
0.975582 + 0.219638i \(0.0704875\pi\)
\(462\) 0 0
\(463\) −2861.40 + 2861.40i −0.287215 + 0.287215i −0.835978 0.548763i \(-0.815099\pi\)
0.548763 + 0.835978i \(0.315099\pi\)
\(464\) 0 0
\(465\) 3381.25i 0.337208i
\(466\) 0 0
\(467\) 14319.2 1.41887 0.709437 0.704768i \(-0.248949\pi\)
0.709437 + 0.704768i \(0.248949\pi\)
\(468\) 0 0
\(469\) 1885.13 0.185602
\(470\) 0 0
\(471\) 7315.30i 0.715651i
\(472\) 0 0
\(473\) 9782.00 9782.00i 0.950903 0.950903i
\(474\) 0 0
\(475\) 1241.48 1241.48i 0.119922 0.119922i
\(476\) 0 0
\(477\) −6706.57 −0.643759
\(478\) 0 0
\(479\) 5724.20 5724.20i 0.546023 0.546023i −0.379265 0.925288i \(-0.623823\pi\)
0.925288 + 0.379265i \(0.123823\pi\)
\(480\) 0 0
\(481\) 9222.83 + 4360.29i 0.874272 + 0.413331i
\(482\) 0 0
\(483\) −2062.81 2062.81i −0.194329 0.194329i
\(484\) 0 0
\(485\) 9633.67i 0.901943i
\(486\) 0 0
\(487\) 9997.97 + 9997.97i 0.930290 + 0.930290i 0.997724 0.0674341i \(-0.0214812\pi\)
−0.0674341 + 0.997724i \(0.521481\pi\)
\(488\) 0 0
\(489\) 709.816 + 709.816i 0.0656421 + 0.0656421i
\(490\) 0 0
\(491\) 9597.29 0.882117 0.441059 0.897478i \(-0.354603\pi\)
0.441059 + 0.897478i \(0.354603\pi\)
\(492\) 0 0
\(493\) 1080.33i 0.0986928i
\(494\) 0 0
\(495\) 12000.1i 1.08963i
\(496\) 0 0
\(497\) −4731.94 −0.427075
\(498\) 0 0
\(499\) 6746.94 + 6746.94i 0.605279 + 0.605279i 0.941709 0.336429i \(-0.109219\pi\)
−0.336429 + 0.941709i \(0.609219\pi\)
\(500\) 0 0
\(501\) 391.673 + 391.673i 0.0349275 + 0.0349275i
\(502\) 0 0
\(503\) 18174.2i 1.61102i 0.592579 + 0.805512i \(0.298110\pi\)
−0.592579 + 0.805512i \(0.701890\pi\)
\(504\) 0 0
\(505\) 20212.5 + 20212.5i 1.78108 + 1.78108i
\(506\) 0 0
\(507\) 4182.89 + 5093.59i 0.366408 + 0.446182i
\(508\) 0 0
\(509\) −4943.56 + 4943.56i −0.430490 + 0.430490i −0.888795 0.458305i \(-0.848457\pi\)
0.458305 + 0.888795i \(0.348457\pi\)
\(510\) 0 0
\(511\) −1775.14 −0.153675
\(512\) 0 0
\(513\) 127.848 127.848i 0.0110032 0.0110032i
\(514\) 0 0
\(515\) −1664.75 + 1664.75i −0.142442 + 0.142442i
\(516\) 0 0
\(517\) 15628.8i 1.32951i
\(518\) 0 0
\(519\) 12823.7 1.08458
\(520\) 0 0
\(521\) −13138.6 −1.10482 −0.552410 0.833573i \(-0.686292\pi\)
−0.552410 + 0.833573i \(0.686292\pi\)
\(522\) 0 0
\(523\) 14057.7i 1.17533i −0.809104 0.587666i \(-0.800047\pi\)
0.809104 0.587666i \(-0.199953\pi\)
\(524\) 0 0
\(525\) 2913.08 2913.08i 0.242166 0.242166i
\(526\) 0 0
\(527\) 685.771 685.771i 0.0566843 0.0566843i
\(528\) 0 0
\(529\) 22302.3 1.83302
\(530\) 0 0
\(531\) −3206.78 + 3206.78i −0.262076 + 0.262076i
\(532\) 0 0
\(533\) −6917.55 + 14631.9i −0.562162 + 1.18908i
\(534\) 0 0
\(535\) −10617.8 10617.8i −0.858029 0.858029i
\(536\) 0 0
\(537\) 7785.78i 0.625663i
\(538\) 0 0
\(539\) 15120.3 + 15120.3i 1.20831 + 1.20831i
\(540\) 0 0
\(541\) −11871.4 11871.4i −0.943420 0.943420i 0.0550625 0.998483i \(-0.482464\pi\)
−0.998483 + 0.0550625i \(0.982464\pi\)
\(542\) 0 0
\(543\) −204.484 −0.0161607
\(544\) 0 0
\(545\) 18219.0i 1.43195i
\(546\) 0 0
\(547\) 5827.38i 0.455504i −0.973719 0.227752i \(-0.926862\pi\)
0.973719 0.227752i \(-0.0731376\pi\)
\(548\) 0 0
\(549\) −5700.14 −0.443126
\(550\) 0 0
\(551\) −302.127 302.127i −0.0233594 0.0233594i
\(552\) 0 0
\(553\) 2363.97 + 2363.97i 0.181784 + 0.181784i
\(554\) 0 0
\(555\) 12848.0i 0.982641i
\(556\) 0 0
\(557\) −4672.59 4672.59i −0.355447 0.355447i 0.506685 0.862131i \(-0.330871\pi\)
−0.862131 + 0.506685i \(0.830871\pi\)
\(558\) 0 0
\(559\) −9009.28 + 3225.17i −0.681667 + 0.244026i
\(560\) 0 0
\(561\) 2433.82 2433.82i 0.183166 0.183166i
\(562\) 0 0
\(563\) −1509.10 −0.112968 −0.0564839 0.998404i \(-0.517989\pi\)
−0.0564839 + 0.998404i \(0.517989\pi\)
\(564\) 0 0
\(565\) 25821.2 25821.2i 1.92267 1.92267i
\(566\) 0 0
\(567\) 299.990 299.990i 0.0222194 0.0222194i
\(568\) 0 0
\(569\) 14420.9i 1.06249i −0.847220 0.531243i \(-0.821725\pi\)
0.847220 0.531243i \(-0.178275\pi\)
\(570\) 0 0
\(571\) −9487.02 −0.695305 −0.347653 0.937623i \(-0.613021\pi\)
−0.347653 + 0.937623i \(0.613021\pi\)
\(572\) 0 0
\(573\) 14840.5 1.08197
\(574\) 0 0
\(575\) 48677.2i 3.53040i
\(576\) 0 0
\(577\) −9411.62 + 9411.62i −0.679048 + 0.679048i −0.959785 0.280737i \(-0.909421\pi\)
0.280737 + 0.959785i \(0.409421\pi\)
\(578\) 0 0
\(579\) −66.8426 + 66.8426i −0.00479772 + 0.00479772i
\(580\) 0 0
\(581\) 5323.43 0.380126
\(582\) 0 0
\(583\) 35704.8 35704.8i 2.53644 2.53644i
\(584\) 0 0
\(585\) −3547.84 + 7504.35i −0.250744 + 0.530370i
\(586\) 0 0
\(587\) 10597.4 + 10597.4i 0.745151 + 0.745151i 0.973564 0.228414i \(-0.0733538\pi\)
−0.228414 + 0.973564i \(0.573354\pi\)
\(588\) 0 0
\(589\) 383.568i 0.0268330i
\(590\) 0 0
\(591\) −6294.82 6294.82i −0.438129 0.438129i
\(592\) 0 0
\(593\) −10426.2 10426.2i −0.722013 0.722013i 0.247002 0.969015i \(-0.420555\pi\)
−0.969015 + 0.247002i \(0.920555\pi\)
\(594\) 0 0
\(595\) 1745.00 0.120232
\(596\) 0 0
\(597\) 8035.78i 0.550892i
\(598\) 0 0
\(599\) 22692.0i 1.54786i −0.633270 0.773931i \(-0.718288\pi\)
0.633270 0.773931i \(-0.281712\pi\)
\(600\) 0 0
\(601\) 7977.98 0.541479 0.270739 0.962653i \(-0.412732\pi\)
0.270739 + 0.962653i \(0.412732\pi\)
\(602\) 0 0
\(603\) −2290.51 2290.51i −0.154688 0.154688i
\(604\) 0 0
\(605\) 45367.8 + 45367.8i 3.04870 + 3.04870i
\(606\) 0 0
\(607\) 22309.1i 1.49176i 0.666082 + 0.745879i \(0.267970\pi\)
−0.666082 + 0.745879i \(0.732030\pi\)
\(608\) 0 0
\(609\) −708.926 708.926i −0.0471710 0.0471710i
\(610\) 0 0
\(611\) −4620.66 + 9773.56i −0.305944 + 0.647129i
\(612\) 0 0
\(613\) 14934.7 14934.7i 0.984025 0.984025i −0.0158491 0.999874i \(-0.505045\pi\)
0.999874 + 0.0158491i \(0.00504512\pi\)
\(614\) 0 0
\(615\) −20383.1 −1.33647
\(616\) 0 0
\(617\) 15097.1 15097.1i 0.985064 0.985064i −0.0148260 0.999890i \(-0.504719\pi\)
0.999890 + 0.0148260i \(0.00471942\pi\)
\(618\) 0 0
\(619\) −4256.83 + 4256.83i −0.276408 + 0.276408i −0.831673 0.555265i \(-0.812617\pi\)
0.555265 + 0.831673i \(0.312617\pi\)
\(620\) 0 0
\(621\) 5012.80i 0.323924i
\(622\) 0 0
\(623\) 255.999 0.0164629
\(624\) 0 0
\(625\) −20343.3 −1.30197
\(626\) 0 0
\(627\) 1361.29i 0.0867062i
\(628\) 0 0
\(629\) −2605.77 + 2605.77i −0.165181 + 0.165181i
\(630\) 0 0
\(631\) −14308.8 + 14308.8i −0.902731 + 0.902731i −0.995672 0.0929410i \(-0.970373\pi\)
0.0929410 + 0.995672i \(0.470373\pi\)
\(632\) 0 0
\(633\) 12145.8 0.762640
\(634\) 0 0
\(635\) −4480.37 + 4480.37i −0.279997 + 0.279997i
\(636\) 0 0
\(637\) −4985.24 13925.9i −0.310082 0.866191i
\(638\) 0 0
\(639\) 5749.49 + 5749.49i 0.355941 + 0.355941i
\(640\) 0 0
\(641\) 7305.38i 0.450149i 0.974342 + 0.225074i \(0.0722625\pi\)
−0.974342 + 0.225074i \(0.927737\pi\)
\(642\) 0 0
\(643\) −5342.98 5342.98i −0.327693 0.327693i 0.524016 0.851709i \(-0.324433\pi\)
−0.851709 + 0.524016i \(0.824433\pi\)
\(644\) 0 0
\(645\) −8521.68 8521.68i −0.520218 0.520218i
\(646\) 0 0
\(647\) 29769.7 1.80891 0.904457 0.426565i \(-0.140277\pi\)
0.904457 + 0.426565i \(0.140277\pi\)
\(648\) 0 0
\(649\) 34144.9i 2.06518i
\(650\) 0 0
\(651\) 900.024i 0.0541855i
\(652\) 0 0
\(653\) 17597.7 1.05460 0.527299 0.849680i \(-0.323205\pi\)
0.527299 + 0.849680i \(0.323205\pi\)
\(654\) 0 0
\(655\) 31756.0 + 31756.0i 1.89437 + 1.89437i
\(656\) 0 0
\(657\) 2156.87 + 2156.87i 0.128078 + 0.128078i
\(658\) 0 0
\(659\) 11707.4i 0.692041i 0.938227 + 0.346021i \(0.112467\pi\)
−0.938227 + 0.346021i \(0.887533\pi\)
\(660\) 0 0
\(661\) 7126.50 + 7126.50i 0.419347 + 0.419347i 0.884979 0.465631i \(-0.154173\pi\)
−0.465631 + 0.884979i \(0.654173\pi\)
\(662\) 0 0
\(663\) −2241.56 + 802.442i −0.131305 + 0.0470049i
\(664\) 0 0
\(665\) −488.009 + 488.009i −0.0284574 + 0.0284574i
\(666\) 0 0
\(667\) 11846.1 0.687679
\(668\) 0 0
\(669\) −471.302 + 471.302i −0.0272371 + 0.0272371i
\(670\) 0 0
\(671\) 30346.7 30346.7i 1.74594 1.74594i
\(672\) 0 0
\(673\) 10774.8i 0.617147i 0.951201 + 0.308573i \(0.0998516\pi\)
−0.951201 + 0.308573i \(0.900148\pi\)
\(674\) 0 0
\(675\) −7079.02 −0.403662
\(676\) 0 0
\(677\) −25958.2 −1.47364 −0.736821 0.676088i \(-0.763674\pi\)
−0.736821 + 0.676088i \(0.763674\pi\)
\(678\) 0 0
\(679\) 2564.30i 0.144932i
\(680\) 0 0
\(681\) 6036.41 6036.41i 0.339671 0.339671i
\(682\) 0 0
\(683\) −9964.30 + 9964.30i −0.558233 + 0.558233i −0.928804 0.370571i \(-0.879162\pi\)
0.370571 + 0.928804i \(0.379162\pi\)
\(684\) 0 0
\(685\) −230.343 −0.0128481
\(686\) 0 0
\(687\) −3523.54 + 3523.54i −0.195679 + 0.195679i
\(688\) 0 0
\(689\) −32884.4 + 11772.1i −1.81828 + 0.650914i
\(690\) 0 0
\(691\) 6936.58 + 6936.58i 0.381881 + 0.381881i 0.871780 0.489898i \(-0.162966\pi\)
−0.489898 + 0.871780i \(0.662966\pi\)
\(692\) 0 0
\(693\) 3194.21i 0.175091i
\(694\) 0 0
\(695\) −5985.70 5985.70i −0.326692 0.326692i
\(696\) 0 0
\(697\) −4134.02 4134.02i −0.224659 0.224659i
\(698\) 0 0
\(699\) 6067.35 0.328309
\(700\) 0 0
\(701\) 10708.3i 0.576957i 0.957486 + 0.288478i \(0.0931493\pi\)
−0.957486 + 0.288478i \(0.906851\pi\)
\(702\) 0 0
\(703\) 1457.47i 0.0781928i
\(704\) 0 0
\(705\) −13615.2 −0.727343
\(706\) 0 0
\(707\) −5380.18 5380.18i −0.286199 0.286199i
\(708\) 0 0
\(709\) 3306.12 + 3306.12i 0.175125 + 0.175125i 0.789227 0.614102i \(-0.210482\pi\)
−0.614102 + 0.789227i \(0.710482\pi\)
\(710\) 0 0
\(711\) 5744.64i 0.303011i
\(712\) 0 0
\(713\) −7519.65 7519.65i −0.394969 0.394969i
\(714\) 0 0
\(715\) −21063.9 58840.3i −1.10174 3.07763i
\(716\) 0 0
\(717\) 9183.01 9183.01i 0.478307 0.478307i
\(718\) 0 0
\(719\) 9968.69 0.517065 0.258532 0.966003i \(-0.416761\pi\)
0.258532 + 0.966003i \(0.416761\pi\)
\(720\) 0 0
\(721\) 443.124 443.124i 0.0228888 0.0228888i
\(722\) 0 0
\(723\) 6416.29 6416.29i 0.330048 0.330048i
\(724\) 0 0
\(725\) 16728.9i 0.856960i
\(726\) 0 0
\(727\) −27575.5 −1.40676 −0.703382 0.710812i \(-0.748328\pi\)
−0.703382 + 0.710812i \(0.748328\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 3456.66i 0.174896i
\(732\) 0 0
\(733\) −1500.14 + 1500.14i −0.0755922 + 0.0755922i −0.743892 0.668300i \(-0.767022\pi\)
0.668300 + 0.743892i \(0.267022\pi\)
\(734\) 0 0
\(735\) 13172.2 13172.2i 0.661038 0.661038i
\(736\) 0 0
\(737\) 24388.7 1.21895
\(738\) 0 0
\(739\) −24477.1 + 24477.1i −1.21841 + 1.21841i −0.250219 + 0.968189i \(0.580503\pi\)
−0.968189 + 0.250219i \(0.919497\pi\)
\(740\) 0 0
\(741\) 402.466 851.291i 0.0199527 0.0422037i
\(742\) 0 0
\(743\) −12943.9 12943.9i −0.639117 0.639117i 0.311221 0.950338i \(-0.399262\pi\)
−0.950338 + 0.311221i \(0.899262\pi\)
\(744\) 0 0
\(745\) 39713.3i 1.95300i
\(746\) 0 0
\(747\) −6468.18 6468.18i −0.316812 0.316812i
\(748\) 0 0
\(749\) 2826.24 + 2826.24i 0.137875 + 0.137875i
\(750\) 0 0
\(751\) 27554.5 1.33885 0.669427 0.742878i \(-0.266540\pi\)
0.669427 + 0.742878i \(0.266540\pi\)
\(752\) 0 0
\(753\) 5636.21i 0.272769i
\(754\) 0 0
\(755\) 23809.5i 1.14770i
\(756\) 0 0
\(757\) −2871.45 −0.137866 −0.0689330 0.997621i \(-0.521959\pi\)
−0.0689330 + 0.997621i \(0.521959\pi\)
\(758\) 0 0
\(759\) −26687.4 26687.4i −1.27627 1.27627i
\(760\) 0 0
\(761\) −20998.4 20998.4i −1.00025 1.00025i −1.00000 0.000250668i \(-0.999920\pi\)
−0.000250668 1.00000i \(-0.500080\pi\)
\(762\) 0 0
\(763\) 4849.54i 0.230098i
\(764\) 0 0
\(765\) −2120.24 2120.24i −0.100206 0.100206i
\(766\) 0 0
\(767\) −10094.9 + 21352.7i −0.475237 + 1.00522i
\(768\) 0 0
\(769\) −2899.25 + 2899.25i −0.135955 + 0.135955i −0.771809 0.635854i \(-0.780648\pi\)
0.635854 + 0.771809i \(0.280648\pi\)
\(770\) 0 0
\(771\) 3075.02 0.143637
\(772\) 0 0
\(773\) 9595.72 9595.72i 0.446487 0.446487i −0.447698 0.894185i \(-0.647756\pi\)
0.894185 + 0.447698i \(0.147756\pi\)
\(774\) 0 0
\(775\) 10619.2 10619.2i 0.492196 0.492196i
\(776\) 0 0
\(777\) 3419.89i 0.157899i
\(778\) 0 0
\(779\) 2312.26 0.106348
\(780\) 0 0
\(781\) −61219.0 −2.80485
\(782\) 0 0
\(783\) 1722.75i 0.0786283i
\(784\) 0 0
\(785\) −33927.8 + 33927.8i −1.54259 + 1.54259i
\(786\) 0 0
\(787\) −30533.5 + 30533.5i −1.38298 + 1.38298i −0.543692 + 0.839285i \(0.682974\pi\)
−0.839285 + 0.543692i \(0.817026\pi\)
\(788\) 0 0
\(789\) −2620.61 −0.118246
\(790\) 0 0
\(791\) −6873.11 + 6873.11i −0.308950 + 0.308950i
\(792\) 0 0
\(793\) −27949.5 + 10005.5i −1.25160 + 0.448051i
\(794\) 0 0
\(795\) −31104.6 31104.6i −1.38763 1.38763i
\(796\) 0 0
\(797\) 9629.74i 0.427984i −0.976835 0.213992i \(-0.931353\pi\)
0.976835 0.213992i \(-0.0686466\pi\)
\(798\) 0 0
\(799\) −2761.37 2761.37i −0.122266 0.122266i
\(800\) 0 0
\(801\) −311.049 311.049i −0.0137208 0.0137208i
\(802\) 0 0
\(803\) −22965.7 −1.00927
\(804\) 0 0
\(805\) 19134.3i 0.837759i
\(806\) 0 0
\(807\) 17879.8i 0.779925i
\(808\) 0 0
\(809\) −34151.9 −1.48420 −0.742099 0.670290i \(-0.766170\pi\)
−0.742099 + 0.670290i \(0.766170\pi\)
\(810\) 0 0
\(811\) −6272.73 6272.73i −0.271597 0.271597i 0.558146 0.829743i \(-0.311513\pi\)
−0.829743 + 0.558146i \(0.811513\pi\)
\(812\) 0 0
\(813\) 9150.28 + 9150.28i 0.394729 + 0.394729i
\(814\) 0 0
\(815\) 6584.15i 0.282985i
\(816\) 0 0
\(817\) 966.696 + 966.696i 0.0413959 + 0.0413959i
\(818\) 0 0
\(819\) 944.369 1997.52i 0.0402917 0.0852245i
\(820\) 0 0
\(821\) 234.902 234.902i 0.00998553 0.00998553i −0.702096 0.712082i \(-0.747752\pi\)
0.712082 + 0.702096i \(0.247752\pi\)
\(822\) 0 0
\(823\) −33988.5 −1.43957 −0.719785 0.694197i \(-0.755760\pi\)
−0.719785 + 0.694197i \(0.755760\pi\)
\(824\) 0 0
\(825\) 37687.7 37687.7i 1.59045 1.59045i
\(826\) 0 0
\(827\) 15068.0 15068.0i 0.633575 0.633575i −0.315388 0.948963i \(-0.602135\pi\)
0.948963 + 0.315388i \(0.102135\pi\)
\(828\) 0 0
\(829\) 2485.12i 0.104115i 0.998644 + 0.0520577i \(0.0165780\pi\)
−0.998644 + 0.0520577i \(0.983422\pi\)
\(830\) 0 0
\(831\) 20963.3 0.875102
\(832\) 0 0
\(833\) 5343.05 0.222240
\(834\) 0 0
\(835\) 3633.10i 0.150573i
\(836\) 0 0
\(837\) 1093.57 1093.57i 0.0451603 0.0451603i
\(838\) 0 0
\(839\) 19119.8 19119.8i 0.786758 0.786758i −0.194204 0.980961i \(-0.562212\pi\)
0.980961 + 0.194204i \(0.0622122\pi\)
\(840\) 0 0
\(841\) −20317.9 −0.833075
\(842\) 0 0
\(843\) −6689.59 + 6689.59i −0.273312 + 0.273312i
\(844\) 0 0
\(845\) −4223.76 + 43023.6i −0.171955 + 1.75155i
\(846\) 0 0
\(847\) −12076.0 12076.0i −0.489891 0.489891i
\(848\) 0 0
\(849\) 20851.0i 0.842880i
\(850\) 0 0
\(851\) 28572.9 + 28572.9i 1.15096 + 1.15096i
\(852\) 0 0
\(853\) −6270.09 6270.09i −0.251681 0.251681i 0.569979 0.821659i \(-0.306951\pi\)
−0.821659 + 0.569979i \(0.806951\pi\)
\(854\) 0 0
\(855\) 1185.90 0.0474351
\(856\) 0 0
\(857\) 33972.2i 1.35410i 0.735935 + 0.677052i \(0.236743\pi\)
−0.735935 + 0.677052i \(0.763257\pi\)
\(858\) 0 0
\(859\) 27055.8i 1.07466i 0.843372 + 0.537330i \(0.180567\pi\)
−0.843372 + 0.537330i \(0.819433\pi\)
\(860\) 0 0
\(861\) 5425.60 0.214755
\(862\) 0 0
\(863\) 18238.2 + 18238.2i 0.719391 + 0.719391i 0.968480 0.249090i \(-0.0801314\pi\)
−0.249090 + 0.968480i \(0.580131\pi\)
\(864\) 0 0
\(865\) 59475.1 + 59475.1i 2.33782 + 2.33782i
\(866\) 0 0
\(867\) 13879.0i 0.543661i
\(868\) 0 0
\(869\) 30583.7 + 30583.7i 1.19388 + 1.19388i
\(870\) 0 0
\(871\) −15251.6 7210.52i −0.593318 0.280504i
\(872\) 0 0
\(873\) 3115.73 3115.73i 0.120792 0.120792i
\(874\) 0 0
\(875\) 14138.6 0.546254
\(876\) 0 0
\(877\) −49.2535 + 49.2535i −0.00189643 + 0.00189643i −0.708054 0.706158i \(-0.750427\pi\)
0.706158 + 0.708054i \(0.250427\pi\)
\(878\) 0 0
\(879\) −17052.5 + 17052.5i −0.654343 + 0.654343i
\(880\) 0 0
\(881\) 19071.9i 0.729339i −0.931137 0.364669i \(-0.881182\pi\)
0.931137 0.364669i \(-0.118818\pi\)
\(882\) 0 0
\(883\) −21611.7 −0.823659 −0.411830 0.911261i \(-0.635110\pi\)
−0.411830 + 0.911261i \(0.635110\pi\)
\(884\) 0 0
\(885\) −29745.6 −1.12982
\(886\) 0 0
\(887\) 8838.65i 0.334581i 0.985908 + 0.167290i \(0.0535017\pi\)
−0.985908 + 0.167290i \(0.946498\pi\)
\(888\) 0 0
\(889\) 1192.59 1192.59i 0.0449923 0.0449923i
\(890\) 0 0
\(891\) 3881.09 3881.09i 0.145928 0.145928i
\(892\) 0 0
\(893\) 1544.50 0.0578777
\(894\) 0 0
\(895\) 36109.8 36109.8i 1.34862 1.34862i
\(896\) 0 0
\(897\) 8798.97 + 24579.3i 0.327524 + 0.914913i
\(898\) 0 0
\(899\) −2584.28 2584.28i −0.0958737 0.0958737i
\(900\) 0 0
\(901\) 12617.0i 0.466519i
\(902\) 0 0
\(903\) 2268.31 + 2268.31i 0.0835931 + 0.0835931i
\(904\) 0 0
\(905\) −948.382 948.382i −0.0348346 0.0348346i
\(906\) 0 0
\(907\) −16267.8 −0.595549 −0.297774 0.954636i \(-0.596244\pi\)
−0.297774 + 0.954636i \(0.596244\pi\)
\(908\) 0 0
\(909\) 13074.3i 0.477058i
\(910\) 0 0
\(911\) 23946.0i 0.870874i −0.900219 0.435437i \(-0.856594\pi\)
0.900219 0.435437i \(-0.143406\pi\)
\(912\) 0 0
\(913\) 68871.3 2.49650
\(914\) 0 0
\(915\) −26436.8 26436.8i −0.955163 0.955163i
\(916\) 0 0
\(917\) −8452.85 8452.85i −0.304403 0.304403i
\(918\) 0 0
\(919\) 48773.1i 1.75068i −0.483508 0.875340i \(-0.660637\pi\)
0.483508 0.875340i \(-0.339363\pi\)
\(920\) 0 0
\(921\) −745.397 745.397i −0.0266685 0.0266685i
\(922\) 0 0
\(923\) 38283.6 + 18099.4i 1.36524 + 0.645449i
\(924\) 0 0
\(925\) −40350.4 + 40350.4i −1.43428 + 1.43428i
\(926\) 0 0
\(927\) −1076.83 −0.0381528
\(928\) 0 0
\(929\) 21546.4 21546.4i 0.760943 0.760943i −0.215550 0.976493i \(-0.569154\pi\)
0.976493 + 0.215550i \(0.0691544\pi\)
\(930\) 0 0
\(931\) −1494.25 + 1494.25i −0.0526015 + 0.0526015i
\(932\) 0 0
\(933\) 1531.18i 0.0537282i
\(934\) 0 0
\(935\) 22575.7 0.789631
\(936\) 0 0
\(937\) −27077.8 −0.944070 −0.472035 0.881580i \(-0.656480\pi\)
−0.472035 + 0.881580i \(0.656480\pi\)
\(938\) 0 0
\(939\) 22919.6i 0.796543i
\(940\) 0 0
\(941\) −4511.90 + 4511.90i −0.156306 + 0.156306i −0.780928 0.624622i \(-0.785253\pi\)
0.624622 + 0.780928i \(0.285253\pi\)
\(942\) 0 0
\(943\) −45330.6 + 45330.6i −1.56539 + 1.56539i
\(944\) 0 0
\(945\) 2782.66 0.0957884
\(946\) 0 0
\(947\) −31678.3 + 31678.3i −1.08702 + 1.08702i −0.0911855 + 0.995834i \(0.529066\pi\)
−0.995834 + 0.0911855i \(0.970934\pi\)
\(948\) 0 0
\(949\) 14361.7 + 6789.83i 0.491256 + 0.232252i
\(950\) 0 0
\(951\) 14087.1 + 14087.1i 0.480341 + 0.480341i
\(952\) 0 0
\(953\) 27802.9i 0.945042i 0.881319 + 0.472521i \(0.156656\pi\)
−0.881319 + 0.472521i \(0.843344\pi\)
\(954\) 0 0
\(955\) 68828.9 + 68828.9i 2.33220 + 2.33220i
\(956\) 0 0
\(957\) −9171.66 9171.66i −0.309799 0.309799i
\(958\) 0 0
\(959\) 61.3129 0.00206454
\(960\) 0 0
\(961\) 26510.1i 0.889870i
\(962\) 0 0
\(963\) 6868.00i 0.229822i
\(964\) 0 0
\(965\) −620.021 −0.0206831
\(966\) 0 0
\(967\) −32797.4 32797.4i −1.09068 1.09068i −0.995455 0.0952289i \(-0.969642\pi\)
−0.0952289 0.995455i \(-0.530358\pi\)
\(968\) 0 0
\(969\) 240.520 + 240.520i 0.00797379 + 0.00797379i
\(970\) 0 0
\(971\) 3417.73i 0.112956i −0.998404 0.0564779i \(-0.982013\pi\)
0.998404 0.0564779i \(-0.0179871\pi\)
\(972\) 0 0
\(973\) 1593.28 + 1593.28i 0.0524956 + 0.0524956i
\(974\) 0 0
\(975\) −34710.6 + 12425.8i −1.14013 + 0.408148i
\(976\) 0 0
\(977\) −40024.3 + 40024.3i −1.31064 + 1.31064i −0.389691 + 0.920946i \(0.627418\pi\)
−0.920946 + 0.389691i \(0.872582\pi\)
\(978\) 0 0
\(979\) 3311.96 0.108121
\(980\) 0 0
\(981\) 5892.38 5892.38i 0.191773 0.191773i
\(982\) 0 0
\(983\) −7505.62 + 7505.62i −0.243532 + 0.243532i −0.818310 0.574778i \(-0.805089\pi\)
0.574778 + 0.818310i \(0.305089\pi\)
\(984\) 0 0
\(985\) 58389.7i 1.88878i
\(986\) 0 0
\(987\) 3624.10 0.116876
\(988\) 0 0
\(989\) −37903.1 −1.21866
\(990\) 0 0
\(991\) 48879.6i 1.56681i −0.621510 0.783406i \(-0.713481\pi\)
0.621510 0.783406i \(-0.286519\pi\)
\(992\) 0 0
\(993\) −21442.2 + 21442.2i −0.685243 + 0.685243i
\(994\) 0 0
\(995\) −37269.4 + 37269.4i −1.18746 + 1.18746i
\(996\) 0 0
\(997\) 16635.7 0.528443 0.264221 0.964462i \(-0.414885\pi\)
0.264221 + 0.964462i \(0.414885\pi\)
\(998\) 0 0
\(999\) −4155.30 + 4155.30i −0.131599 + 0.131599i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.4.bc.d.31.1 yes 28
4.3 odd 2 624.4.bc.c.31.1 28
13.8 odd 4 624.4.bc.c.463.1 yes 28
52.47 even 4 inner 624.4.bc.d.463.1 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
624.4.bc.c.31.1 28 4.3 odd 2
624.4.bc.c.463.1 yes 28 13.8 odd 4
624.4.bc.d.31.1 yes 28 1.1 even 1 trivial
624.4.bc.d.463.1 yes 28 52.47 even 4 inner