Properties

Label 624.4.bc.d.463.3
Level $624$
Weight $4$
Character 624.463
Analytic conductor $36.817$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(31,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.31");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.bc (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.3
Character \(\chi\) \(=\) 624.463
Dual form 624.4.bc.d.31.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} +(-8.48307 - 8.48307i) q^{5} +(-5.05973 - 5.05973i) q^{7} -9.00000 q^{9} +(9.98793 + 9.98793i) q^{11} +(-4.24079 + 46.6799i) q^{13} +(-25.4492 + 25.4492i) q^{15} +61.7223i q^{17} +(-51.7737 + 51.7737i) q^{19} +(-15.1792 + 15.1792i) q^{21} +81.7373 q^{23} +18.9248i q^{25} +27.0000i q^{27} -24.7234 q^{29} +(-55.5963 + 55.5963i) q^{31} +(29.9638 - 29.9638i) q^{33} +85.8440i q^{35} +(275.273 - 275.273i) q^{37} +(140.040 + 12.7224i) q^{39} +(-29.8795 - 29.8795i) q^{41} +16.9411 q^{43} +(76.3476 + 76.3476i) q^{45} +(188.989 + 188.989i) q^{47} -291.798i q^{49} +185.167 q^{51} +115.819 q^{53} -169.457i q^{55} +(155.321 + 155.321i) q^{57} +(368.361 + 368.361i) q^{59} +569.709 q^{61} +(45.5376 + 45.5376i) q^{63} +(431.964 - 360.014i) q^{65} +(-500.494 + 500.494i) q^{67} -245.212i q^{69} +(52.4392 - 52.4392i) q^{71} +(138.074 - 138.074i) q^{73} +56.7744 q^{75} -101.072i q^{77} -417.808i q^{79} +81.0000 q^{81} +(-781.441 + 781.441i) q^{83} +(523.595 - 523.595i) q^{85} +74.1701i q^{87} +(555.705 - 555.705i) q^{89} +(257.645 - 214.731i) q^{91} +(166.789 + 166.789i) q^{93} +878.400 q^{95} +(98.2402 + 98.2402i) q^{97} +(-89.8914 - 89.8914i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 4 q^{5} + 8 q^{7} - 252 q^{9} - 64 q^{11} - 32 q^{13} + 12 q^{15} - 56 q^{19} + 24 q^{21} - 384 q^{23} - 32 q^{29} + 168 q^{31} - 192 q^{33} + 412 q^{37} - 252 q^{39} + 1340 q^{41} - 624 q^{43} - 36 q^{45}+ \cdots + 576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) −8.48307 8.48307i −0.758748 0.758748i 0.217346 0.976095i \(-0.430260\pi\)
−0.976095 + 0.217346i \(0.930260\pi\)
\(6\) 0 0
\(7\) −5.05973 5.05973i −0.273200 0.273200i 0.557187 0.830387i \(-0.311881\pi\)
−0.830387 + 0.557187i \(0.811881\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 9.98793 + 9.98793i 0.273770 + 0.273770i 0.830616 0.556846i \(-0.187988\pi\)
−0.556846 + 0.830616i \(0.687988\pi\)
\(12\) 0 0
\(13\) −4.24079 + 46.6799i −0.0904756 + 0.995899i
\(14\) 0 0
\(15\) −25.4492 + 25.4492i −0.438064 + 0.438064i
\(16\) 0 0
\(17\) 61.7223i 0.880580i 0.897856 + 0.440290i \(0.145124\pi\)
−0.897856 + 0.440290i \(0.854876\pi\)
\(18\) 0 0
\(19\) −51.7737 + 51.7737i −0.625143 + 0.625143i −0.946842 0.321699i \(-0.895746\pi\)
0.321699 + 0.946842i \(0.395746\pi\)
\(20\) 0 0
\(21\) −15.1792 + 15.1792i −0.157732 + 0.157732i
\(22\) 0 0
\(23\) 81.7373 0.741017 0.370509 0.928829i \(-0.379183\pi\)
0.370509 + 0.928829i \(0.379183\pi\)
\(24\) 0 0
\(25\) 18.9248i 0.151398i
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) −24.7234 −0.158311 −0.0791554 0.996862i \(-0.525222\pi\)
−0.0791554 + 0.996862i \(0.525222\pi\)
\(30\) 0 0
\(31\) −55.5963 + 55.5963i −0.322110 + 0.322110i −0.849576 0.527466i \(-0.823142\pi\)
0.527466 + 0.849576i \(0.323142\pi\)
\(32\) 0 0
\(33\) 29.9638 29.9638i 0.158061 0.158061i
\(34\) 0 0
\(35\) 85.8440i 0.414580i
\(36\) 0 0
\(37\) 275.273 275.273i 1.22310 1.22310i 0.256575 0.966524i \(-0.417406\pi\)
0.966524 0.256575i \(-0.0825939\pi\)
\(38\) 0 0
\(39\) 140.040 + 12.7224i 0.574982 + 0.0522361i
\(40\) 0 0
\(41\) −29.8795 29.8795i −0.113814 0.113814i 0.647906 0.761720i \(-0.275645\pi\)
−0.761720 + 0.647906i \(0.775645\pi\)
\(42\) 0 0
\(43\) 16.9411 0.0600813 0.0300406 0.999549i \(-0.490436\pi\)
0.0300406 + 0.999549i \(0.490436\pi\)
\(44\) 0 0
\(45\) 76.3476 + 76.3476i 0.252916 + 0.252916i
\(46\) 0 0
\(47\) 188.989 + 188.989i 0.586529 + 0.586529i 0.936690 0.350160i \(-0.113873\pi\)
−0.350160 + 0.936690i \(0.613873\pi\)
\(48\) 0 0
\(49\) 291.798i 0.850724i
\(50\) 0 0
\(51\) 185.167 0.508403
\(52\) 0 0
\(53\) 115.819 0.300169 0.150085 0.988673i \(-0.452045\pi\)
0.150085 + 0.988673i \(0.452045\pi\)
\(54\) 0 0
\(55\) 169.457i 0.415446i
\(56\) 0 0
\(57\) 155.321 + 155.321i 0.360926 + 0.360926i
\(58\) 0 0
\(59\) 368.361 + 368.361i 0.812822 + 0.812822i 0.985056 0.172234i \(-0.0550987\pi\)
−0.172234 + 0.985056i \(0.555099\pi\)
\(60\) 0 0
\(61\) 569.709 1.19580 0.597899 0.801571i \(-0.296002\pi\)
0.597899 + 0.801571i \(0.296002\pi\)
\(62\) 0 0
\(63\) 45.5376 + 45.5376i 0.0910666 + 0.0910666i
\(64\) 0 0
\(65\) 431.964 360.014i 0.824285 0.686988i
\(66\) 0 0
\(67\) −500.494 + 500.494i −0.912613 + 0.912613i −0.996477 0.0838641i \(-0.973274\pi\)
0.0838641 + 0.996477i \(0.473274\pi\)
\(68\) 0 0
\(69\) 245.212i 0.427826i
\(70\) 0 0
\(71\) 52.4392 52.4392i 0.0876533 0.0876533i −0.661921 0.749574i \(-0.730258\pi\)
0.749574 + 0.661921i \(0.230258\pi\)
\(72\) 0 0
\(73\) 138.074 138.074i 0.221374 0.221374i −0.587703 0.809077i \(-0.699968\pi\)
0.809077 + 0.587703i \(0.199968\pi\)
\(74\) 0 0
\(75\) 56.7744 0.0874099
\(76\) 0 0
\(77\) 101.072i 0.149588i
\(78\) 0 0
\(79\) 417.808i 0.595027i −0.954718 0.297513i \(-0.903843\pi\)
0.954718 0.297513i \(-0.0961573\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −781.441 + 781.441i −1.03343 + 1.03343i −0.0340035 + 0.999422i \(0.510826\pi\)
−0.999422 + 0.0340035i \(0.989174\pi\)
\(84\) 0 0
\(85\) 523.595 523.595i 0.668139 0.668139i
\(86\) 0 0
\(87\) 74.1701i 0.0914008i
\(88\) 0 0
\(89\) 555.705 555.705i 0.661849 0.661849i −0.293966 0.955816i \(-0.594975\pi\)
0.955816 + 0.293966i \(0.0949754\pi\)
\(90\) 0 0
\(91\) 257.645 214.731i 0.296797 0.247361i
\(92\) 0 0
\(93\) 166.789 + 166.789i 0.185970 + 0.185970i
\(94\) 0 0
\(95\) 878.400 0.948652
\(96\) 0 0
\(97\) 98.2402 + 98.2402i 0.102833 + 0.102833i 0.756651 0.653819i \(-0.226834\pi\)
−0.653819 + 0.756651i \(0.726834\pi\)
\(98\) 0 0
\(99\) −89.8914 89.8914i −0.0912568 0.0912568i
\(100\) 0 0
\(101\) 698.072i 0.687730i 0.939019 + 0.343865i \(0.111736\pi\)
−0.939019 + 0.343865i \(0.888264\pi\)
\(102\) 0 0
\(103\) 362.337 0.346623 0.173311 0.984867i \(-0.444553\pi\)
0.173311 + 0.984867i \(0.444553\pi\)
\(104\) 0 0
\(105\) 257.532 0.239358
\(106\) 0 0
\(107\) 1293.65i 1.16880i 0.811464 + 0.584402i \(0.198671\pi\)
−0.811464 + 0.584402i \(0.801329\pi\)
\(108\) 0 0
\(109\) 896.432 + 896.432i 0.787731 + 0.787731i 0.981122 0.193391i \(-0.0619487\pi\)
−0.193391 + 0.981122i \(0.561949\pi\)
\(110\) 0 0
\(111\) −825.820 825.820i −0.706157 0.706157i
\(112\) 0 0
\(113\) 1317.62 1.09691 0.548456 0.836180i \(-0.315216\pi\)
0.548456 + 0.836180i \(0.315216\pi\)
\(114\) 0 0
\(115\) −693.382 693.382i −0.562246 0.562246i
\(116\) 0 0
\(117\) 38.1671 420.119i 0.0301585 0.331966i
\(118\) 0 0
\(119\) 312.298 312.298i 0.240574 0.240574i
\(120\) 0 0
\(121\) 1131.48i 0.850099i
\(122\) 0 0
\(123\) −89.6384 + 89.6384i −0.0657107 + 0.0657107i
\(124\) 0 0
\(125\) −899.843 + 899.843i −0.643875 + 0.643875i
\(126\) 0 0
\(127\) 593.408 0.414618 0.207309 0.978276i \(-0.433530\pi\)
0.207309 + 0.978276i \(0.433530\pi\)
\(128\) 0 0
\(129\) 50.8233i 0.0346879i
\(130\) 0 0
\(131\) 55.8307i 0.0372362i 0.999827 + 0.0186181i \(0.00592667\pi\)
−0.999827 + 0.0186181i \(0.994073\pi\)
\(132\) 0 0
\(133\) 523.922 0.341578
\(134\) 0 0
\(135\) 229.043 229.043i 0.146021 0.146021i
\(136\) 0 0
\(137\) −109.442 + 109.442i −0.0682499 + 0.0682499i −0.740408 0.672158i \(-0.765368\pi\)
0.672158 + 0.740408i \(0.265368\pi\)
\(138\) 0 0
\(139\) 1268.74i 0.774195i 0.922039 + 0.387098i \(0.126522\pi\)
−0.922039 + 0.387098i \(0.873478\pi\)
\(140\) 0 0
\(141\) 566.967 566.967i 0.338633 0.338633i
\(142\) 0 0
\(143\) −508.593 + 423.879i −0.297417 + 0.247878i
\(144\) 0 0
\(145\) 209.730 + 209.730i 0.120118 + 0.120118i
\(146\) 0 0
\(147\) −875.395 −0.491166
\(148\) 0 0
\(149\) 818.726 + 818.726i 0.450152 + 0.450152i 0.895405 0.445253i \(-0.146886\pi\)
−0.445253 + 0.895405i \(0.646886\pi\)
\(150\) 0 0
\(151\) 432.964 + 432.964i 0.233338 + 0.233338i 0.814085 0.580746i \(-0.197239\pi\)
−0.580746 + 0.814085i \(0.697239\pi\)
\(152\) 0 0
\(153\) 555.501i 0.293527i
\(154\) 0 0
\(155\) 943.255 0.488800
\(156\) 0 0
\(157\) 1061.33 0.539510 0.269755 0.962929i \(-0.413057\pi\)
0.269755 + 0.962929i \(0.413057\pi\)
\(158\) 0 0
\(159\) 347.457i 0.173303i
\(160\) 0 0
\(161\) −413.568 413.568i −0.202446 0.202446i
\(162\) 0 0
\(163\) 327.180 + 327.180i 0.157219 + 0.157219i 0.781333 0.624114i \(-0.214540\pi\)
−0.624114 + 0.781333i \(0.714540\pi\)
\(164\) 0 0
\(165\) −508.370 −0.239858
\(166\) 0 0
\(167\) 2717.01 + 2717.01i 1.25897 + 1.25897i 0.951584 + 0.307389i \(0.0994552\pi\)
0.307389 + 0.951584i \(0.400545\pi\)
\(168\) 0 0
\(169\) −2161.03 395.919i −0.983628 0.180209i
\(170\) 0 0
\(171\) 465.964 465.964i 0.208381 0.208381i
\(172\) 0 0
\(173\) 2635.72i 1.15832i −0.815213 0.579161i \(-0.803380\pi\)
0.815213 0.579161i \(-0.196620\pi\)
\(174\) 0 0
\(175\) 95.7544 95.7544i 0.0413620 0.0413620i
\(176\) 0 0
\(177\) 1105.08 1105.08i 0.469283 0.469283i
\(178\) 0 0
\(179\) −1912.17 −0.798447 −0.399224 0.916854i \(-0.630720\pi\)
−0.399224 + 0.916854i \(0.630720\pi\)
\(180\) 0 0
\(181\) 1505.59i 0.618285i 0.951016 + 0.309143i \(0.100042\pi\)
−0.951016 + 0.309143i \(0.899958\pi\)
\(182\) 0 0
\(183\) 1709.13i 0.690395i
\(184\) 0 0
\(185\) −4670.32 −1.85605
\(186\) 0 0
\(187\) −616.479 + 616.479i −0.241077 + 0.241077i
\(188\) 0 0
\(189\) 136.613 136.613i 0.0525773 0.0525773i
\(190\) 0 0
\(191\) 4878.43i 1.84812i 0.382249 + 0.924060i \(0.375150\pi\)
−0.382249 + 0.924060i \(0.624850\pi\)
\(192\) 0 0
\(193\) 1630.98 1630.98i 0.608294 0.608294i −0.334206 0.942500i \(-0.608468\pi\)
0.942500 + 0.334206i \(0.108468\pi\)
\(194\) 0 0
\(195\) −1080.04 1295.89i −0.396633 0.475901i
\(196\) 0 0
\(197\) −12.2682 12.2682i −0.00443693 0.00443693i 0.704885 0.709322i \(-0.250999\pi\)
−0.709322 + 0.704885i \(0.750999\pi\)
\(198\) 0 0
\(199\) 3705.30 1.31991 0.659955 0.751305i \(-0.270575\pi\)
0.659955 + 0.751305i \(0.270575\pi\)
\(200\) 0 0
\(201\) 1501.48 + 1501.48i 0.526897 + 0.526897i
\(202\) 0 0
\(203\) 125.094 + 125.094i 0.0432505 + 0.0432505i
\(204\) 0 0
\(205\) 506.939i 0.172713i
\(206\) 0 0
\(207\) −735.635 −0.247006
\(208\) 0 0
\(209\) −1034.23 −0.342291
\(210\) 0 0
\(211\) 3304.42i 1.07813i −0.842264 0.539066i \(-0.818777\pi\)
0.842264 0.539066i \(-0.181223\pi\)
\(212\) 0 0
\(213\) −157.317 157.317i −0.0506067 0.0506067i
\(214\) 0 0
\(215\) −143.713 143.713i −0.0455866 0.0455866i
\(216\) 0 0
\(217\) 562.605 0.176000
\(218\) 0 0
\(219\) −414.221 414.221i −0.127810 0.127810i
\(220\) 0 0
\(221\) −2881.19 261.751i −0.876969 0.0796710i
\(222\) 0 0
\(223\) 409.577 409.577i 0.122992 0.122992i −0.642931 0.765924i \(-0.722282\pi\)
0.765924 + 0.642931i \(0.222282\pi\)
\(224\) 0 0
\(225\) 170.323i 0.0504661i
\(226\) 0 0
\(227\) −1804.89 + 1804.89i −0.527729 + 0.527729i −0.919895 0.392165i \(-0.871726\pi\)
0.392165 + 0.919895i \(0.371726\pi\)
\(228\) 0 0
\(229\) −3016.37 + 3016.37i −0.870426 + 0.870426i −0.992519 0.122092i \(-0.961040\pi\)
0.122092 + 0.992519i \(0.461040\pi\)
\(230\) 0 0
\(231\) −303.217 −0.0863647
\(232\) 0 0
\(233\) 709.245i 0.199417i −0.995017 0.0997086i \(-0.968209\pi\)
0.995017 0.0997086i \(-0.0317911\pi\)
\(234\) 0 0
\(235\) 3206.41i 0.890056i
\(236\) 0 0
\(237\) −1253.43 −0.343539
\(238\) 0 0
\(239\) 977.682 977.682i 0.264607 0.264607i −0.562316 0.826923i \(-0.690089\pi\)
0.826923 + 0.562316i \(0.190089\pi\)
\(240\) 0 0
\(241\) −3040.89 + 3040.89i −0.812785 + 0.812785i −0.985051 0.172266i \(-0.944891\pi\)
0.172266 + 0.985051i \(0.444891\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) −2475.34 + 2475.34i −0.645485 + 0.645485i
\(246\) 0 0
\(247\) −2197.23 2636.36i −0.566019 0.679139i
\(248\) 0 0
\(249\) 2344.32 + 2344.32i 0.596648 + 0.596648i
\(250\) 0 0
\(251\) 1550.70 0.389958 0.194979 0.980807i \(-0.437536\pi\)
0.194979 + 0.980807i \(0.437536\pi\)
\(252\) 0 0
\(253\) 816.386 + 816.386i 0.202869 + 0.202869i
\(254\) 0 0
\(255\) −1570.78 1570.78i −0.385750 0.385750i
\(256\) 0 0
\(257\) 6530.26i 1.58501i 0.609868 + 0.792503i \(0.291222\pi\)
−0.609868 + 0.792503i \(0.708778\pi\)
\(258\) 0 0
\(259\) −2785.62 −0.668301
\(260\) 0 0
\(261\) 222.510 0.0527703
\(262\) 0 0
\(263\) 1775.56i 0.416295i −0.978097 0.208148i \(-0.933257\pi\)
0.978097 0.208148i \(-0.0667434\pi\)
\(264\) 0 0
\(265\) −982.501 982.501i −0.227753 0.227753i
\(266\) 0 0
\(267\) −1667.11 1667.11i −0.382119 0.382119i
\(268\) 0 0
\(269\) −4308.52 −0.976562 −0.488281 0.872687i \(-0.662376\pi\)
−0.488281 + 0.872687i \(0.662376\pi\)
\(270\) 0 0
\(271\) −4453.18 4453.18i −0.998196 0.998196i 0.00180207 0.999998i \(-0.499426\pi\)
−0.999998 + 0.00180207i \(0.999426\pi\)
\(272\) 0 0
\(273\) −644.192 772.935i −0.142814 0.171356i
\(274\) 0 0
\(275\) −189.020 + 189.020i −0.0414484 + 0.0414484i
\(276\) 0 0
\(277\) 5207.50i 1.12956i −0.825242 0.564780i \(-0.808961\pi\)
0.825242 0.564780i \(-0.191039\pi\)
\(278\) 0 0
\(279\) 500.367 500.367i 0.107370 0.107370i
\(280\) 0 0
\(281\) −4994.91 + 4994.91i −1.06040 + 1.06040i −0.0623403 + 0.998055i \(0.519856\pi\)
−0.998055 + 0.0623403i \(0.980144\pi\)
\(282\) 0 0
\(283\) −3035.85 −0.637676 −0.318838 0.947809i \(-0.603293\pi\)
−0.318838 + 0.947809i \(0.603293\pi\)
\(284\) 0 0
\(285\) 2635.20i 0.547705i
\(286\) 0 0
\(287\) 302.364i 0.0621881i
\(288\) 0 0
\(289\) 1103.35 0.224578
\(290\) 0 0
\(291\) 294.721 294.721i 0.0593705 0.0593705i
\(292\) 0 0
\(293\) −3724.32 + 3724.32i −0.742584 + 0.742584i −0.973075 0.230490i \(-0.925967\pi\)
0.230490 + 0.973075i \(0.425967\pi\)
\(294\) 0 0
\(295\) 6249.66i 1.23345i
\(296\) 0 0
\(297\) −269.674 + 269.674i −0.0526872 + 0.0526872i
\(298\) 0 0
\(299\) −346.630 + 3815.49i −0.0670440 + 0.737978i
\(300\) 0 0
\(301\) −85.7174 85.7174i −0.0164142 0.0164142i
\(302\) 0 0
\(303\) 2094.21 0.397061
\(304\) 0 0
\(305\) −4832.88 4832.88i −0.907311 0.907311i
\(306\) 0 0
\(307\) −3862.19 3862.19i −0.718002 0.718002i 0.250194 0.968196i \(-0.419506\pi\)
−0.968196 + 0.250194i \(0.919506\pi\)
\(308\) 0 0
\(309\) 1087.01i 0.200123i
\(310\) 0 0
\(311\) 8058.08 1.46923 0.734617 0.678482i \(-0.237362\pi\)
0.734617 + 0.678482i \(0.237362\pi\)
\(312\) 0 0
\(313\) −2817.68 −0.508833 −0.254417 0.967095i \(-0.581883\pi\)
−0.254417 + 0.967095i \(0.581883\pi\)
\(314\) 0 0
\(315\) 772.596i 0.138193i
\(316\) 0 0
\(317\) 3472.70 + 3472.70i 0.615288 + 0.615288i 0.944319 0.329031i \(-0.106722\pi\)
−0.329031 + 0.944319i \(0.606722\pi\)
\(318\) 0 0
\(319\) −246.935 246.935i −0.0433408 0.0433408i
\(320\) 0 0
\(321\) 3880.96 0.674810
\(322\) 0 0
\(323\) −3195.60 3195.60i −0.550488 0.550488i
\(324\) 0 0
\(325\) −883.408 80.2561i −0.150777 0.0136979i
\(326\) 0 0
\(327\) 2689.30 2689.30i 0.454796 0.454796i
\(328\) 0 0
\(329\) 1912.47i 0.320479i
\(330\) 0 0
\(331\) −2748.24 + 2748.24i −0.456365 + 0.456365i −0.897460 0.441095i \(-0.854590\pi\)
0.441095 + 0.897460i \(0.354590\pi\)
\(332\) 0 0
\(333\) −2477.46 + 2477.46i −0.407700 + 0.407700i
\(334\) 0 0
\(335\) 8491.45 1.38489
\(336\) 0 0
\(337\) 764.136i 0.123517i 0.998091 + 0.0617583i \(0.0196708\pi\)
−0.998091 + 0.0617583i \(0.980329\pi\)
\(338\) 0 0
\(339\) 3952.85i 0.633302i
\(340\) 0 0
\(341\) −1110.59 −0.176368
\(342\) 0 0
\(343\) −3211.91 + 3211.91i −0.505617 + 0.505617i
\(344\) 0 0
\(345\) −2080.15 + 2080.15i −0.324613 + 0.324613i
\(346\) 0 0
\(347\) 11556.8i 1.78791i 0.448159 + 0.893954i \(0.352080\pi\)
−0.448159 + 0.893954i \(0.647920\pi\)
\(348\) 0 0
\(349\) 8368.94 8368.94i 1.28361 1.28361i 0.345009 0.938599i \(-0.387876\pi\)
0.938599 0.345009i \(-0.112124\pi\)
\(350\) 0 0
\(351\) −1260.36 114.501i −0.191661 0.0174120i
\(352\) 0 0
\(353\) 900.605 + 900.605i 0.135791 + 0.135791i 0.771735 0.635944i \(-0.219389\pi\)
−0.635944 + 0.771735i \(0.719389\pi\)
\(354\) 0 0
\(355\) −889.690 −0.133014
\(356\) 0 0
\(357\) −936.895 936.895i −0.138896 0.138896i
\(358\) 0 0
\(359\) 1122.48 + 1122.48i 0.165020 + 0.165020i 0.784786 0.619767i \(-0.212773\pi\)
−0.619767 + 0.784786i \(0.712773\pi\)
\(360\) 0 0
\(361\) 1497.96i 0.218393i
\(362\) 0 0
\(363\) −3394.45 −0.490805
\(364\) 0 0
\(365\) −2342.58 −0.335935
\(366\) 0 0
\(367\) 13608.0i 1.93551i −0.251899 0.967754i \(-0.581055\pi\)
0.251899 0.967754i \(-0.418945\pi\)
\(368\) 0 0
\(369\) 268.915 + 268.915i 0.0379381 + 0.0379381i
\(370\) 0 0
\(371\) −586.014 586.014i −0.0820062 0.0820062i
\(372\) 0 0
\(373\) −854.063 −0.118557 −0.0592785 0.998241i \(-0.518880\pi\)
−0.0592785 + 0.998241i \(0.518880\pi\)
\(374\) 0 0
\(375\) 2699.53 + 2699.53i 0.371741 + 0.371741i
\(376\) 0 0
\(377\) 104.847 1154.08i 0.0143233 0.157662i
\(378\) 0 0
\(379\) −2772.08 + 2772.08i −0.375705 + 0.375705i −0.869550 0.493845i \(-0.835591\pi\)
0.493845 + 0.869550i \(0.335591\pi\)
\(380\) 0 0
\(381\) 1780.22i 0.239380i
\(382\) 0 0
\(383\) −633.997 + 633.997i −0.0845842 + 0.0845842i −0.748133 0.663549i \(-0.769050\pi\)
0.663549 + 0.748133i \(0.269050\pi\)
\(384\) 0 0
\(385\) −857.404 + 857.404i −0.113500 + 0.113500i
\(386\) 0 0
\(387\) −152.470 −0.0200271
\(388\) 0 0
\(389\) 1280.86i 0.166946i −0.996510 0.0834731i \(-0.973399\pi\)
0.996510 0.0834731i \(-0.0266013\pi\)
\(390\) 0 0
\(391\) 5045.01i 0.652525i
\(392\) 0 0
\(393\) 167.492 0.0214984
\(394\) 0 0
\(395\) −3544.30 + 3544.30i −0.451476 + 0.451476i
\(396\) 0 0
\(397\) 208.309 208.309i 0.0263343 0.0263343i −0.693817 0.720151i \(-0.744072\pi\)
0.720151 + 0.693817i \(0.244072\pi\)
\(398\) 0 0
\(399\) 1571.77i 0.197210i
\(400\) 0 0
\(401\) 976.355 976.355i 0.121588 0.121588i −0.643694 0.765283i \(-0.722599\pi\)
0.765283 + 0.643694i \(0.222599\pi\)
\(402\) 0 0
\(403\) −2359.46 2831.01i −0.291645 0.349932i
\(404\) 0 0
\(405\) −687.128 687.128i −0.0843054 0.0843054i
\(406\) 0 0
\(407\) 5498.82 0.669697
\(408\) 0 0
\(409\) −1212.43 1212.43i −0.146579 0.146579i 0.630009 0.776588i \(-0.283051\pi\)
−0.776588 + 0.630009i \(0.783051\pi\)
\(410\) 0 0
\(411\) 328.325 + 328.325i 0.0394041 + 0.0394041i
\(412\) 0 0
\(413\) 3727.61i 0.444125i
\(414\) 0 0
\(415\) 13258.0 1.56822
\(416\) 0 0
\(417\) 3806.22 0.446982
\(418\) 0 0
\(419\) 13160.9i 1.53450i 0.641350 + 0.767248i \(0.278375\pi\)
−0.641350 + 0.767248i \(0.721625\pi\)
\(420\) 0 0
\(421\) 1057.97 + 1057.97i 0.122475 + 0.122475i 0.765688 0.643212i \(-0.222399\pi\)
−0.643212 + 0.765688i \(0.722399\pi\)
\(422\) 0 0
\(423\) −1700.90 1700.90i −0.195510 0.195510i
\(424\) 0 0
\(425\) −1168.08 −0.133318
\(426\) 0 0
\(427\) −2882.57 2882.57i −0.326692 0.326692i
\(428\) 0 0
\(429\) 1271.64 + 1525.78i 0.143112 + 0.171714i
\(430\) 0 0
\(431\) −863.251 + 863.251i −0.0964764 + 0.0964764i −0.753698 0.657221i \(-0.771732\pi\)
0.657221 + 0.753698i \(0.271732\pi\)
\(432\) 0 0
\(433\) 2491.00i 0.276466i −0.990400 0.138233i \(-0.955858\pi\)
0.990400 0.138233i \(-0.0441423\pi\)
\(434\) 0 0
\(435\) 629.190 629.190i 0.0693502 0.0693502i
\(436\) 0 0
\(437\) −4231.84 + 4231.84i −0.463241 + 0.463241i
\(438\) 0 0
\(439\) 15318.0 1.66535 0.832675 0.553762i \(-0.186808\pi\)
0.832675 + 0.553762i \(0.186808\pi\)
\(440\) 0 0
\(441\) 2626.18i 0.283575i
\(442\) 0 0
\(443\) 3524.90i 0.378043i 0.981973 + 0.189022i \(0.0605316\pi\)
−0.981973 + 0.189022i \(0.939468\pi\)
\(444\) 0 0
\(445\) −9428.16 −1.00435
\(446\) 0 0
\(447\) 2456.18 2456.18i 0.259895 0.259895i
\(448\) 0 0
\(449\) −1065.75 + 1065.75i −0.112018 + 0.112018i −0.760894 0.648876i \(-0.775239\pi\)
0.648876 + 0.760894i \(0.275239\pi\)
\(450\) 0 0
\(451\) 596.868i 0.0623180i
\(452\) 0 0
\(453\) 1298.89 1298.89i 0.134718 0.134718i
\(454\) 0 0
\(455\) −4007.19 364.046i −0.412879 0.0375094i
\(456\) 0 0
\(457\) 5244.01 + 5244.01i 0.536772 + 0.536772i 0.922579 0.385808i \(-0.126077\pi\)
−0.385808 + 0.922579i \(0.626077\pi\)
\(458\) 0 0
\(459\) −1666.50 −0.169468
\(460\) 0 0
\(461\) 797.343 + 797.343i 0.0805553 + 0.0805553i 0.746236 0.665681i \(-0.231859\pi\)
−0.665681 + 0.746236i \(0.731859\pi\)
\(462\) 0 0
\(463\) 5719.24 + 5719.24i 0.574073 + 0.574073i 0.933264 0.359191i \(-0.116947\pi\)
−0.359191 + 0.933264i \(0.616947\pi\)
\(464\) 0 0
\(465\) 2829.76i 0.282209i
\(466\) 0 0
\(467\) −14196.0 −1.40667 −0.703335 0.710859i \(-0.748306\pi\)
−0.703335 + 0.710859i \(0.748306\pi\)
\(468\) 0 0
\(469\) 5064.73 0.498651
\(470\) 0 0
\(471\) 3183.98i 0.311486i
\(472\) 0 0
\(473\) 169.207 + 169.207i 0.0164485 + 0.0164485i
\(474\) 0 0
\(475\) −979.808 979.808i −0.0946456 0.0946456i
\(476\) 0 0
\(477\) −1042.37 −0.100056
\(478\) 0 0
\(479\) 5205.23 + 5205.23i 0.496520 + 0.496520i 0.910353 0.413833i \(-0.135810\pi\)
−0.413833 + 0.910353i \(0.635810\pi\)
\(480\) 0 0
\(481\) 11682.4 + 14017.1i 1.10742 + 1.32874i
\(482\) 0 0
\(483\) −1240.71 + 1240.71i −0.116882 + 0.116882i
\(484\) 0 0
\(485\) 1666.76i 0.156048i
\(486\) 0 0
\(487\) −4613.50 + 4613.50i −0.429276 + 0.429276i −0.888382 0.459105i \(-0.848170\pi\)
0.459105 + 0.888382i \(0.348170\pi\)
\(488\) 0 0
\(489\) 981.540 981.540i 0.0907705 0.0907705i
\(490\) 0 0
\(491\) 6586.64 0.605399 0.302700 0.953086i \(-0.402112\pi\)
0.302700 + 0.953086i \(0.402112\pi\)
\(492\) 0 0
\(493\) 1525.98i 0.139405i
\(494\) 0 0
\(495\) 1525.11i 0.138482i
\(496\) 0 0
\(497\) −530.656 −0.0478937
\(498\) 0 0
\(499\) −13544.8 + 13544.8i −1.21513 + 1.21513i −0.245811 + 0.969318i \(0.579054\pi\)
−0.969318 + 0.245811i \(0.920946\pi\)
\(500\) 0 0
\(501\) 8151.03 8151.03i 0.726868 0.726868i
\(502\) 0 0
\(503\) 6839.28i 0.606259i −0.952949 0.303130i \(-0.901968\pi\)
0.952949 0.303130i \(-0.0980315\pi\)
\(504\) 0 0
\(505\) 5921.79 5921.79i 0.521814 0.521814i
\(506\) 0 0
\(507\) −1187.76 + 6483.09i −0.104044 + 0.567898i
\(508\) 0 0
\(509\) 13300.7 + 13300.7i 1.15824 + 1.15824i 0.984854 + 0.173384i \(0.0554701\pi\)
0.173384 + 0.984854i \(0.444530\pi\)
\(510\) 0 0
\(511\) −1397.23 −0.120959
\(512\) 0 0
\(513\) −1397.89 1397.89i −0.120309 0.120309i
\(514\) 0 0
\(515\) −3073.73 3073.73i −0.263000 0.263000i
\(516\) 0 0
\(517\) 3775.22i 0.321149i
\(518\) 0 0
\(519\) −7907.15 −0.668758
\(520\) 0 0
\(521\) 16665.8 1.40142 0.700712 0.713444i \(-0.252866\pi\)
0.700712 + 0.713444i \(0.252866\pi\)
\(522\) 0 0
\(523\) 9810.51i 0.820236i 0.912032 + 0.410118i \(0.134513\pi\)
−0.912032 + 0.410118i \(0.865487\pi\)
\(524\) 0 0
\(525\) −287.263 287.263i −0.0238804 0.0238804i
\(526\) 0 0
\(527\) −3431.54 3431.54i −0.283643 0.283643i
\(528\) 0 0
\(529\) −5486.02 −0.450894
\(530\) 0 0
\(531\) −3315.25 3315.25i −0.270941 0.270941i
\(532\) 0 0
\(533\) 1521.48 1268.06i 0.123645 0.103050i
\(534\) 0 0
\(535\) 10974.1 10974.1i 0.886829 0.886829i
\(536\) 0 0
\(537\) 5736.50i 0.460984i
\(538\) 0 0
\(539\) 2914.46 2914.46i 0.232903 0.232903i
\(540\) 0 0
\(541\) 8525.03 8525.03i 0.677486 0.677486i −0.281945 0.959431i \(-0.590980\pi\)
0.959431 + 0.281945i \(0.0909795\pi\)
\(542\) 0 0
\(543\) 4516.77 0.356967
\(544\) 0 0
\(545\) 15209.0i 1.19538i
\(546\) 0 0
\(547\) 13678.6i 1.06921i 0.845103 + 0.534604i \(0.179539\pi\)
−0.845103 + 0.534604i \(0.820461\pi\)
\(548\) 0 0
\(549\) −5127.38 −0.398600
\(550\) 0 0
\(551\) 1280.02 1280.02i 0.0989669 0.0989669i
\(552\) 0 0
\(553\) −2114.00 + 2114.00i −0.162561 + 0.162561i
\(554\) 0 0
\(555\) 14011.0i 1.07159i
\(556\) 0 0
\(557\) 4698.17 4698.17i 0.357393 0.357393i −0.505458 0.862851i \(-0.668677\pi\)
0.862851 + 0.505458i \(0.168677\pi\)
\(558\) 0 0
\(559\) −71.8437 + 790.810i −0.00543589 + 0.0598349i
\(560\) 0 0
\(561\) 1849.44 + 1849.44i 0.139186 + 0.139186i
\(562\) 0 0
\(563\) 20088.1 1.50376 0.751878 0.659302i \(-0.229148\pi\)
0.751878 + 0.659302i \(0.229148\pi\)
\(564\) 0 0
\(565\) −11177.4 11177.4i −0.832280 0.832280i
\(566\) 0 0
\(567\) −409.838 409.838i −0.0303555 0.0303555i
\(568\) 0 0
\(569\) 11263.5i 0.829859i −0.909853 0.414930i \(-0.863806\pi\)
0.909853 0.414930i \(-0.136194\pi\)
\(570\) 0 0
\(571\) 22058.1 1.61664 0.808321 0.588743i \(-0.200377\pi\)
0.808321 + 0.588743i \(0.200377\pi\)
\(572\) 0 0
\(573\) 14635.3 1.06701
\(574\) 0 0
\(575\) 1546.86i 0.112189i
\(576\) 0 0
\(577\) −1203.51 1203.51i −0.0868334 0.0868334i 0.662356 0.749189i \(-0.269557\pi\)
−0.749189 + 0.662356i \(0.769557\pi\)
\(578\) 0 0
\(579\) −4892.95 4892.95i −0.351199 0.351199i
\(580\) 0 0
\(581\) 7907.76 0.564663
\(582\) 0 0
\(583\) 1156.79 + 1156.79i 0.0821775 + 0.0821775i
\(584\) 0 0
\(585\) −3887.67 + 3240.13i −0.274762 + 0.228996i
\(586\) 0 0
\(587\) 877.916 877.916i 0.0617300 0.0617300i −0.675568 0.737298i \(-0.736101\pi\)
0.737298 + 0.675568i \(0.236101\pi\)
\(588\) 0 0
\(589\) 5756.86i 0.402729i
\(590\) 0 0
\(591\) −36.8047 + 36.8047i −0.00256166 + 0.00256166i
\(592\) 0 0
\(593\) 19122.8 19122.8i 1.32425 1.32425i 0.413945 0.910302i \(-0.364151\pi\)
0.910302 0.413945i \(-0.135849\pi\)
\(594\) 0 0
\(595\) −5298.49 −0.365071
\(596\) 0 0
\(597\) 11115.9i 0.762050i
\(598\) 0 0
\(599\) 5662.39i 0.386242i −0.981175 0.193121i \(-0.938139\pi\)
0.981175 0.193121i \(-0.0618610\pi\)
\(600\) 0 0
\(601\) 19396.2 1.31645 0.658226 0.752820i \(-0.271307\pi\)
0.658226 + 0.752820i \(0.271307\pi\)
\(602\) 0 0
\(603\) 4504.45 4504.45i 0.304204 0.304204i
\(604\) 0 0
\(605\) −9598.44 + 9598.44i −0.645012 + 0.645012i
\(606\) 0 0
\(607\) 14814.1i 0.990588i 0.868725 + 0.495294i \(0.164940\pi\)
−0.868725 + 0.495294i \(0.835060\pi\)
\(608\) 0 0
\(609\) 375.281 375.281i 0.0249707 0.0249707i
\(610\) 0 0
\(611\) −9623.45 + 8020.53i −0.637190 + 0.531057i
\(612\) 0 0
\(613\) −2280.88 2280.88i −0.150284 0.150284i 0.627961 0.778245i \(-0.283890\pi\)
−0.778245 + 0.627961i \(0.783890\pi\)
\(614\) 0 0
\(615\) 1520.82 0.0997159
\(616\) 0 0
\(617\) −19276.8 19276.8i −1.25779 1.25779i −0.952148 0.305639i \(-0.901130\pi\)
−0.305639 0.952148i \(-0.598870\pi\)
\(618\) 0 0
\(619\) 2569.30 + 2569.30i 0.166832 + 0.166832i 0.785585 0.618753i \(-0.212362\pi\)
−0.618753 + 0.785585i \(0.712362\pi\)
\(620\) 0 0
\(621\) 2206.91i 0.142609i
\(622\) 0 0
\(623\) −5623.43 −0.361634
\(624\) 0 0
\(625\) 17632.5 1.12848
\(626\) 0 0
\(627\) 3102.68i 0.197622i
\(628\) 0 0
\(629\) 16990.5 + 16990.5i 1.07704 + 1.07704i
\(630\) 0 0
\(631\) −4105.02 4105.02i −0.258983 0.258983i 0.565657 0.824640i \(-0.308623\pi\)
−0.824640 + 0.565657i \(0.808623\pi\)
\(632\) 0 0
\(633\) −9913.27 −0.622460
\(634\) 0 0
\(635\) −5033.92 5033.92i −0.314590 0.314590i
\(636\) 0 0
\(637\) 13621.1 + 1237.45i 0.847235 + 0.0769698i
\(638\) 0 0
\(639\) −471.952 + 471.952i −0.0292178 + 0.0292178i
\(640\) 0 0
\(641\) 9085.38i 0.559830i −0.960025 0.279915i \(-0.909694\pi\)
0.960025 0.279915i \(-0.0903062\pi\)
\(642\) 0 0
\(643\) 14860.8 14860.8i 0.911436 0.911436i −0.0849491 0.996385i \(-0.527073\pi\)
0.996385 + 0.0849491i \(0.0270728\pi\)
\(644\) 0 0
\(645\) −431.138 + 431.138i −0.0263194 + 0.0263194i
\(646\) 0 0
\(647\) −11180.1 −0.679342 −0.339671 0.940544i \(-0.610316\pi\)
−0.339671 + 0.940544i \(0.610316\pi\)
\(648\) 0 0
\(649\) 7358.32i 0.445053i
\(650\) 0 0
\(651\) 1687.81i 0.101614i
\(652\) 0 0
\(653\) 11294.7 0.676868 0.338434 0.940990i \(-0.390103\pi\)
0.338434 + 0.940990i \(0.390103\pi\)
\(654\) 0 0
\(655\) 473.615 473.615i 0.0282529 0.0282529i
\(656\) 0 0
\(657\) −1242.66 + 1242.66i −0.0737914 + 0.0737914i
\(658\) 0 0
\(659\) 21547.7i 1.27372i −0.770980 0.636860i \(-0.780233\pi\)
0.770980 0.636860i \(-0.219767\pi\)
\(660\) 0 0
\(661\) −3005.91 + 3005.91i −0.176878 + 0.176878i −0.789993 0.613115i \(-0.789916\pi\)
0.613115 + 0.789993i \(0.289916\pi\)
\(662\) 0 0
\(663\) −785.254 + 8643.58i −0.0459981 + 0.506318i
\(664\) 0 0
\(665\) −4444.47 4444.47i −0.259171 0.259171i
\(666\) 0 0
\(667\) −2020.82 −0.117311
\(668\) 0 0
\(669\) −1228.73 1228.73i −0.0710097 0.0710097i
\(670\) 0 0
\(671\) 5690.21 + 5690.21i 0.327374 + 0.327374i
\(672\) 0 0
\(673\) 2465.87i 0.141236i 0.997503 + 0.0706182i \(0.0224972\pi\)
−0.997503 + 0.0706182i \(0.977503\pi\)
\(674\) 0 0
\(675\) −510.970 −0.0291366
\(676\) 0 0
\(677\) 28362.0 1.61010 0.805052 0.593204i \(-0.202137\pi\)
0.805052 + 0.593204i \(0.202137\pi\)
\(678\) 0 0
\(679\) 994.138i 0.0561878i
\(680\) 0 0
\(681\) 5414.66 + 5414.66i 0.304685 + 0.304685i
\(682\) 0 0
\(683\) −19029.3 19029.3i −1.06608 1.06608i −0.997656 0.0684262i \(-0.978202\pi\)
−0.0684262 0.997656i \(-0.521798\pi\)
\(684\) 0 0
\(685\) 1856.80 0.103569
\(686\) 0 0
\(687\) 9049.12 + 9049.12i 0.502541 + 0.502541i
\(688\) 0 0
\(689\) −491.164 + 5406.43i −0.0271580 + 0.298938i
\(690\) 0 0
\(691\) −6025.48 + 6025.48i −0.331722 + 0.331722i −0.853240 0.521518i \(-0.825366\pi\)
0.521518 + 0.853240i \(0.325366\pi\)
\(692\) 0 0
\(693\) 909.652i 0.0498627i
\(694\) 0 0
\(695\) 10762.8 10762.8i 0.587419 0.587419i
\(696\) 0 0
\(697\) 1844.23 1844.23i 0.100223 0.100223i
\(698\) 0 0
\(699\) −2127.74 −0.115134
\(700\) 0 0
\(701\) 7225.59i 0.389311i 0.980872 + 0.194655i \(0.0623589\pi\)
−0.980872 + 0.194655i \(0.937641\pi\)
\(702\) 0 0
\(703\) 28503.9i 1.52922i
\(704\) 0 0
\(705\) −9619.24 −0.513874
\(706\) 0 0
\(707\) 3532.05 3532.05i 0.187888 0.187888i
\(708\) 0 0
\(709\) −21938.5 + 21938.5i −1.16209 + 1.16209i −0.178067 + 0.984018i \(0.556984\pi\)
−0.984018 + 0.178067i \(0.943016\pi\)
\(710\) 0 0
\(711\) 3760.28i 0.198342i
\(712\) 0 0
\(713\) −4544.29 + 4544.29i −0.238689 + 0.238689i
\(714\) 0 0
\(715\) 7910.22 + 718.629i 0.413742 + 0.0375877i
\(716\) 0 0
\(717\) −2933.05 2933.05i −0.152771 0.152771i
\(718\) 0 0
\(719\) −6101.99 −0.316503 −0.158252 0.987399i \(-0.550586\pi\)
−0.158252 + 0.987399i \(0.550586\pi\)
\(720\) 0 0
\(721\) −1833.33 1833.33i −0.0946973 0.0946973i
\(722\) 0 0
\(723\) 9122.68 + 9122.68i 0.469262 + 0.469262i
\(724\) 0 0
\(725\) 467.885i 0.0239680i
\(726\) 0 0
\(727\) −7298.20 −0.372318 −0.186159 0.982520i \(-0.559604\pi\)
−0.186159 + 0.982520i \(0.559604\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 1045.64i 0.0529064i
\(732\) 0 0
\(733\) −8713.09 8713.09i −0.439052 0.439052i 0.452641 0.891693i \(-0.350482\pi\)
−0.891693 + 0.452641i \(0.850482\pi\)
\(734\) 0 0
\(735\) 7426.03 + 7426.03i 0.372671 + 0.372671i
\(736\) 0 0
\(737\) −9997.80 −0.499693
\(738\) 0 0
\(739\) −23479.8 23479.8i −1.16877 1.16877i −0.982499 0.186268i \(-0.940361\pi\)
−0.186268 0.982499i \(-0.559639\pi\)
\(740\) 0 0
\(741\) −7909.07 + 6591.70i −0.392101 + 0.326791i
\(742\) 0 0
\(743\) −1232.15 + 1232.15i −0.0608387 + 0.0608387i −0.736872 0.676033i \(-0.763698\pi\)
0.676033 + 0.736872i \(0.263698\pi\)
\(744\) 0 0
\(745\) 13890.6i 0.683104i
\(746\) 0 0
\(747\) 7032.97 7032.97i 0.344475 0.344475i
\(748\) 0 0
\(749\) 6545.53 6545.53i 0.319317 0.319317i
\(750\) 0 0
\(751\) 12349.0 0.600028 0.300014 0.953935i \(-0.403009\pi\)
0.300014 + 0.953935i \(0.403009\pi\)
\(752\) 0 0
\(753\) 4652.11i 0.225142i
\(754\) 0 0
\(755\) 7345.72i 0.354090i
\(756\) 0 0
\(757\) −40932.2 −1.96527 −0.982633 0.185561i \(-0.940590\pi\)
−0.982633 + 0.185561i \(0.940590\pi\)
\(758\) 0 0
\(759\) 2449.16 2449.16i 0.117126 0.117126i
\(760\) 0 0
\(761\) −21725.1 + 21725.1i −1.03487 + 1.03487i −0.0354955 + 0.999370i \(0.511301\pi\)
−0.999370 + 0.0354955i \(0.988699\pi\)
\(762\) 0 0
\(763\) 9071.41i 0.430415i
\(764\) 0 0
\(765\) −4712.35 + 4712.35i −0.222713 + 0.222713i
\(766\) 0 0
\(767\) −18757.2 + 15632.9i −0.883028 + 0.735947i
\(768\) 0 0
\(769\) 2654.34 + 2654.34i 0.124471 + 0.124471i 0.766598 0.642127i \(-0.221948\pi\)
−0.642127 + 0.766598i \(0.721948\pi\)
\(770\) 0 0
\(771\) 19590.8 0.915103
\(772\) 0 0
\(773\) −9788.90 9788.90i −0.455475 0.455475i 0.441692 0.897167i \(-0.354378\pi\)
−0.897167 + 0.441692i \(0.854378\pi\)
\(774\) 0 0
\(775\) −1052.15 1052.15i −0.0487669 0.0487669i
\(776\) 0 0
\(777\) 8356.85i 0.385843i
\(778\) 0 0
\(779\) 3093.94 0.142300
\(780\) 0 0
\(781\) 1047.52 0.0479938
\(782\) 0 0
\(783\) 667.531i 0.0304669i
\(784\) 0 0
\(785\) −9003.30 9003.30i −0.409352 0.409352i
\(786\) 0 0
\(787\) 6923.36 + 6923.36i 0.313585 + 0.313585i 0.846297 0.532712i \(-0.178827\pi\)
−0.532712 + 0.846297i \(0.678827\pi\)
\(788\) 0 0
\(789\) −5326.68 −0.240348
\(790\) 0 0
\(791\) −6666.79 6666.79i −0.299676 0.299676i
\(792\) 0 0
\(793\) −2416.01 + 26594.0i −0.108191 + 1.19089i
\(794\) 0 0
\(795\) −2947.50 + 2947.50i −0.131493 + 0.131493i
\(796\) 0 0
\(797\) 25520.7i 1.13424i 0.823636 + 0.567119i \(0.191942\pi\)
−0.823636 + 0.567119i \(0.808058\pi\)
\(798\) 0 0
\(799\) −11664.8 + 11664.8i −0.516486 + 0.516486i
\(800\) 0 0
\(801\) −5001.34 + 5001.34i −0.220616 + 0.220616i
\(802\) 0 0
\(803\) 2758.14 0.121211
\(804\) 0 0
\(805\) 7016.65i 0.307211i
\(806\) 0 0
\(807\) 12925.6i 0.563818i
\(808\) 0 0
\(809\) −12674.7 −0.550825 −0.275413 0.961326i \(-0.588815\pi\)
−0.275413 + 0.961326i \(0.588815\pi\)
\(810\) 0 0
\(811\) −20413.5 + 20413.5i −0.883867 + 0.883867i −0.993925 0.110058i \(-0.964896\pi\)
0.110058 + 0.993925i \(0.464896\pi\)
\(812\) 0 0
\(813\) −13359.5 + 13359.5i −0.576309 + 0.576309i
\(814\) 0 0
\(815\) 5550.98i 0.238580i
\(816\) 0 0
\(817\) −877.105 + 877.105i −0.0375594 + 0.0375594i
\(818\) 0 0
\(819\) −2318.81 + 1932.58i −0.0989324 + 0.0824538i
\(820\) 0 0
\(821\) 12215.4 + 12215.4i 0.519272 + 0.519272i 0.917351 0.398079i \(-0.130323\pi\)
−0.398079 + 0.917351i \(0.630323\pi\)
\(822\) 0 0
\(823\) −25616.6 −1.08498 −0.542489 0.840063i \(-0.682518\pi\)
−0.542489 + 0.840063i \(0.682518\pi\)
\(824\) 0 0
\(825\) 567.059 + 567.059i 0.0239303 + 0.0239303i
\(826\) 0 0
\(827\) −14802.1 14802.1i −0.622395 0.622395i 0.323748 0.946143i \(-0.395057\pi\)
−0.946143 + 0.323748i \(0.895057\pi\)
\(828\) 0 0
\(829\) 41460.8i 1.73702i −0.495668 0.868512i \(-0.665077\pi\)
0.495668 0.868512i \(-0.334923\pi\)
\(830\) 0 0
\(831\) −15622.5 −0.652152
\(832\) 0 0
\(833\) 18010.5 0.749131
\(834\) 0 0
\(835\) 46097.1i 1.91049i
\(836\) 0 0
\(837\) −1501.10 1501.10i −0.0619900 0.0619900i
\(838\) 0 0
\(839\) −13209.4 13209.4i −0.543551 0.543551i 0.381017 0.924568i \(-0.375574\pi\)
−0.924568 + 0.381017i \(0.875574\pi\)
\(840\) 0 0
\(841\) −23777.8 −0.974938
\(842\) 0 0
\(843\) 14984.7 + 14984.7i 0.612219 + 0.612219i
\(844\) 0 0
\(845\) 14973.6 + 21690.8i 0.609593 + 0.883060i
\(846\) 0 0
\(847\) −5724.99 + 5724.99i −0.232247 + 0.232247i
\(848\) 0 0
\(849\) 9107.54i 0.368162i
\(850\) 0 0
\(851\) 22500.1 22500.1i 0.906337 0.906337i
\(852\) 0 0
\(853\) −9629.74 + 9629.74i −0.386537 + 0.386537i −0.873450 0.486913i \(-0.838123\pi\)
0.486913 + 0.873450i \(0.338123\pi\)
\(854\) 0 0
\(855\) −7905.60 −0.316217
\(856\) 0 0
\(857\) 1749.69i 0.0697414i −0.999392 0.0348707i \(-0.988898\pi\)
0.999392 0.0348707i \(-0.0111019\pi\)
\(858\) 0 0
\(859\) 45205.4i 1.79556i 0.440442 + 0.897781i \(0.354822\pi\)
−0.440442 + 0.897781i \(0.645178\pi\)
\(860\) 0 0
\(861\) 907.092 0.0359043
\(862\) 0 0
\(863\) 20072.5 20072.5i 0.791745 0.791745i −0.190033 0.981778i \(-0.560859\pi\)
0.981778 + 0.190033i \(0.0608595\pi\)
\(864\) 0 0
\(865\) −22359.0 + 22359.0i −0.878875 + 0.878875i
\(866\) 0 0
\(867\) 3310.06i 0.129660i
\(868\) 0 0
\(869\) 4173.04 4173.04i 0.162901 0.162901i
\(870\) 0 0
\(871\) −21240.5 25485.5i −0.826301 0.991439i
\(872\) 0 0
\(873\) −884.162 884.162i −0.0342776 0.0342776i
\(874\) 0 0
\(875\) 9105.92 0.351813
\(876\) 0 0
\(877\) −33660.3 33660.3i −1.29604 1.29604i −0.930986 0.365055i \(-0.881050\pi\)
−0.365055 0.930986i \(-0.618950\pi\)
\(878\) 0 0
\(879\) 11173.0 + 11173.0i 0.428731 + 0.428731i
\(880\) 0 0
\(881\) 10925.0i 0.417791i −0.977938 0.208896i \(-0.933013\pi\)
0.977938 0.208896i \(-0.0669869\pi\)
\(882\) 0 0
\(883\) 38958.2 1.48477 0.742384 0.669975i \(-0.233695\pi\)
0.742384 + 0.669975i \(0.233695\pi\)
\(884\) 0 0
\(885\) −18749.0 −0.712135
\(886\) 0 0
\(887\) 35783.0i 1.35454i −0.735734 0.677270i \(-0.763163\pi\)
0.735734 0.677270i \(-0.236837\pi\)
\(888\) 0 0
\(889\) −3002.48 3002.48i −0.113273 0.113273i
\(890\) 0 0
\(891\) 809.023 + 809.023i 0.0304189 + 0.0304189i
\(892\) 0 0
\(893\) −19569.3 −0.733329
\(894\) 0 0
\(895\) 16221.0 + 16221.0i 0.605820 + 0.605820i
\(896\) 0 0
\(897\) 11446.5 + 1039.89i 0.426072 + 0.0387079i
\(898\) 0 0
\(899\) 1374.53 1374.53i 0.0509934 0.0509934i
\(900\) 0 0
\(901\) 7148.63i 0.264323i
\(902\) 0 0
\(903\) −257.152 + 257.152i −0.00947674 + 0.00947674i
\(904\) 0 0
\(905\) 12772.0 12772.0i 0.469123 0.469123i
\(906\) 0 0
\(907\) −6527.32 −0.238959 −0.119480 0.992837i \(-0.538123\pi\)
−0.119480 + 0.992837i \(0.538123\pi\)
\(908\) 0 0
\(909\) 6282.64i 0.229243i
\(910\) 0 0
\(911\) 9359.62i 0.340393i −0.985410 0.170197i \(-0.945560\pi\)
0.985410 0.170197i \(-0.0544403\pi\)
\(912\) 0 0
\(913\) −15610.0 −0.565843
\(914\) 0 0
\(915\) −14498.6 + 14498.6i −0.523836 + 0.523836i
\(916\) 0 0
\(917\) 282.488 282.488i 0.0101729 0.0101729i
\(918\) 0 0
\(919\) 25376.0i 0.910857i −0.890272 0.455428i \(-0.849486\pi\)
0.890272 0.455428i \(-0.150514\pi\)
\(920\) 0 0
\(921\) −11586.6 + 11586.6i −0.414539 + 0.414539i
\(922\) 0 0
\(923\) 2225.47 + 2670.24i 0.0793633 + 0.0952243i
\(924\) 0 0
\(925\) 5209.49 + 5209.49i 0.185175 + 0.185175i
\(926\) 0 0
\(927\) −3261.04 −0.115541
\(928\) 0 0
\(929\) −14163.3 14163.3i −0.500198 0.500198i 0.411302 0.911499i \(-0.365074\pi\)
−0.911499 + 0.411302i \(0.865074\pi\)
\(930\) 0 0
\(931\) 15107.5 + 15107.5i 0.531824 + 0.531824i
\(932\) 0 0
\(933\) 24174.2i 0.848263i
\(934\) 0 0
\(935\) 10459.3 0.365833
\(936\) 0 0
\(937\) 29274.6 1.02066 0.510331 0.859978i \(-0.329523\pi\)
0.510331 + 0.859978i \(0.329523\pi\)
\(938\) 0 0
\(939\) 8453.04i 0.293775i
\(940\) 0 0
\(941\) 39241.4 + 39241.4i 1.35944 + 1.35944i 0.874606 + 0.484835i \(0.161120\pi\)
0.484835 + 0.874606i \(0.338880\pi\)
\(942\) 0 0
\(943\) −2442.27 2442.27i −0.0843384 0.0843384i
\(944\) 0 0
\(945\) −2317.79 −0.0797859
\(946\) 0 0
\(947\) −12114.3 12114.3i −0.415693 0.415693i 0.468023 0.883716i \(-0.344966\pi\)
−0.883716 + 0.468023i \(0.844966\pi\)
\(948\) 0 0
\(949\) 5859.73 + 7030.82i 0.200437 + 0.240495i
\(950\) 0 0
\(951\) 10418.1 10418.1i 0.355237 0.355237i
\(952\) 0 0
\(953\) 53542.6i 1.81995i −0.414662 0.909976i \(-0.636100\pi\)
0.414662 0.909976i \(-0.363900\pi\)
\(954\) 0 0
\(955\) 41384.0 41384.0i 1.40226 1.40226i
\(956\) 0 0
\(957\) −740.806 + 740.806i −0.0250228 + 0.0250228i
\(958\) 0 0
\(959\) 1107.49 0.0372917
\(960\) 0 0
\(961\) 23609.1i 0.792491i
\(962\) 0 0
\(963\) 11642.9i 0.389602i
\(964\) 0 0
\(965\) −27671.5 −0.923085
\(966\) 0 0
\(967\) −24963.7 + 24963.7i −0.830175 + 0.830175i −0.987540 0.157365i \(-0.949700\pi\)
0.157365 + 0.987540i \(0.449700\pi\)
\(968\) 0 0
\(969\) −9586.79 + 9586.79i −0.317825 + 0.317825i
\(970\) 0 0
\(971\) 5776.30i 0.190907i −0.995434 0.0954533i \(-0.969570\pi\)
0.995434 0.0954533i \(-0.0304301\pi\)
\(972\) 0 0
\(973\) 6419.48 6419.48i 0.211510 0.211510i
\(974\) 0 0
\(975\) −240.768 + 2650.23i −0.00790847 + 0.0870514i
\(976\) 0 0
\(977\) −27576.9 27576.9i −0.903032 0.903032i 0.0926652 0.995697i \(-0.470461\pi\)
−0.995697 + 0.0926652i \(0.970461\pi\)
\(978\) 0 0
\(979\) 11100.7 0.362390
\(980\) 0 0
\(981\) −8067.89 8067.89i −0.262577 0.262577i
\(982\) 0 0
\(983\) −36938.2 36938.2i −1.19852 1.19852i −0.974610 0.223911i \(-0.928117\pi\)
−0.223911 0.974610i \(-0.571883\pi\)
\(984\) 0 0
\(985\) 208.145i 0.00673303i
\(986\) 0 0
\(987\) −5737.40 −0.185029
\(988\) 0 0
\(989\) 1384.72 0.0445213
\(990\) 0 0
\(991\) 7160.60i 0.229530i −0.993393 0.114765i \(-0.963389\pi\)
0.993393 0.114765i \(-0.0366115\pi\)
\(992\) 0 0
\(993\) 8244.72 + 8244.72i 0.263483 + 0.263483i
\(994\) 0 0
\(995\) −31432.3 31432.3i −1.00148 1.00148i
\(996\) 0 0
\(997\) 42655.2 1.35497 0.677484 0.735538i \(-0.263070\pi\)
0.677484 + 0.735538i \(0.263070\pi\)
\(998\) 0 0
\(999\) 7432.38 + 7432.38i 0.235386 + 0.235386i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 624.4.bc.d.463.3 yes 28
4.3 odd 2 624.4.bc.c.463.3 yes 28
13.5 odd 4 624.4.bc.c.31.3 28
52.31 even 4 inner 624.4.bc.d.31.3 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
624.4.bc.c.31.3 28 13.5 odd 4
624.4.bc.c.463.3 yes 28 4.3 odd 2
624.4.bc.d.31.3 yes 28 52.31 even 4 inner
624.4.bc.d.463.3 yes 28 1.1 even 1 trivial