Properties

Label 624.4.q.c
Level $624$
Weight $4$
Character orbit 624.q
Analytic conductor $36.817$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [624,4,Mod(289,624)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(624, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("624.289");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 624 = 2^{4} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 624.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.8171918436\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \zeta_{6} + 3) q^{3} + 7 q^{5} - 10 \zeta_{6} q^{7} - 9 \zeta_{6} q^{9} + (22 \zeta_{6} - 22) q^{11} + ( - 13 \zeta_{6} - 39) q^{13} + ( - 21 \zeta_{6} + 21) q^{15} - 37 \zeta_{6} q^{17} + 30 \zeta_{6} q^{19} + \cdots + 198 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} + 14 q^{5} - 10 q^{7} - 9 q^{9} - 22 q^{11} - 91 q^{13} + 21 q^{15} - 37 q^{17} + 30 q^{19} - 60 q^{21} - 162 q^{23} - 152 q^{25} - 54 q^{27} + 113 q^{29} - 392 q^{31} + 66 q^{33} - 70 q^{35}+ \cdots + 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/624\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(209\) \(469\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
0.500000 0.866025i
0.500000 + 0.866025i
0 1.50000 + 2.59808i 0 7.00000 0 −5.00000 + 8.66025i 0 −4.50000 + 7.79423i 0
529.1 0 1.50000 2.59808i 0 7.00000 0 −5.00000 8.66025i 0 −4.50000 7.79423i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 624.4.q.c 2
4.b odd 2 1 39.4.e.b 2
12.b even 2 1 117.4.g.a 2
13.c even 3 1 inner 624.4.q.c 2
52.i odd 6 1 507.4.a.d 1
52.j odd 6 1 39.4.e.b 2
52.j odd 6 1 507.4.a.b 1
52.l even 12 2 507.4.b.d 2
156.p even 6 1 117.4.g.a 2
156.p even 6 1 1521.4.a.h 1
156.r even 6 1 1521.4.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.e.b 2 4.b odd 2 1
39.4.e.b 2 52.j odd 6 1
117.4.g.a 2 12.b even 2 1
117.4.g.a 2 156.p even 6 1
507.4.a.b 1 52.j odd 6 1
507.4.a.d 1 52.i odd 6 1
507.4.b.d 2 52.l even 12 2
624.4.q.c 2 1.a even 1 1 trivial
624.4.q.c 2 13.c even 3 1 inner
1521.4.a.e 1 156.r even 6 1
1521.4.a.h 1 156.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(624, [\chi])\):

\( T_{5} - 7 \) Copy content Toggle raw display
\( T_{7}^{2} + 10T_{7} + 100 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$5$ \( (T - 7)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$11$ \( T^{2} + 22T + 484 \) Copy content Toggle raw display
$13$ \( T^{2} + 91T + 2197 \) Copy content Toggle raw display
$17$ \( T^{2} + 37T + 1369 \) Copy content Toggle raw display
$19$ \( T^{2} - 30T + 900 \) Copy content Toggle raw display
$23$ \( T^{2} + 162T + 26244 \) Copy content Toggle raw display
$29$ \( T^{2} - 113T + 12769 \) Copy content Toggle raw display
$31$ \( (T + 196)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 13T + 169 \) Copy content Toggle raw display
$41$ \( T^{2} + 285T + 81225 \) Copy content Toggle raw display
$43$ \( T^{2} + 246T + 60516 \) Copy content Toggle raw display
$47$ \( (T - 462)^{2} \) Copy content Toggle raw display
$53$ \( (T + 537)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 576T + 331776 \) Copy content Toggle raw display
$61$ \( T^{2} - 635T + 403225 \) Copy content Toggle raw display
$67$ \( T^{2} - 202T + 40804 \) Copy content Toggle raw display
$71$ \( T^{2} + 1086 T + 1179396 \) Copy content Toggle raw display
$73$ \( (T + 805)^{2} \) Copy content Toggle raw display
$79$ \( (T + 884)^{2} \) Copy content Toggle raw display
$83$ \( (T + 518)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 194T + 37636 \) Copy content Toggle raw display
$97$ \( T^{2} - 1202 T + 1444804 \) Copy content Toggle raw display
show more
show less