Properties

Label 6300.2.d.b.3401.1
Level $6300$
Weight $2$
Character 6300.3401
Analytic conductor $50.306$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6300,2,Mod(3401,6300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6300.3401");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.3057532734\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1260)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3401.1
Root \(-2.28825i\) of defining polynomial
Character \(\chi\) \(=\) 6300.3401
Dual form 6300.2.d.b.3401.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.23607 - 1.41421i) q^{7} +1.41421i q^{11} -1.74806i q^{13} +4.47214 q^{17} +1.74806i q^{19} -3.16228i q^{23} -2.08191i q^{29} +4.57649i q^{31} -1.52786 q^{37} -0.472136 q^{41} +0.472136 q^{43} +2.47214 q^{47} +(3.00000 + 6.32456i) q^{49} -8.81913i q^{53} -1.52786 q^{59} +3.49613i q^{61} +7.73877i q^{71} -16.5579i q^{73} +(2.00000 - 3.16228i) q^{77} +8.94427 q^{79} -5.52786 q^{83} -10.9443 q^{89} +(-2.47214 + 3.90879i) q^{91} +0.412662i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 24 q^{37} + 16 q^{41} - 16 q^{43} - 8 q^{47} + 12 q^{49} - 24 q^{59} + 8 q^{77} - 40 q^{83} - 8 q^{89} + 8 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times\).

\(n\) \(2801\) \(3151\) \(3277\) \(3601\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.23607 1.41421i −0.845154 0.534522i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.41421i 0.426401i 0.977008 + 0.213201i \(0.0683888\pi\)
−0.977008 + 0.213201i \(0.931611\pi\)
\(12\) 0 0
\(13\) 1.74806i 0.484826i −0.970173 0.242413i \(-0.922061\pi\)
0.970173 0.242413i \(-0.0779389\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.47214 1.08465 0.542326 0.840168i \(-0.317544\pi\)
0.542326 + 0.840168i \(0.317544\pi\)
\(18\) 0 0
\(19\) 1.74806i 0.401033i 0.979690 + 0.200517i \(0.0642621\pi\)
−0.979690 + 0.200517i \(0.935738\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.16228i 0.659380i −0.944089 0.329690i \(-0.893056\pi\)
0.944089 0.329690i \(-0.106944\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.08191i 0.386602i −0.981140 0.193301i \(-0.938081\pi\)
0.981140 0.193301i \(-0.0619194\pi\)
\(30\) 0 0
\(31\) 4.57649i 0.821962i 0.911644 + 0.410981i \(0.134814\pi\)
−0.911644 + 0.410981i \(0.865186\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.52786 −0.251179 −0.125590 0.992082i \(-0.540082\pi\)
−0.125590 + 0.992082i \(0.540082\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.472136 −0.0737352 −0.0368676 0.999320i \(-0.511738\pi\)
−0.0368676 + 0.999320i \(0.511738\pi\)
\(42\) 0 0
\(43\) 0.472136 0.0720001 0.0360000 0.999352i \(-0.488538\pi\)
0.0360000 + 0.999352i \(0.488538\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.47214 0.360598 0.180299 0.983612i \(-0.442293\pi\)
0.180299 + 0.983612i \(0.442293\pi\)
\(48\) 0 0
\(49\) 3.00000 + 6.32456i 0.428571 + 0.903508i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.81913i 1.21140i −0.795693 0.605700i \(-0.792893\pi\)
0.795693 0.605700i \(-0.207107\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.52786 −0.198911 −0.0994555 0.995042i \(-0.531710\pi\)
−0.0994555 + 0.995042i \(0.531710\pi\)
\(60\) 0 0
\(61\) 3.49613i 0.447633i 0.974631 + 0.223817i \(0.0718517\pi\)
−0.974631 + 0.223817i \(0.928148\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.73877i 0.918423i 0.888327 + 0.459211i \(0.151868\pi\)
−0.888327 + 0.459211i \(0.848132\pi\)
\(72\) 0 0
\(73\) 16.5579i 1.93796i −0.247148 0.968978i \(-0.579493\pi\)
0.247148 0.968978i \(-0.420507\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.00000 3.16228i 0.227921 0.360375i
\(78\) 0 0
\(79\) 8.94427 1.00631 0.503155 0.864196i \(-0.332173\pi\)
0.503155 + 0.864196i \(0.332173\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.52786 −0.606762 −0.303381 0.952869i \(-0.598115\pi\)
−0.303381 + 0.952869i \(0.598115\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.9443 −1.16009 −0.580045 0.814584i \(-0.696965\pi\)
−0.580045 + 0.814584i \(0.696965\pi\)
\(90\) 0 0
\(91\) −2.47214 + 3.90879i −0.259150 + 0.409753i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.412662i 0.0418995i 0.999781 + 0.0209497i \(0.00666900\pi\)
−0.999781 + 0.0209497i \(0.993331\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.47214 −0.843009 −0.421505 0.906826i \(-0.638498\pi\)
−0.421505 + 0.906826i \(0.638498\pi\)
\(102\) 0 0
\(103\) 3.49613i 0.344484i 0.985055 + 0.172242i \(0.0551011\pi\)
−0.985055 + 0.172242i \(0.944899\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.16228i 0.305709i 0.988249 + 0.152854i \(0.0488466\pi\)
−0.988249 + 0.152854i \(0.951153\pi\)
\(108\) 0 0
\(109\) 8.94427 0.856706 0.428353 0.903612i \(-0.359094\pi\)
0.428353 + 0.903612i \(0.359094\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.65841i 0.626370i −0.949692 0.313185i \(-0.898604\pi\)
0.949692 0.313185i \(-0.101396\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −10.0000 6.32456i −0.916698 0.579771i
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.4164 1.34694 0.673469 0.739216i \(-0.264804\pi\)
0.673469 + 0.739216i \(0.264804\pi\)
\(132\) 0 0
\(133\) 2.47214 3.90879i 0.214361 0.338935i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.99070i 0.511820i −0.966701 0.255910i \(-0.917625\pi\)
0.966701 0.255910i \(-0.0823751\pi\)
\(138\) 0 0
\(139\) 21.5471i 1.82760i −0.406168 0.913799i \(-0.633135\pi\)
0.406168 0.913799i \(-0.366865\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.47214 0.206730
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.8918i 1.38383i −0.721981 0.691913i \(-0.756768\pi\)
0.721981 0.691913i \(-0.243232\pi\)
\(150\) 0 0
\(151\) −14.9443 −1.21615 −0.608074 0.793881i \(-0.708058\pi\)
−0.608074 + 0.793881i \(0.708058\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.3941i 0.989155i −0.869134 0.494577i \(-0.835323\pi\)
0.869134 0.494577i \(-0.164677\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.47214 + 7.07107i −0.352454 + 0.557278i
\(162\) 0 0
\(163\) 20.9443 1.64048 0.820241 0.572018i \(-0.193839\pi\)
0.820241 + 0.572018i \(0.193839\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −21.8885 −1.69379 −0.846893 0.531763i \(-0.821530\pi\)
−0.846893 + 0.531763i \(0.821530\pi\)
\(168\) 0 0
\(169\) 9.94427 0.764944
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 17.5595i 1.31246i −0.754563 0.656228i \(-0.772151\pi\)
0.754563 0.656228i \(-0.227849\pi\)
\(180\) 0 0
\(181\) 17.6383i 1.31104i −0.755177 0.655521i \(-0.772449\pi\)
0.755177 0.655521i \(-0.227551\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.32456i 0.462497i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.74962i 0.198955i 0.995040 + 0.0994776i \(0.0317172\pi\)
−0.995040 + 0.0994776i \(0.968283\pi\)
\(192\) 0 0
\(193\) 7.41641 0.533845 0.266922 0.963718i \(-0.413993\pi\)
0.266922 + 0.963718i \(0.413993\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.99070i 0.426820i −0.976963 0.213410i \(-0.931543\pi\)
0.976963 0.213410i \(-0.0684570\pi\)
\(198\) 0 0
\(199\) 14.3972i 1.02059i −0.860000 0.510294i \(-0.829536\pi\)
0.860000 0.510294i \(-0.170464\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.94427 + 4.65530i −0.206647 + 0.326738i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.47214 −0.171001
\(210\) 0 0
\(211\) −14.0000 −0.963800 −0.481900 0.876226i \(-0.660053\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 6.47214 10.2333i 0.439357 0.694685i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.81758i 0.525867i
\(222\) 0 0
\(223\) 21.1344i 1.41526i 0.706581 + 0.707632i \(0.250236\pi\)
−0.706581 + 0.707632i \(0.749764\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.52786 0.101408 0.0507039 0.998714i \(-0.483854\pi\)
0.0507039 + 0.998714i \(0.483854\pi\)
\(228\) 0 0
\(229\) 17.6383i 1.16557i −0.812627 0.582785i \(-0.801963\pi\)
0.812627 0.582785i \(-0.198037\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 27.1251i 1.77702i −0.458853 0.888512i \(-0.651740\pi\)
0.458853 0.888512i \(-0.348260\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 28.2055i 1.82446i −0.409679 0.912230i \(-0.634359\pi\)
0.409679 0.912230i \(-0.365641\pi\)
\(240\) 0 0
\(241\) 19.7990i 1.27537i 0.770299 + 0.637683i \(0.220107\pi\)
−0.770299 + 0.637683i \(0.779893\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.05573 0.194431
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 21.5279 1.35883 0.679413 0.733756i \(-0.262234\pi\)
0.679413 + 0.733756i \(0.262234\pi\)
\(252\) 0 0
\(253\) 4.47214 0.281161
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −16.4721 −1.02750 −0.513752 0.857939i \(-0.671745\pi\)
−0.513752 + 0.857939i \(0.671745\pi\)
\(258\) 0 0
\(259\) 3.41641 + 2.16073i 0.212285 + 0.134261i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 19.3075i 1.19055i −0.803521 0.595276i \(-0.797043\pi\)
0.803521 0.595276i \(-0.202957\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −19.5279 −1.19063 −0.595317 0.803491i \(-0.702974\pi\)
−0.595317 + 0.803491i \(0.702974\pi\)
\(270\) 0 0
\(271\) 11.5687i 0.702751i −0.936235 0.351376i \(-0.885714\pi\)
0.936235 0.351376i \(-0.114286\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.00000 0.360505 0.180253 0.983620i \(-0.442309\pi\)
0.180253 + 0.983620i \(0.442309\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.40337i 0.381993i 0.981591 + 0.190996i \(0.0611719\pi\)
−0.981591 + 0.190996i \(0.938828\pi\)
\(282\) 0 0
\(283\) 1.49302i 0.0887511i −0.999015 0.0443756i \(-0.985870\pi\)
0.999015 0.0443756i \(-0.0141298\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.05573 + 0.667701i 0.0623177 + 0.0394131i
\(288\) 0 0
\(289\) 3.00000 0.176471
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −29.4164 −1.71852 −0.859262 0.511535i \(-0.829077\pi\)
−0.859262 + 0.511535i \(0.829077\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.52786 −0.319685
\(300\) 0 0
\(301\) −1.05573 0.667701i −0.0608512 0.0384856i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 32.4481i 1.85191i 0.377633 + 0.925955i \(0.376738\pi\)
−0.377633 + 0.925955i \(0.623262\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.3607 1.38137 0.690684 0.723157i \(-0.257310\pi\)
0.690684 + 0.723157i \(0.257310\pi\)
\(312\) 0 0
\(313\) 1.08036i 0.0610657i 0.999534 + 0.0305329i \(0.00972042\pi\)
−0.999534 + 0.0305329i \(0.990280\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.49768i 0.252615i −0.991991 0.126307i \(-0.959687\pi\)
0.991991 0.126307i \(-0.0403126\pi\)
\(318\) 0 0
\(319\) 2.94427 0.164848
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.81758i 0.434982i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.52786 3.49613i −0.304761 0.192748i
\(330\) 0 0
\(331\) −11.8885 −0.653453 −0.326727 0.945119i \(-0.605946\pi\)
−0.326727 + 0.945119i \(0.605946\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11.4164 0.621891 0.310946 0.950428i \(-0.399354\pi\)
0.310946 + 0.950428i \(0.399354\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.47214 −0.350486
\(342\) 0 0
\(343\) 2.23607 18.3848i 0.120736 0.992685i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 22.9613i 1.23263i 0.787502 + 0.616313i \(0.211374\pi\)
−0.787502 + 0.616313i \(0.788626\pi\)
\(348\) 0 0
\(349\) 22.6274i 1.21122i −0.795762 0.605609i \(-0.792930\pi\)
0.795762 0.605609i \(-0.207070\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.2272i 0.961992i −0.876723 0.480996i \(-0.840275\pi\)
0.876723 0.480996i \(-0.159725\pi\)
\(360\) 0 0
\(361\) 15.9443 0.839172
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.82843i 0.147643i 0.997271 + 0.0738213i \(0.0235195\pi\)
−0.997271 + 0.0738213i \(0.976481\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12.4721 + 19.7202i −0.647521 + 1.02382i
\(372\) 0 0
\(373\) 26.9443 1.39512 0.697561 0.716526i \(-0.254269\pi\)
0.697561 + 0.716526i \(0.254269\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.63932 −0.187435
\(378\) 0 0
\(379\) 11.8885 0.610673 0.305337 0.952244i \(-0.401231\pi\)
0.305337 + 0.952244i \(0.401231\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −16.9443 −0.865812 −0.432906 0.901439i \(-0.642512\pi\)
−0.432906 + 0.901439i \(0.642512\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 19.7202i 0.999853i −0.866068 0.499926i \(-0.833360\pi\)
0.866068 0.499926i \(-0.166640\pi\)
\(390\) 0 0
\(391\) 14.1421i 0.715199i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 13.7295i 0.689063i 0.938775 + 0.344531i \(0.111962\pi\)
−0.938775 + 0.344531i \(0.888038\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 28.2055i 1.40851i −0.709945 0.704257i \(-0.751280\pi\)
0.709945 0.704257i \(-0.248720\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.16073i 0.107103i
\(408\) 0 0
\(409\) 35.9442i 1.77733i 0.458559 + 0.888664i \(0.348366\pi\)
−0.458559 + 0.888664i \(0.651634\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.41641 + 2.16073i 0.168110 + 0.106322i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 22.8328 1.11546 0.557728 0.830024i \(-0.311673\pi\)
0.557728 + 0.830024i \(0.311673\pi\)
\(420\) 0 0
\(421\) −19.8885 −0.969308 −0.484654 0.874706i \(-0.661055\pi\)
−0.484654 + 0.874706i \(0.661055\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4.94427 7.81758i 0.239270 0.378319i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.5595i 0.845809i 0.906174 + 0.422905i \(0.138989\pi\)
−0.906174 + 0.422905i \(0.861011\pi\)
\(432\) 0 0
\(433\) 0.255039i 0.0122564i −0.999981 0.00612820i \(-0.998049\pi\)
0.999981 0.00612820i \(-0.00195068\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.52786 0.264434
\(438\) 0 0
\(439\) 13.0618i 0.623404i −0.950180 0.311702i \(-0.899101\pi\)
0.950180 0.311702i \(-0.100899\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 33.6073i 1.59673i −0.602174 0.798365i \(-0.705699\pi\)
0.602174 0.798365i \(-0.294301\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 15.5563i 0.734150i 0.930191 + 0.367075i \(0.119641\pi\)
−0.930191 + 0.367075i \(0.880359\pi\)
\(450\) 0 0
\(451\) 0.667701i 0.0314408i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −22.4721 −1.05120 −0.525601 0.850731i \(-0.676160\pi\)
−0.525601 + 0.850731i \(0.676160\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.8885 0.740003 0.370002 0.929031i \(-0.379357\pi\)
0.370002 + 0.929031i \(0.379357\pi\)
\(462\) 0 0
\(463\) −7.05573 −0.327907 −0.163954 0.986468i \(-0.552425\pi\)
−0.163954 + 0.986468i \(0.552425\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 31.4164 1.45378 0.726889 0.686755i \(-0.240965\pi\)
0.726889 + 0.686755i \(0.240965\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.667701i 0.0307009i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −24.3607 −1.11307 −0.556534 0.830825i \(-0.687869\pi\)
−0.556534 + 0.830825i \(0.687869\pi\)
\(480\) 0 0
\(481\) 2.67080i 0.121778i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −3.52786 −0.159863 −0.0799314 0.996800i \(-0.525470\pi\)
−0.0799314 + 0.996800i \(0.525470\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 23.2163i 1.04774i 0.851799 + 0.523869i \(0.175512\pi\)
−0.851799 + 0.523869i \(0.824488\pi\)
\(492\) 0 0
\(493\) 9.31061i 0.419329i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.9443 17.3044i 0.490918 0.776209i
\(498\) 0 0
\(499\) 14.9443 0.668997 0.334499 0.942396i \(-0.391433\pi\)
0.334499 + 0.942396i \(0.391433\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −15.0557 −0.671302 −0.335651 0.941986i \(-0.608956\pi\)
−0.335651 + 0.941986i \(0.608956\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 26.3607 1.16842 0.584208 0.811604i \(-0.301405\pi\)
0.584208 + 0.811604i \(0.301405\pi\)
\(510\) 0 0
\(511\) −23.4164 + 37.0246i −1.03588 + 1.63787i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.49613i 0.153760i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −42.3607 −1.85586 −0.927928 0.372761i \(-0.878411\pi\)
−0.927928 + 0.372761i \(0.878411\pi\)
\(522\) 0 0
\(523\) 27.4589i 1.20070i −0.799739 0.600348i \(-0.795029\pi\)
0.799739 0.600348i \(-0.204971\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.4667i 0.891543i
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.825324i 0.0357487i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8.94427 + 4.24264i −0.385257 + 0.182743i
\(540\) 0 0
\(541\) 27.8885 1.19902 0.599511 0.800366i \(-0.295362\pi\)
0.599511 + 0.800366i \(0.295362\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −22.8328 −0.976261 −0.488130 0.872771i \(-0.662321\pi\)
−0.488130 + 0.872771i \(0.662321\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.63932 0.155040
\(552\) 0 0
\(553\) −20.0000 12.6491i −0.850487 0.537895i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.1437i 0.641659i −0.947137 0.320829i \(-0.896038\pi\)
0.947137 0.320829i \(-0.103962\pi\)
\(558\) 0 0
\(559\) 0.825324i 0.0349075i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.8885 −0.922492 −0.461246 0.887272i \(-0.652597\pi\)
−0.461246 + 0.887272i \(0.652597\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 11.2349i 0.470991i 0.971875 + 0.235496i \(0.0756714\pi\)
−0.971875 + 0.235496i \(0.924329\pi\)
\(570\) 0 0
\(571\) 16.0000 0.669579 0.334790 0.942293i \(-0.391335\pi\)
0.334790 + 0.942293i \(0.391335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 36.3569i 1.51356i −0.653671 0.756779i \(-0.726772\pi\)
0.653671 0.756779i \(-0.273228\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.3607 + 7.81758i 0.512807 + 0.324328i
\(582\) 0 0
\(583\) 12.4721 0.516543
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.8328 0.777313 0.388657 0.921383i \(-0.372939\pi\)
0.388657 + 0.921383i \(0.372939\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 23.8885 0.980985 0.490492 0.871445i \(-0.336817\pi\)
0.490492 + 0.871445i \(0.336817\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.41421i 0.0577832i 0.999583 + 0.0288916i \(0.00919776\pi\)
−0.999583 + 0.0288916i \(0.990802\pi\)
\(600\) 0 0
\(601\) 1.33540i 0.0544722i 0.999629 + 0.0272361i \(0.00867059\pi\)
−0.999629 + 0.0272361i \(0.991329\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 25.9659i 1.05392i −0.849889 0.526962i \(-0.823331\pi\)
0.849889 0.526962i \(-0.176669\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.32145i 0.174827i
\(612\) 0 0
\(613\) 14.9443 0.603593 0.301797 0.953372i \(-0.402414\pi\)
0.301797 + 0.953372i \(0.402414\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15.8114i 0.636543i −0.948000 0.318271i \(-0.896898\pi\)
0.948000 0.318271i \(-0.103102\pi\)
\(618\) 0 0
\(619\) 22.0571i 0.886551i 0.896385 + 0.443275i \(0.146184\pi\)
−0.896385 + 0.443275i \(0.853816\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 24.4721 + 15.4775i 0.980455 + 0.620094i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −6.83282 −0.272442
\(630\) 0 0
\(631\) −8.94427 −0.356066 −0.178033 0.984025i \(-0.556973\pi\)
−0.178033 + 0.984025i \(0.556973\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 11.0557 5.24419i 0.438044 0.207782i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18.8949i 0.746302i −0.927771 0.373151i \(-0.878277\pi\)
0.927771 0.373151i \(-0.121723\pi\)
\(642\) 0 0
\(643\) 10.6460i 0.419838i 0.977719 + 0.209919i \(0.0673200\pi\)
−0.977719 + 0.209919i \(0.932680\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) 0 0
\(649\) 2.16073i 0.0848159i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 32.1142i 1.25673i −0.777920 0.628364i \(-0.783725\pi\)
0.777920 0.628364i \(-0.216275\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.588890i 0.0229399i −0.999934 0.0114699i \(-0.996349\pi\)
0.999934 0.0114699i \(-0.00365108\pi\)
\(660\) 0 0
\(661\) 2.16073i 0.0840425i 0.999117 + 0.0420213i \(0.0133797\pi\)
−0.999117 + 0.0420213i \(0.986620\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6.58359 −0.254918
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.94427 −0.190872
\(672\) 0 0
\(673\) −34.4721 −1.32880 −0.664402 0.747376i \(-0.731314\pi\)
−0.664402 + 0.747376i \(0.731314\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −37.4164 −1.43803 −0.719015 0.694995i \(-0.755407\pi\)
−0.719015 + 0.694995i \(0.755407\pi\)
\(678\) 0 0
\(679\) 0.583592 0.922740i 0.0223962 0.0354115i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15.9690i 0.611037i −0.952186 0.305519i \(-0.901170\pi\)
0.952186 0.305519i \(-0.0988298\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −15.4164 −0.587318
\(690\) 0 0
\(691\) 25.8685i 0.984084i 0.870571 + 0.492042i \(0.163749\pi\)
−0.870571 + 0.492042i \(0.836251\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −2.11146 −0.0799771
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7.89639i 0.298243i 0.988819 + 0.149121i \(0.0476445\pi\)
−0.988819 + 0.149121i \(0.952356\pi\)
\(702\) 0 0
\(703\) 2.67080i 0.100731i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18.9443 + 11.9814i 0.712473 + 0.450607i
\(708\) 0 0
\(709\) 0.944272 0.0354629 0.0177314 0.999843i \(-0.494356\pi\)
0.0177314 + 0.999843i \(0.494356\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.4721 0.541986
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −22.4721 −0.838069 −0.419035 0.907970i \(-0.637631\pi\)
−0.419035 + 0.907970i \(0.637631\pi\)
\(720\) 0 0
\(721\) 4.94427 7.81758i 0.184134 0.291142i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 16.9706i 0.629403i 0.949191 + 0.314702i \(0.101904\pi\)
−0.949191 + 0.314702i \(0.898096\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.11146 0.0780950
\(732\) 0 0
\(733\) 16.5579i 0.611580i 0.952099 + 0.305790i \(0.0989206\pi\)
−0.952099 + 0.305790i \(0.901079\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 3.05573 0.112407 0.0562034 0.998419i \(-0.482100\pi\)
0.0562034 + 0.998419i \(0.482100\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 46.2564i 1.69698i 0.529210 + 0.848491i \(0.322489\pi\)
−0.529210 + 0.848491i \(0.677511\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.47214 7.07107i 0.163408 0.258371i
\(750\) 0 0
\(751\) 34.0000 1.24068 0.620339 0.784334i \(-0.286995\pi\)
0.620339 + 0.784334i \(0.286995\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 18.4721 0.671381 0.335691 0.941972i \(-0.391030\pi\)
0.335691 + 0.941972i \(0.391030\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.8885 −0.430959 −0.215480 0.976508i \(-0.569132\pi\)
−0.215480 + 0.976508i \(0.569132\pi\)
\(762\) 0 0
\(763\) −20.0000 12.6491i −0.724049 0.457929i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.67080i 0.0964372i
\(768\) 0 0
\(769\) 16.9706i 0.611974i 0.952036 + 0.305987i \(0.0989864\pi\)
−0.952036 + 0.305987i \(0.901014\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.825324i 0.0295703i
\(780\) 0 0
\(781\) −10.9443 −0.391617
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 4.32145i 0.154043i 0.997029 + 0.0770216i \(0.0245410\pi\)
−0.997029 + 0.0770216i \(0.975459\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.41641 + 14.8886i −0.334809 + 0.529379i
\(792\) 0 0
\(793\) 6.11146 0.217024
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −24.8328 −0.879623 −0.439812 0.898090i \(-0.644955\pi\)
−0.439812 + 0.898090i \(0.644955\pi\)
\(798\) 0 0
\(799\) 11.0557 0.391124
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 23.4164 0.826347
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.2086i 1.06208i 0.847348 + 0.531038i \(0.178198\pi\)
−0.847348 + 0.531038i \(0.821802\pi\)
\(810\) 0 0
\(811\) 9.40802i 0.330360i 0.986263 + 0.165180i \(0.0528206\pi\)
−0.986263 + 0.165180i \(0.947179\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.825324i 0.0288744i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 52.9936i 1.84949i −0.380588 0.924745i \(-0.624278\pi\)
0.380588 0.924745i \(-0.375722\pi\)
\(822\) 0 0
\(823\) 2.11146 0.0736007 0.0368004 0.999323i \(-0.488283\pi\)
0.0368004 + 0.999323i \(0.488283\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.4543i 0.850359i −0.905109 0.425180i \(-0.860211\pi\)
0.905109 0.425180i \(-0.139789\pi\)
\(828\) 0 0
\(829\) 5.81448i 0.201945i 0.994889 + 0.100973i \(0.0321954\pi\)
−0.994889 + 0.100973i \(0.967805\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 13.4164 + 28.2843i 0.464851 + 0.979992i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −21.8885 −0.755676 −0.377838 0.925872i \(-0.623332\pi\)
−0.377838 + 0.925872i \(0.623332\pi\)
\(840\) 0 0
\(841\) 24.6656 0.850539
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −20.1246 12.7279i −0.691490 0.437337i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.83153i 0.165623i
\(852\) 0 0
\(853\) 11.5687i 0.396106i 0.980191 + 0.198053i \(0.0634619\pi\)
−0.980191 + 0.198053i \(0.936538\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.94427 −0.100574 −0.0502872 0.998735i \(-0.516014\pi\)
−0.0502872 + 0.998735i \(0.516014\pi\)
\(858\) 0 0
\(859\) 30.0323i 1.02469i 0.858780 + 0.512345i \(0.171223\pi\)
−0.858780 + 0.512345i \(0.828777\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 42.7603i 1.45558i −0.685802 0.727788i \(-0.740548\pi\)
0.685802 0.727788i \(-0.259452\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 12.6491i 0.429092i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 33.7771 1.14057 0.570286 0.821446i \(-0.306833\pi\)
0.570286 + 0.821446i \(0.306833\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.8328 0.432349 0.216174 0.976355i \(-0.430642\pi\)
0.216174 + 0.976355i \(0.430642\pi\)
\(882\) 0 0
\(883\) −20.4721 −0.688942 −0.344471 0.938797i \(-0.611942\pi\)
−0.344471 + 0.938797i \(0.611942\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −17.3050 −0.581043 −0.290522 0.956868i \(-0.593829\pi\)
−0.290522 + 0.956868i \(0.593829\pi\)
\(888\) 0 0
\(889\) −8.94427 5.65685i −0.299981 0.189725i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.32145i 0.144612i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 9.52786 0.317772
\(900\) 0 0
\(901\) 39.4404i 1.31395i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −45.1935 −1.50063 −0.750313 0.661083i \(-0.770097\pi\)
−0.750313 + 0.661083i \(0.770097\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 45.1760i 1.49675i 0.663277 + 0.748374i \(0.269165\pi\)
−0.663277 + 0.748374i \(0.730835\pi\)
\(912\) 0 0
\(913\) 7.81758i 0.258724i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −34.4721 21.8021i −1.13837 0.719969i
\(918\) 0 0
\(919\) −2.94427 −0.0971226 −0.0485613 0.998820i \(-0.515464\pi\)
−0.0485613 + 0.998820i \(0.515464\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.5279 0.445275
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 37.0557 1.21576 0.607880 0.794029i \(-0.292020\pi\)
0.607880 + 0.794029i \(0.292020\pi\)
\(930\) 0 0
\(931\) −11.0557 + 5.24419i −0.362337 + 0.171871i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 21.5471i 0.703912i −0.936017 0.351956i \(-0.885517\pi\)
0.936017 0.351956i \(-0.114483\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.83282 0.157545 0.0787726 0.996893i \(-0.474900\pi\)
0.0787726 + 0.996893i \(0.474900\pi\)
\(942\) 0 0
\(943\) 1.49302i 0.0486196i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 48.9272i 1.58992i 0.606662 + 0.794960i \(0.292508\pi\)
−0.606662 + 0.794960i \(0.707492\pi\)
\(948\) 0 0
\(949\) −28.9443 −0.939571
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 55.9194i 1.81141i 0.423910 + 0.905704i \(0.360657\pi\)
−0.423910 + 0.905704i \(0.639343\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8.47214 + 13.3956i −0.273580 + 0.432567i
\(960\) 0 0
\(961\) 10.0557 0.324378
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 29.8885 0.961151 0.480575 0.876953i \(-0.340428\pi\)
0.480575 + 0.876953i \(0.340428\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −32.0000 −1.02693 −0.513464 0.858111i \(-0.671638\pi\)
−0.513464 + 0.858111i \(0.671638\pi\)
\(972\) 0 0
\(973\) −30.4721 + 48.1807i −0.976892 + 1.54460i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.4605i 0.910532i −0.890355 0.455266i \(-0.849544\pi\)
0.890355 0.455266i \(-0.150456\pi\)
\(978\) 0 0
\(979\) 15.4775i 0.494664i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −0.583592 −0.0186137 −0.00930685 0.999957i \(-0.502963\pi\)
−0.00930685 + 0.999957i \(0.502963\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.49302i 0.0474754i
\(990\) 0 0
\(991\) 1.05573 0.0335363 0.0167682 0.999859i \(-0.494662\pi\)
0.0167682 + 0.999859i \(0.494662\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 20.7217i 0.656264i 0.944632 + 0.328132i \(0.106419\pi\)
−0.944632 + 0.328132i \(0.893581\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6300.2.d.b.3401.1 4
3.2 odd 2 6300.2.d.a.3401.1 4
5.2 odd 4 6300.2.f.c.3149.6 8
5.3 odd 4 6300.2.f.c.3149.4 8
5.4 even 2 1260.2.d.a.881.4 yes 4
7.6 odd 2 6300.2.d.a.3401.2 4
15.2 even 4 6300.2.f.a.3149.5 8
15.8 even 4 6300.2.f.a.3149.3 8
15.14 odd 2 1260.2.d.b.881.4 yes 4
20.19 odd 2 5040.2.f.b.881.1 4
21.20 even 2 inner 6300.2.d.b.3401.2 4
35.13 even 4 6300.2.f.a.3149.8 8
35.27 even 4 6300.2.f.a.3149.2 8
35.34 odd 2 1260.2.d.b.881.3 yes 4
60.59 even 2 5040.2.f.d.881.1 4
105.62 odd 4 6300.2.f.c.3149.1 8
105.83 odd 4 6300.2.f.c.3149.7 8
105.104 even 2 1260.2.d.a.881.3 4
140.139 even 2 5040.2.f.d.881.2 4
420.419 odd 2 5040.2.f.b.881.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.d.a.881.3 4 105.104 even 2
1260.2.d.a.881.4 yes 4 5.4 even 2
1260.2.d.b.881.3 yes 4 35.34 odd 2
1260.2.d.b.881.4 yes 4 15.14 odd 2
5040.2.f.b.881.1 4 20.19 odd 2
5040.2.f.b.881.2 4 420.419 odd 2
5040.2.f.d.881.1 4 60.59 even 2
5040.2.f.d.881.2 4 140.139 even 2
6300.2.d.a.3401.1 4 3.2 odd 2
6300.2.d.a.3401.2 4 7.6 odd 2
6300.2.d.b.3401.1 4 1.1 even 1 trivial
6300.2.d.b.3401.2 4 21.20 even 2 inner
6300.2.f.a.3149.2 8 35.27 even 4
6300.2.f.a.3149.3 8 15.8 even 4
6300.2.f.a.3149.5 8 15.2 even 4
6300.2.f.a.3149.8 8 35.13 even 4
6300.2.f.c.3149.1 8 105.62 odd 4
6300.2.f.c.3149.4 8 5.3 odd 4
6300.2.f.c.3149.6 8 5.2 odd 4
6300.2.f.c.3149.7 8 105.83 odd 4