Properties

Label 6300.2.f.c.3149.1
Level $6300$
Weight $2$
Character 6300.3149
Analytic conductor $50.306$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [6300,2,Mod(3149,6300)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6300, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("6300.3149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 6300 = 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6300.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.3057532734\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.40960000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 1260)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3149.1
Root \(0.437016 - 0.437016i\) of defining polynomial
Character \(\chi\) \(=\) 6300.3149
Dual form 6300.2.f.c.3149.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.41421 - 2.23607i) q^{7} +O(q^{10})\) \(q+(-1.41421 - 2.23607i) q^{7} -1.41421i q^{11} +1.74806 q^{13} +4.47214i q^{17} +1.74806i q^{19} +3.16228 q^{23} -2.08191i q^{29} -4.57649i q^{31} -1.52786i q^{37} -0.472136 q^{41} -0.472136i q^{43} +2.47214i q^{47} +(-3.00000 + 6.32456i) q^{49} +8.81913 q^{53} +1.52786 q^{59} -3.49613i q^{61} -7.73877i q^{71} +16.5579 q^{73} +(-3.16228 + 2.00000i) q^{77} -8.94427 q^{79} +5.52786i q^{83} +10.9443 q^{89} +(-2.47214 - 3.90879i) q^{91} +0.412662 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 32 q^{41} - 24 q^{49} + 48 q^{59} + 16 q^{89} + 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6300\mathbb{Z}\right)^\times\).

\(n\) \(2801\) \(3151\) \(3277\) \(3601\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.41421 2.23607i −0.534522 0.845154i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.41421i 0.426401i −0.977008 0.213201i \(-0.931611\pi\)
0.977008 0.213201i \(-0.0683888\pi\)
\(12\) 0 0
\(13\) 1.74806 0.484826 0.242413 0.970173i \(-0.422061\pi\)
0.242413 + 0.970173i \(0.422061\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.47214i 1.08465i 0.840168 + 0.542326i \(0.182456\pi\)
−0.840168 + 0.542326i \(0.817544\pi\)
\(18\) 0 0
\(19\) 1.74806i 0.401033i 0.979690 + 0.200517i \(0.0642621\pi\)
−0.979690 + 0.200517i \(0.935738\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.16228 0.659380 0.329690 0.944089i \(-0.393056\pi\)
0.329690 + 0.944089i \(0.393056\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.08191i 0.386602i −0.981140 0.193301i \(-0.938081\pi\)
0.981140 0.193301i \(-0.0619194\pi\)
\(30\) 0 0
\(31\) 4.57649i 0.821962i −0.911644 0.410981i \(-0.865186\pi\)
0.911644 0.410981i \(-0.134814\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.52786i 0.251179i −0.992082 0.125590i \(-0.959918\pi\)
0.992082 0.125590i \(-0.0400823\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.472136 −0.0737352 −0.0368676 0.999320i \(-0.511738\pi\)
−0.0368676 + 0.999320i \(0.511738\pi\)
\(42\) 0 0
\(43\) 0.472136i 0.0720001i −0.999352 0.0360000i \(-0.988538\pi\)
0.999352 0.0360000i \(-0.0114616\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.47214i 0.360598i 0.983612 + 0.180299i \(0.0577065\pi\)
−0.983612 + 0.180299i \(0.942293\pi\)
\(48\) 0 0
\(49\) −3.00000 + 6.32456i −0.428571 + 0.903508i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.81913 1.21140 0.605700 0.795693i \(-0.292893\pi\)
0.605700 + 0.795693i \(0.292893\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.52786 0.198911 0.0994555 0.995042i \(-0.468290\pi\)
0.0994555 + 0.995042i \(0.468290\pi\)
\(60\) 0 0
\(61\) 3.49613i 0.447633i −0.974631 0.223817i \(-0.928148\pi\)
0.974631 0.223817i \(-0.0718517\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7.73877i 0.918423i −0.888327 0.459211i \(-0.848132\pi\)
0.888327 0.459211i \(-0.151868\pi\)
\(72\) 0 0
\(73\) 16.5579 1.93796 0.968978 0.247148i \(-0.0794932\pi\)
0.968978 + 0.247148i \(0.0794932\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.16228 + 2.00000i −0.360375 + 0.227921i
\(78\) 0 0
\(79\) −8.94427 −1.00631 −0.503155 0.864196i \(-0.667827\pi\)
−0.503155 + 0.864196i \(0.667827\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.52786i 0.606762i 0.952869 + 0.303381i \(0.0981155\pi\)
−0.952869 + 0.303381i \(0.901885\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.9443 1.16009 0.580045 0.814584i \(-0.303035\pi\)
0.580045 + 0.814584i \(0.303035\pi\)
\(90\) 0 0
\(91\) −2.47214 3.90879i −0.259150 0.409753i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.412662 0.0418995 0.0209497 0.999781i \(-0.493331\pi\)
0.0209497 + 0.999781i \(0.493331\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.47214 −0.843009 −0.421505 0.906826i \(-0.638498\pi\)
−0.421505 + 0.906826i \(0.638498\pi\)
\(102\) 0 0
\(103\) −3.49613 −0.344484 −0.172242 0.985055i \(-0.555101\pi\)
−0.172242 + 0.985055i \(0.555101\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.16228 0.305709 0.152854 0.988249i \(-0.451153\pi\)
0.152854 + 0.988249i \(0.451153\pi\)
\(108\) 0 0
\(109\) −8.94427 −0.856706 −0.428353 0.903612i \(-0.640906\pi\)
−0.428353 + 0.903612i \(0.640906\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.65841 0.626370 0.313185 0.949692i \(-0.398604\pi\)
0.313185 + 0.949692i \(0.398604\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.0000 6.32456i 0.916698 0.579771i
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.00000i 0.354943i 0.984126 + 0.177471i \(0.0567917\pi\)
−0.984126 + 0.177471i \(0.943208\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.4164 1.34694 0.673469 0.739216i \(-0.264804\pi\)
0.673469 + 0.739216i \(0.264804\pi\)
\(132\) 0 0
\(133\) 3.90879 2.47214i 0.338935 0.214361i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.99070 −0.511820 −0.255910 0.966701i \(-0.582375\pi\)
−0.255910 + 0.966701i \(0.582375\pi\)
\(138\) 0 0
\(139\) 21.5471i 1.82760i −0.406168 0.913799i \(-0.633135\pi\)
0.406168 0.913799i \(-0.366865\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.47214i 0.206730i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.8918i 1.38383i −0.721981 0.691913i \(-0.756768\pi\)
0.721981 0.691913i \(-0.243232\pi\)
\(150\) 0 0
\(151\) −14.9443 −1.21615 −0.608074 0.793881i \(-0.708058\pi\)
−0.608074 + 0.793881i \(0.708058\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −12.3941 −0.989155 −0.494577 0.869134i \(-0.664677\pi\)
−0.494577 + 0.869134i \(0.664677\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.47214 7.07107i −0.352454 0.557278i
\(162\) 0 0
\(163\) 20.9443i 1.64048i −0.572018 0.820241i \(-0.693839\pi\)
0.572018 0.820241i \(-0.306161\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.8885i 1.69379i −0.531763 0.846893i \(-0.678470\pi\)
0.531763 0.846893i \(-0.321530\pi\)
\(168\) 0 0
\(169\) −9.94427 −0.764944
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.0000i 1.06440i 0.846619 + 0.532200i \(0.178635\pi\)
−0.846619 + 0.532200i \(0.821365\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 17.5595i 1.31246i −0.754563 0.656228i \(-0.772151\pi\)
0.754563 0.656228i \(-0.227849\pi\)
\(180\) 0 0
\(181\) 17.6383i 1.31104i 0.755177 + 0.655521i \(0.227551\pi\)
−0.755177 + 0.655521i \(0.772449\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.32456 0.462497
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.74962i 0.198955i −0.995040 0.0994776i \(-0.968283\pi\)
0.995040 0.0994776i \(-0.0317172\pi\)
\(192\) 0 0
\(193\) 7.41641i 0.533845i −0.963718 0.266922i \(-0.913993\pi\)
0.963718 0.266922i \(-0.0860067\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.99070 −0.426820 −0.213410 0.976963i \(-0.568457\pi\)
−0.213410 + 0.976963i \(0.568457\pi\)
\(198\) 0 0
\(199\) 14.3972i 1.02059i −0.860000 0.510294i \(-0.829536\pi\)
0.860000 0.510294i \(-0.170464\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.65530 + 2.94427i −0.326738 + 0.206647i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.47214 0.171001
\(210\) 0 0
\(211\) −14.0000 −0.963800 −0.481900 0.876226i \(-0.660053\pi\)
−0.481900 + 0.876226i \(0.660053\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −10.2333 + 6.47214i −0.694685 + 0.439357i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.81758i 0.525867i
\(222\) 0 0
\(223\) −21.1344 −1.41526 −0.707632 0.706581i \(-0.750236\pi\)
−0.707632 + 0.706581i \(0.750236\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.52786i 0.101408i 0.998714 + 0.0507039i \(0.0161465\pi\)
−0.998714 + 0.0507039i \(0.983854\pi\)
\(228\) 0 0
\(229\) 17.6383i 1.16557i −0.812627 0.582785i \(-0.801963\pi\)
0.812627 0.582785i \(-0.198037\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 27.1251 1.77702 0.888512 0.458853i \(-0.151740\pi\)
0.888512 + 0.458853i \(0.151740\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 28.2055i 1.82446i −0.409679 0.912230i \(-0.634359\pi\)
0.409679 0.912230i \(-0.365641\pi\)
\(240\) 0 0
\(241\) 19.7990i 1.27537i −0.770299 0.637683i \(-0.779893\pi\)
0.770299 0.637683i \(-0.220107\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.05573i 0.194431i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 21.5279 1.35883 0.679413 0.733756i \(-0.262234\pi\)
0.679413 + 0.733756i \(0.262234\pi\)
\(252\) 0 0
\(253\) 4.47214i 0.281161i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 16.4721i 1.02750i −0.857939 0.513752i \(-0.828255\pi\)
0.857939 0.513752i \(-0.171745\pi\)
\(258\) 0 0
\(259\) −3.41641 + 2.16073i −0.212285 + 0.134261i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 19.3075 1.19055 0.595276 0.803521i \(-0.297043\pi\)
0.595276 + 0.803521i \(0.297043\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 19.5279 1.19063 0.595317 0.803491i \(-0.297026\pi\)
0.595317 + 0.803491i \(0.297026\pi\)
\(270\) 0 0
\(271\) 11.5687i 0.702751i 0.936235 + 0.351376i \(0.114286\pi\)
−0.936235 + 0.351376i \(0.885714\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.00000i 0.360505i 0.983620 + 0.180253i \(0.0576915\pi\)
−0.983620 + 0.180253i \(0.942309\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.40337i 0.381993i −0.981591 0.190996i \(-0.938828\pi\)
0.981591 0.190996i \(-0.0611719\pi\)
\(282\) 0 0
\(283\) 1.49302 0.0887511 0.0443756 0.999015i \(-0.485870\pi\)
0.0443756 + 0.999015i \(0.485870\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.667701 + 1.05573i 0.0394131 + 0.0623177i
\(288\) 0 0
\(289\) −3.00000 −0.176471
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 29.4164i 1.71852i 0.511535 + 0.859262i \(0.329077\pi\)
−0.511535 + 0.859262i \(0.670923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.52786 0.319685
\(300\) 0 0
\(301\) −1.05573 + 0.667701i −0.0608512 + 0.0384856i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 32.4481 1.85191 0.925955 0.377633i \(-0.123262\pi\)
0.925955 + 0.377633i \(0.123262\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.3607 1.38137 0.690684 0.723157i \(-0.257310\pi\)
0.690684 + 0.723157i \(0.257310\pi\)
\(312\) 0 0
\(313\) −1.08036 −0.0610657 −0.0305329 0.999534i \(-0.509720\pi\)
−0.0305329 + 0.999534i \(0.509720\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.49768 −0.252615 −0.126307 0.991991i \(-0.540313\pi\)
−0.126307 + 0.991991i \(0.540313\pi\)
\(318\) 0 0
\(319\) −2.94427 −0.164848
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7.81758 −0.434982
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.52786 3.49613i 0.304761 0.192748i
\(330\) 0 0
\(331\) −11.8885 −0.653453 −0.326727 0.945119i \(-0.605946\pi\)
−0.326727 + 0.945119i \(0.605946\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11.4164i 0.621891i 0.950428 + 0.310946i \(0.100646\pi\)
−0.950428 + 0.310946i \(0.899354\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.47214 −0.350486
\(342\) 0 0
\(343\) 18.3848 2.23607i 0.992685 0.120736i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 22.9613 1.23263 0.616313 0.787502i \(-0.288626\pi\)
0.616313 + 0.787502i \(0.288626\pi\)
\(348\) 0 0
\(349\) 22.6274i 1.21122i −0.795762 0.605609i \(-0.792930\pi\)
0.795762 0.605609i \(-0.207070\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000i 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.2272i 0.961992i −0.876723 0.480996i \(-0.840275\pi\)
0.876723 0.480996i \(-0.159725\pi\)
\(360\) 0 0
\(361\) 15.9443 0.839172
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.82843 0.147643 0.0738213 0.997271i \(-0.476481\pi\)
0.0738213 + 0.997271i \(0.476481\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12.4721 19.7202i −0.647521 1.02382i
\(372\) 0 0
\(373\) 26.9443i 1.39512i −0.716526 0.697561i \(-0.754269\pi\)
0.716526 0.697561i \(-0.245731\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.63932i 0.187435i
\(378\) 0 0
\(379\) −11.8885 −0.610673 −0.305337 0.952244i \(-0.598769\pi\)
−0.305337 + 0.952244i \(0.598769\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 16.9443i 0.865812i 0.901439 + 0.432906i \(0.142512\pi\)
−0.901439 + 0.432906i \(0.857488\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 19.7202i 0.999853i −0.866068 0.499926i \(-0.833360\pi\)
0.866068 0.499926i \(-0.166640\pi\)
\(390\) 0 0
\(391\) 14.1421i 0.715199i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 13.7295 0.689063 0.344531 0.938775i \(-0.388038\pi\)
0.344531 + 0.938775i \(0.388038\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 28.2055i 1.40851i 0.709945 + 0.704257i \(0.248720\pi\)
−0.709945 + 0.704257i \(0.751280\pi\)
\(402\) 0 0
\(403\) 8.00000i 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.16073 −0.107103
\(408\) 0 0
\(409\) 35.9442i 1.77733i 0.458559 + 0.888664i \(0.348366\pi\)
−0.458559 + 0.888664i \(0.651634\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.16073 3.41641i −0.106322 0.168110i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −22.8328 −1.11546 −0.557728 0.830024i \(-0.688327\pi\)
−0.557728 + 0.830024i \(0.688327\pi\)
\(420\) 0 0
\(421\) −19.8885 −0.969308 −0.484654 0.874706i \(-0.661055\pi\)
−0.484654 + 0.874706i \(0.661055\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −7.81758 + 4.94427i −0.378319 + 0.239270i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.5595i 0.845809i −0.906174 0.422905i \(-0.861011\pi\)
0.906174 0.422905i \(-0.138989\pi\)
\(432\) 0 0
\(433\) 0.255039 0.0122564 0.00612820 0.999981i \(-0.498049\pi\)
0.00612820 + 0.999981i \(0.498049\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.52786i 0.264434i
\(438\) 0 0
\(439\) 13.0618i 0.623404i −0.950180 0.311702i \(-0.899101\pi\)
0.950180 0.311702i \(-0.100899\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 33.6073 1.59673 0.798365 0.602174i \(-0.205699\pi\)
0.798365 + 0.602174i \(0.205699\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 15.5563i 0.734150i 0.930191 + 0.367075i \(0.119641\pi\)
−0.930191 + 0.367075i \(0.880359\pi\)
\(450\) 0 0
\(451\) 0.667701i 0.0314408i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.4721i 1.05120i −0.850731 0.525601i \(-0.823840\pi\)
0.850731 0.525601i \(-0.176160\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.8885 0.740003 0.370002 0.929031i \(-0.379357\pi\)
0.370002 + 0.929031i \(0.379357\pi\)
\(462\) 0 0
\(463\) 7.05573i 0.327907i 0.986468 + 0.163954i \(0.0524248\pi\)
−0.986468 + 0.163954i \(0.947575\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 31.4164i 1.45378i 0.686755 + 0.726889i \(0.259035\pi\)
−0.686755 + 0.726889i \(0.740965\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.667701 −0.0307009
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.3607 1.11307 0.556534 0.830825i \(-0.312131\pi\)
0.556534 + 0.830825i \(0.312131\pi\)
\(480\) 0 0
\(481\) 2.67080i 0.121778i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3.52786i 0.159863i −0.996800 0.0799314i \(-0.974530\pi\)
0.996800 0.0799314i \(-0.0254701\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 23.2163i 1.04774i −0.851799 0.523869i \(-0.824488\pi\)
0.851799 0.523869i \(-0.175512\pi\)
\(492\) 0 0
\(493\) 9.31061 0.419329
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −17.3044 + 10.9443i −0.776209 + 0.490918i
\(498\) 0 0
\(499\) −14.9443 −0.668997 −0.334499 0.942396i \(-0.608567\pi\)
−0.334499 + 0.942396i \(0.608567\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.0557i 0.671302i 0.941986 + 0.335651i \(0.108956\pi\)
−0.941986 + 0.335651i \(0.891044\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −26.3607 −1.16842 −0.584208 0.811604i \(-0.698595\pi\)
−0.584208 + 0.811604i \(0.698595\pi\)
\(510\) 0 0
\(511\) −23.4164 37.0246i −1.03588 1.63787i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.49613 0.153760
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −42.3607 −1.85586 −0.927928 0.372761i \(-0.878411\pi\)
−0.927928 + 0.372761i \(0.878411\pi\)
\(522\) 0 0
\(523\) 27.4589 1.20070 0.600348 0.799739i \(-0.295029\pi\)
0.600348 + 0.799739i \(0.295029\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.4667 0.891543
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.825324 −0.0357487
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8.94427 + 4.24264i 0.385257 + 0.182743i
\(540\) 0 0
\(541\) 27.8885 1.19902 0.599511 0.800366i \(-0.295362\pi\)
0.599511 + 0.800366i \(0.295362\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 22.8328i 0.976261i −0.872771 0.488130i \(-0.837679\pi\)
0.872771 0.488130i \(-0.162321\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.63932 0.155040
\(552\) 0 0
\(553\) 12.6491 + 20.0000i 0.537895 + 0.850487i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −15.1437 −0.641659 −0.320829 0.947137i \(-0.603962\pi\)
−0.320829 + 0.947137i \(0.603962\pi\)
\(558\) 0 0
\(559\) 0.825324i 0.0349075i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21.8885i 0.922492i 0.887272 + 0.461246i \(0.152597\pi\)
−0.887272 + 0.461246i \(0.847403\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 11.2349i 0.470991i 0.971875 + 0.235496i \(0.0756714\pi\)
−0.971875 + 0.235496i \(0.924329\pi\)
\(570\) 0 0
\(571\) 16.0000 0.669579 0.334790 0.942293i \(-0.391335\pi\)
0.334790 + 0.942293i \(0.391335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −36.3569 −1.51356 −0.756779 0.653671i \(-0.773228\pi\)
−0.756779 + 0.653671i \(0.773228\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.3607 7.81758i 0.512807 0.324328i
\(582\) 0 0
\(583\) 12.4721i 0.516543i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.8328i 0.777313i 0.921383 + 0.388657i \(0.127061\pi\)
−0.921383 + 0.388657i \(0.872939\pi\)
\(588\) 0 0
\(589\) 8.00000 0.329634
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 23.8885i 0.980985i −0.871445 0.490492i \(-0.836817\pi\)
0.871445 0.490492i \(-0.163183\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.41421i 0.0577832i 0.999583 + 0.0288916i \(0.00919776\pi\)
−0.999583 + 0.0288916i \(0.990802\pi\)
\(600\) 0 0
\(601\) 1.33540i 0.0544722i −0.999629 0.0272361i \(-0.991329\pi\)
0.999629 0.0272361i \(-0.00867059\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −25.9659 −1.05392 −0.526962 0.849889i \(-0.676669\pi\)
−0.526962 + 0.849889i \(0.676669\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.32145i 0.174827i
\(612\) 0 0
\(613\) 14.9443i 0.603593i −0.953372 0.301797i \(-0.902414\pi\)
0.953372 0.301797i \(-0.0975864\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.8114 −0.636543 −0.318271 0.948000i \(-0.603102\pi\)
−0.318271 + 0.948000i \(0.603102\pi\)
\(618\) 0 0
\(619\) 22.0571i 0.886551i 0.896385 + 0.443275i \(0.146184\pi\)
−0.896385 + 0.443275i \(0.853816\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −15.4775 24.4721i −0.620094 0.980455i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.83282 0.272442
\(630\) 0 0
\(631\) −8.94427 −0.356066 −0.178033 0.984025i \(-0.556973\pi\)
−0.178033 + 0.984025i \(0.556973\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −5.24419 + 11.0557i −0.207782 + 0.438044i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 18.8949i 0.746302i 0.927771 + 0.373151i \(0.121723\pi\)
−0.927771 + 0.373151i \(0.878277\pi\)
\(642\) 0 0
\(643\) −10.6460 −0.419838 −0.209919 0.977719i \(-0.567320\pi\)
−0.209919 + 0.977719i \(0.567320\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.00000i 0.314512i 0.987558 + 0.157256i \(0.0502649\pi\)
−0.987558 + 0.157256i \(0.949735\pi\)
\(648\) 0 0
\(649\) 2.16073i 0.0848159i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 32.1142 1.25673 0.628364 0.777920i \(-0.283725\pi\)
0.628364 + 0.777920i \(0.283725\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.588890i 0.0229399i −0.999934 0.0114699i \(-0.996349\pi\)
0.999934 0.0114699i \(-0.00365108\pi\)
\(660\) 0 0
\(661\) 2.16073i 0.0840425i −0.999117 0.0420213i \(-0.986620\pi\)
0.999117 0.0420213i \(-0.0133797\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.58359i 0.254918i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.94427 −0.190872
\(672\) 0 0
\(673\) 34.4721i 1.32880i 0.747376 + 0.664402i \(0.231314\pi\)
−0.747376 + 0.664402i \(0.768686\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 37.4164i 1.43803i −0.694995 0.719015i \(-0.744593\pi\)
0.694995 0.719015i \(-0.255407\pi\)
\(678\) 0 0
\(679\) −0.583592 0.922740i −0.0223962 0.0354115i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15.9690 0.611037 0.305519 0.952186i \(-0.401170\pi\)
0.305519 + 0.952186i \(0.401170\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 15.4164 0.587318
\(690\) 0 0
\(691\) 25.8685i 0.984084i −0.870571 0.492042i \(-0.836251\pi\)
0.870571 0.492042i \(-0.163749\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.11146i 0.0799771i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7.89639i 0.298243i −0.988819 0.149121i \(-0.952356\pi\)
0.988819 0.149121i \(-0.0476445\pi\)
\(702\) 0 0
\(703\) 2.67080 0.100731
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 11.9814 + 18.9443i 0.450607 + 0.712473i
\(708\) 0 0
\(709\) −0.944272 −0.0354629 −0.0177314 0.999843i \(-0.505644\pi\)
−0.0177314 + 0.999843i \(0.505644\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 14.4721i 0.541986i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.4721 0.838069 0.419035 0.907970i \(-0.362369\pi\)
0.419035 + 0.907970i \(0.362369\pi\)
\(720\) 0 0
\(721\) 4.94427 + 7.81758i 0.184134 + 0.291142i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 16.9706 0.629403 0.314702 0.949191i \(-0.398096\pi\)
0.314702 + 0.949191i \(0.398096\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.11146 0.0780950
\(732\) 0 0
\(733\) −16.5579 −0.611580 −0.305790 0.952099i \(-0.598921\pi\)
−0.305790 + 0.952099i \(0.598921\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −3.05573 −0.112407 −0.0562034 0.998419i \(-0.517900\pi\)
−0.0562034 + 0.998419i \(0.517900\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −46.2564 −1.69698 −0.848491 0.529210i \(-0.822489\pi\)
−0.848491 + 0.529210i \(0.822489\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −4.47214 7.07107i −0.163408 0.258371i
\(750\) 0 0
\(751\) 34.0000 1.24068 0.620339 0.784334i \(-0.286995\pi\)
0.620339 + 0.784334i \(0.286995\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 18.4721i 0.671381i 0.941972 + 0.335691i \(0.108970\pi\)
−0.941972 + 0.335691i \(0.891030\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.8885 −0.430959 −0.215480 0.976508i \(-0.569132\pi\)
−0.215480 + 0.976508i \(0.569132\pi\)
\(762\) 0 0
\(763\) 12.6491 + 20.0000i 0.457929 + 0.724049i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.67080 0.0964372
\(768\) 0 0
\(769\) 16.9706i 0.611974i 0.952036 + 0.305987i \(0.0989864\pi\)
−0.952036 + 0.305987i \(0.901014\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 18.0000i 0.647415i −0.946157 0.323708i \(-0.895071\pi\)
0.946157 0.323708i \(-0.104929\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.825324i 0.0295703i
\(780\) 0 0
\(781\) −10.9443 −0.391617
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 4.32145 0.154043 0.0770216 0.997029i \(-0.475459\pi\)
0.0770216 + 0.997029i \(0.475459\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.41641 14.8886i −0.334809 0.529379i
\(792\) 0 0
\(793\) 6.11146i 0.217024i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 24.8328i 0.879623i −0.898090 0.439812i \(-0.855045\pi\)
0.898090 0.439812i \(-0.144955\pi\)
\(798\) 0 0
\(799\) −11.0557 −0.391124
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 23.4164i 0.826347i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.2086i 1.06208i 0.847348 + 0.531038i \(0.178198\pi\)
−0.847348 + 0.531038i \(0.821802\pi\)
\(810\) 0 0
\(811\) 9.40802i 0.330360i −0.986263 0.165180i \(-0.947179\pi\)
0.986263 0.165180i \(-0.0528206\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.825324 0.0288744
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 52.9936i 1.84949i 0.380588 + 0.924745i \(0.375722\pi\)
−0.380588 + 0.924745i \(0.624278\pi\)
\(822\) 0 0
\(823\) 2.11146i 0.0736007i −0.999323 0.0368004i \(-0.988283\pi\)
0.999323 0.0368004i \(-0.0117166\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.4543 −0.850359 −0.425180 0.905109i \(-0.639789\pi\)
−0.425180 + 0.905109i \(0.639789\pi\)
\(828\) 0 0
\(829\) 5.81448i 0.201945i 0.994889 + 0.100973i \(0.0321954\pi\)
−0.994889 + 0.100973i \(0.967805\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −28.2843 13.4164i −0.979992 0.464851i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21.8885 0.755676 0.377838 0.925872i \(-0.376668\pi\)
0.377838 + 0.925872i \(0.376668\pi\)
\(840\) 0 0
\(841\) 24.6656 0.850539
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −12.7279 20.1246i −0.437337 0.691490i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.83153i 0.165623i
\(852\) 0 0
\(853\) −11.5687 −0.396106 −0.198053 0.980191i \(-0.563462\pi\)
−0.198053 + 0.980191i \(0.563462\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.94427i 0.100574i −0.998735 0.0502872i \(-0.983986\pi\)
0.998735 0.0502872i \(-0.0160137\pi\)
\(858\) 0 0
\(859\) 30.0323i 1.02469i 0.858780 + 0.512345i \(0.171223\pi\)
−0.858780 + 0.512345i \(0.828777\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 42.7603 1.45558 0.727788 0.685802i \(-0.240548\pi\)
0.727788 + 0.685802i \(0.240548\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 12.6491i 0.429092i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 33.7771i 1.14057i 0.821446 + 0.570286i \(0.193167\pi\)
−0.821446 + 0.570286i \(0.806833\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.8328 0.432349 0.216174 0.976355i \(-0.430642\pi\)
0.216174 + 0.976355i \(0.430642\pi\)
\(882\) 0 0
\(883\) 20.4721i 0.688942i 0.938797 + 0.344471i \(0.111942\pi\)
−0.938797 + 0.344471i \(0.888058\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 17.3050i 0.581043i −0.956868 0.290522i \(-0.906171\pi\)
0.956868 0.290522i \(-0.0938288\pi\)
\(888\) 0 0
\(889\) 8.94427 5.65685i 0.299981 0.189725i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.32145 −0.144612
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9.52786 −0.317772
\(900\) 0 0
\(901\) 39.4404i 1.31395i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 45.1935i 1.50063i −0.661083 0.750313i \(-0.729903\pi\)
0.661083 0.750313i \(-0.270097\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 45.1760i 1.49675i −0.663277 0.748374i \(-0.730835\pi\)
0.663277 0.748374i \(-0.269165\pi\)
\(912\) 0 0
\(913\) 7.81758 0.258724
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −21.8021 34.4721i −0.719969 1.13837i
\(918\) 0 0
\(919\) 2.94427 0.0971226 0.0485613 0.998820i \(-0.484536\pi\)
0.0485613 + 0.998820i \(0.484536\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.5279i 0.445275i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −37.0557 −1.21576 −0.607880 0.794029i \(-0.707980\pi\)
−0.607880 + 0.794029i \(0.707980\pi\)
\(930\) 0 0
\(931\) −11.0557 5.24419i −0.362337 0.171871i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −21.5471 −0.703912 −0.351956 0.936017i \(-0.614483\pi\)
−0.351956 + 0.936017i \(0.614483\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.83282 0.157545 0.0787726 0.996893i \(-0.474900\pi\)
0.0787726 + 0.996893i \(0.474900\pi\)
\(942\) 0 0
\(943\) −1.49302 −0.0486196
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 48.9272 1.58992 0.794960 0.606662i \(-0.207492\pi\)
0.794960 + 0.606662i \(0.207492\pi\)
\(948\) 0 0
\(949\) 28.9443 0.939571
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −55.9194 −1.81141 −0.905704 0.423910i \(-0.860657\pi\)
−0.905704 + 0.423910i \(0.860657\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 8.47214 + 13.3956i 0.273580 + 0.432567i
\(960\) 0 0
\(961\) 10.0557 0.324378
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 29.8885i 0.961151i 0.876953 + 0.480575i \(0.159572\pi\)
−0.876953 + 0.480575i \(0.840428\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −32.0000 −1.02693 −0.513464 0.858111i \(-0.671638\pi\)
−0.513464 + 0.858111i \(0.671638\pi\)
\(972\) 0 0
\(973\) −48.1807 + 30.4721i −1.54460 + 0.976892i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −28.4605 −0.910532 −0.455266 0.890355i \(-0.650456\pi\)
−0.455266 + 0.890355i \(0.650456\pi\)
\(978\) 0 0
\(979\) 15.4775i 0.494664i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0.583592i 0.0186137i 0.999957 + 0.00930685i \(0.00296250\pi\)
−0.999957 + 0.00930685i \(0.997037\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.49302i 0.0474754i
\(990\) 0 0
\(991\) 1.05573 0.0335363 0.0167682 0.999859i \(-0.494662\pi\)
0.0167682 + 0.999859i \(0.494662\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 20.7217 0.656264 0.328132 0.944632i \(-0.393581\pi\)
0.328132 + 0.944632i \(0.393581\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6300.2.f.c.3149.1 8
3.2 odd 2 6300.2.f.a.3149.2 8
5.2 odd 4 1260.2.d.a.881.3 4
5.3 odd 4 6300.2.d.b.3401.2 4
5.4 even 2 inner 6300.2.f.c.3149.7 8
7.6 odd 2 6300.2.f.a.3149.5 8
15.2 even 4 1260.2.d.b.881.3 yes 4
15.8 even 4 6300.2.d.a.3401.2 4
15.14 odd 2 6300.2.f.a.3149.8 8
20.7 even 4 5040.2.f.b.881.2 4
21.20 even 2 inner 6300.2.f.c.3149.6 8
35.13 even 4 6300.2.d.a.3401.1 4
35.27 even 4 1260.2.d.b.881.4 yes 4
35.34 odd 2 6300.2.f.a.3149.3 8
60.47 odd 4 5040.2.f.d.881.2 4
105.62 odd 4 1260.2.d.a.881.4 yes 4
105.83 odd 4 6300.2.d.b.3401.1 4
105.104 even 2 inner 6300.2.f.c.3149.4 8
140.27 odd 4 5040.2.f.d.881.1 4
420.167 even 4 5040.2.f.b.881.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.d.a.881.3 4 5.2 odd 4
1260.2.d.a.881.4 yes 4 105.62 odd 4
1260.2.d.b.881.3 yes 4 15.2 even 4
1260.2.d.b.881.4 yes 4 35.27 even 4
5040.2.f.b.881.1 4 420.167 even 4
5040.2.f.b.881.2 4 20.7 even 4
5040.2.f.d.881.1 4 140.27 odd 4
5040.2.f.d.881.2 4 60.47 odd 4
6300.2.d.a.3401.1 4 35.13 even 4
6300.2.d.a.3401.2 4 15.8 even 4
6300.2.d.b.3401.1 4 105.83 odd 4
6300.2.d.b.3401.2 4 5.3 odd 4
6300.2.f.a.3149.2 8 3.2 odd 2
6300.2.f.a.3149.3 8 35.34 odd 2
6300.2.f.a.3149.5 8 7.6 odd 2
6300.2.f.a.3149.8 8 15.14 odd 2
6300.2.f.c.3149.1 8 1.1 even 1 trivial
6300.2.f.c.3149.4 8 105.104 even 2 inner
6300.2.f.c.3149.6 8 21.20 even 2 inner
6300.2.f.c.3149.7 8 5.4 even 2 inner