Properties

Label 637.2.bc.c.31.19
Level $637$
Weight $2$
Character 637.31
Analytic conductor $5.086$
Analytic rank $0$
Dimension $112$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(31,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 31.19
Character \(\chi\) \(=\) 637.31
Dual form 637.2.bc.c.411.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.43251 + 0.383841i) q^{2} +(-0.765995 - 0.442247i) q^{3} +(0.172712 + 0.0997153i) q^{4} +(-1.01546 + 3.78973i) q^{5} +(-0.927546 - 0.927546i) q^{6} +(-1.88821 - 1.88821i) q^{8} +(-1.10883 - 1.92056i) q^{9} +(-2.90931 + 5.03907i) q^{10} +(-2.51265 + 0.673262i) q^{11} +(-0.0881976 - 0.152763i) q^{12} +(-3.36514 - 1.29454i) q^{13} +(2.45383 - 2.45383i) q^{15} +(-2.17954 - 3.77508i) q^{16} +(-0.680066 + 1.17791i) q^{17} +(-0.851232 - 3.17684i) q^{18} +(0.828597 - 3.09237i) q^{19} +(-0.553276 + 0.553276i) q^{20} -3.85783 q^{22} +(-1.39284 + 0.804158i) q^{23} +(0.611303 + 2.28141i) q^{24} +(-9.00081 - 5.19662i) q^{25} +(-4.32371 - 3.14612i) q^{26} +4.61500i q^{27} +9.34669 q^{29} +(4.45703 - 2.57327i) q^{30} +(-8.22399 + 2.20361i) q^{31} +(-0.290932 - 1.08577i) q^{32} +(2.22242 + 0.595497i) q^{33} +(-1.42633 + 1.42633i) q^{34} -0.442271i q^{36} +(-1.24632 + 4.65133i) q^{37} +(2.37395 - 4.11181i) q^{38} +(2.00517 + 2.47983i) q^{39} +(9.07320 - 5.23842i) q^{40} +(-2.14628 - 2.14628i) q^{41} +11.5495i q^{43} +(-0.501099 - 0.134269i) q^{44} +(8.40438 - 2.25195i) q^{45} +(-2.30394 + 0.617338i) q^{46} +(-9.58391 - 2.56800i) q^{47} +3.85559i q^{48} +(-10.8991 - 10.8991i) q^{50} +(1.04185 - 0.601515i) q^{51} +(-0.452114 - 0.559138i) q^{52} +(1.51173 - 2.61840i) q^{53} +(-1.77143 + 6.61105i) q^{54} -10.2059i q^{55} +(-2.00229 + 2.00229i) q^{57} +(13.3893 + 3.58764i) q^{58} +(0.0670618 + 0.250278i) q^{59} +(0.668491 - 0.179122i) q^{60} +(-0.288679 + 0.166669i) q^{61} -12.6268 q^{62} +7.05112i q^{64} +(8.32311 - 11.4384i) q^{65} +(2.95508 + 1.70611i) q^{66} +(0.272292 + 1.01621i) q^{67} +(-0.234911 + 0.135626i) q^{68} +1.42255 q^{69} +(-0.333748 + 0.333748i) q^{71} +(-1.53270 + 5.72013i) q^{72} +(2.17380 + 8.11275i) q^{73} +(-3.57074 + 6.18470i) q^{74} +(4.59638 + 7.96117i) q^{75} +(0.451465 - 0.451465i) q^{76} +(1.92058 + 4.32207i) q^{78} +(-1.45162 - 2.51428i) q^{79} +(16.5198 - 4.42646i) q^{80} +(-1.28553 + 2.22661i) q^{81} +(-2.25074 - 3.89840i) q^{82} +(3.84570 + 3.84570i) q^{83} +(-3.77338 - 3.77338i) q^{85} +(-4.43317 + 16.5448i) q^{86} +(-7.15951 - 4.13355i) q^{87} +(6.01566 + 3.47314i) q^{88} +(7.14176 + 1.91363i) q^{89} +12.9038 q^{90} -0.320747 q^{92} +(7.27408 + 1.94908i) q^{93} +(-12.7434 - 7.35740i) q^{94} +(10.8778 + 6.28033i) q^{95} +(-0.257328 + 0.960361i) q^{96} +(7.45885 + 7.45885i) q^{97} +(4.07915 + 4.07915i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 56 q^{9} + 16 q^{11} + 96 q^{15} + 56 q^{16} + 32 q^{18} - 96 q^{29} + 32 q^{39} + 64 q^{44} - 32 q^{46} - 80 q^{50} + 16 q^{53} - 192 q^{57} - 72 q^{58} + 64 q^{60} - 32 q^{65} + 64 q^{71} - 208 q^{72}+ \cdots - 64 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.43251 + 0.383841i 1.01294 + 0.271417i 0.726858 0.686788i \(-0.240980\pi\)
0.286083 + 0.958205i \(0.407647\pi\)
\(3\) −0.765995 0.442247i −0.442247 0.255332i 0.262303 0.964986i \(-0.415518\pi\)
−0.704550 + 0.709654i \(0.748851\pi\)
\(4\) 0.172712 + 0.0997153i 0.0863560 + 0.0498576i
\(5\) −1.01546 + 3.78973i −0.454126 + 1.69482i 0.236519 + 0.971627i \(0.423993\pi\)
−0.690645 + 0.723194i \(0.742673\pi\)
\(6\) −0.927546 0.927546i −0.378669 0.378669i
\(7\) 0 0
\(8\) −1.88821 1.88821i −0.667583 0.667583i
\(9\) −1.10883 1.92056i −0.369612 0.640186i
\(10\) −2.90931 + 5.03907i −0.920005 + 1.59350i
\(11\) −2.51265 + 0.673262i −0.757592 + 0.202996i −0.616883 0.787055i \(-0.711605\pi\)
−0.140709 + 0.990051i \(0.544938\pi\)
\(12\) −0.0881976 0.152763i −0.0254605 0.0440988i
\(13\) −3.36514 1.29454i −0.933322 0.359041i
\(14\) 0 0
\(15\) 2.45383 2.45383i 0.633577 0.633577i
\(16\) −2.17954 3.77508i −0.544886 0.943770i
\(17\) −0.680066 + 1.17791i −0.164940 + 0.285685i −0.936634 0.350309i \(-0.886076\pi\)
0.771694 + 0.635994i \(0.219410\pi\)
\(18\) −0.851232 3.17684i −0.200637 0.748789i
\(19\) 0.828597 3.09237i 0.190093 0.709437i −0.803389 0.595454i \(-0.796972\pi\)
0.993483 0.113984i \(-0.0363611\pi\)
\(20\) −0.553276 + 0.553276i −0.123716 + 0.123716i
\(21\) 0 0
\(22\) −3.85783 −0.822492
\(23\) −1.39284 + 0.804158i −0.290428 + 0.167679i −0.638135 0.769925i \(-0.720294\pi\)
0.347707 + 0.937603i \(0.386960\pi\)
\(24\) 0.611303 + 2.28141i 0.124782 + 0.465692i
\(25\) −9.00081 5.19662i −1.80016 1.03932i
\(26\) −4.32371 3.14612i −0.847950 0.617006i
\(27\) 4.61500i 0.888157i
\(28\) 0 0
\(29\) 9.34669 1.73564 0.867818 0.496882i \(-0.165522\pi\)
0.867818 + 0.496882i \(0.165522\pi\)
\(30\) 4.45703 2.57327i 0.813739 0.469813i
\(31\) −8.22399 + 2.20361i −1.47707 + 0.395781i −0.905350 0.424666i \(-0.860391\pi\)
−0.571723 + 0.820447i \(0.693725\pi\)
\(32\) −0.290932 1.08577i −0.0514300 0.191939i
\(33\) 2.22242 + 0.595497i 0.386874 + 0.103663i
\(34\) −1.42633 + 1.42633i −0.244614 + 0.244614i
\(35\) 0 0
\(36\) 0.442271i 0.0737118i
\(37\) −1.24632 + 4.65133i −0.204894 + 0.764673i 0.784588 + 0.620017i \(0.212874\pi\)
−0.989482 + 0.144656i \(0.953792\pi\)
\(38\) 2.37395 4.11181i 0.385106 0.667023i
\(39\) 2.00517 + 2.47983i 0.321085 + 0.397091i
\(40\) 9.07320 5.23842i 1.43460 0.828266i
\(41\) −2.14628 2.14628i −0.335192 0.335192i 0.519362 0.854554i \(-0.326170\pi\)
−0.854554 + 0.519362i \(0.826170\pi\)
\(42\) 0 0
\(43\) 11.5495i 1.76128i 0.473786 + 0.880640i \(0.342887\pi\)
−0.473786 + 0.880640i \(0.657113\pi\)
\(44\) −0.501099 0.134269i −0.0755435 0.0202418i
\(45\) 8.40438 2.25195i 1.25285 0.335700i
\(46\) −2.30394 + 0.617338i −0.339697 + 0.0910215i
\(47\) −9.58391 2.56800i −1.39796 0.374582i −0.520347 0.853955i \(-0.674197\pi\)
−0.877611 + 0.479374i \(0.840864\pi\)
\(48\) 3.85559i 0.556507i
\(49\) 0 0
\(50\) −10.8991 10.8991i −1.54137 1.54137i
\(51\) 1.04185 0.601515i 0.145889 0.0842289i
\(52\) −0.452114 0.559138i −0.0626970 0.0775385i
\(53\) 1.51173 2.61840i 0.207652 0.359665i −0.743322 0.668934i \(-0.766751\pi\)
0.950975 + 0.309269i \(0.100084\pi\)
\(54\) −1.77143 + 6.61105i −0.241061 + 0.899650i
\(55\) 10.2059i 1.37617i
\(56\) 0 0
\(57\) −2.00229 + 2.00229i −0.265210 + 0.265210i
\(58\) 13.3893 + 3.58764i 1.75810 + 0.471080i
\(59\) 0.0670618 + 0.250278i 0.00873071 + 0.0325834i 0.970154 0.242491i \(-0.0779643\pi\)
−0.961423 + 0.275074i \(0.911298\pi\)
\(60\) 0.668491 0.179122i 0.0863018 0.0231245i
\(61\) −0.288679 + 0.166669i −0.0369616 + 0.0213398i −0.518367 0.855158i \(-0.673460\pi\)
0.481405 + 0.876498i \(0.340127\pi\)
\(62\) −12.6268 −1.60361
\(63\) 0 0
\(64\) 7.05112i 0.881390i
\(65\) 8.32311 11.4384i 1.03236 1.41876i
\(66\) 2.95508 + 1.70611i 0.363745 + 0.210008i
\(67\) 0.272292 + 1.01621i 0.0332658 + 0.124150i 0.980562 0.196209i \(-0.0628632\pi\)
−0.947296 + 0.320359i \(0.896196\pi\)
\(68\) −0.234911 + 0.135626i −0.0284871 + 0.0164471i
\(69\) 1.42255 0.171255
\(70\) 0 0
\(71\) −0.333748 + 0.333748i −0.0396086 + 0.0396086i −0.726634 0.687025i \(-0.758916\pi\)
0.687025 + 0.726634i \(0.258916\pi\)
\(72\) −1.53270 + 5.72013i −0.180631 + 0.674123i
\(73\) 2.17380 + 8.11275i 0.254425 + 0.949525i 0.968410 + 0.249365i \(0.0802217\pi\)
−0.713985 + 0.700161i \(0.753112\pi\)
\(74\) −3.57074 + 6.18470i −0.415090 + 0.718957i
\(75\) 4.59638 + 7.96117i 0.530744 + 0.919276i
\(76\) 0.451465 0.451465i 0.0517866 0.0517866i
\(77\) 0 0
\(78\) 1.92058 + 4.32207i 0.217462 + 0.489378i
\(79\) −1.45162 2.51428i −0.163320 0.282878i 0.772738 0.634726i \(-0.218887\pi\)
−0.936057 + 0.351847i \(0.885554\pi\)
\(80\) 16.5198 4.42646i 1.84697 0.494894i
\(81\) −1.28553 + 2.22661i −0.142837 + 0.247401i
\(82\) −2.25074 3.89840i −0.248553 0.430506i
\(83\) 3.84570 + 3.84570i 0.422120 + 0.422120i 0.885933 0.463813i \(-0.153519\pi\)
−0.463813 + 0.885933i \(0.653519\pi\)
\(84\) 0 0
\(85\) −3.77338 3.77338i −0.409281 0.409281i
\(86\) −4.43317 + 16.5448i −0.478041 + 1.78407i
\(87\) −7.15951 4.13355i −0.767580 0.443163i
\(88\) 6.01566 + 3.47314i 0.641272 + 0.370238i
\(89\) 7.14176 + 1.91363i 0.757025 + 0.202844i 0.616632 0.787251i \(-0.288497\pi\)
0.140393 + 0.990096i \(0.455163\pi\)
\(90\) 12.9038 1.36018
\(91\) 0 0
\(92\) −0.320747 −0.0334402
\(93\) 7.27408 + 1.94908i 0.754287 + 0.202111i
\(94\) −12.7434 7.35740i −1.31438 0.758858i
\(95\) 10.8778 + 6.28033i 1.11604 + 0.644348i
\(96\) −0.257328 + 0.960361i −0.0262634 + 0.0980164i
\(97\) 7.45885 + 7.45885i 0.757332 + 0.757332i 0.975836 0.218504i \(-0.0701178\pi\)
−0.218504 + 0.975836i \(0.570118\pi\)
\(98\) 0 0
\(99\) 4.07915 + 4.07915i 0.409970 + 0.409970i
\(100\) −1.03636 1.79504i −0.103636 0.179504i
\(101\) 0.104651 0.181261i 0.0104132 0.0180362i −0.860772 0.508991i \(-0.830019\pi\)
0.871185 + 0.490955i \(0.163352\pi\)
\(102\) 1.72336 0.461772i 0.170638 0.0457222i
\(103\) −8.17798 14.1647i −0.805800 1.39569i −0.915749 0.401750i \(-0.868402\pi\)
0.109949 0.993937i \(-0.464931\pi\)
\(104\) 3.90973 + 8.79845i 0.383380 + 0.862759i
\(105\) 0 0
\(106\) 3.17063 3.17063i 0.307958 0.307958i
\(107\) −8.52958 14.7737i −0.824585 1.42822i −0.902236 0.431243i \(-0.858075\pi\)
0.0776502 0.996981i \(-0.475258\pi\)
\(108\) −0.460186 + 0.797066i −0.0442814 + 0.0766977i
\(109\) −1.81493 6.77341i −0.173839 0.648775i −0.996747 0.0806001i \(-0.974316\pi\)
0.822908 0.568175i \(-0.192350\pi\)
\(110\) 3.91746 14.6201i 0.373515 1.39398i
\(111\) 3.01171 3.01171i 0.285859 0.285859i
\(112\) 0 0
\(113\) 4.56982 0.429892 0.214946 0.976626i \(-0.431042\pi\)
0.214946 + 0.976626i \(0.431042\pi\)
\(114\) −3.63687 + 2.09975i −0.340624 + 0.196660i
\(115\) −1.63318 6.09509i −0.152294 0.568370i
\(116\) 1.61428 + 0.932007i 0.149883 + 0.0865347i
\(117\) 1.24515 + 7.89838i 0.115114 + 0.730205i
\(118\) 0.384268i 0.0353747i
\(119\) 0 0
\(120\) −9.26670 −0.845930
\(121\) −3.66616 + 2.11666i −0.333287 + 0.192424i
\(122\) −0.477511 + 0.127949i −0.0432318 + 0.0115839i
\(123\) 0.694851 + 2.59322i 0.0626526 + 0.233823i
\(124\) −1.64012 0.439468i −0.147287 0.0394654i
\(125\) 14.9623 14.9623i 1.33827 1.33827i
\(126\) 0 0
\(127\) 10.4126i 0.923968i −0.886888 0.461984i \(-0.847138\pi\)
0.886888 0.461984i \(-0.152862\pi\)
\(128\) −3.28837 + 12.2724i −0.290654 + 1.08473i
\(129\) 5.10773 8.84684i 0.449710 0.778921i
\(130\) 16.3135 13.1910i 1.43079 1.15692i
\(131\) 15.1481 8.74577i 1.32350 0.764121i 0.339212 0.940710i \(-0.389840\pi\)
0.984285 + 0.176589i \(0.0565063\pi\)
\(132\) 0.324459 + 0.324459i 0.0282405 + 0.0282405i
\(133\) 0 0
\(134\) 1.56025i 0.134785i
\(135\) −17.4896 4.68633i −1.50527 0.403335i
\(136\) 3.50824 0.940031i 0.300829 0.0806070i
\(137\) 19.4448 5.21021i 1.66128 0.445138i 0.698540 0.715571i \(-0.253833\pi\)
0.962739 + 0.270433i \(0.0871668\pi\)
\(138\) 2.03782 + 0.546032i 0.173471 + 0.0464813i
\(139\) 14.6578i 1.24326i −0.783310 0.621631i \(-0.786470\pi\)
0.783310 0.621631i \(-0.213530\pi\)
\(140\) 0 0
\(141\) 6.20554 + 6.20554i 0.522600 + 0.522600i
\(142\) −0.606204 + 0.349992i −0.0508715 + 0.0293707i
\(143\) 9.32698 + 0.987101i 0.779961 + 0.0825455i
\(144\) −4.83351 + 8.37188i −0.402792 + 0.697657i
\(145\) −9.49115 + 35.4215i −0.788197 + 2.94159i
\(146\) 12.4560i 1.03087i
\(147\) 0 0
\(148\) −0.679062 + 0.679062i −0.0558186 + 0.0558186i
\(149\) −21.1240 5.66017i −1.73055 0.463699i −0.750239 0.661166i \(-0.770062\pi\)
−0.980310 + 0.197467i \(0.936728\pi\)
\(150\) 3.52856 + 13.1688i 0.288106 + 1.07523i
\(151\) −13.0689 + 3.50181i −1.06353 + 0.284973i −0.747834 0.663886i \(-0.768906\pi\)
−0.315700 + 0.948859i \(0.602239\pi\)
\(152\) −7.40360 + 4.27447i −0.600511 + 0.346705i
\(153\) 3.01632 0.243855
\(154\) 0 0
\(155\) 33.4044i 2.68311i
\(156\) 0.0990399 + 0.628243i 0.00792954 + 0.0502997i
\(157\) −11.1379 6.43044i −0.888897 0.513205i −0.0153156 0.999883i \(-0.504875\pi\)
−0.873582 + 0.486678i \(0.838209\pi\)
\(158\) −1.11438 4.15893i −0.0886554 0.330867i
\(159\) −2.31596 + 1.33712i −0.183667 + 0.106040i
\(160\) 4.41022 0.348659
\(161\) 0 0
\(162\) −2.69621 + 2.69621i −0.211834 + 0.211834i
\(163\) −2.77257 + 10.3474i −0.217164 + 0.810468i 0.768229 + 0.640175i \(0.221138\pi\)
−0.985393 + 0.170293i \(0.945529\pi\)
\(164\) −0.156671 0.584704i −0.0122339 0.0456577i
\(165\) −4.51355 + 7.81769i −0.351379 + 0.608607i
\(166\) 4.03288 + 6.98516i 0.313012 + 0.542153i
\(167\) −6.07140 + 6.07140i −0.469819 + 0.469819i −0.901856 0.432037i \(-0.857795\pi\)
0.432037 + 0.901856i \(0.357795\pi\)
\(168\) 0 0
\(169\) 9.64834 + 8.71261i 0.742180 + 0.670201i
\(170\) −3.95705 6.85380i −0.303492 0.525663i
\(171\) −6.85785 + 1.83755i −0.524433 + 0.140521i
\(172\) −1.15166 + 1.99473i −0.0878132 + 0.152097i
\(173\) 1.77614 + 3.07637i 0.135037 + 0.233892i 0.925612 0.378474i \(-0.123551\pi\)
−0.790574 + 0.612366i \(0.790218\pi\)
\(174\) −8.66948 8.66948i −0.657232 0.657232i
\(175\) 0 0
\(176\) 8.01805 + 8.01805i 0.604383 + 0.604383i
\(177\) 0.0593158 0.221370i 0.00445845 0.0166392i
\(178\) 9.49615 + 5.48260i 0.711766 + 0.410938i
\(179\) 14.9201 + 8.61412i 1.11518 + 0.643850i 0.940166 0.340716i \(-0.110670\pi\)
0.175014 + 0.984566i \(0.444003\pi\)
\(180\) 1.67609 + 0.449107i 0.124928 + 0.0334744i
\(181\) −6.21868 −0.462231 −0.231115 0.972926i \(-0.574238\pi\)
−0.231115 + 0.972926i \(0.574238\pi\)
\(182\) 0 0
\(183\) 0.294836 0.0217949
\(184\) 4.14840 + 1.11156i 0.305824 + 0.0819453i
\(185\) −16.3617 9.44644i −1.20294 0.694516i
\(186\) 9.67208 + 5.58418i 0.709192 + 0.409452i
\(187\) 0.915725 3.41753i 0.0669644 0.249915i
\(188\) −1.39919 1.39919i −0.102046 0.102046i
\(189\) 0 0
\(190\) 13.1720 + 13.1720i 0.955599 + 0.955599i
\(191\) 6.15368 + 10.6585i 0.445264 + 0.771221i 0.998071 0.0620893i \(-0.0197763\pi\)
−0.552806 + 0.833310i \(0.686443\pi\)
\(192\) 3.11834 5.40112i 0.225047 0.389792i
\(193\) −20.7241 + 5.55301i −1.49176 + 0.399715i −0.910329 0.413885i \(-0.864172\pi\)
−0.581426 + 0.813599i \(0.697505\pi\)
\(194\) 7.82190 + 13.5479i 0.561579 + 0.972684i
\(195\) −11.4341 + 5.08091i −0.818812 + 0.363852i
\(196\) 0 0
\(197\) −1.42501 + 1.42501i −0.101528 + 0.101528i −0.756046 0.654518i \(-0.772872\pi\)
0.654518 + 0.756046i \(0.272872\pi\)
\(198\) 4.27769 + 7.40918i 0.304002 + 0.526548i
\(199\) −3.33814 + 5.78184i −0.236635 + 0.409863i −0.959747 0.280868i \(-0.909378\pi\)
0.723112 + 0.690731i \(0.242711\pi\)
\(200\) 7.18310 + 26.8077i 0.507922 + 1.89559i
\(201\) 0.240841 0.898832i 0.0169876 0.0633987i
\(202\) 0.219490 0.219490i 0.0154432 0.0154432i
\(203\) 0 0
\(204\) 0.239921 0.0167978
\(205\) 10.3133 5.95437i 0.720310 0.415871i
\(206\) −6.27809 23.4301i −0.437415 1.63246i
\(207\) 3.08886 + 1.78336i 0.214691 + 0.123952i
\(208\) 2.44748 + 15.5252i 0.169702 + 1.07648i
\(209\) 8.32789i 0.576052i
\(210\) 0 0
\(211\) −18.9896 −1.30730 −0.653648 0.756798i \(-0.726762\pi\)
−0.653648 + 0.756798i \(0.726762\pi\)
\(212\) 0.522188 0.301486i 0.0358640 0.0207061i
\(213\) 0.403248 0.108050i 0.0276301 0.00740346i
\(214\) −6.54800 24.4375i −0.447612 1.67051i
\(215\) −43.7695 11.7280i −2.98505 0.799843i
\(216\) 8.71408 8.71408i 0.592918 0.592918i
\(217\) 0 0
\(218\) 10.3996i 0.704353i
\(219\) 1.92272 7.17568i 0.129925 0.484888i
\(220\) 1.01769 1.76269i 0.0686125 0.118840i
\(221\) 3.81337 3.08346i 0.256515 0.207416i
\(222\) 5.47034 3.15830i 0.367145 0.211971i
\(223\) −2.04467 2.04467i −0.136921 0.136921i 0.635324 0.772245i \(-0.280866\pi\)
−0.772245 + 0.635324i \(0.780866\pi\)
\(224\) 0 0
\(225\) 23.0488i 1.53658i
\(226\) 6.54633 + 1.75408i 0.435455 + 0.116680i
\(227\) −6.34006 + 1.69881i −0.420805 + 0.112754i −0.463007 0.886355i \(-0.653229\pi\)
0.0422019 + 0.999109i \(0.486563\pi\)
\(228\) −0.545479 + 0.146161i −0.0361252 + 0.00967972i
\(229\) 1.37763 + 0.369136i 0.0910366 + 0.0243932i 0.304050 0.952656i \(-0.401661\pi\)
−0.213013 + 0.977049i \(0.568328\pi\)
\(230\) 9.35819i 0.617060i
\(231\) 0 0
\(232\) −17.6485 17.6485i −1.15868 1.15868i
\(233\) −7.35621 + 4.24711i −0.481921 + 0.278237i −0.721217 0.692709i \(-0.756417\pi\)
0.239295 + 0.970947i \(0.423084\pi\)
\(234\) −1.24803 + 11.7925i −0.0815864 + 0.770898i
\(235\) 19.4641 33.7128i 1.26970 2.19918i
\(236\) −0.0133742 + 0.0499131i −0.000870585 + 0.00324907i
\(237\) 2.56790i 0.166803i
\(238\) 0 0
\(239\) −4.64810 + 4.64810i −0.300661 + 0.300661i −0.841272 0.540612i \(-0.818193\pi\)
0.540612 + 0.841272i \(0.318193\pi\)
\(240\) −14.6117 3.91518i −0.943179 0.252724i
\(241\) 2.79130 + 10.4173i 0.179803 + 0.671034i 0.995683 + 0.0928137i \(0.0295861\pi\)
−0.815880 + 0.578221i \(0.803747\pi\)
\(242\) −6.06429 + 1.62492i −0.389827 + 0.104454i
\(243\) 13.9595 8.05955i 0.895505 0.517020i
\(244\) −0.0664778 −0.00425580
\(245\) 0 0
\(246\) 3.98154i 0.253854i
\(247\) −6.79154 + 9.33359i −0.432135 + 0.593882i
\(248\) 19.6895 + 11.3677i 1.25028 + 0.721852i
\(249\) −1.24504 4.64654i −0.0789009 0.294462i
\(250\) 27.1769 15.6906i 1.71882 0.992361i
\(251\) −28.0524 −1.77065 −0.885327 0.464968i \(-0.846066\pi\)
−0.885327 + 0.464968i \(0.846066\pi\)
\(252\) 0 0
\(253\) 2.95831 2.95831i 0.185988 0.185988i
\(254\) 3.99678 14.9162i 0.250780 0.935925i
\(255\) 1.22162 + 4.55916i 0.0765010 + 0.285506i
\(256\) −2.37016 + 4.10524i −0.148135 + 0.256578i
\(257\) −7.06032 12.2288i −0.440411 0.762813i 0.557309 0.830305i \(-0.311834\pi\)
−0.997720 + 0.0674915i \(0.978500\pi\)
\(258\) 10.7127 10.7127i 0.666942 0.666942i
\(259\) 0 0
\(260\) 2.57809 1.14561i 0.159886 0.0710479i
\(261\) −10.3639 17.9509i −0.641511 1.11113i
\(262\) 25.0569 6.71397i 1.54802 0.414790i
\(263\) −11.1615 + 19.3323i −0.688248 + 1.19208i 0.284157 + 0.958778i \(0.408286\pi\)
−0.972404 + 0.233302i \(0.925047\pi\)
\(264\) −3.07198 5.32082i −0.189067 0.327474i
\(265\) 8.38793 + 8.38793i 0.515267 + 0.515267i
\(266\) 0 0
\(267\) −4.62426 4.62426i −0.283000 0.283000i
\(268\) −0.0543034 + 0.202663i −0.00331711 + 0.0123796i
\(269\) −10.2451 5.91503i −0.624656 0.360645i 0.154023 0.988067i \(-0.450777\pi\)
−0.778680 + 0.627422i \(0.784110\pi\)
\(270\) −23.2553 13.4265i −1.41527 0.817109i
\(271\) −4.77450 1.27932i −0.290030 0.0777134i 0.110870 0.993835i \(-0.464636\pi\)
−0.400901 + 0.916121i \(0.631303\pi\)
\(272\) 5.92893 0.359494
\(273\) 0 0
\(274\) 29.8548 1.80359
\(275\) 26.1145 + 6.99737i 1.57477 + 0.421957i
\(276\) 0.245691 + 0.141850i 0.0147889 + 0.00853835i
\(277\) 0.730512 + 0.421761i 0.0438922 + 0.0253412i 0.521786 0.853077i \(-0.325266\pi\)
−0.477893 + 0.878418i \(0.658599\pi\)
\(278\) 5.62628 20.9976i 0.337442 1.25935i
\(279\) 13.3512 + 13.3512i 0.799316 + 0.799316i
\(280\) 0 0
\(281\) −6.80029 6.80029i −0.405671 0.405671i 0.474555 0.880226i \(-0.342609\pi\)
−0.880226 + 0.474555i \(0.842609\pi\)
\(282\) 6.50758 + 11.2715i 0.387521 + 0.671206i
\(283\) 9.91175 17.1677i 0.589192 1.02051i −0.405146 0.914252i \(-0.632779\pi\)
0.994338 0.106259i \(-0.0338873\pi\)
\(284\) −0.0909219 + 0.0243625i −0.00539522 + 0.00144565i
\(285\) −5.55491 9.62139i −0.329045 0.569922i
\(286\) 12.9821 + 4.99411i 0.767650 + 0.295308i
\(287\) 0 0
\(288\) −1.76270 + 1.76270i −0.103868 + 0.103868i
\(289\) 7.57502 + 13.1203i 0.445589 + 0.771784i
\(290\) −27.1924 + 47.0987i −1.59679 + 2.76573i
\(291\) −2.41478 9.01210i −0.141557 0.528299i
\(292\) −0.433523 + 1.61793i −0.0253700 + 0.0946822i
\(293\) −6.47711 + 6.47711i −0.378397 + 0.378397i −0.870524 0.492127i \(-0.836220\pi\)
0.492127 + 0.870524i \(0.336220\pi\)
\(294\) 0 0
\(295\) −1.01659 −0.0591879
\(296\) 11.1360 6.42936i 0.647266 0.373699i
\(297\) −3.10710 11.5959i −0.180292 0.672861i
\(298\) −28.0879 16.2165i −1.62709 0.939399i
\(299\) 5.72813 0.903015i 0.331266 0.0522227i
\(300\) 1.83332i 0.105847i
\(301\) 0 0
\(302\) −20.0656 −1.15464
\(303\) −0.160325 + 0.0925634i −0.00921040 + 0.00531763i
\(304\) −13.4799 + 3.61193i −0.773125 + 0.207158i
\(305\) −0.338490 1.26326i −0.0193819 0.0723342i
\(306\) 4.32092 + 1.15779i 0.247011 + 0.0661863i
\(307\) −17.9487 + 17.9487i −1.02438 + 1.02438i −0.0246898 + 0.999695i \(0.507860\pi\)
−0.999695 + 0.0246898i \(0.992140\pi\)
\(308\) 0 0
\(309\) 14.4668i 0.822985i
\(310\) 12.8220 47.8523i 0.728240 2.71783i
\(311\) 6.73937 11.6729i 0.382155 0.661912i −0.609215 0.793005i \(-0.708515\pi\)
0.991370 + 0.131093i \(0.0418488\pi\)
\(312\) 0.896260 8.46863i 0.0507407 0.479442i
\(313\) 5.61548 3.24210i 0.317406 0.183254i −0.332830 0.942987i \(-0.608003\pi\)
0.650236 + 0.759733i \(0.274670\pi\)
\(314\) −13.4869 13.4869i −0.761108 0.761108i
\(315\) 0 0
\(316\) 0.578994i 0.0325710i
\(317\) 30.2378 + 8.10220i 1.69833 + 0.455065i 0.972517 0.232832i \(-0.0747992\pi\)
0.725808 + 0.687897i \(0.241466\pi\)
\(318\) −3.83088 + 1.02648i −0.214825 + 0.0575623i
\(319\) −23.4849 + 6.29277i −1.31490 + 0.352327i
\(320\) −26.7219 7.16010i −1.49380 0.400262i
\(321\) 15.0887i 0.842171i
\(322\) 0 0
\(323\) 3.07902 + 3.07902i 0.171322 + 0.171322i
\(324\) −0.444054 + 0.256374i −0.0246696 + 0.0142430i
\(325\) 23.5618 + 29.1393i 1.30697 + 1.61636i
\(326\) −7.94348 + 13.7585i −0.439949 + 0.762013i
\(327\) −1.60530 + 5.99104i −0.0887730 + 0.331306i
\(328\) 8.10523i 0.447537i
\(329\) 0 0
\(330\) −9.46647 + 9.46647i −0.521112 + 0.521112i
\(331\) 12.0897 + 3.23943i 0.664512 + 0.178055i 0.575281 0.817956i \(-0.304893\pi\)
0.0892305 + 0.996011i \(0.471559\pi\)
\(332\) 0.280723 + 1.04767i 0.0154067 + 0.0574985i
\(333\) 10.3151 2.76392i 0.565264 0.151462i
\(334\) −11.0278 + 6.36691i −0.603415 + 0.348382i
\(335\) −4.12767 −0.225518
\(336\) 0 0
\(337\) 4.54349i 0.247500i −0.992313 0.123750i \(-0.960508\pi\)
0.992313 0.123750i \(-0.0394920\pi\)
\(338\) 10.4771 + 16.1844i 0.569880 + 0.880314i
\(339\) −3.50046 2.02099i −0.190119 0.109765i
\(340\) −0.275444 1.02797i −0.0149381 0.0557496i
\(341\) 19.1804 11.0738i 1.03868 0.599680i
\(342\) −10.5293 −0.569359
\(343\) 0 0
\(344\) 21.8078 21.8078i 1.17580 1.17580i
\(345\) −1.44453 + 5.39108i −0.0777711 + 0.290246i
\(346\) 1.36351 + 5.08869i 0.0733028 + 0.273570i
\(347\) 5.56642 9.64133i 0.298821 0.517574i −0.677045 0.735941i \(-0.736740\pi\)
0.975867 + 0.218368i \(0.0700732\pi\)
\(348\) −0.824356 1.42783i −0.0441901 0.0765395i
\(349\) 16.7058 16.7058i 0.894240 0.894240i −0.100679 0.994919i \(-0.532101\pi\)
0.994919 + 0.100679i \(0.0321014\pi\)
\(350\) 0 0
\(351\) 5.97430 15.5301i 0.318885 0.828937i
\(352\) 1.46202 + 2.53229i 0.0779259 + 0.134972i
\(353\) 5.91578 1.58513i 0.314865 0.0843678i −0.0979257 0.995194i \(-0.531221\pi\)
0.412791 + 0.910826i \(0.364554\pi\)
\(354\) 0.169942 0.294347i 0.00903229 0.0156444i
\(355\) −0.925909 1.60372i −0.0491421 0.0851167i
\(356\) 1.04265 + 1.04265i 0.0552603 + 0.0552603i
\(357\) 0 0
\(358\) 18.0668 + 18.0668i 0.954860 + 0.954860i
\(359\) 5.62963 21.0100i 0.297120 1.10887i −0.642399 0.766371i \(-0.722061\pi\)
0.939519 0.342497i \(-0.111273\pi\)
\(360\) −20.1214 11.6171i −1.06049 0.612274i
\(361\) 7.57833 + 4.37535i 0.398859 + 0.230282i
\(362\) −8.90835 2.38698i −0.468212 0.125457i
\(363\) 3.74435 0.196527
\(364\) 0 0
\(365\) −32.9526 −1.72482
\(366\) 0.422356 + 0.113170i 0.0220769 + 0.00591549i
\(367\) 14.0740 + 8.12564i 0.734658 + 0.424155i 0.820124 0.572186i \(-0.193905\pi\)
−0.0854660 + 0.996341i \(0.527238\pi\)
\(368\) 6.07153 + 3.50540i 0.316500 + 0.182731i
\(369\) −1.74218 + 6.50191i −0.0906944 + 0.338476i
\(370\) −19.8124 19.8124i −1.03000 1.03000i
\(371\) 0 0
\(372\) 1.06197 + 1.06197i 0.0550604 + 0.0550604i
\(373\) −2.10783 3.65087i −0.109139 0.189035i 0.806283 0.591531i \(-0.201476\pi\)
−0.915422 + 0.402496i \(0.868143\pi\)
\(374\) 2.62358 4.54417i 0.135662 0.234973i
\(375\) −18.0781 + 4.84402i −0.933551 + 0.250144i
\(376\) 13.2475 + 22.9454i 0.683188 + 1.18332i
\(377\) −31.4529 12.0997i −1.61991 0.623164i
\(378\) 0 0
\(379\) 18.1305 18.1305i 0.931303 0.931303i −0.0664849 0.997787i \(-0.521178\pi\)
0.997787 + 0.0664849i \(0.0211784\pi\)
\(380\) 1.25249 + 2.16937i 0.0642513 + 0.111287i
\(381\) −4.60494 + 7.97599i −0.235918 + 0.408623i
\(382\) 4.72407 + 17.6305i 0.241704 + 0.902053i
\(383\) −6.07450 + 22.6703i −0.310392 + 1.15840i 0.617811 + 0.786327i \(0.288020\pi\)
−0.928203 + 0.372073i \(0.878647\pi\)
\(384\) 7.94630 7.94630i 0.405508 0.405508i
\(385\) 0 0
\(386\) −31.8191 −1.61955
\(387\) 22.1815 12.8065i 1.12755 0.650989i
\(388\) 0.544471 + 2.03199i 0.0276413 + 0.103159i
\(389\) −16.8646 9.73676i −0.855067 0.493673i 0.00729024 0.999973i \(-0.497679\pi\)
−0.862357 + 0.506300i \(0.831013\pi\)
\(390\) −18.3297 + 2.88961i −0.928163 + 0.146321i
\(391\) 2.18752i 0.110628i
\(392\) 0 0
\(393\) −15.4712 −0.780417
\(394\) −2.58833 + 1.49437i −0.130398 + 0.0752855i
\(395\) 11.0025 2.94811i 0.553596 0.148336i
\(396\) 0.297764 + 1.11127i 0.0149632 + 0.0558435i
\(397\) 11.5515 + 3.09522i 0.579755 + 0.155345i 0.536767 0.843731i \(-0.319646\pi\)
0.0429883 + 0.999076i \(0.486312\pi\)
\(398\) −7.00124 + 7.00124i −0.350941 + 0.350941i
\(399\) 0 0
\(400\) 45.3051i 2.26525i
\(401\) −2.43214 + 9.07687i −0.121455 + 0.453277i −0.999689 0.0249551i \(-0.992056\pi\)
0.878233 + 0.478233i \(0.158722\pi\)
\(402\) 0.690017 1.19514i 0.0344149 0.0596084i
\(403\) 30.5276 + 3.23082i 1.52069 + 0.160939i
\(404\) 0.0361490 0.0208706i 0.00179848 0.00103835i
\(405\) −7.13285 7.13285i −0.354434 0.354434i
\(406\) 0 0
\(407\) 12.5262i 0.620903i
\(408\) −3.10302 0.831452i −0.153623 0.0411630i
\(409\) −18.6466 + 4.99635i −0.922017 + 0.247054i −0.688447 0.725286i \(-0.741707\pi\)
−0.233570 + 0.972340i \(0.575041\pi\)
\(410\) 17.0594 4.57106i 0.842505 0.225749i
\(411\) −17.1988 4.60840i −0.848354 0.227316i
\(412\) 3.26188i 0.160701i
\(413\) 0 0
\(414\) 3.74032 + 3.74032i 0.183827 + 0.183827i
\(415\) −18.4793 + 10.6690i −0.907114 + 0.523723i
\(416\) −0.426549 + 4.03040i −0.0209133 + 0.197607i
\(417\) −6.48239 + 11.2278i −0.317444 + 0.549829i
\(418\) −3.19659 + 11.9298i −0.156350 + 0.583507i
\(419\) 24.1967i 1.18208i −0.806641 0.591042i \(-0.798717\pi\)
0.806641 0.591042i \(-0.201283\pi\)
\(420\) 0 0
\(421\) −16.9872 + 16.9872i −0.827906 + 0.827906i −0.987227 0.159321i \(-0.949070\pi\)
0.159321 + 0.987227i \(0.449070\pi\)
\(422\) −27.2028 7.28898i −1.32421 0.354822i
\(423\) 5.69498 + 21.2540i 0.276899 + 1.03340i
\(424\) −7.79855 + 2.08961i −0.378731 + 0.101481i
\(425\) 12.2423 7.06809i 0.593838 0.342853i
\(426\) 0.619132 0.0299971
\(427\) 0 0
\(428\) 3.40212i 0.164448i
\(429\) −6.70787 4.88094i −0.323859 0.235654i
\(430\) −58.1987 33.6010i −2.80659 1.62039i
\(431\) −7.10522 26.5171i −0.342247 1.27728i −0.895796 0.444465i \(-0.853394\pi\)
0.553549 0.832816i \(-0.313273\pi\)
\(432\) 17.4220 10.0586i 0.838216 0.483945i
\(433\) 26.0271 1.25078 0.625391 0.780312i \(-0.284940\pi\)
0.625391 + 0.780312i \(0.284940\pi\)
\(434\) 0 0
\(435\) 22.9352 22.9352i 1.09966 1.09966i
\(436\) 0.361952 1.35082i 0.0173344 0.0646928i
\(437\) 1.33265 + 4.97350i 0.0637491 + 0.237915i
\(438\) 5.50864 9.54125i 0.263213 0.455899i
\(439\) 1.85272 + 3.20901i 0.0884257 + 0.153158i 0.906846 0.421463i \(-0.138483\pi\)
−0.818420 + 0.574620i \(0.805150\pi\)
\(440\) −19.2709 + 19.2709i −0.918706 + 0.918706i
\(441\) 0 0
\(442\) 6.64626 2.95337i 0.316130 0.140477i
\(443\) −1.34404 2.32795i −0.0638573 0.110604i 0.832329 0.554282i \(-0.187007\pi\)
−0.896187 + 0.443678i \(0.853674\pi\)
\(444\) 0.820472 0.219845i 0.0389379 0.0104334i
\(445\) −14.5043 + 25.1222i −0.687570 + 1.19091i
\(446\) −2.14419 3.71384i −0.101530 0.175855i
\(447\) 13.6777 + 13.6777i 0.646934 + 0.646934i
\(448\) 0 0
\(449\) 24.6366 + 24.6366i 1.16267 + 1.16267i 0.983888 + 0.178784i \(0.0572164\pi\)
0.178784 + 0.983888i \(0.442784\pi\)
\(450\) −8.84706 + 33.0177i −0.417054 + 1.55647i
\(451\) 6.83784 + 3.94783i 0.321981 + 0.185896i
\(452\) 0.789262 + 0.455681i 0.0371238 + 0.0214334i
\(453\) 11.5594 + 3.09733i 0.543108 + 0.145525i
\(454\) −9.73430 −0.456854
\(455\) 0 0
\(456\) 7.56149 0.354099
\(457\) −6.58491 1.76442i −0.308029 0.0825361i 0.101493 0.994836i \(-0.467638\pi\)
−0.409522 + 0.912300i \(0.634305\pi\)
\(458\) 1.83179 + 1.05758i 0.0855939 + 0.0494177i
\(459\) −5.43605 3.13850i −0.253733 0.146493i
\(460\) 0.325705 1.21555i 0.0151861 0.0566752i
\(461\) −5.06375 5.06375i −0.235842 0.235842i 0.579284 0.815126i \(-0.303332\pi\)
−0.815126 + 0.579284i \(0.803332\pi\)
\(462\) 0 0
\(463\) −14.8196 14.8196i −0.688725 0.688725i 0.273226 0.961950i \(-0.411909\pi\)
−0.961950 + 0.273226i \(0.911909\pi\)
\(464\) −20.3715 35.2845i −0.945724 1.63804i
\(465\) −14.7730 + 25.5876i −0.685082 + 1.18660i
\(466\) −12.1681 + 3.26043i −0.563676 + 0.151036i
\(467\) 0.228257 + 0.395352i 0.0105625 + 0.0182947i 0.871258 0.490825i \(-0.163304\pi\)
−0.860696 + 0.509119i \(0.829971\pi\)
\(468\) −0.572537 + 1.48830i −0.0264655 + 0.0687969i
\(469\) 0 0
\(470\) 40.8229 40.8229i 1.88302 1.88302i
\(471\) 5.68769 + 9.85137i 0.262075 + 0.453927i
\(472\) 0.345951 0.599204i 0.0159237 0.0275806i
\(473\) −7.77583 29.0198i −0.357533 1.33433i
\(474\) −0.985664 + 3.67855i −0.0452731 + 0.168961i
\(475\) −23.5279 + 23.5279i −1.07953 + 1.07953i
\(476\) 0 0
\(477\) −6.70504 −0.307003
\(478\) −8.44260 + 4.87434i −0.386155 + 0.222947i
\(479\) −8.50540 31.7426i −0.388622 1.45036i −0.832378 0.554209i \(-0.813021\pi\)
0.443756 0.896148i \(-0.353646\pi\)
\(480\) −3.37821 1.95041i −0.154193 0.0890236i
\(481\) 10.2154 14.0390i 0.465780 0.640121i
\(482\) 15.9943i 0.728519i
\(483\) 0 0
\(484\) −0.844253 −0.0383751
\(485\) −35.8412 + 20.6929i −1.62747 + 0.939617i
\(486\) 23.0908 6.18717i 1.04742 0.280656i
\(487\) 2.99178 + 11.1655i 0.135571 + 0.505956i 0.999995 + 0.00319321i \(0.00101643\pi\)
−0.864424 + 0.502763i \(0.832317\pi\)
\(488\) 0.859792 + 0.230381i 0.0389210 + 0.0104288i
\(489\) 6.69986 6.69986i 0.302978 0.302978i
\(490\) 0 0
\(491\) 0.946627i 0.0427207i −0.999772 0.0213603i \(-0.993200\pi\)
0.999772 0.0213603i \(-0.00679973\pi\)
\(492\) −0.138575 + 0.517167i −0.00624743 + 0.0233157i
\(493\) −6.35636 + 11.0095i −0.286276 + 0.495845i
\(494\) −13.3116 + 10.7636i −0.598917 + 0.484279i
\(495\) −19.6011 + 11.3167i −0.881004 + 0.508648i
\(496\) 26.2434 + 26.2434i 1.17836 + 1.17836i
\(497\) 0 0
\(498\) 7.13412i 0.319688i
\(499\) −21.2427 5.69198i −0.950956 0.254808i −0.250188 0.968197i \(-0.580492\pi\)
−0.700768 + 0.713389i \(0.747159\pi\)
\(500\) 4.07615 1.09220i 0.182291 0.0488447i
\(501\) 7.33572 1.96560i 0.327736 0.0878165i
\(502\) −40.1855 10.7677i −1.79357 0.480585i
\(503\) 1.12263i 0.0500556i 0.999687 + 0.0250278i \(0.00796742\pi\)
−0.999687 + 0.0250278i \(0.992033\pi\)
\(504\) 0 0
\(505\) 0.580663 + 0.580663i 0.0258392 + 0.0258392i
\(506\) 5.37335 3.10230i 0.238875 0.137914i
\(507\) −3.53744 10.9408i −0.157103 0.485897i
\(508\) 1.03829 1.79838i 0.0460669 0.0797902i
\(509\) −4.97409 + 18.5635i −0.220473 + 0.822815i 0.763695 + 0.645577i \(0.223383\pi\)
−0.984168 + 0.177238i \(0.943284\pi\)
\(510\) 6.99997i 0.309964i
\(511\) 0 0
\(512\) 12.9970 12.9970i 0.574390 0.574390i
\(513\) 14.2713 + 3.82398i 0.630092 + 0.168833i
\(514\) −5.42008 20.2280i −0.239069 0.892219i
\(515\) 61.9848 16.6088i 2.73137 0.731870i
\(516\) 1.76433 1.01864i 0.0776703 0.0448430i
\(517\) 25.8099 1.13512
\(518\) 0 0
\(519\) 3.14197i 0.137917i
\(520\) −37.3139 + 5.88238i −1.63632 + 0.257960i
\(521\) 19.3198 + 11.1543i 0.846416 + 0.488678i 0.859440 0.511237i \(-0.170813\pi\)
−0.0130243 + 0.999915i \(0.504146\pi\)
\(522\) −7.95620 29.6930i −0.348234 1.29963i
\(523\) 15.3793 8.87924i 0.672489 0.388262i −0.124530 0.992216i \(-0.539742\pi\)
0.797019 + 0.603954i \(0.206409\pi\)
\(524\) 3.48835 0.152389
\(525\) 0 0
\(526\) −23.4095 + 23.4095i −1.02070 + 1.02070i
\(527\) 2.99720 11.1857i 0.130560 0.487257i
\(528\) −2.59582 9.68774i −0.112969 0.421605i
\(529\) −10.2067 + 17.6785i −0.443768 + 0.768628i
\(530\) 8.79620 + 15.2355i 0.382082 + 0.661786i
\(531\) 0.406313 0.406313i 0.0176325 0.0176325i
\(532\) 0 0
\(533\) 4.44408 + 10.0010i 0.192494 + 0.433190i
\(534\) −4.84933 8.39929i −0.209851 0.363473i
\(535\) 64.6497 17.3228i 2.79505 0.748931i
\(536\) 1.40467 2.43296i 0.0606725 0.105088i
\(537\) −7.61914 13.1967i −0.328790 0.569482i
\(538\) −12.4059 12.4059i −0.534854 0.534854i
\(539\) 0 0
\(540\) −2.55337 2.55337i −0.109879 0.109879i
\(541\) 3.43267 12.8109i 0.147582 0.550783i −0.852045 0.523468i \(-0.824638\pi\)
0.999627 0.0273145i \(-0.00869555\pi\)
\(542\) −6.34848 3.66530i −0.272691 0.157438i
\(543\) 4.76348 + 2.75019i 0.204420 + 0.118022i
\(544\) 1.47680 + 0.395706i 0.0633171 + 0.0169658i
\(545\) 27.5124 1.17850
\(546\) 0 0
\(547\) −14.0683 −0.601515 −0.300757 0.953701i \(-0.597239\pi\)
−0.300757 + 0.953701i \(0.597239\pi\)
\(548\) 3.87788 + 1.03908i 0.165655 + 0.0443871i
\(549\) 0.640195 + 0.369617i 0.0273229 + 0.0157749i
\(550\) 34.7236 + 20.0477i 1.48062 + 0.854835i
\(551\) 7.74464 28.9034i 0.329933 1.23133i
\(552\) −2.68607 2.68607i −0.114327 0.114327i
\(553\) 0 0
\(554\) 0.884579 + 0.884579i 0.0375822 + 0.0375822i
\(555\) 8.35532 + 14.4718i 0.354664 + 0.614295i
\(556\) 1.46161 2.53158i 0.0619861 0.107363i
\(557\) 16.4161 4.39869i 0.695574 0.186379i 0.106327 0.994331i \(-0.466091\pi\)
0.589247 + 0.807953i \(0.299424\pi\)
\(558\) 14.0011 + 24.2505i 0.592712 + 1.02661i
\(559\) 14.9513 38.8656i 0.632371 1.64384i
\(560\) 0 0
\(561\) −2.21283 + 2.21283i −0.0934260 + 0.0934260i
\(562\) −7.13128 12.3517i −0.300815 0.521026i
\(563\) −8.62337 + 14.9361i −0.363432 + 0.629482i −0.988523 0.151069i \(-0.951728\pi\)
0.625091 + 0.780552i \(0.285062\pi\)
\(564\) 0.452983 + 1.69056i 0.0190740 + 0.0711853i
\(565\) −4.64045 + 17.3184i −0.195225 + 0.728590i
\(566\) 20.7884 20.7884i 0.873800 0.873800i
\(567\) 0 0
\(568\) 1.26037 0.0528840
\(569\) −13.5496 + 7.82285i −0.568028 + 0.327951i −0.756361 0.654154i \(-0.773025\pi\)
0.188333 + 0.982105i \(0.439691\pi\)
\(570\) −4.26441 15.9150i −0.178616 0.666605i
\(571\) 10.5267 + 6.07757i 0.440527 + 0.254338i 0.703821 0.710377i \(-0.251476\pi\)
−0.263294 + 0.964716i \(0.584809\pi\)
\(572\) 1.51245 + 1.10053i 0.0632387 + 0.0460153i
\(573\) 10.8858i 0.454760i
\(574\) 0 0
\(575\) 16.7156 0.697089
\(576\) 13.5421 7.81853i 0.564253 0.325772i
\(577\) −37.7804 + 10.1232i −1.57282 + 0.421435i −0.936693 0.350151i \(-0.886130\pi\)
−0.636125 + 0.771586i \(0.719464\pi\)
\(578\) 5.81521 + 21.7026i 0.241881 + 0.902711i
\(579\) 18.3304 + 4.91161i 0.761785 + 0.204120i
\(580\) −5.17130 + 5.17130i −0.214726 + 0.214726i
\(581\) 0 0
\(582\) 13.8369i 0.573556i
\(583\) −2.03558 + 7.59690i −0.0843053 + 0.314632i
\(584\) 11.2140 19.4232i 0.464037 0.803736i
\(585\) −31.1971 3.30168i −1.28984 0.136508i
\(586\) −11.7647 + 6.79237i −0.485996 + 0.280590i
\(587\) 6.17868 + 6.17868i 0.255021 + 0.255021i 0.823026 0.568004i \(-0.192284\pi\)
−0.568004 + 0.823026i \(0.692284\pi\)
\(588\) 0 0
\(589\) 27.2575i 1.12313i
\(590\) −1.45627 0.390207i −0.0599538 0.0160646i
\(591\) 1.72176 0.461345i 0.0708239 0.0189772i
\(592\) 20.2755 5.43281i 0.833320 0.223287i
\(593\) 32.6629 + 8.75200i 1.34130 + 0.359402i 0.856918 0.515453i \(-0.172376\pi\)
0.484387 + 0.874854i \(0.339043\pi\)
\(594\) 17.8039i 0.730502i
\(595\) 0 0
\(596\) −3.08397 3.08397i −0.126324 0.126324i
\(597\) 5.11400 2.95257i 0.209302 0.120841i
\(598\) 8.55224 + 0.905108i 0.349727 + 0.0370126i
\(599\) −5.13357 + 8.89161i −0.209752 + 0.363301i −0.951636 0.307227i \(-0.900599\pi\)
0.741884 + 0.670528i \(0.233932\pi\)
\(600\) 6.35342 23.7113i 0.259377 0.968009i
\(601\) 4.09959i 0.167226i −0.996498 0.0836128i \(-0.973354\pi\)
0.996498 0.0836128i \(-0.0266459\pi\)
\(602\) 0 0
\(603\) 1.64976 1.64976i 0.0671835 0.0671835i
\(604\) −2.60634 0.698368i −0.106051 0.0284162i
\(605\) −4.29875 16.0432i −0.174769 0.652247i
\(606\) −0.265197 + 0.0710593i −0.0107729 + 0.00288658i
\(607\) −6.28556 + 3.62897i −0.255123 + 0.147295i −0.622108 0.782932i \(-0.713723\pi\)
0.366985 + 0.930227i \(0.380390\pi\)
\(608\) −3.59867 −0.145946
\(609\) 0 0
\(610\) 1.93957i 0.0785308i
\(611\) 28.9268 + 21.0484i 1.17025 + 0.851529i
\(612\) 0.520955 + 0.300773i 0.0210583 + 0.0121580i
\(613\) 5.57436 + 20.8038i 0.225146 + 0.840257i 0.982346 + 0.187073i \(0.0599002\pi\)
−0.757200 + 0.653183i \(0.773433\pi\)
\(614\) −32.6012 + 18.8223i −1.31568 + 0.759606i
\(615\) −10.5332 −0.424740
\(616\) 0 0
\(617\) −28.5301 + 28.5301i −1.14858 + 1.14858i −0.161748 + 0.986832i \(0.551713\pi\)
−0.986832 + 0.161748i \(0.948287\pi\)
\(618\) −5.55294 + 20.7238i −0.223372 + 0.833635i
\(619\) 8.91786 + 33.2819i 0.358439 + 1.33771i 0.876101 + 0.482128i \(0.160136\pi\)
−0.517662 + 0.855585i \(0.673197\pi\)
\(620\) 3.33093 5.76934i 0.133773 0.231702i
\(621\) −3.71119 6.42797i −0.148925 0.257946i
\(622\) 14.1348 14.1348i 0.566754 0.566754i
\(623\) 0 0
\(624\) 4.99121 12.9746i 0.199808 0.519400i
\(625\) 15.5266 + 26.8929i 0.621065 + 1.07572i
\(626\) 9.28871 2.48890i 0.371252 0.0994766i
\(627\) 3.68299 6.37912i 0.147084 0.254758i
\(628\) −1.28243 2.22123i −0.0511744 0.0886366i
\(629\) −4.63126 4.63126i −0.184660 0.184660i
\(630\) 0 0
\(631\) −26.1762 26.1762i −1.04206 1.04206i −0.999076 0.0429839i \(-0.986314\pi\)
−0.0429839 0.999076i \(-0.513686\pi\)
\(632\) −2.00652 + 7.48844i −0.0798151 + 0.297874i
\(633\) 14.5459 + 8.39809i 0.578148 + 0.333794i
\(634\) 40.2062 + 23.2130i 1.59679 + 0.921907i
\(635\) 39.4610 + 10.5735i 1.56596 + 0.419598i
\(636\) −0.533325 −0.0211477
\(637\) 0 0
\(638\) −36.0579 −1.42755
\(639\) 1.01105 + 0.270911i 0.0399966 + 0.0107171i
\(640\) −43.1698 24.9241i −1.70644 0.985212i
\(641\) 10.1134 + 5.83896i 0.399454 + 0.230625i 0.686248 0.727367i \(-0.259256\pi\)
−0.286794 + 0.957992i \(0.592590\pi\)
\(642\) −5.79167 + 21.6148i −0.228579 + 0.853069i
\(643\) 12.8214 + 12.8214i 0.505627 + 0.505627i 0.913181 0.407554i \(-0.133618\pi\)
−0.407554 + 0.913181i \(0.633618\pi\)
\(644\) 0 0
\(645\) 28.3405 + 28.3405i 1.11591 + 1.11591i
\(646\) 3.22889 + 5.59260i 0.127039 + 0.220038i
\(647\) 5.73484 9.93304i 0.225460 0.390508i −0.730997 0.682380i \(-0.760945\pi\)
0.956457 + 0.291872i \(0.0942782\pi\)
\(648\) 6.63165 1.77695i 0.260516 0.0698050i
\(649\) −0.337005 0.583711i −0.0132286 0.0229126i
\(650\) 22.5677 + 50.7864i 0.885178 + 1.99200i
\(651\) 0 0
\(652\) −1.51064 + 1.51064i −0.0591614 + 0.0591614i
\(653\) 4.47691 + 7.75423i 0.175195 + 0.303446i 0.940229 0.340544i \(-0.110611\pi\)
−0.765034 + 0.643990i \(0.777278\pi\)
\(654\) −4.59922 + 7.96608i −0.179844 + 0.311498i
\(655\) 17.7619 + 66.2883i 0.694014 + 2.59010i
\(656\) −3.42446 + 12.7803i −0.133703 + 0.498986i
\(657\) 13.1706 13.1706i 0.513835 0.513835i
\(658\) 0 0
\(659\) 22.2313 0.866009 0.433005 0.901392i \(-0.357453\pi\)
0.433005 + 0.901392i \(0.357453\pi\)
\(660\) −1.55909 + 0.900139i −0.0606874 + 0.0350379i
\(661\) 0.636436 + 2.37521i 0.0247545 + 0.0923850i 0.977198 0.212330i \(-0.0681053\pi\)
−0.952443 + 0.304715i \(0.901439\pi\)
\(662\) 16.0753 + 9.28107i 0.624784 + 0.360719i
\(663\) −4.28467 + 0.675460i −0.166403 + 0.0262327i
\(664\) 14.5230i 0.563600i
\(665\) 0 0
\(666\) 15.8374 0.613688
\(667\) −13.0185 + 7.51622i −0.504077 + 0.291029i
\(668\) −1.65401 + 0.443192i −0.0639957 + 0.0171476i
\(669\) 0.661955 + 2.47045i 0.0255927 + 0.0955132i
\(670\) −5.91294 1.58437i −0.228437 0.0612094i
\(671\) 0.613137 0.613137i 0.0236699 0.0236699i
\(672\) 0 0
\(673\) 6.44000i 0.248244i −0.992267 0.124122i \(-0.960389\pi\)
0.992267 0.124122i \(-0.0396114\pi\)
\(674\) 1.74398 6.50861i 0.0671755 0.250702i
\(675\) 23.9824 41.5387i 0.923083 1.59883i
\(676\) 0.797602 + 2.46686i 0.0306770 + 0.0948792i
\(677\) 4.00871 2.31443i 0.154067 0.0889507i −0.420984 0.907068i \(-0.638315\pi\)
0.575052 + 0.818117i \(0.304982\pi\)
\(678\) −4.23871 4.23871i −0.162787 0.162787i
\(679\) 0 0
\(680\) 14.2499i 0.546458i
\(681\) 5.60775 + 1.50259i 0.214889 + 0.0575795i
\(682\) 31.7268 8.50116i 1.21488 0.325526i
\(683\) −17.5171 + 4.69368i −0.670272 + 0.179599i −0.577877 0.816124i \(-0.696119\pi\)
−0.0923945 + 0.995722i \(0.529452\pi\)
\(684\) −1.36766 0.366464i −0.0522939 0.0140121i
\(685\) 78.9813i 3.01772i
\(686\) 0 0
\(687\) −0.892011 0.892011i −0.0340323 0.0340323i
\(688\) 43.6002 25.1726i 1.66224 0.959697i
\(689\) −8.47681 + 6.85428i −0.322941 + 0.261127i
\(690\) −4.13863 + 7.16832i −0.157555 + 0.272893i
\(691\) 0.159887 0.596708i 0.00608240 0.0226998i −0.962818 0.270151i \(-0.912926\pi\)
0.968900 + 0.247451i \(0.0795930\pi\)
\(692\) 0.708433i 0.0269306i
\(693\) 0 0
\(694\) 11.6747 11.6747i 0.443166 0.443166i
\(695\) 55.5493 + 14.8844i 2.10711 + 0.564597i
\(696\) 5.71366 + 21.3237i 0.216576 + 0.808271i
\(697\) 3.98773 1.06851i 0.151046 0.0404726i
\(698\) 30.3436 17.5189i 1.14852 0.663101i
\(699\) 7.51309 0.284171
\(700\) 0 0
\(701\) 14.4452i 0.545586i −0.962073 0.272793i \(-0.912053\pi\)
0.962073 0.272793i \(-0.0879474\pi\)
\(702\) 14.5194 19.9539i 0.547998 0.753113i
\(703\) 13.3509 + 7.70815i 0.503539 + 0.290718i
\(704\) −4.74725 17.7170i −0.178919 0.667734i
\(705\) −29.8188 + 17.2159i −1.12304 + 0.648388i
\(706\) 9.08287 0.341838
\(707\) 0 0
\(708\) 0.0323185 0.0323185i 0.00121460 0.00121460i
\(709\) 0.851819 3.17903i 0.0319907 0.119391i −0.948084 0.318020i \(-0.896982\pi\)
0.980075 + 0.198629i \(0.0636488\pi\)
\(710\) −0.710803 2.65275i −0.0266760 0.0995561i
\(711\) −3.21921 + 5.57583i −0.120730 + 0.209110i
\(712\) −9.87181 17.0985i −0.369962 0.640792i
\(713\) 9.68268 9.68268i 0.362619 0.362619i
\(714\) 0 0
\(715\) −13.2120 + 34.3444i −0.494100 + 1.28441i
\(716\) 1.71792 + 2.97552i 0.0642016 + 0.111201i
\(717\) 5.61603 1.50481i 0.209734 0.0561982i
\(718\) 16.1290 27.9363i 0.601930 1.04257i
\(719\) −24.6176 42.6390i −0.918083 1.59017i −0.802323 0.596890i \(-0.796403\pi\)
−0.115760 0.993277i \(-0.536930\pi\)
\(720\) −26.8190 26.8190i −0.999485 0.999485i
\(721\) 0 0
\(722\) 9.17662 + 9.17662i 0.341518 + 0.341518i
\(723\) 2.46889 9.21401i 0.0918188 0.342673i
\(724\) −1.07404 0.620097i −0.0399164 0.0230457i
\(725\) −84.1277 48.5712i −3.12443 1.80389i
\(726\) 5.36383 + 1.43723i 0.199070 + 0.0533408i
\(727\) −34.0096 −1.26135 −0.630674 0.776048i \(-0.717221\pi\)
−0.630674 + 0.776048i \(0.717221\pi\)
\(728\) 0 0
\(729\) −6.54406 −0.242372
\(730\) −47.2050 12.6485i −1.74714 0.468144i
\(731\) −13.6042 7.85441i −0.503171 0.290506i
\(732\) 0.0509216 + 0.0293996i 0.00188212 + 0.00108664i
\(733\) 9.70406 36.2160i 0.358428 1.33767i −0.517688 0.855569i \(-0.673207\pi\)
0.876116 0.482101i \(-0.160126\pi\)
\(734\) 17.0423 + 17.0423i 0.629042 + 0.629042i
\(735\) 0 0
\(736\) 1.27836 + 1.27836i 0.0471208 + 0.0471208i
\(737\) −1.36835 2.37005i −0.0504038 0.0873020i
\(738\) −4.99140 + 8.64536i −0.183736 + 0.318240i
\(739\) −4.13697 + 1.10850i −0.152181 + 0.0407767i −0.334105 0.942536i \(-0.608434\pi\)
0.181924 + 0.983313i \(0.441767\pi\)
\(740\) −1.88391 3.26302i −0.0692538 0.119951i
\(741\) 9.33004 4.14595i 0.342748 0.152305i
\(742\) 0 0
\(743\) −25.3436 + 25.3436i −0.929767 + 0.929767i −0.997691 0.0679234i \(-0.978363\pi\)
0.0679234 + 0.997691i \(0.478363\pi\)
\(744\) −10.0547 17.4153i −0.368623 0.638474i
\(745\) 42.9011 74.3069i 1.57177 2.72239i
\(746\) −1.61814 6.03899i −0.0592444 0.221103i
\(747\) 3.12164 11.6501i 0.114215 0.426256i
\(748\) 0.498937 0.498937i 0.0182429 0.0182429i
\(749\) 0 0
\(750\) −27.7565 −1.01352
\(751\) −39.9450 + 23.0623i −1.45761 + 0.841554i −0.998894 0.0470273i \(-0.985025\pi\)
−0.458720 + 0.888581i \(0.651692\pi\)
\(752\) 11.1941 + 41.7771i 0.408209 + 1.52346i
\(753\) 21.4880 + 12.4061i 0.783067 + 0.452104i
\(754\) −40.4124 29.4058i −1.47173 1.07090i
\(755\) 53.0837i 1.93191i
\(756\) 0 0
\(757\) −38.5756 −1.40205 −0.701027 0.713135i \(-0.747275\pi\)
−0.701027 + 0.713135i \(0.747275\pi\)
\(758\) 32.9315 19.0130i 1.19612 0.690583i
\(759\) −3.57436 + 0.957747i −0.129741 + 0.0347640i
\(760\) −8.68107 32.3982i −0.314896 1.17521i
\(761\) −9.60394 2.57337i −0.348142 0.0932845i 0.0805104 0.996754i \(-0.474345\pi\)
−0.428653 + 0.903469i \(0.641012\pi\)
\(762\) −9.65816 + 9.65816i −0.349878 + 0.349878i
\(763\) 0 0
\(764\) 2.45446i 0.0887993i
\(765\) −3.06294 + 11.4311i −0.110741 + 0.413291i
\(766\) −17.4036 + 30.1439i −0.628818 + 1.08914i
\(767\) 0.0983225 0.929035i 0.00355022 0.0335455i
\(768\) 3.63106 2.09640i 0.131025 0.0756472i
\(769\) 28.4649 + 28.4649i 1.02647 + 1.02647i 0.999640 + 0.0268295i \(0.00854111\pi\)
0.0268295 + 0.999640i \(0.491459\pi\)
\(770\) 0 0
\(771\) 12.4896i 0.449803i
\(772\) −4.13302 1.10744i −0.148751 0.0398577i
\(773\) 24.6946 6.61690i 0.888203 0.237993i 0.214260 0.976777i \(-0.431266\pi\)
0.673943 + 0.738783i \(0.264599\pi\)
\(774\) 36.6909 9.83129i 1.31883 0.353379i
\(775\) 85.4739 + 22.9027i 3.07031 + 0.822688i
\(776\) 28.1677i 1.01116i
\(777\) 0 0
\(778\) −20.4214 20.4214i −0.732141 0.732141i
\(779\) −8.41547 + 4.85867i −0.301515 + 0.174080i
\(780\) −2.48145 0.262619i −0.0888500 0.00940326i
\(781\) 0.613891 1.06329i 0.0219667 0.0380475i
\(782\) 0.839661 3.13366i 0.0300262 0.112059i
\(783\) 43.1350i 1.54152i
\(784\) 0 0
\(785\) 35.6797 35.6797i 1.27346 1.27346i
\(786\) −22.1627 5.93847i −0.790516 0.211818i
\(787\) 4.69577 + 17.5248i 0.167386 + 0.624693i 0.997724 + 0.0674326i \(0.0214808\pi\)
−0.830338 + 0.557260i \(0.811853\pi\)
\(788\) −0.388213 + 0.104021i −0.0138295 + 0.00370561i
\(789\) 17.0993 9.87229i 0.608751 0.351463i
\(790\) 16.8928 0.601020
\(791\) 0 0
\(792\) 15.4046i 0.547378i
\(793\) 1.18721 0.187158i 0.0421589 0.00664617i
\(794\) 15.3597 + 8.86791i 0.545094 + 0.314710i
\(795\) −2.71557 10.1347i −0.0963114 0.359439i
\(796\) −1.15307 + 0.665728i −0.0408696 + 0.0235961i
\(797\) 6.98547 0.247438 0.123719 0.992317i \(-0.460518\pi\)
0.123719 + 0.992317i \(0.460518\pi\)
\(798\) 0 0
\(799\) 9.54256 9.54256i 0.337592 0.337592i
\(800\) −3.02373 + 11.2847i −0.106905 + 0.398975i
\(801\) −4.24380 15.8381i −0.149947 0.559611i
\(802\) −6.96815 + 12.0692i −0.246054 + 0.426178i
\(803\) −10.9240 18.9209i −0.385500 0.667706i
\(804\) 0.131223 0.131223i 0.00462789 0.00462789i
\(805\) 0 0
\(806\) 42.4910 + 16.3459i 1.49668 + 0.575761i
\(807\) 5.23181 + 9.06176i 0.184168 + 0.318989i
\(808\) −0.539862 + 0.144656i −0.0189923 + 0.00508897i
\(809\) −1.00660 + 1.74348i −0.0353902 + 0.0612976i −0.883178 0.469038i \(-0.844601\pi\)
0.847788 + 0.530336i \(0.177934\pi\)
\(810\) −7.48003 12.9558i −0.262821 0.455220i
\(811\) −19.2255 19.2255i −0.675097 0.675097i 0.283790 0.958887i \(-0.408408\pi\)
−0.958887 + 0.283790i \(0.908408\pi\)
\(812\) 0 0
\(813\) 3.09147 + 3.09147i 0.108422 + 0.108422i
\(814\) 4.80809 17.9440i 0.168523 0.628938i
\(815\) −36.3983 21.0146i −1.27498 0.736109i
\(816\) −4.54153 2.62206i −0.158985 0.0917903i
\(817\) 35.7152 + 9.56987i 1.24952 + 0.334807i
\(818\) −28.6294 −1.00100
\(819\) 0 0
\(820\) 2.37497 0.0829374
\(821\) −9.31280 2.49536i −0.325019 0.0870885i 0.0926203 0.995702i \(-0.470476\pi\)
−0.417639 + 0.908613i \(0.637142\pi\)
\(822\) −22.8686 13.2032i −0.797635 0.460515i
\(823\) −15.6607 9.04171i −0.545898 0.315174i 0.201568 0.979475i \(-0.435396\pi\)
−0.747466 + 0.664300i \(0.768730\pi\)
\(824\) −11.3041 + 42.1876i −0.393798 + 1.46967i
\(825\) −16.9090 16.9090i −0.588697 0.588697i
\(826\) 0 0
\(827\) 12.8291 + 12.8291i 0.446111 + 0.446111i 0.894059 0.447949i \(-0.147845\pi\)
−0.447949 + 0.894059i \(0.647845\pi\)
\(828\) 0.355656 + 0.616014i 0.0123599 + 0.0214080i
\(829\) −14.1033 + 24.4277i −0.489829 + 0.848409i −0.999931 0.0117047i \(-0.996274\pi\)
0.510102 + 0.860114i \(0.329608\pi\)
\(830\) −30.5671 + 8.19043i −1.06100 + 0.284294i
\(831\) −0.373046 0.646134i −0.0129408 0.0224141i
\(832\) 9.12795 23.7280i 0.316455 0.822621i
\(833\) 0 0
\(834\) −13.5958 + 13.5958i −0.470785 + 0.470785i
\(835\) −16.8438 29.1742i −0.582902 1.00962i
\(836\) −0.830418 + 1.43833i −0.0287206 + 0.0497455i
\(837\) −10.1697 37.9537i −0.351515 1.31187i
\(838\) 9.28767 34.6620i 0.320837 1.19738i
\(839\) −7.67294 + 7.67294i −0.264899 + 0.264899i −0.827041 0.562142i \(-0.809978\pi\)
0.562142 + 0.827041i \(0.309978\pi\)
\(840\) 0 0
\(841\) 58.3606 2.01243
\(842\) −30.8548 + 17.8140i −1.06333 + 0.613912i
\(843\) 2.20158 + 8.21639i 0.0758263 + 0.282988i
\(844\) −3.27973 1.89355i −0.112893 0.0651787i
\(845\) −42.8160 + 27.7174i −1.47291 + 0.953506i
\(846\) 32.6326i 1.12193i
\(847\) 0 0
\(848\) −13.1796 −0.452588
\(849\) −15.1847 + 8.76689i −0.521137 + 0.300879i
\(850\) 20.2503 5.42604i 0.694579 0.186112i
\(851\) −2.00448 7.48080i −0.0687125 0.256439i
\(852\) 0.0804200 + 0.0215485i 0.00275514 + 0.000738238i
\(853\) −10.4908 + 10.4908i −0.359198 + 0.359198i −0.863517 0.504319i \(-0.831744\pi\)
0.504319 + 0.863517i \(0.331744\pi\)
\(854\) 0 0
\(855\) 27.8554i 0.952634i
\(856\) −11.7901 + 44.0014i −0.402979 + 1.50394i
\(857\) −8.61727 + 14.9255i −0.294360 + 0.509847i −0.974836 0.222924i \(-0.928440\pi\)
0.680476 + 0.732771i \(0.261773\pi\)
\(858\) −7.73561 9.56678i −0.264090 0.326604i
\(859\) −32.5438 + 18.7892i −1.11038 + 0.641079i −0.938928 0.344113i \(-0.888180\pi\)
−0.171453 + 0.985192i \(0.554846\pi\)
\(860\) −6.39005 6.39005i −0.217899 0.217899i
\(861\) 0 0
\(862\) 40.7133i 1.38670i
\(863\) −1.19297 0.319657i −0.0406093 0.0108812i 0.238457 0.971153i \(-0.423358\pi\)
−0.279067 + 0.960272i \(0.590025\pi\)
\(864\) 5.01085 1.34265i 0.170472 0.0456779i
\(865\) −13.4622 + 3.60719i −0.457729 + 0.122648i
\(866\) 37.2842 + 9.99026i 1.26697 + 0.339483i
\(867\) 13.4001i 0.455092i
\(868\) 0 0
\(869\) 5.34017 + 5.34017i 0.181153 + 0.181153i
\(870\) 41.6585 24.0515i 1.41236 0.815424i
\(871\) 0.399221 3.77218i 0.0135271 0.127815i
\(872\) −9.36265 + 16.2166i −0.317059 + 0.549163i
\(873\) 6.05452 22.5958i 0.204915 0.764752i
\(874\) 7.63614i 0.258296i
\(875\) 0 0
\(876\) 1.04760 1.04760i 0.0353952 0.0353952i
\(877\) 45.7327 + 12.2540i 1.54428 + 0.413789i 0.927646 0.373460i \(-0.121829\pi\)
0.616636 + 0.787249i \(0.288495\pi\)
\(878\) 1.42230 + 5.30810i 0.0480004 + 0.179140i
\(879\) 7.82591 2.09695i 0.263962 0.0707283i
\(880\) −38.5282 + 22.2443i −1.29879 + 0.749855i
\(881\) −25.5041 −0.859255 −0.429627 0.903006i \(-0.641355\pi\)
−0.429627 + 0.903006i \(0.641355\pi\)
\(882\) 0 0
\(883\) 34.7968i 1.17101i 0.810670 + 0.585503i \(0.199103\pi\)
−0.810670 + 0.585503i \(0.800897\pi\)
\(884\) 0.966081 0.152299i 0.0324928 0.00512236i
\(885\) 0.778700 + 0.449582i 0.0261757 + 0.0151125i
\(886\) −1.03180 3.85071i −0.0346638 0.129367i
\(887\) −39.3189 + 22.7008i −1.32020 + 0.762217i −0.983760 0.179488i \(-0.942556\pi\)
−0.336439 + 0.941705i \(0.609223\pi\)
\(888\) −11.3735 −0.381669
\(889\) 0 0
\(890\) −30.4205 + 30.4205i −1.01970 + 1.01970i
\(891\) 1.73100 6.46018i 0.0579907 0.216424i
\(892\) −0.149254 0.557023i −0.00499739 0.0186505i
\(893\) −15.8824 + 27.5091i −0.531484 + 0.920558i
\(894\) 14.3434 + 24.8436i 0.479717 + 0.830894i
\(895\) −47.7959 + 47.7959i −1.59764 + 1.59764i
\(896\) 0 0
\(897\) −4.78707 1.84154i −0.159836 0.0614873i
\(898\) 25.8357 + 44.7488i 0.862149 + 1.49329i
\(899\) −76.8671 + 20.5965i −2.56366 + 0.686931i
\(900\) −2.29831 + 3.98080i −0.0766105 + 0.132693i
\(901\) 2.05616 + 3.56137i 0.0685005 + 0.118646i
\(902\) 8.27996 + 8.27996i 0.275693 + 0.275693i
\(903\) 0 0
\(904\) −8.62877 8.62877i −0.286989 0.286989i
\(905\) 6.31480 23.5671i 0.209911 0.783398i
\(906\) 15.3701 + 8.87394i 0.510638 + 0.294817i
\(907\) −0.0976763 0.0563935i −0.00324329 0.00187251i 0.498377 0.866960i \(-0.333929\pi\)
−0.501621 + 0.865088i \(0.667263\pi\)
\(908\) −1.26440 0.338796i −0.0419607 0.0112433i
\(909\) −0.464163 −0.0153953
\(910\) 0 0
\(911\) −0.606928 −0.0201084 −0.0100542 0.999949i \(-0.503200\pi\)
−0.0100542 + 0.999949i \(0.503200\pi\)
\(912\) 11.9229 + 3.19473i 0.394807 + 0.105788i
\(913\) −12.2521 7.07372i −0.405484 0.234106i
\(914\) −8.75571 5.05511i −0.289613 0.167208i
\(915\) −0.299393 + 1.11735i −0.00989762 + 0.0369384i
\(916\) 0.201125 + 0.201125i 0.00664536 + 0.00664536i
\(917\) 0 0
\(918\) −6.58253 6.58253i −0.217256 0.217256i
\(919\) −24.4824 42.4048i −0.807600 1.39880i −0.914522 0.404536i \(-0.867433\pi\)
0.106922 0.994267i \(-0.465900\pi\)
\(920\) −8.42503 + 14.5926i −0.277765 + 0.481103i
\(921\) 21.6863 5.81084i 0.714589 0.191474i
\(922\) −5.31022 9.19757i −0.174883 0.302906i
\(923\) 1.55516 0.691058i 0.0511886 0.0227465i
\(924\) 0 0
\(925\) 35.3890 35.3890i 1.16358 1.16358i
\(926\) −15.5409 26.9176i −0.510706 0.884568i
\(927\) −18.1361 + 31.4126i −0.595666 + 1.03172i
\(928\) −2.71925 10.1484i −0.0892638 0.333137i
\(929\) −4.07062 + 15.1918i −0.133553 + 0.498426i −1.00000 0.000843401i \(-0.999732\pi\)
0.866447 + 0.499269i \(0.166398\pi\)
\(930\) −30.9841 + 30.9841i −1.01601 + 1.01601i
\(931\) 0 0
\(932\) −1.69401 −0.0554890
\(933\) −10.3247 + 5.96094i −0.338014 + 0.195152i
\(934\) 0.175229 + 0.653962i 0.00573366 + 0.0213983i
\(935\) 12.0217 + 6.94071i 0.393150 + 0.226985i
\(936\) 12.5627 17.2649i 0.410624 0.564320i
\(937\) 2.27169i 0.0742129i 0.999311 + 0.0371065i \(0.0118141\pi\)
−0.999311 + 0.0371065i \(0.988186\pi\)
\(938\) 0 0
\(939\) −5.73524 −0.187163
\(940\) 6.72336 3.88173i 0.219292 0.126608i
\(941\) −27.5932 + 7.39357i −0.899512 + 0.241023i −0.678807 0.734317i \(-0.737502\pi\)
−0.220705 + 0.975341i \(0.570836\pi\)
\(942\) 4.36634 + 16.2954i 0.142263 + 0.530933i
\(943\) 4.71537 + 1.26348i 0.153554 + 0.0411446i
\(944\) 0.798656 0.798656i 0.0259940 0.0259940i
\(945\) 0 0
\(946\) 44.5559i 1.44864i
\(947\) −0.196990 + 0.735176i −0.00640131 + 0.0238900i −0.969053 0.246854i \(-0.920603\pi\)
0.962651 + 0.270744i \(0.0872698\pi\)
\(948\) −0.256059 + 0.443506i −0.00831640 + 0.0144044i
\(949\) 3.18712 30.1146i 0.103458 0.977562i
\(950\) −42.7350 + 24.6731i −1.38651 + 0.800500i
\(951\) −19.5788 19.5788i −0.634887 0.634887i
\(952\) 0 0
\(953\) 7.93535i 0.257051i 0.991706 + 0.128526i \(0.0410244\pi\)
−0.991706 + 0.128526i \(0.958976\pi\)
\(954\) −9.60507 2.57367i −0.310976 0.0833257i
\(955\) −46.6416 + 12.4976i −1.50929 + 0.404412i
\(956\) −1.26627 + 0.339296i −0.0409540 + 0.0109736i
\(957\) 20.7723 + 5.56592i 0.671473 + 0.179921i
\(958\) 48.7364i 1.57460i
\(959\) 0 0
\(960\) 17.3023 + 17.3023i 0.558429 + 0.558429i
\(961\) 35.9314 20.7450i 1.15908 0.669194i
\(962\) 20.0224 16.1899i 0.645547 0.521984i
\(963\) −18.9158 + 32.7631i −0.609553 + 1.05578i
\(964\) −0.556670 + 2.07752i −0.0179291 + 0.0669124i
\(965\) 84.1778i 2.70978i
\(966\) 0 0
\(967\) −1.26298 + 1.26298i −0.0406147 + 0.0406147i −0.727122 0.686508i \(-0.759143\pi\)
0.686508 + 0.727122i \(0.259143\pi\)
\(968\) 10.9192 + 2.92578i 0.350956 + 0.0940383i
\(969\) −0.996826 3.72021i −0.0320227 0.119510i
\(970\) −59.2858 + 15.8856i −1.90355 + 0.510055i
\(971\) 0.300693 0.173605i 0.00964970 0.00557126i −0.495167 0.868798i \(-0.664893\pi\)
0.504817 + 0.863226i \(0.331560\pi\)
\(972\) 3.21464 0.103110
\(973\) 0 0
\(974\) 17.1431i 0.549299i
\(975\) −5.16142 32.7406i −0.165298 1.04854i
\(976\) 1.25838 + 0.726525i 0.0402797 + 0.0232555i
\(977\) −2.88386 10.7627i −0.0922627 0.344329i 0.904328 0.426839i \(-0.140373\pi\)
−0.996590 + 0.0825101i \(0.973706\pi\)
\(978\) 12.1693 7.02596i 0.389132 0.224666i
\(979\) −19.2331 −0.614693
\(980\) 0 0
\(981\) −10.9963 + 10.9963i −0.351084 + 0.351084i
\(982\) 0.363354 1.35606i 0.0115951 0.0432735i
\(983\) 8.67608 + 32.3796i 0.276724 + 1.03275i 0.954677 + 0.297643i \(0.0962006\pi\)
−0.677953 + 0.735105i \(0.737133\pi\)
\(984\) 3.58452 6.20857i 0.114270 0.197922i
\(985\) −3.95339 6.84747i −0.125965 0.218178i
\(986\) −13.3315 + 13.3315i −0.424561 + 0.424561i
\(987\) 0 0
\(988\) −2.10368 + 0.934803i −0.0669270 + 0.0297400i
\(989\) −9.28761 16.0866i −0.295329 0.511525i
\(990\) −32.4227 + 8.68762i −1.03046 + 0.276111i
\(991\) −17.8999 + 31.0035i −0.568608 + 0.984858i 0.428096 + 0.903733i \(0.359184\pi\)
−0.996704 + 0.0811244i \(0.974149\pi\)
\(992\) 4.78525 + 8.28829i 0.151932 + 0.263154i
\(993\) −7.82804 7.82804i −0.248415 0.248415i
\(994\) 0 0
\(995\) −18.5219 18.5219i −0.587183 0.587183i
\(996\) 0.248298 0.926661i 0.00786763 0.0293624i
\(997\) 53.9761 + 31.1631i 1.70944 + 0.986946i 0.935247 + 0.353996i \(0.115177\pi\)
0.774193 + 0.632949i \(0.218156\pi\)
\(998\) −28.2457 16.3077i −0.894102 0.516210i
\(999\) −21.4659 5.75176i −0.679150 0.181978i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.bc.c.31.19 112
7.2 even 3 inner 637.2.bc.c.460.10 112
7.3 odd 6 637.2.i.b.538.9 yes 56
7.4 even 3 637.2.i.b.538.10 yes 56
7.5 odd 6 inner 637.2.bc.c.460.9 112
7.6 odd 2 inner 637.2.bc.c.31.20 112
13.8 odd 4 inner 637.2.bc.c.619.9 112
91.34 even 4 inner 637.2.bc.c.619.10 112
91.47 even 12 inner 637.2.bc.c.411.19 112
91.60 odd 12 637.2.i.b.489.10 yes 56
91.73 even 12 637.2.i.b.489.9 56
91.86 odd 12 inner 637.2.bc.c.411.20 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.i.b.489.9 56 91.73 even 12
637.2.i.b.489.10 yes 56 91.60 odd 12
637.2.i.b.538.9 yes 56 7.3 odd 6
637.2.i.b.538.10 yes 56 7.4 even 3
637.2.bc.c.31.19 112 1.1 even 1 trivial
637.2.bc.c.31.20 112 7.6 odd 2 inner
637.2.bc.c.411.19 112 91.47 even 12 inner
637.2.bc.c.411.20 112 91.86 odd 12 inner
637.2.bc.c.460.9 112 7.5 odd 6 inner
637.2.bc.c.460.10 112 7.2 even 3 inner
637.2.bc.c.619.9 112 13.8 odd 4 inner
637.2.bc.c.619.10 112 91.34 even 4 inner