Properties

Label 637.2.i.b.489.10
Level $637$
Weight $2$
Character 637.489
Analytic conductor $5.086$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(489,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.489");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 489.10
Character \(\chi\) \(=\) 637.489
Dual form 637.2.i.b.538.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04867 - 1.04867i) q^{2} +0.884495i q^{3} +0.199431i q^{4} +(2.77428 - 2.77428i) q^{5} +(0.927546 - 0.927546i) q^{6} +(-1.88821 + 1.88821i) q^{8} +2.21767 q^{9} -5.81862 q^{10} +(1.83939 - 1.83939i) q^{11} -0.176395 q^{12} +(3.36514 - 1.29454i) q^{13} +(2.45383 + 2.45383i) q^{15} +4.35909 q^{16} -1.36013 q^{17} +(-2.32561 - 2.32561i) q^{18} +(-2.26377 + 2.26377i) q^{19} +(0.553276 + 0.553276i) q^{20} -3.85783 q^{22} +1.60832i q^{23} +(-1.67011 - 1.67011i) q^{24} -10.3932i q^{25} +(-4.88648 - 2.17138i) q^{26} +4.61500i q^{27} +9.34669 q^{29} -5.14654i q^{30} +(-6.02038 + 6.02038i) q^{31} +(-0.794841 - 0.794841i) q^{32} +(1.62693 + 1.62693i) q^{33} +(1.42633 + 1.42633i) q^{34} +0.442271i q^{36} +(-3.40501 + 3.40501i) q^{37} +4.74791 q^{38} +(1.14501 + 2.97645i) q^{39} +10.4768i q^{40} +(2.14628 - 2.14628i) q^{41} -11.5495i q^{43} +(0.366830 + 0.366830i) q^{44} +(6.15243 - 6.15243i) q^{45} +(1.68660 - 1.68660i) q^{46} +(-7.01591 - 7.01591i) q^{47} +3.85559i q^{48} +(-10.8991 + 10.8991i) q^{50} -1.20303i q^{51} +(0.258171 + 0.671112i) q^{52} -3.02346 q^{53} +(4.83963 - 4.83963i) q^{54} -10.2059i q^{55} +(-2.00229 - 2.00229i) q^{57} +(-9.80162 - 9.80162i) q^{58} +(-0.183216 - 0.183216i) q^{59} +(-0.489369 + 0.489369i) q^{60} -0.333338i q^{61} +12.6268 q^{62} -7.05112i q^{64} +(5.74442 - 12.9272i) q^{65} -3.41223i q^{66} +(0.743917 + 0.743917i) q^{67} -0.271252i q^{68} -1.42255 q^{69} +(-0.333748 - 0.333748i) q^{71} +(-4.18742 + 4.18742i) q^{72} +(-5.93894 - 5.93894i) q^{73} +7.14148 q^{74} +9.19276 q^{75} +(-0.451465 - 0.451465i) q^{76} +(1.92058 - 4.32207i) q^{78} +2.90324 q^{79} +(12.0933 - 12.0933i) q^{80} +2.57106 q^{81} -4.50148 q^{82} +(-3.84570 + 3.84570i) q^{83} +(-3.77338 + 3.77338i) q^{85} +(-12.1116 + 12.1116i) q^{86} +8.26709i q^{87} +6.94629i q^{88} +(5.22813 + 5.22813i) q^{89} -12.9038 q^{90} -0.320747 q^{92} +(-5.32500 - 5.32500i) q^{93} +14.7148i q^{94} +12.5607i q^{95} +(0.703033 - 0.703033i) q^{96} +(-7.45885 + 7.45885i) q^{97} +(4.07915 - 4.07915i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 56 q^{9} - 16 q^{11} + 48 q^{15} - 56 q^{16} - 32 q^{18} - 48 q^{29} - 32 q^{39} - 64 q^{44} + 32 q^{46} - 40 q^{50} - 16 q^{53} - 96 q^{57} + 72 q^{58} - 64 q^{60} + 32 q^{65} + 32 q^{71} + 208 q^{72}+ \cdots + 64 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04867 1.04867i −0.741524 0.741524i 0.231347 0.972871i \(-0.425687\pi\)
−0.972871 + 0.231347i \(0.925687\pi\)
\(3\) 0.884495i 0.510663i 0.966854 + 0.255332i \(0.0821846\pi\)
−0.966854 + 0.255332i \(0.917815\pi\)
\(4\) 0.199431i 0.0997153i
\(5\) 2.77428 2.77428i 1.24069 1.24069i 0.280982 0.959713i \(-0.409340\pi\)
0.959713 0.280982i \(-0.0906601\pi\)
\(6\) 0.927546 0.927546i 0.378669 0.378669i
\(7\) 0 0
\(8\) −1.88821 + 1.88821i −0.667583 + 0.667583i
\(9\) 2.21767 0.739223
\(10\) −5.81862 −1.84001
\(11\) 1.83939 1.83939i 0.554596 0.554596i −0.373168 0.927764i \(-0.621729\pi\)
0.927764 + 0.373168i \(0.121729\pi\)
\(12\) −0.176395 −0.0509209
\(13\) 3.36514 1.29454i 0.933322 0.359041i
\(14\) 0 0
\(15\) 2.45383 + 2.45383i 0.633577 + 0.633577i
\(16\) 4.35909 1.08977
\(17\) −1.36013 −0.329880 −0.164940 0.986304i \(-0.552743\pi\)
−0.164940 + 0.986304i \(0.552743\pi\)
\(18\) −2.32561 2.32561i −0.548152 0.548152i
\(19\) −2.26377 + 2.26377i −0.519344 + 0.519344i −0.917373 0.398029i \(-0.869694\pi\)
0.398029 + 0.917373i \(0.369694\pi\)
\(20\) 0.553276 + 0.553276i 0.123716 + 0.123716i
\(21\) 0 0
\(22\) −3.85783 −0.822492
\(23\) 1.60832i 0.335357i 0.985842 + 0.167679i \(0.0536271\pi\)
−0.985842 + 0.167679i \(0.946373\pi\)
\(24\) −1.67011 1.67011i −0.340910 0.340910i
\(25\) 10.3932i 2.07865i
\(26\) −4.88648 2.17138i −0.958318 0.425843i
\(27\) 4.61500i 0.888157i
\(28\) 0 0
\(29\) 9.34669 1.73564 0.867818 0.496882i \(-0.165522\pi\)
0.867818 + 0.496882i \(0.165522\pi\)
\(30\) 5.14654i 0.939625i
\(31\) −6.02038 + 6.02038i −1.08129 + 1.08129i −0.0849034 + 0.996389i \(0.527058\pi\)
−0.996389 + 0.0849034i \(0.972942\pi\)
\(32\) −0.794841 0.794841i −0.140509 0.140509i
\(33\) 1.62693 + 1.62693i 0.283212 + 0.283212i
\(34\) 1.42633 + 1.42633i 0.244614 + 0.244614i
\(35\) 0 0
\(36\) 0.442271i 0.0737118i
\(37\) −3.40501 + 3.40501i −0.559780 + 0.559780i −0.929245 0.369465i \(-0.879541\pi\)
0.369465 + 0.929245i \(0.379541\pi\)
\(38\) 4.74791 0.770212
\(39\) 1.14501 + 2.97645i 0.183349 + 0.476613i
\(40\) 10.4768i 1.65653i
\(41\) 2.14628 2.14628i 0.335192 0.335192i −0.519362 0.854554i \(-0.673830\pi\)
0.854554 + 0.519362i \(0.173830\pi\)
\(42\) 0 0
\(43\) 11.5495i 1.76128i −0.473786 0.880640i \(-0.657113\pi\)
0.473786 0.880640i \(-0.342887\pi\)
\(44\) 0.366830 + 0.366830i 0.0553017 + 0.0553017i
\(45\) 6.15243 6.15243i 0.917150 0.917150i
\(46\) 1.68660 1.68660i 0.248675 0.248675i
\(47\) −7.01591 7.01591i −1.02338 1.02338i −0.999720 0.0236558i \(-0.992469\pi\)
−0.0236558 0.999720i \(-0.507531\pi\)
\(48\) 3.85559i 0.556507i
\(49\) 0 0
\(50\) −10.8991 + 10.8991i −1.54137 + 1.54137i
\(51\) 1.20303i 0.168458i
\(52\) 0.258171 + 0.671112i 0.0358018 + 0.0930664i
\(53\) −3.02346 −0.415305 −0.207652 0.978203i \(-0.566582\pi\)
−0.207652 + 0.978203i \(0.566582\pi\)
\(54\) 4.83963 4.83963i 0.658590 0.658590i
\(55\) 10.2059i 1.37617i
\(56\) 0 0
\(57\) −2.00229 2.00229i −0.265210 0.265210i
\(58\) −9.80162 9.80162i −1.28702 1.28702i
\(59\) −0.183216 0.183216i −0.0238527 0.0238527i 0.695080 0.718933i \(-0.255369\pi\)
−0.718933 + 0.695080i \(0.755369\pi\)
\(60\) −0.489369 + 0.489369i −0.0631773 + 0.0631773i
\(61\) 0.333338i 0.0426796i −0.999772 0.0213398i \(-0.993207\pi\)
0.999772 0.0213398i \(-0.00679318\pi\)
\(62\) 12.6268 1.60361
\(63\) 0 0
\(64\) 7.05112i 0.881390i
\(65\) 5.74442 12.9272i 0.712508 1.60343i
\(66\) 3.41223i 0.420016i
\(67\) 0.743917 + 0.743917i 0.0908839 + 0.0908839i 0.751087 0.660203i \(-0.229530\pi\)
−0.660203 + 0.751087i \(0.729530\pi\)
\(68\) 0.271252i 0.0328941i
\(69\) −1.42255 −0.171255
\(70\) 0 0
\(71\) −0.333748 0.333748i −0.0396086 0.0396086i 0.687025 0.726634i \(-0.258916\pi\)
−0.726634 + 0.687025i \(0.758916\pi\)
\(72\) −4.18742 + 4.18742i −0.493492 + 0.493492i
\(73\) −5.93894 5.93894i −0.695101 0.695101i 0.268249 0.963350i \(-0.413555\pi\)
−0.963350 + 0.268249i \(0.913555\pi\)
\(74\) 7.14148 0.830180
\(75\) 9.19276 1.06149
\(76\) −0.451465 0.451465i −0.0517866 0.0517866i
\(77\) 0 0
\(78\) 1.92058 4.32207i 0.217462 0.489378i
\(79\) 2.90324 0.326640 0.163320 0.986573i \(-0.447780\pi\)
0.163320 + 0.986573i \(0.447780\pi\)
\(80\) 12.0933 12.0933i 1.35207 1.35207i
\(81\) 2.57106 0.285674
\(82\) −4.50148 −0.497106
\(83\) −3.84570 + 3.84570i −0.422120 + 0.422120i −0.885933 0.463813i \(-0.846481\pi\)
0.463813 + 0.885933i \(0.346481\pi\)
\(84\) 0 0
\(85\) −3.77338 + 3.77338i −0.409281 + 0.409281i
\(86\) −12.1116 + 12.1116i −1.30603 + 1.30603i
\(87\) 8.26709i 0.886326i
\(88\) 6.94629i 0.740477i
\(89\) 5.22813 + 5.22813i 0.554181 + 0.554181i 0.927645 0.373464i \(-0.121830\pi\)
−0.373464 + 0.927645i \(0.621830\pi\)
\(90\) −12.9038 −1.36018
\(91\) 0 0
\(92\) −0.320747 −0.0334402
\(93\) −5.32500 5.32500i −0.552176 0.552176i
\(94\) 14.7148i 1.51772i
\(95\) 12.5607i 1.28870i
\(96\) 0.703033 0.703033i 0.0717530 0.0717530i
\(97\) −7.45885 + 7.45885i −0.757332 + 0.757332i −0.975836 0.218504i \(-0.929882\pi\)
0.218504 + 0.975836i \(0.429882\pi\)
\(98\) 0 0
\(99\) 4.07915 4.07915i 0.409970 0.409970i
\(100\) 2.07273 0.207273
\(101\) 0.209302 0.0208264 0.0104132 0.999946i \(-0.496685\pi\)
0.0104132 + 0.999946i \(0.496685\pi\)
\(102\) −1.26158 + 1.26158i −0.124915 + 0.124915i
\(103\) −16.3560 −1.61160 −0.805800 0.592187i \(-0.798265\pi\)
−0.805800 + 0.592187i \(0.798265\pi\)
\(104\) −3.90973 + 8.79845i −0.383380 + 0.862759i
\(105\) 0 0
\(106\) 3.17063 + 3.17063i 0.307958 + 0.307958i
\(107\) 17.0592 1.64917 0.824585 0.565737i \(-0.191408\pi\)
0.824585 + 0.565737i \(0.191408\pi\)
\(108\) −0.920372 −0.0885628
\(109\) −4.95848 4.95848i −0.474936 0.474936i 0.428572 0.903508i \(-0.359017\pi\)
−0.903508 + 0.428572i \(0.859017\pi\)
\(110\) −10.7027 + 10.7027i −1.02046 + 1.02046i
\(111\) −3.01171 3.01171i −0.285859 0.285859i
\(112\) 0 0
\(113\) 4.56982 0.429892 0.214946 0.976626i \(-0.431042\pi\)
0.214946 + 0.976626i \(0.431042\pi\)
\(114\) 4.19950i 0.393319i
\(115\) 4.46192 + 4.46192i 0.416076 + 0.416076i
\(116\) 1.86401i 0.173069i
\(117\) 7.46277 2.87086i 0.689933 0.265411i
\(118\) 0.384268i 0.0353747i
\(119\) 0 0
\(120\) −9.26670 −0.845930
\(121\) 4.23332i 0.384847i
\(122\) −0.349563 + 0.349563i −0.0316479 + 0.0316479i
\(123\) 1.89837 + 1.89837i 0.171170 + 0.171170i
\(124\) −1.20065 1.20065i −0.107821 0.107821i
\(125\) −14.9623 14.9623i −1.33827 1.33827i
\(126\) 0 0
\(127\) 10.4126i 0.923968i 0.886888 + 0.461984i \(0.152862\pi\)
−0.886888 + 0.461984i \(0.847138\pi\)
\(128\) −8.98400 + 8.98400i −0.794081 + 0.794081i
\(129\) 10.2155 0.899421
\(130\) −19.5805 + 7.53244i −1.71732 + 0.660638i
\(131\) 17.4915i 1.52824i 0.645073 + 0.764121i \(0.276827\pi\)
−0.645073 + 0.764121i \(0.723173\pi\)
\(132\) −0.324459 + 0.324459i −0.0282405 + 0.0282405i
\(133\) 0 0
\(134\) 1.56025i 0.134785i
\(135\) 12.8033 + 12.8033i 1.10193 + 1.10193i
\(136\) 2.56821 2.56821i 0.220222 0.220222i
\(137\) −14.2346 + 14.2346i −1.21614 + 1.21614i −0.247168 + 0.968973i \(0.579500\pi\)
−0.968973 + 0.247168i \(0.920500\pi\)
\(138\) 1.49179 + 1.49179i 0.126989 + 0.126989i
\(139\) 14.6578i 1.24326i −0.783310 0.621631i \(-0.786470\pi\)
0.783310 0.621631i \(-0.213530\pi\)
\(140\) 0 0
\(141\) 6.20554 6.20554i 0.522600 0.522600i
\(142\) 0.699984i 0.0587414i
\(143\) 3.80863 8.57095i 0.318494 0.716739i
\(144\) 9.66702 0.805585
\(145\) 25.9303 25.9303i 2.15340 2.15340i
\(146\) 12.4560i 1.03087i
\(147\) 0 0
\(148\) −0.679062 0.679062i −0.0558186 0.0558186i
\(149\) 15.4639 + 15.4639i 1.26685 + 1.26685i 0.947706 + 0.319143i \(0.103395\pi\)
0.319143 + 0.947706i \(0.396605\pi\)
\(150\) −9.64020 9.64020i −0.787119 0.787119i
\(151\) 9.56712 9.56712i 0.778561 0.778561i −0.201025 0.979586i \(-0.564427\pi\)
0.979586 + 0.201025i \(0.0644272\pi\)
\(152\) 8.54894i 0.693410i
\(153\) −3.01632 −0.243855
\(154\) 0 0
\(155\) 33.4044i 2.68311i
\(156\) −0.593595 + 0.228351i −0.0475256 + 0.0182827i
\(157\) 12.8609i 1.02641i 0.858266 + 0.513205i \(0.171542\pi\)
−0.858266 + 0.513205i \(0.828458\pi\)
\(158\) −3.04455 3.04455i −0.242211 0.242211i
\(159\) 2.67424i 0.212081i
\(160\) −4.41022 −0.348659
\(161\) 0 0
\(162\) −2.69621 2.69621i −0.211834 0.211834i
\(163\) −7.57479 + 7.57479i −0.593303 + 0.593303i −0.938522 0.345219i \(-0.887805\pi\)
0.345219 + 0.938522i \(0.387805\pi\)
\(164\) 0.428033 + 0.428033i 0.0334238 + 0.0334238i
\(165\) 9.02710 0.702758
\(166\) 8.06576 0.626025
\(167\) 6.07140 + 6.07140i 0.469819 + 0.469819i 0.901856 0.432037i \(-0.142205\pi\)
−0.432037 + 0.901856i \(0.642205\pi\)
\(168\) 0 0
\(169\) 9.64834 8.71261i 0.742180 0.670201i
\(170\) 7.91409 0.606983
\(171\) −5.02029 + 5.02029i −0.383911 + 0.383911i
\(172\) 2.30332 0.175626
\(173\) 3.55228 0.270075 0.135037 0.990840i \(-0.456885\pi\)
0.135037 + 0.990840i \(0.456885\pi\)
\(174\) 8.66948 8.66948i 0.657232 0.657232i
\(175\) 0 0
\(176\) 8.01805 8.01805i 0.604383 0.604383i
\(177\) 0.162054 0.162054i 0.0121807 0.0121807i
\(178\) 10.9652i 0.821877i
\(179\) 17.2282i 1.28770i 0.765152 + 0.643850i \(0.222664\pi\)
−0.765152 + 0.643850i \(0.777336\pi\)
\(180\) 1.22698 + 1.22698i 0.0914539 + 0.0914539i
\(181\) 6.21868 0.462231 0.231115 0.972926i \(-0.425762\pi\)
0.231115 + 0.972926i \(0.425762\pi\)
\(182\) 0 0
\(183\) 0.294836 0.0217949
\(184\) −3.03684 3.03684i −0.223879 0.223879i
\(185\) 18.8929i 1.38903i
\(186\) 11.1684i 0.818904i
\(187\) −2.50181 + 2.50181i −0.182950 + 0.182950i
\(188\) 1.39919 1.39919i 0.102046 0.102046i
\(189\) 0 0
\(190\) 13.1720 13.1720i 0.955599 0.955599i
\(191\) −12.3074 −0.890529 −0.445264 0.895399i \(-0.646890\pi\)
−0.445264 + 0.895399i \(0.646890\pi\)
\(192\) 6.23668 0.450093
\(193\) 15.1711 15.1711i 1.09204 1.09204i 0.0967300 0.995311i \(-0.469162\pi\)
0.995311 0.0967300i \(-0.0308383\pi\)
\(194\) 15.6438 1.12316
\(195\) 11.4341 + 5.08091i 0.818812 + 0.363852i
\(196\) 0 0
\(197\) −1.42501 1.42501i −0.101528 0.101528i 0.654518 0.756046i \(-0.272872\pi\)
−0.756046 + 0.654518i \(0.772872\pi\)
\(198\) −8.55539 −0.608005
\(199\) −6.67629 −0.473270 −0.236635 0.971599i \(-0.576044\pi\)
−0.236635 + 0.971599i \(0.576044\pi\)
\(200\) 19.6246 + 19.6246i 1.38767 + 1.38767i
\(201\) −0.657991 + 0.657991i −0.0464111 + 0.0464111i
\(202\) −0.219490 0.219490i −0.0154432 0.0154432i
\(203\) 0 0
\(204\) 0.239921 0.0167978
\(205\) 11.9087i 0.831742i
\(206\) 17.1521 + 17.1521i 1.19504 + 1.19504i
\(207\) 3.56671i 0.247904i
\(208\) 14.6689 5.64301i 1.01711 0.391272i
\(209\) 8.32789i 0.576052i
\(210\) 0 0
\(211\) −18.9896 −1.30730 −0.653648 0.756798i \(-0.726762\pi\)
−0.653648 + 0.756798i \(0.726762\pi\)
\(212\) 0.602971i 0.0414122i
\(213\) 0.295198 0.295198i 0.0202266 0.0202266i
\(214\) −17.8895 17.8895i −1.22290 1.22290i
\(215\) −32.0415 32.0415i −2.18521 2.18521i
\(216\) −8.71408 8.71408i −0.592918 0.592918i
\(217\) 0 0
\(218\) 10.3996i 0.704353i
\(219\) 5.25296 5.25296i 0.354962 0.354962i
\(220\) 2.03538 0.137225
\(221\) −4.57703 + 1.76074i −0.307885 + 0.118440i
\(222\) 6.31660i 0.423942i
\(223\) 2.04467 2.04467i 0.136921 0.136921i −0.635324 0.772245i \(-0.719134\pi\)
0.772245 + 0.635324i \(0.219134\pi\)
\(224\) 0 0
\(225\) 23.0488i 1.53658i
\(226\) −4.79224 4.79224i −0.318775 0.318775i
\(227\) −4.64125 + 4.64125i −0.308050 + 0.308050i −0.844153 0.536102i \(-0.819896\pi\)
0.536102 + 0.844153i \(0.319896\pi\)
\(228\) 0.399318 0.399318i 0.0264455 0.0264455i
\(229\) 1.00850 + 1.00850i 0.0666434 + 0.0666434i 0.739643 0.673000i \(-0.234994\pi\)
−0.673000 + 0.739643i \(0.734994\pi\)
\(230\) 9.35819i 0.617060i
\(231\) 0 0
\(232\) −17.6485 + 17.6485i −1.15868 + 1.15868i
\(233\) 8.49422i 0.556475i 0.960512 + 0.278237i \(0.0897502\pi\)
−0.960512 + 0.278237i \(0.910250\pi\)
\(234\) −10.8366 4.81541i −0.708411 0.314793i
\(235\) −38.9282 −2.53939
\(236\) 0.0365389 0.0365389i 0.00237848 0.00237848i
\(237\) 2.56790i 0.166803i
\(238\) 0 0
\(239\) −4.64810 4.64810i −0.300661 0.300661i 0.540612 0.841272i \(-0.318193\pi\)
−0.841272 + 0.540612i \(0.818193\pi\)
\(240\) 10.6965 + 10.6965i 0.690455 + 0.690455i
\(241\) −7.62596 7.62596i −0.491231 0.491231i 0.417463 0.908694i \(-0.362919\pi\)
−0.908694 + 0.417463i \(0.862919\pi\)
\(242\) 4.43937 4.43937i 0.285373 0.285373i
\(243\) 16.1191i 1.03404i
\(244\) 0.0664778 0.00425580
\(245\) 0 0
\(246\) 3.98154i 0.253854i
\(247\) −4.68736 + 10.5484i −0.298250 + 0.671181i
\(248\) 22.7355i 1.44370i
\(249\) −3.40150 3.40150i −0.215561 0.215561i
\(250\) 31.3812i 1.98472i
\(251\) 28.0524 1.77065 0.885327 0.464968i \(-0.153934\pi\)
0.885327 + 0.464968i \(0.153934\pi\)
\(252\) 0 0
\(253\) 2.95831 + 2.95831i 0.185988 + 0.185988i
\(254\) 10.9194 10.9194i 0.685145 0.685145i
\(255\) −3.33754 3.33754i −0.209005 0.209005i
\(256\) 4.74032 0.296270
\(257\) −14.1206 −0.880821 −0.440411 0.897797i \(-0.645167\pi\)
−0.440411 + 0.897797i \(0.645167\pi\)
\(258\) −10.7127 10.7127i −0.666942 0.666942i
\(259\) 0 0
\(260\) 2.57809 + 1.14561i 0.159886 + 0.0710479i
\(261\) 20.7279 1.28302
\(262\) 18.3429 18.3429i 1.13323 1.13323i
\(263\) 22.3230 1.37650 0.688248 0.725476i \(-0.258380\pi\)
0.688248 + 0.725476i \(0.258380\pi\)
\(264\) −6.14395 −0.378134
\(265\) −8.38793 + 8.38793i −0.515267 + 0.515267i
\(266\) 0 0
\(267\) −4.62426 + 4.62426i −0.283000 + 0.283000i
\(268\) −0.148360 + 0.148360i −0.00906251 + 0.00906251i
\(269\) 11.8301i 0.721291i 0.932703 + 0.360645i \(0.117444\pi\)
−0.932703 + 0.360645i \(0.882556\pi\)
\(270\) 26.8529i 1.63422i
\(271\) −3.49518 3.49518i −0.212317 0.212317i 0.592934 0.805251i \(-0.297969\pi\)
−0.805251 + 0.592934i \(0.797969\pi\)
\(272\) −5.92893 −0.359494
\(273\) 0 0
\(274\) 29.8548 1.80359
\(275\) −19.1172 19.1172i −1.15281 1.15281i
\(276\) 0.283699i 0.0170767i
\(277\) 0.843523i 0.0506824i 0.999679 + 0.0253412i \(0.00806721\pi\)
−0.999679 + 0.0253412i \(0.991933\pi\)
\(278\) −15.3713 + 15.3713i −0.921909 + 0.921909i
\(279\) −13.3512 + 13.3512i −0.799316 + 0.799316i
\(280\) 0 0
\(281\) −6.80029 + 6.80029i −0.405671 + 0.405671i −0.880226 0.474555i \(-0.842609\pi\)
0.474555 + 0.880226i \(0.342609\pi\)
\(282\) −13.0152 −0.775041
\(283\) 19.8235 1.17838 0.589192 0.807993i \(-0.299446\pi\)
0.589192 + 0.807993i \(0.299446\pi\)
\(284\) 0.0665595 0.0665595i 0.00394958 0.00394958i
\(285\) −11.1098 −0.658089
\(286\) −12.9821 + 4.99411i −0.767650 + 0.295308i
\(287\) 0 0
\(288\) −1.76270 1.76270i −0.103868 0.103868i
\(289\) −15.1500 −0.891179
\(290\) −54.3848 −3.19359
\(291\) −6.59731 6.59731i −0.386741 0.386741i
\(292\) 1.18441 1.18441i 0.0693122 0.0693122i
\(293\) 6.47711 + 6.47711i 0.378397 + 0.378397i 0.870524 0.492127i \(-0.163780\pi\)
−0.492127 + 0.870524i \(0.663780\pi\)
\(294\) 0 0
\(295\) −1.01659 −0.0591879
\(296\) 12.8587i 0.747398i
\(297\) 8.48877 + 8.48877i 0.492568 + 0.492568i
\(298\) 32.4331i 1.87880i
\(299\) 2.08203 + 5.41221i 0.120407 + 0.312996i
\(300\) 1.83332i 0.105847i
\(301\) 0 0
\(302\) −20.0656 −1.15464
\(303\) 0.185127i 0.0106353i
\(304\) −9.86797 + 9.86797i −0.565967 + 0.565967i
\(305\) −0.924772 0.924772i −0.0529523 0.0529523i
\(306\) 3.16314 + 3.16314i 0.180824 + 0.180824i
\(307\) 17.9487 + 17.9487i 1.02438 + 1.02438i 0.999695 + 0.0246898i \(0.00785980\pi\)
0.0246898 + 0.999695i \(0.492140\pi\)
\(308\) 0 0
\(309\) 14.4668i 0.822985i
\(310\) 35.0303 35.0303i 1.98959 1.98959i
\(311\) 13.4787 0.764310 0.382155 0.924098i \(-0.375182\pi\)
0.382155 + 0.924098i \(0.375182\pi\)
\(312\) −7.78218 3.45813i −0.440579 0.195778i
\(313\) 6.48420i 0.366509i 0.983066 + 0.183254i \(0.0586632\pi\)
−0.983066 + 0.183254i \(0.941337\pi\)
\(314\) 13.4869 13.4869i 0.761108 0.761108i
\(315\) 0 0
\(316\) 0.578994i 0.0325710i
\(317\) −22.1356 22.1356i −1.24326 1.24326i −0.958640 0.284620i \(-0.908133\pi\)
−0.284620 0.958640i \(-0.591867\pi\)
\(318\) −2.80440 + 2.80440i −0.157263 + 0.157263i
\(319\) 17.1922 17.1922i 0.962576 0.962576i
\(320\) −19.5618 19.5618i −1.09354 1.09354i
\(321\) 15.0887i 0.842171i
\(322\) 0 0
\(323\) 3.07902 3.07902i 0.171322 0.171322i
\(324\) 0.512749i 0.0284860i
\(325\) −13.4545 34.9747i −0.746319 1.94005i
\(326\) 15.8870 0.879897
\(327\) 4.38575 4.38575i 0.242532 0.242532i
\(328\) 8.10523i 0.447537i
\(329\) 0 0
\(330\) −9.46647 9.46647i −0.521112 0.521112i
\(331\) −8.85030 8.85030i −0.486456 0.486456i 0.420730 0.907186i \(-0.361774\pi\)
−0.907186 + 0.420730i \(0.861774\pi\)
\(332\) −0.766950 0.766950i −0.0420918 0.0420918i
\(333\) −7.55118 + 7.55118i −0.413802 + 0.413802i
\(334\) 12.7338i 0.696764i
\(335\) 4.12767 0.225518
\(336\) 0 0
\(337\) 4.54349i 0.247500i 0.992313 + 0.123750i \(0.0394920\pi\)
−0.992313 + 0.123750i \(0.960508\pi\)
\(338\) −19.2546 0.981266i −1.04731 0.0533739i
\(339\) 4.04198i 0.219530i
\(340\) −0.752528 0.752528i −0.0408116 0.0408116i
\(341\) 22.1476i 1.19936i
\(342\) 10.5293 0.569359
\(343\) 0 0
\(344\) 21.8078 + 21.8078i 1.17580 + 1.17580i
\(345\) −3.94654 + 3.94654i −0.212475 + 0.212475i
\(346\) −3.72518 3.72518i −0.200267 0.200267i
\(347\) −11.1328 −0.597643 −0.298821 0.954309i \(-0.596593\pi\)
−0.298821 + 0.954309i \(0.596593\pi\)
\(348\) −1.64871 −0.0883802
\(349\) −16.7058 16.7058i −0.894240 0.894240i 0.100679 0.994919i \(-0.467899\pi\)
−0.994919 + 0.100679i \(0.967899\pi\)
\(350\) 0 0
\(351\) 5.97430 + 15.5301i 0.318885 + 0.828937i
\(352\) −2.92404 −0.155852
\(353\) 4.33065 4.33065i 0.230497 0.230497i −0.582403 0.812900i \(-0.697887\pi\)
0.812900 + 0.582403i \(0.197887\pi\)
\(354\) −0.339883 −0.0180646
\(355\) −1.85182 −0.0982843
\(356\) −1.04265 + 1.04265i −0.0552603 + 0.0552603i
\(357\) 0 0
\(358\) 18.0668 18.0668i 0.954860 0.954860i
\(359\) 15.3804 15.3804i 0.811748 0.811748i −0.173148 0.984896i \(-0.555394\pi\)
0.984896 + 0.173148i \(0.0553939\pi\)
\(360\) 23.2342i 1.22455i
\(361\) 8.75070i 0.460563i
\(362\) −6.52136 6.52136i −0.342755 0.342755i
\(363\) −3.74435 −0.196527
\(364\) 0 0
\(365\) −32.9526 −1.72482
\(366\) −0.309186 0.309186i −0.0161614 0.0161614i
\(367\) 16.2513i 0.848310i −0.905590 0.424155i \(-0.860571\pi\)
0.905590 0.424155i \(-0.139429\pi\)
\(368\) 7.01079i 0.365463i
\(369\) 4.75973 4.75973i 0.247782 0.247782i
\(370\) 19.8124 19.8124i 1.03000 1.03000i
\(371\) 0 0
\(372\) 1.06197 1.06197i 0.0550604 0.0550604i
\(373\) 4.21566 0.218279 0.109139 0.994026i \(-0.465191\pi\)
0.109139 + 0.994026i \(0.465191\pi\)
\(374\) 5.24716 0.271324
\(375\) 13.2341 13.2341i 0.683407 0.683407i
\(376\) 26.4950 1.36638
\(377\) 31.4529 12.0997i 1.61991 0.623164i
\(378\) 0 0
\(379\) 18.1305 + 18.1305i 0.931303 + 0.931303i 0.997787 0.0664849i \(-0.0211784\pi\)
−0.0664849 + 0.997787i \(0.521178\pi\)
\(380\) −2.50498 −0.128503
\(381\) −9.20988 −0.471837
\(382\) 12.9064 + 12.9064i 0.660348 + 0.660348i
\(383\) 16.5958 16.5958i 0.848007 0.848007i −0.141877 0.989884i \(-0.545314\pi\)
0.989884 + 0.141877i \(0.0453137\pi\)
\(384\) −7.94630 7.94630i −0.405508 0.405508i
\(385\) 0 0
\(386\) −31.8191 −1.61955
\(387\) 25.6129i 1.30198i
\(388\) −1.48752 1.48752i −0.0755175 0.0755175i
\(389\) 19.4735i 0.987346i −0.869648 0.493673i \(-0.835654\pi\)
0.869648 0.493673i \(-0.164346\pi\)
\(390\) −6.66240 17.3188i −0.337364 0.876973i
\(391\) 2.18752i 0.110628i
\(392\) 0 0
\(393\) −15.4712 −0.780417
\(394\) 2.98875i 0.150571i
\(395\) 8.05439 8.05439i 0.405260 0.405260i
\(396\) 0.813507 + 0.813507i 0.0408803 + 0.0408803i
\(397\) 8.45631 + 8.45631i 0.424410 + 0.424410i 0.886719 0.462309i \(-0.152979\pi\)
−0.462309 + 0.886719i \(0.652979\pi\)
\(398\) 7.00124 + 7.00124i 0.350941 + 0.350941i
\(399\) 0 0
\(400\) 45.3051i 2.26525i
\(401\) −6.64473 + 6.64473i −0.331822 + 0.331822i −0.853278 0.521456i \(-0.825389\pi\)
0.521456 + 0.853278i \(0.325389\pi\)
\(402\) 1.38003 0.0688298
\(403\) −12.4658 + 28.0531i −0.620966 + 1.39742i
\(404\) 0.0417413i 0.00207671i
\(405\) 7.13285 7.13285i 0.354434 0.354434i
\(406\) 0 0
\(407\) 12.5262i 0.620903i
\(408\) 2.27157 + 2.27157i 0.112459 + 0.112459i
\(409\) −13.6503 + 13.6503i −0.674963 + 0.674963i −0.958856 0.283893i \(-0.908374\pi\)
0.283893 + 0.958856i \(0.408374\pi\)
\(410\) −12.4884 + 12.4884i −0.616757 + 0.616757i
\(411\) −12.5904 12.5904i −0.621038 0.621038i
\(412\) 3.26188i 0.160701i
\(413\) 0 0
\(414\) 3.74032 3.74032i 0.183827 0.183827i
\(415\) 21.3381i 1.04745i
\(416\) −3.70371 1.64580i −0.181589 0.0806919i
\(417\) 12.9648 0.634888
\(418\) 8.73323 8.73323i 0.427156 0.427156i
\(419\) 24.1967i 1.18208i −0.806641 0.591042i \(-0.798717\pi\)
0.806641 0.591042i \(-0.201283\pi\)
\(420\) 0 0
\(421\) −16.9872 16.9872i −0.827906 0.827906i 0.159321 0.987227i \(-0.449070\pi\)
−0.987227 + 0.159321i \(0.949070\pi\)
\(422\) 19.9139 + 19.9139i 0.969392 + 0.969392i
\(423\) −15.5590 15.5590i −0.756503 0.756503i
\(424\) 5.70893 5.70893i 0.277250 0.277250i
\(425\) 14.1362i 0.685705i
\(426\) −0.619132 −0.0299971
\(427\) 0 0
\(428\) 3.40212i 0.164448i
\(429\) 7.58096 + 3.36872i 0.366012 + 0.162643i
\(430\) 67.2021i 3.24077i
\(431\) −19.4118 19.4118i −0.935035 0.935035i 0.0629797 0.998015i \(-0.479940\pi\)
−0.998015 + 0.0629797i \(0.979940\pi\)
\(432\) 20.1172i 0.967889i
\(433\) −26.0271 −1.25078 −0.625391 0.780312i \(-0.715060\pi\)
−0.625391 + 0.780312i \(0.715060\pi\)
\(434\) 0 0
\(435\) 22.9352 + 22.9352i 1.09966 + 1.09966i
\(436\) 0.988872 0.988872i 0.0473584 0.0473584i
\(437\) −3.64086 3.64086i −0.174166 0.174166i
\(438\) −11.0173 −0.526426
\(439\) 3.70545 0.176851 0.0884257 0.996083i \(-0.471816\pi\)
0.0884257 + 0.996083i \(0.471816\pi\)
\(440\) 19.2709 + 19.2709i 0.918706 + 0.918706i
\(441\) 0 0
\(442\) 6.64626 + 2.95337i 0.316130 + 0.140477i
\(443\) 2.68808 0.127715 0.0638573 0.997959i \(-0.479660\pi\)
0.0638573 + 0.997959i \(0.479660\pi\)
\(444\) 0.600627 0.600627i 0.0285045 0.0285045i
\(445\) 29.0086 1.37514
\(446\) −4.28837 −0.203060
\(447\) −13.6777 + 13.6777i −0.646934 + 0.646934i
\(448\) 0 0
\(449\) 24.6366 24.6366i 1.16267 1.16267i 0.178784 0.983888i \(-0.442784\pi\)
0.983888 0.178784i \(-0.0572164\pi\)
\(450\) −24.1706 + 24.1706i −1.13941 + 1.13941i
\(451\) 7.89566i 0.371792i
\(452\) 0.911361i 0.0428668i
\(453\) 8.46207 + 8.46207i 0.397583 + 0.397583i
\(454\) 9.73430 0.456854
\(455\) 0 0
\(456\) 7.56149 0.354099
\(457\) 4.82049 + 4.82049i 0.225493 + 0.225493i 0.810807 0.585314i \(-0.199029\pi\)
−0.585314 + 0.810807i \(0.699029\pi\)
\(458\) 2.11517i 0.0988353i
\(459\) 6.27701i 0.292986i
\(460\) −0.889843 + 0.889843i −0.0414891 + 0.0414891i
\(461\) 5.06375 5.06375i 0.235842 0.235842i −0.579284 0.815126i \(-0.696668\pi\)
0.815126 + 0.579284i \(0.196668\pi\)
\(462\) 0 0
\(463\) −14.8196 + 14.8196i −0.688725 + 0.688725i −0.961950 0.273226i \(-0.911909\pi\)
0.273226 + 0.961950i \(0.411909\pi\)
\(464\) 40.7430 1.89145
\(465\) −29.5460 −1.37016
\(466\) 8.90766 8.90766i 0.412639 0.412639i
\(467\) 0.456514 0.0211249 0.0105625 0.999944i \(-0.496638\pi\)
0.0105625 + 0.999944i \(0.496638\pi\)
\(468\) 0.572537 + 1.48830i 0.0264655 + 0.0687969i
\(469\) 0 0
\(470\) 40.8229 + 40.8229i 1.88302 + 1.88302i
\(471\) −11.3754 −0.524150
\(472\) 0.691901 0.0318473
\(473\) −21.2440 21.2440i −0.976798 0.976798i
\(474\) 2.69289 2.69289i 0.123688 0.123688i
\(475\) 23.5279 + 23.5279i 1.07953 + 1.07953i
\(476\) 0 0
\(477\) −6.70504 −0.307003
\(478\) 9.74867i 0.445894i
\(479\) 23.2372 + 23.2372i 1.06173 + 1.06173i 0.997965 + 0.0637700i \(0.0203124\pi\)
0.0637700 + 0.997965i \(0.479688\pi\)
\(480\) 3.90082i 0.178047i
\(481\) −7.05041 + 15.8662i −0.321471 + 0.723438i
\(482\) 15.9943i 0.728519i
\(483\) 0 0
\(484\) −0.844253 −0.0383751
\(485\) 41.3859i 1.87923i
\(486\) 16.9037 16.9037i 0.766766 0.766766i
\(487\) 8.17370 + 8.17370i 0.370386 + 0.370386i 0.867618 0.497232i \(-0.165650\pi\)
−0.497232 + 0.867618i \(0.665650\pi\)
\(488\) 0.629412 + 0.629412i 0.0284921 + 0.0284921i
\(489\) −6.69986 6.69986i −0.302978 0.302978i
\(490\) 0 0
\(491\) 0.946627i 0.0427207i 0.999772 + 0.0213603i \(0.00679973\pi\)
−0.999772 + 0.0213603i \(0.993200\pi\)
\(492\) −0.378593 + 0.378593i −0.0170683 + 0.0170683i
\(493\) −12.7127 −0.572552
\(494\) 15.9774 6.14635i 0.718856 0.276538i
\(495\) 22.6334i 1.01730i
\(496\) −26.2434 + 26.2434i −1.17836 + 1.17836i
\(497\) 0 0
\(498\) 7.13412i 0.319688i
\(499\) 15.5508 + 15.5508i 0.696148 + 0.696148i 0.963577 0.267430i \(-0.0861743\pi\)
−0.267430 + 0.963577i \(0.586174\pi\)
\(500\) 2.98395 2.98395i 0.133446 0.133446i
\(501\) −5.37012 + 5.37012i −0.239919 + 0.239919i
\(502\) −29.4178 29.4178i −1.31298 1.31298i
\(503\) 1.12263i 0.0500556i 0.999687 + 0.0250278i \(0.00796742\pi\)
−0.999687 + 0.0250278i \(0.992033\pi\)
\(504\) 0 0
\(505\) 0.580663 0.580663i 0.0258392 0.0258392i
\(506\) 6.20461i 0.275829i
\(507\) 7.70626 + 8.53390i 0.342247 + 0.379004i
\(508\) −2.07659 −0.0921338
\(509\) 13.5895 13.5895i 0.602342 0.602342i −0.338591 0.940934i \(-0.609950\pi\)
0.940934 + 0.338591i \(0.109950\pi\)
\(510\) 6.99997i 0.309964i
\(511\) 0 0
\(512\) 12.9970 + 12.9970i 0.574390 + 0.574390i
\(513\) −10.4473 10.4473i −0.461259 0.461259i
\(514\) 14.8079 + 14.8079i 0.653150 + 0.653150i
\(515\) −45.3760 + 45.3760i −1.99950 + 1.99950i
\(516\) 2.03727i 0.0896860i
\(517\) −25.8099 −1.13512
\(518\) 0 0
\(519\) 3.14197i 0.137917i
\(520\) 13.5627 + 35.2560i 0.594763 + 1.54608i
\(521\) 22.3086i 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(522\) −21.7368 21.7368i −0.951392 0.951392i
\(523\) 17.7585i 0.776524i 0.921549 + 0.388262i \(0.126924\pi\)
−0.921549 + 0.388262i \(0.873076\pi\)
\(524\) −3.48835 −0.152389
\(525\) 0 0
\(526\) −23.4095 23.4095i −1.02070 1.02070i
\(527\) 8.18851 8.18851i 0.356697 0.356697i
\(528\) 7.09192 + 7.09192i 0.308636 + 0.308636i
\(529\) 20.4133 0.887536
\(530\) 17.5924 0.764165
\(531\) −0.406313 0.406313i −0.0176325 0.0176325i
\(532\) 0 0
\(533\) 4.44408 10.0010i 0.192494 0.433190i
\(534\) 9.69867 0.419702
\(535\) 47.3268 47.3268i 2.04612 2.04612i
\(536\) −2.80934 −0.121345
\(537\) −15.2383 −0.657581
\(538\) 12.4059 12.4059i 0.534854 0.534854i
\(539\) 0 0
\(540\) −2.55337 + 2.55337i −0.109879 + 0.109879i
\(541\) 9.37822 9.37822i 0.403201 0.403201i −0.476158 0.879360i \(-0.657971\pi\)
0.879360 + 0.476158i \(0.157971\pi\)
\(542\) 7.33060i 0.314876i
\(543\) 5.50039i 0.236044i
\(544\) 1.08109 + 1.08109i 0.0463513 + 0.0463513i
\(545\) −27.5124 −1.17850
\(546\) 0 0
\(547\) −14.0683 −0.601515 −0.300757 0.953701i \(-0.597239\pi\)
−0.300757 + 0.953701i \(0.597239\pi\)
\(548\) −2.83881 2.83881i −0.121268 0.121268i
\(549\) 0.739233i 0.0315497i
\(550\) 40.0953i 1.70967i
\(551\) −21.1587 + 21.1587i −0.901393 + 0.901393i
\(552\) 2.68607 2.68607i 0.114327 0.114327i
\(553\) 0 0
\(554\) 0.884579 0.884579i 0.0375822 0.0375822i
\(555\) −16.7106 −0.709327
\(556\) 2.92322 0.123972
\(557\) −12.0175 + 12.0175i −0.509196 + 0.509196i −0.914280 0.405084i \(-0.867242\pi\)
0.405084 + 0.914280i \(0.367242\pi\)
\(558\) 28.0021 1.18542
\(559\) −14.9513 38.8656i −0.632371 1.64384i
\(560\) 0 0
\(561\) −2.21283 2.21283i −0.0934260 0.0934260i
\(562\) 14.2626 0.601630
\(563\) −17.2467 −0.726864 −0.363432 0.931621i \(-0.618395\pi\)
−0.363432 + 0.931621i \(0.618395\pi\)
\(564\) 1.23757 + 1.23757i 0.0521112 + 0.0521112i
\(565\) 12.6779 12.6779i 0.533365 0.533365i
\(566\) −20.7884 20.7884i −0.873800 0.873800i
\(567\) 0 0
\(568\) 1.26037 0.0528840
\(569\) 15.6457i 0.655902i 0.944695 + 0.327951i \(0.106358\pi\)
−0.944695 + 0.327951i \(0.893642\pi\)
\(570\) 11.6506 + 11.6506i 0.487989 + 0.487989i
\(571\) 12.1551i 0.508676i 0.967115 + 0.254338i \(0.0818576\pi\)
−0.967115 + 0.254338i \(0.918142\pi\)
\(572\) 1.70931 + 0.759558i 0.0714698 + 0.0317587i
\(573\) 10.8858i 0.454760i
\(574\) 0 0
\(575\) 16.7156 0.697089
\(576\) 15.6371i 0.651544i
\(577\) −27.6572 + 27.6572i −1.15138 + 1.15138i −0.165107 + 0.986276i \(0.552797\pi\)
−0.986276 + 0.165107i \(0.947203\pi\)
\(578\) 15.8874 + 15.8874i 0.660830 + 0.660830i
\(579\) 13.4188 + 13.4188i 0.557665 + 0.557665i
\(580\) 5.17130 + 5.17130i 0.214726 + 0.214726i
\(581\) 0 0
\(582\) 13.8369i 0.573556i
\(583\) −5.56132 + 5.56132i −0.230326 + 0.230326i
\(584\) 22.4279 0.928075
\(585\) 12.7392 28.6684i 0.526702 1.18529i
\(586\) 13.5847i 0.561180i
\(587\) −6.17868 + 6.17868i −0.255021 + 0.255021i −0.823026 0.568004i \(-0.807716\pi\)
0.568004 + 0.823026i \(0.307716\pi\)
\(588\) 0 0
\(589\) 27.2575i 1.12313i
\(590\) 1.06607 + 1.06607i 0.0438893 + 0.0438893i
\(591\) 1.26042 1.26042i 0.0518467 0.0518467i
\(592\) −14.8427 + 14.8427i −0.610032 + 0.610032i
\(593\) 23.9109 + 23.9109i 0.981903 + 0.981903i 0.999839 0.0179360i \(-0.00570950\pi\)
−0.0179360 + 0.999839i \(0.505710\pi\)
\(594\) 17.8039i 0.730502i
\(595\) 0 0
\(596\) −3.08397 + 3.08397i −0.126324 + 0.126324i
\(597\) 5.90514i 0.241681i
\(598\) 3.49227 7.85901i 0.142810 0.321379i
\(599\) 10.2671 0.419504 0.209752 0.977755i \(-0.432734\pi\)
0.209752 + 0.977755i \(0.432734\pi\)
\(600\) −17.3579 + 17.3579i −0.708632 + 0.708632i
\(601\) 4.09959i 0.167226i −0.996498 0.0836128i \(-0.973354\pi\)
0.996498 0.0836128i \(-0.0266459\pi\)
\(602\) 0 0
\(603\) 1.64976 + 1.64976i 0.0671835 + 0.0671835i
\(604\) 1.90798 + 1.90798i 0.0776344 + 0.0776344i
\(605\) 11.7444 + 11.7444i 0.477478 + 0.477478i
\(606\) 0.194137 0.194137i 0.00788630 0.00788630i
\(607\) 7.25794i 0.294591i −0.989093 0.147295i \(-0.952943\pi\)
0.989093 0.147295i \(-0.0470568\pi\)
\(608\) 3.59867 0.145946
\(609\) 0 0
\(610\) 1.93957i 0.0785308i
\(611\) −32.6919 14.5272i −1.32257 0.587706i
\(612\) 0.601547i 0.0243161i
\(613\) 15.2294 + 15.2294i 0.615111 + 0.615111i 0.944273 0.329163i \(-0.106766\pi\)
−0.329163 + 0.944273i \(0.606766\pi\)
\(614\) 37.6446i 1.51921i
\(615\) 10.5332 0.424740
\(616\) 0 0
\(617\) −28.5301 28.5301i −1.14858 1.14858i −0.986832 0.161748i \(-0.948287\pi\)
−0.161748 0.986832i \(-0.551713\pi\)
\(618\) −15.1709 + 15.1709i −0.610263 + 0.610263i
\(619\) −24.3640 24.3640i −0.979274 0.979274i 0.0205158 0.999790i \(-0.493469\pi\)
−0.999790 + 0.0205158i \(0.993469\pi\)
\(620\) −6.66186 −0.267547
\(621\) −7.42238 −0.297850
\(622\) −14.1348 14.1348i −0.566754 0.566754i
\(623\) 0 0
\(624\) 4.99121 + 12.9746i 0.199808 + 0.519400i
\(625\) −31.0532 −1.24213
\(626\) 6.79981 6.79981i 0.271775 0.271775i
\(627\) −7.36597 −0.294169
\(628\) −2.56485 −0.102349
\(629\) 4.63126 4.63126i 0.184660 0.184660i
\(630\) 0 0
\(631\) −26.1762 + 26.1762i −1.04206 + 1.04206i −0.0429839 + 0.999076i \(0.513686\pi\)
−0.999076 + 0.0429839i \(0.986314\pi\)
\(632\) −5.48192 + 5.48192i −0.218059 + 0.218059i
\(633\) 16.7962i 0.667588i
\(634\) 46.4261i 1.84381i
\(635\) 28.8874 + 28.8874i 1.14636 + 1.14636i
\(636\) 0.533325 0.0211477
\(637\) 0 0
\(638\) −36.0579 −1.42755
\(639\) −0.740142 0.740142i −0.0292796 0.0292796i
\(640\) 49.8482i 1.97042i
\(641\) 11.6779i 0.461250i 0.973043 + 0.230625i \(0.0740770\pi\)
−0.973043 + 0.230625i \(0.925923\pi\)
\(642\) 15.8231 15.8231i 0.624490 0.624490i
\(643\) −12.8214 + 12.8214i −0.505627 + 0.505627i −0.913181 0.407554i \(-0.866382\pi\)
0.407554 + 0.913181i \(0.366382\pi\)
\(644\) 0 0
\(645\) 28.3405 28.3405i 1.11591 1.11591i
\(646\) −6.45778 −0.254078
\(647\) 11.4697 0.450920 0.225460 0.974252i \(-0.427612\pi\)
0.225460 + 0.974252i \(0.427612\pi\)
\(648\) −4.85471 + 4.85471i −0.190711 + 0.190711i
\(649\) −0.674011 −0.0264572
\(650\) −22.5677 + 50.7864i −0.885178 + 1.99200i
\(651\) 0 0
\(652\) −1.51064 1.51064i −0.0591614 0.0591614i
\(653\) −8.95381 −0.350390 −0.175195 0.984534i \(-0.556056\pi\)
−0.175195 + 0.984534i \(0.556056\pi\)
\(654\) −9.19843 −0.359687
\(655\) 48.5264 + 48.5264i 1.89608 + 1.89608i
\(656\) 9.35581 9.35581i 0.365283 0.365283i
\(657\) −13.1706 13.1706i −0.513835 0.513835i
\(658\) 0 0
\(659\) 22.2313 0.866009 0.433005 0.901392i \(-0.357453\pi\)
0.433005 + 0.901392i \(0.357453\pi\)
\(660\) 1.80028i 0.0700757i
\(661\) −1.73878 1.73878i −0.0676305 0.0676305i 0.672482 0.740113i \(-0.265228\pi\)
−0.740113 + 0.672482i \(0.765228\pi\)
\(662\) 18.5621i 0.721438i
\(663\) −1.55737 4.04836i −0.0604832 0.157225i
\(664\) 14.5230i 0.563600i
\(665\) 0 0
\(666\) 15.8374 0.613688
\(667\) 15.0324i 0.582058i
\(668\) −1.21082 + 1.21082i −0.0468481 + 0.0468481i
\(669\) 1.80850 + 1.80850i 0.0699205 + 0.0699205i
\(670\) −4.32857 4.32857i −0.167227 0.167227i
\(671\) −0.613137 0.613137i −0.0236699 0.0236699i
\(672\) 0 0
\(673\) 6.44000i 0.248244i 0.992267 + 0.124122i \(0.0396114\pi\)
−0.992267 + 0.124122i \(0.960389\pi\)
\(674\) 4.76463 4.76463i 0.183527 0.183527i
\(675\) 47.9648 1.84617
\(676\) 1.73756 + 1.92417i 0.0668293 + 0.0740066i
\(677\) 4.62885i 0.177901i 0.996036 + 0.0889507i \(0.0283513\pi\)
−0.996036 + 0.0889507i \(0.971649\pi\)
\(678\) 4.23871 4.23871i 0.162787 0.162787i
\(679\) 0 0
\(680\) 14.2499i 0.546458i
\(681\) −4.10516 4.10516i −0.157310 0.157310i
\(682\) 23.2256 23.2256i 0.889354 0.889354i
\(683\) 12.8234 12.8234i 0.490673 0.490673i −0.417845 0.908518i \(-0.637215\pi\)
0.908518 + 0.417845i \(0.137215\pi\)
\(684\) −1.00120 1.00120i −0.0382818 0.0382818i
\(685\) 78.9813i 3.01772i
\(686\) 0 0
\(687\) −0.892011 + 0.892011i −0.0340323 + 0.0340323i
\(688\) 50.3452i 1.91939i
\(689\) −10.1744 + 3.91399i −0.387613 + 0.149111i
\(690\) 8.27726 0.315110
\(691\) −0.436821 + 0.436821i −0.0166174 + 0.0166174i −0.715367 0.698749i \(-0.753740\pi\)
0.698749 + 0.715367i \(0.253740\pi\)
\(692\) 0.708433i 0.0269306i
\(693\) 0 0
\(694\) 11.6747 + 11.6747i 0.443166 + 0.443166i
\(695\) −40.6649 40.6649i −1.54251 1.54251i
\(696\) −15.6100 15.6100i −0.591696 0.591696i
\(697\) −2.91922 + 2.91922i −0.110573 + 0.110573i
\(698\) 35.0378i 1.32620i
\(699\) −7.51309 −0.284171
\(700\) 0 0
\(701\) 14.4452i 0.545586i 0.962073 + 0.272793i \(0.0879474\pi\)
−0.962073 + 0.272793i \(0.912053\pi\)
\(702\) 10.0209 22.5511i 0.378216 0.851137i
\(703\) 15.4163i 0.581437i
\(704\) −12.9697 12.9697i −0.488815 0.488815i
\(705\) 34.4318i 1.29678i
\(706\) −9.08287 −0.341838
\(707\) 0 0
\(708\) 0.0323185 + 0.0323185i 0.00121460 + 0.00121460i
\(709\) 2.32721 2.32721i 0.0874003 0.0874003i −0.662055 0.749455i \(-0.730315\pi\)
0.749455 + 0.662055i \(0.230315\pi\)
\(710\) 1.94195 + 1.94195i 0.0728801 + 0.0728801i
\(711\) 6.43842 0.241460
\(712\) −19.7436 −0.739923
\(713\) −9.68268 9.68268i −0.362619 0.362619i
\(714\) 0 0
\(715\) −13.2120 34.3444i −0.494100 1.28441i
\(716\) −3.43584 −0.128403
\(717\) 4.11122 4.11122i 0.153536 0.153536i
\(718\) −32.2581 −1.20386
\(719\) −49.2353 −1.83617 −0.918083 0.396387i \(-0.870264\pi\)
−0.918083 + 0.396387i \(0.870264\pi\)
\(720\) 26.8190 26.8190i 0.999485 0.999485i
\(721\) 0 0
\(722\) 9.17662 9.17662i 0.341518 0.341518i
\(723\) 6.74512 6.74512i 0.250854 0.250854i
\(724\) 1.24019i 0.0460915i
\(725\) 97.1424i 3.60778i
\(726\) 3.92660 + 3.92660i 0.145730 + 0.145730i
\(727\) 34.0096 1.26135 0.630674 0.776048i \(-0.282779\pi\)
0.630674 + 0.776048i \(0.282779\pi\)
\(728\) 0 0
\(729\) −6.54406 −0.242372
\(730\) 34.5565 + 34.5565i 1.27899 + 1.27899i
\(731\) 15.7088i 0.581012i
\(732\) 0.0587992i 0.00217328i
\(733\) −26.5120 + 26.5120i −0.979242 + 0.979242i −0.999789 0.0205464i \(-0.993459\pi\)
0.0205464 + 0.999789i \(0.493459\pi\)
\(734\) −17.0423 + 17.0423i −0.629042 + 0.629042i
\(735\) 0 0
\(736\) 1.27836 1.27836i 0.0471208 0.0471208i
\(737\) 2.73670 0.100808
\(738\) −9.98280 −0.367472
\(739\) 3.02847 3.02847i 0.111404 0.111404i −0.649207 0.760611i \(-0.724899\pi\)
0.760611 + 0.649207i \(0.224899\pi\)
\(740\) −3.76782 −0.138508
\(741\) −9.33004 4.14595i −0.342748 0.152305i
\(742\) 0 0
\(743\) −25.3436 25.3436i −0.929767 0.929767i 0.0679234 0.997691i \(-0.478363\pi\)
−0.997691 + 0.0679234i \(0.978363\pi\)
\(744\) 20.1094 0.737247
\(745\) 85.8022 3.14355
\(746\) −4.42085 4.42085i −0.161859 0.161859i
\(747\) −8.52849 + 8.52849i −0.312041 + 0.312041i
\(748\) −0.498937 0.498937i −0.0182429 0.0182429i
\(749\) 0 0
\(750\) −27.7565 −1.01352
\(751\) 46.1245i 1.68311i 0.540174 + 0.841554i \(0.318359\pi\)
−0.540174 + 0.841554i \(0.681641\pi\)
\(752\) −30.5830 30.5830i −1.11525 1.11525i
\(753\) 24.8122i 0.904208i
\(754\) −45.6724 20.2952i −1.66329 0.739109i
\(755\) 53.0837i 1.93191i
\(756\) 0 0
\(757\) −38.5756 −1.40205 −0.701027 0.713135i \(-0.747275\pi\)
−0.701027 + 0.713135i \(0.747275\pi\)
\(758\) 38.0260i 1.38117i
\(759\) −2.61661 + 2.61661i −0.0949770 + 0.0949770i
\(760\) −23.7171 23.7171i −0.860311 0.860311i
\(761\) −7.03057 7.03057i −0.254858 0.254858i 0.568101 0.822959i \(-0.307678\pi\)
−0.822959 + 0.568101i \(0.807678\pi\)
\(762\) 9.65816 + 9.65816i 0.349878 + 0.349878i
\(763\) 0 0
\(764\) 2.45446i 0.0887993i
\(765\) −8.36812 + 8.36812i −0.302550 + 0.302550i
\(766\) −34.8072 −1.25764
\(767\) −0.853729 0.379368i −0.0308264 0.0136982i
\(768\) 4.19279i 0.151294i
\(769\) −28.4649 + 28.4649i −1.02647 + 1.02647i −0.0268295 + 0.999640i \(0.508541\pi\)
−0.999640 + 0.0268295i \(0.991459\pi\)
\(770\) 0 0
\(771\) 12.4896i 0.449803i
\(772\) 3.02558 + 3.02558i 0.108893 + 0.108893i
\(773\) 18.0777 18.0777i 0.650210 0.650210i −0.302834 0.953043i \(-0.597933\pi\)
0.953043 + 0.302834i \(0.0979326\pi\)
\(774\) −26.8596 + 26.8596i −0.965448 + 0.965448i
\(775\) 62.5713 + 62.5713i 2.24763 + 2.24763i
\(776\) 28.1677i 1.01116i
\(777\) 0 0
\(778\) −20.4214 + 20.4214i −0.732141 + 0.732141i
\(779\) 9.71735i 0.348160i
\(780\) −1.01329 + 2.28030i −0.0362816 + 0.0816480i
\(781\) −1.22778 −0.0439335
\(782\) −2.29400 + 2.29400i −0.0820331 + 0.0820331i
\(783\) 43.1350i 1.54152i
\(784\) 0 0
\(785\) 35.6797 + 35.6797i 1.27346 + 1.27346i
\(786\) 16.2242 + 16.2242i 0.578698 + 0.578698i
\(787\) −12.8291 12.8291i −0.457307 0.457307i 0.440464 0.897770i \(-0.354814\pi\)
−0.897770 + 0.440464i \(0.854814\pi\)
\(788\) 0.284191 0.284191i 0.0101239 0.0101239i
\(789\) 19.7446i 0.702925i
\(790\) −16.8928 −0.601020
\(791\) 0 0
\(792\) 15.4046i 0.547378i
\(793\) −0.431519 1.12173i −0.0153237 0.0398338i
\(794\) 17.7358i 0.629420i
\(795\) −7.41908 7.41908i −0.263128 0.263128i
\(796\) 1.33146i 0.0471922i
\(797\) −6.98547 −0.247438 −0.123719 0.992317i \(-0.539482\pi\)
−0.123719 + 0.992317i \(0.539482\pi\)
\(798\) 0 0
\(799\) 9.54256 + 9.54256i 0.337592 + 0.337592i
\(800\) −8.26098 + 8.26098i −0.292070 + 0.292070i
\(801\) 11.5943 + 11.5943i 0.409663 + 0.409663i
\(802\) 13.9363 0.492108
\(803\) −21.8480 −0.771000
\(804\) −0.131223 0.131223i −0.00462789 0.00462789i
\(805\) 0 0
\(806\) 42.4910 16.3459i 1.49668 0.575761i
\(807\) −10.4636 −0.368337
\(808\) −0.395207 + 0.395207i −0.0139033 + 0.0139033i
\(809\) 2.01320 0.0707804 0.0353902 0.999374i \(-0.488733\pi\)
0.0353902 + 0.999374i \(0.488733\pi\)
\(810\) −14.9601 −0.525643
\(811\) 19.2255 19.2255i 0.675097 0.675097i −0.283790 0.958887i \(-0.591592\pi\)
0.958887 + 0.283790i \(0.0915917\pi\)
\(812\) 0 0
\(813\) 3.09147 3.09147i 0.108422 0.108422i
\(814\) 13.1359 13.1359i 0.460414 0.460414i
\(815\) 42.0292i 1.47222i
\(816\) 5.24411i 0.183581i
\(817\) 26.1454 + 26.1454i 0.914711 + 0.914711i
\(818\) 28.6294 1.00100
\(819\) 0 0
\(820\) 2.37497 0.0829374
\(821\) 6.81744 + 6.81744i 0.237930 + 0.237930i 0.815993 0.578062i \(-0.196191\pi\)
−0.578062 + 0.815993i \(0.696191\pi\)
\(822\) 26.4064i 0.921029i
\(823\) 18.0834i 0.630348i −0.949034 0.315174i \(-0.897937\pi\)
0.949034 0.315174i \(-0.102063\pi\)
\(824\) 30.8835 30.8835i 1.07588 1.07588i
\(825\) 16.9090 16.9090i 0.588697 0.588697i
\(826\) 0 0
\(827\) 12.8291 12.8291i 0.446111 0.446111i −0.447949 0.894059i \(-0.647845\pi\)
0.894059 + 0.447949i \(0.147845\pi\)
\(828\) −0.711312 −0.0247198
\(829\) −28.2067 −0.979658 −0.489829 0.871818i \(-0.662941\pi\)
−0.489829 + 0.871818i \(0.662941\pi\)
\(830\) 22.3767 22.3767i 0.776706 0.776706i
\(831\) −0.746091 −0.0258816
\(832\) −9.12795 23.7280i −0.316455 0.822621i
\(833\) 0 0
\(834\) −13.5958 13.5958i −0.470785 0.470785i
\(835\) 33.6875 1.16580
\(836\) −1.66084 −0.0574412
\(837\) −27.7841 27.7841i −0.960358 0.960358i
\(838\) −25.3744 + 25.3744i −0.876543 + 0.876543i
\(839\) 7.67294 + 7.67294i 0.264899 + 0.264899i 0.827041 0.562142i \(-0.190022\pi\)
−0.562142 + 0.827041i \(0.690022\pi\)
\(840\) 0 0
\(841\) 58.3606 2.01243
\(842\) 35.6281i 1.22782i
\(843\) −6.01482 6.01482i −0.207161 0.207161i
\(844\) 3.78710i 0.130357i
\(845\) 2.59595 50.9384i 0.0893035 1.75233i
\(846\) 32.6326i 1.12193i
\(847\) 0 0
\(848\) −13.1796 −0.452588
\(849\) 17.5338i 0.601758i
\(850\) 14.8242 14.8242i 0.508467 0.508467i
\(851\) −5.47633 5.47633i −0.187726 0.187726i
\(852\) 0.0588715 + 0.0588715i 0.00201690 + 0.00201690i
\(853\) 10.4908 + 10.4908i 0.359198 + 0.359198i 0.863517 0.504319i \(-0.168256\pi\)
−0.504319 + 0.863517i \(0.668256\pi\)
\(854\) 0 0
\(855\) 27.8554i 0.952634i
\(856\) −32.2112 + 32.2112i −1.10096 + 1.10096i
\(857\) −17.2345 −0.588721 −0.294360 0.955695i \(-0.595107\pi\)
−0.294360 + 0.955695i \(0.595107\pi\)
\(858\) −4.41726 11.4826i −0.150803 0.392010i
\(859\) 37.5784i 1.28216i −0.767475 0.641079i \(-0.778487\pi\)
0.767475 0.641079i \(-0.221513\pi\)
\(860\) 6.39005 6.39005i 0.217899 0.217899i
\(861\) 0 0
\(862\) 40.7133i 1.38670i
\(863\) 0.873318 + 0.873318i 0.0297281 + 0.0297281i 0.721815 0.692086i \(-0.243308\pi\)
−0.692086 + 0.721815i \(0.743308\pi\)
\(864\) 3.66819 3.66819i 0.124794 0.124794i
\(865\) 9.85502 9.85502i 0.335081 0.335081i
\(866\) 27.2939 + 27.2939i 0.927484 + 0.927484i
\(867\) 13.4001i 0.455092i
\(868\) 0 0
\(869\) 5.34017 5.34017i 0.181153 0.181153i
\(870\) 48.1031i 1.63085i
\(871\) 3.46641 + 1.54035i 0.117455 + 0.0521929i
\(872\) 18.7253 0.634118
\(873\) −16.5413 + 16.5413i −0.559837 + 0.559837i
\(874\) 7.63614i 0.258296i
\(875\) 0 0
\(876\) 1.04760 + 1.04760i 0.0353952 + 0.0353952i
\(877\) −33.4786 33.4786i −1.13049 1.13049i −0.990095 0.140398i \(-0.955162\pi\)
−0.140398 0.990095i \(-0.544838\pi\)
\(878\) −3.88580 3.88580i −0.131139 0.131139i
\(879\) −5.72897 + 5.72897i −0.193233 + 0.193233i
\(880\) 44.4886i 1.49971i
\(881\) 25.5041 0.859255 0.429627 0.903006i \(-0.358645\pi\)
0.429627 + 0.903006i \(0.358645\pi\)
\(882\) 0 0
\(883\) 34.7968i 1.17101i −0.810670 0.585503i \(-0.800897\pi\)
0.810670 0.585503i \(-0.199103\pi\)
\(884\) −0.351146 0.912800i −0.0118103 0.0307008i
\(885\) 0.899165i 0.0302251i
\(886\) −2.81892 2.81892i −0.0947034 0.0947034i
\(887\) 45.4015i 1.52443i −0.647321 0.762217i \(-0.724111\pi\)
0.647321 0.762217i \(-0.275889\pi\)
\(888\) 11.3735 0.381669
\(889\) 0 0
\(890\) −30.4205 30.4205i −1.01970 1.01970i
\(891\) 4.72918 4.72918i 0.158433 0.158433i
\(892\) 0.407769 + 0.407769i 0.0136531 + 0.0136531i
\(893\) 31.7648 1.06297
\(894\) 28.6869 0.959433
\(895\) 47.7959 + 47.7959i 1.59764 + 1.59764i
\(896\) 0 0
\(897\) −4.78707 + 1.84154i −0.159836 + 0.0614873i
\(898\) −51.6715 −1.72430
\(899\) −56.2706 + 56.2706i −1.87673 + 1.87673i
\(900\) 4.59663 0.153221
\(901\) 4.11231 0.137001
\(902\) −8.27996 + 8.27996i −0.275693 + 0.275693i
\(903\) 0 0
\(904\) −8.62877 + 8.62877i −0.286989 + 0.286989i
\(905\) 17.2523 17.2523i 0.573487 0.573487i
\(906\) 17.7479i 0.589634i
\(907\) 0.112787i 0.00374503i −0.999998 0.00187251i \(-0.999404\pi\)
0.999998 0.00187251i \(-0.000596040\pi\)
\(908\) −0.925607 0.925607i −0.0307173 0.0307173i
\(909\) 0.464163 0.0153953
\(910\) 0 0
\(911\) −0.606928 −0.0201084 −0.0100542 0.999949i \(-0.503200\pi\)
−0.0100542 + 0.999949i \(0.503200\pi\)
\(912\) −8.72817 8.72817i −0.289018 0.289018i
\(913\) 14.1474i 0.468212i
\(914\) 10.1102i 0.334417i
\(915\) 0.817956 0.817956i 0.0270408 0.0270408i
\(916\) −0.201125 + 0.201125i −0.00664536 + 0.00664536i
\(917\) 0 0
\(918\) −6.58253 + 6.58253i −0.217256 + 0.217256i
\(919\) 48.9648 1.61520 0.807600 0.589731i \(-0.200766\pi\)
0.807600 + 0.589731i \(0.200766\pi\)
\(920\) −16.8501 −0.555530
\(921\) −15.8755 + 15.8755i −0.523116 + 0.523116i
\(922\) −10.6204 −0.349766
\(923\) −1.55516 0.691058i −0.0511886 0.0227465i
\(924\) 0 0
\(925\) 35.3890 + 35.3890i 1.16358 + 1.16358i
\(926\) 31.0818 1.02141
\(927\) −36.2721 −1.19133
\(928\) −7.42913 7.42913i −0.243873 0.243873i
\(929\) 11.1212 11.1212i 0.364873 0.364873i −0.500730 0.865603i \(-0.666935\pi\)
0.865603 + 0.500730i \(0.166935\pi\)
\(930\) 30.9841 + 30.9841i 1.01601 + 1.01601i
\(931\) 0 0
\(932\) −1.69401 −0.0554890
\(933\) 11.9219i 0.390305i
\(934\) −0.478734 0.478734i −0.0156646 0.0156646i
\(935\) 13.8814i 0.453971i
\(936\) −8.67048 + 19.5120i −0.283403 + 0.637771i
\(937\) 2.27169i 0.0742129i 0.999311 + 0.0371065i \(0.0118141\pi\)
−0.999311 + 0.0371065i \(0.988186\pi\)
\(938\) 0 0
\(939\) −5.73524 −0.187163
\(940\) 7.76347i 0.253216i
\(941\) −20.1996 + 20.1996i −0.658488 + 0.658488i −0.955022 0.296534i \(-0.904169\pi\)
0.296534 + 0.955022i \(0.404169\pi\)
\(942\) 11.9291 + 11.9291i 0.388670 + 0.388670i
\(943\) 3.45189 + 3.45189i 0.112409 + 0.112409i
\(944\) −0.798656 0.798656i −0.0259940 0.0259940i
\(945\) 0 0
\(946\) 44.5559i 1.44864i
\(947\) −0.538186 + 0.538186i −0.0174887 + 0.0174887i −0.715797 0.698308i \(-0.753936\pi\)
0.698308 + 0.715797i \(0.253936\pi\)
\(948\) −0.512117 −0.0166328
\(949\) −27.6736 12.2972i −0.898322 0.399183i
\(950\) 49.3461i 1.60100i
\(951\) 19.5788 19.5788i 0.634887 0.634887i
\(952\) 0 0
\(953\) 7.93535i 0.257051i −0.991706 0.128526i \(-0.958976\pi\)
0.991706 0.128526i \(-0.0410244\pi\)
\(954\) 7.03140 + 7.03140i 0.227650 + 0.227650i
\(955\) −34.1440 + 34.1440i −1.10487 + 1.10487i
\(956\) 0.926973 0.926973i 0.0299804 0.0299804i
\(957\) 15.2064 + 15.2064i 0.491552 + 0.491552i
\(958\) 48.7364i 1.57460i
\(959\) 0 0
\(960\) 17.3023 17.3023i 0.558429 0.558429i
\(961\) 41.4900i 1.33839i
\(962\) 24.0321 9.24493i 0.774825 0.298068i
\(963\) 37.8316 1.21911
\(964\) 1.52085 1.52085i 0.0489833 0.0489833i
\(965\) 84.1778i 2.70978i
\(966\) 0 0
\(967\) −1.26298 1.26298i −0.0406147 0.0406147i 0.686508 0.727122i \(-0.259143\pi\)
−0.727122 + 0.686508i \(0.759143\pi\)
\(968\) −7.99339 7.99339i −0.256917 0.256917i
\(969\) 2.72338 + 2.72338i 0.0874876 + 0.0874876i
\(970\) 43.4002 43.4002i 1.39350 1.39350i
\(971\) 0.347211i 0.0111425i 0.999984 + 0.00557126i \(0.00177340\pi\)
−0.999984 + 0.00557126i \(0.998227\pi\)
\(972\) −3.21464 −0.103110
\(973\) 0 0
\(974\) 17.1431i 0.549299i
\(975\) 30.9349 11.9004i 0.990711 0.381118i
\(976\) 1.45305i 0.0465110i
\(977\) −7.87884 7.87884i −0.252066 0.252066i 0.569751 0.821817i \(-0.307040\pi\)
−0.821817 + 0.569751i \(0.807040\pi\)
\(978\) 14.0519i 0.449331i
\(979\) 19.2331 0.614693
\(980\) 0 0
\(981\) −10.9963 10.9963i −0.351084 0.351084i
\(982\) 0.992703 0.992703i 0.0316784 0.0316784i
\(983\) −23.7035 23.7035i −0.756024 0.756024i 0.219572 0.975596i \(-0.429534\pi\)
−0.975596 + 0.219572i \(0.929534\pi\)
\(984\) −7.16904 −0.228541
\(985\) −7.90678 −0.251931
\(986\) 13.3315 + 13.3315i 0.424561 + 0.424561i
\(987\) 0 0
\(988\) −2.10368 0.934803i −0.0669270 0.0297400i
\(989\) 18.5752 0.590658
\(990\) −23.7350 + 23.7350i −0.754349 + 0.754349i
\(991\) 35.7997 1.13722 0.568608 0.822609i \(-0.307482\pi\)
0.568608 + 0.822609i \(0.307482\pi\)
\(992\) 9.57050 0.303864
\(993\) 7.82804 7.82804i 0.248415 0.248415i
\(994\) 0 0
\(995\) −18.5219 + 18.5219i −0.587183 + 0.587183i
\(996\) 0.678363 0.678363i 0.0214948 0.0214948i
\(997\) 62.3262i 1.97389i −0.161054 0.986946i \(-0.551489\pi\)
0.161054 0.986946i \(-0.448511\pi\)
\(998\) 32.6153i 1.03242i
\(999\) −15.7141 15.7141i −0.497172 0.497172i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.i.b.489.10 yes 56
7.2 even 3 637.2.bc.c.619.9 112
7.3 odd 6 637.2.bc.c.411.19 112
7.4 even 3 637.2.bc.c.411.20 112
7.5 odd 6 637.2.bc.c.619.10 112
7.6 odd 2 inner 637.2.i.b.489.9 56
13.5 odd 4 inner 637.2.i.b.538.10 yes 56
91.5 even 12 637.2.bc.c.31.20 112
91.18 odd 12 637.2.bc.c.460.10 112
91.31 even 12 637.2.bc.c.460.9 112
91.44 odd 12 637.2.bc.c.31.19 112
91.83 even 4 inner 637.2.i.b.538.9 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.i.b.489.9 56 7.6 odd 2 inner
637.2.i.b.489.10 yes 56 1.1 even 1 trivial
637.2.i.b.538.9 yes 56 91.83 even 4 inner
637.2.i.b.538.10 yes 56 13.5 odd 4 inner
637.2.bc.c.31.19 112 91.44 odd 12
637.2.bc.c.31.20 112 91.5 even 12
637.2.bc.c.411.19 112 7.3 odd 6
637.2.bc.c.411.20 112 7.4 even 3
637.2.bc.c.460.9 112 91.31 even 12
637.2.bc.c.460.10 112 91.18 odd 12
637.2.bc.c.619.9 112 7.2 even 3
637.2.bc.c.619.10 112 7.5 odd 6