Properties

Label 637.2.bc.c.460.10
Level $637$
Weight $2$
Character 637.460
Analytic conductor $5.086$
Analytic rank $0$
Dimension $112$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [637,2,Mod(31,637)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("637.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 637 = 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 637.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.08647060876\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 460.10
Character \(\chi\) \(=\) 637.460
Dual form 637.2.bc.c.619.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.383841 - 1.43251i) q^{2} +(0.765995 - 0.442247i) q^{3} +(-0.172712 + 0.0997153i) q^{4} +(3.78973 - 1.01546i) q^{5} +(-0.927546 - 0.927546i) q^{6} +(-1.88821 - 1.88821i) q^{8} +(-1.10883 + 1.92056i) q^{9} +(-2.90931 - 5.03907i) q^{10} +(0.673262 - 2.51265i) q^{11} +(-0.0881976 + 0.152763i) q^{12} +(-3.36514 - 1.29454i) q^{13} +(2.45383 - 2.45383i) q^{15} +(-2.17954 + 3.77508i) q^{16} +(-0.680066 - 1.17791i) q^{17} +(3.17684 + 0.851232i) q^{18} +(-3.09237 + 0.828597i) q^{19} +(-0.553276 + 0.553276i) q^{20} -3.85783 q^{22} +(1.39284 + 0.804158i) q^{23} +(-2.28141 - 0.611303i) q^{24} +(9.00081 - 5.19662i) q^{25} +(-0.562767 + 5.31751i) q^{26} +4.61500i q^{27} +9.34669 q^{29} +(-4.45703 - 2.57327i) q^{30} +(2.20361 - 8.22399i) q^{31} +(1.08577 + 0.290932i) q^{32} +(-0.595497 - 2.22242i) q^{33} +(-1.42633 + 1.42633i) q^{34} -0.442271i q^{36} +(4.65133 - 1.24632i) q^{37} +(2.37395 + 4.11181i) q^{38} +(-3.15019 + 0.496614i) q^{39} +(-9.07320 - 5.23842i) q^{40} +(-2.14628 - 2.14628i) q^{41} +11.5495i q^{43} +(0.134269 + 0.501099i) q^{44} +(-2.25195 + 8.40438i) q^{45} +(0.617338 - 2.30394i) q^{46} +(2.56800 + 9.58391i) q^{47} +3.85559i q^{48} +(-10.8991 - 10.8991i) q^{50} +(-1.04185 - 0.601515i) q^{51} +(0.710285 - 0.111973i) q^{52} +(1.51173 + 2.61840i) q^{53} +(6.61105 - 1.77143i) q^{54} -10.2059i q^{55} +(-2.00229 + 2.00229i) q^{57} +(-3.58764 - 13.3893i) q^{58} +(-0.250278 - 0.0670618i) q^{59} +(-0.179122 + 0.668491i) q^{60} +(0.288679 + 0.166669i) q^{61} -12.6268 q^{62} +7.05112i q^{64} +(-14.0675 - 1.48881i) q^{65} +(-2.95508 + 1.70611i) q^{66} +(-1.01621 - 0.272292i) q^{67} +(0.234911 + 0.135626i) q^{68} +1.42255 q^{69} +(-0.333748 + 0.333748i) q^{71} +(5.72013 - 1.53270i) q^{72} +(-8.11275 - 2.17380i) q^{73} +(-3.57074 - 6.18470i) q^{74} +(4.59638 - 7.96117i) q^{75} +(0.451465 - 0.451465i) q^{76} +(1.92058 + 4.32207i) q^{78} +(-1.45162 + 2.51428i) q^{79} +(-4.42646 + 16.5198i) q^{80} +(-1.28553 - 2.22661i) q^{81} +(-2.25074 + 3.89840i) q^{82} +(3.84570 + 3.84570i) q^{83} +(-3.77338 - 3.77338i) q^{85} +(16.5448 - 4.43317i) q^{86} +(7.15951 - 4.13355i) q^{87} +(-6.01566 + 3.47314i) q^{88} +(-1.91363 - 7.14176i) q^{89} +12.9038 q^{90} -0.320747 q^{92} +(-1.94908 - 7.27408i) q^{93} +(12.7434 - 7.35740i) q^{94} +(-10.8778 + 6.28033i) q^{95} +(0.960361 - 0.257328i) q^{96} +(7.45885 + 7.45885i) q^{97} +(4.07915 + 4.07915i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 56 q^{9} + 16 q^{11} + 96 q^{15} + 56 q^{16} + 32 q^{18} - 96 q^{29} + 32 q^{39} + 64 q^{44} - 32 q^{46} - 80 q^{50} + 16 q^{53} - 192 q^{57} - 72 q^{58} + 64 q^{60} - 32 q^{65} + 64 q^{71} - 208 q^{72}+ \cdots - 64 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/637\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(248\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.383841 1.43251i −0.271417 1.01294i −0.958205 0.286083i \(-0.907647\pi\)
0.686788 0.726858i \(-0.259020\pi\)
\(3\) 0.765995 0.442247i 0.442247 0.255332i −0.262303 0.964986i \(-0.584482\pi\)
0.704550 + 0.709654i \(0.251149\pi\)
\(4\) −0.172712 + 0.0997153i −0.0863560 + 0.0498576i
\(5\) 3.78973 1.01546i 1.69482 0.454126i 0.723194 0.690645i \(-0.242673\pi\)
0.971627 + 0.236519i \(0.0760066\pi\)
\(6\) −0.927546 0.927546i −0.378669 0.378669i
\(7\) 0 0
\(8\) −1.88821 1.88821i −0.667583 0.667583i
\(9\) −1.10883 + 1.92056i −0.369612 + 0.640186i
\(10\) −2.90931 5.03907i −0.920005 1.59350i
\(11\) 0.673262 2.51265i 0.202996 0.757592i −0.787055 0.616883i \(-0.788395\pi\)
0.990051 0.140709i \(-0.0449381\pi\)
\(12\) −0.0881976 + 0.152763i −0.0254605 + 0.0440988i
\(13\) −3.36514 1.29454i −0.933322 0.359041i
\(14\) 0 0
\(15\) 2.45383 2.45383i 0.633577 0.633577i
\(16\) −2.17954 + 3.77508i −0.544886 + 0.943770i
\(17\) −0.680066 1.17791i −0.164940 0.285685i 0.771694 0.635994i \(-0.219410\pi\)
−0.936634 + 0.350309i \(0.886076\pi\)
\(18\) 3.17684 + 0.851232i 0.748789 + 0.200637i
\(19\) −3.09237 + 0.828597i −0.709437 + 0.190093i −0.595454 0.803389i \(-0.703028\pi\)
−0.113984 + 0.993483i \(0.536361\pi\)
\(20\) −0.553276 + 0.553276i −0.123716 + 0.123716i
\(21\) 0 0
\(22\) −3.85783 −0.822492
\(23\) 1.39284 + 0.804158i 0.290428 + 0.167679i 0.638135 0.769925i \(-0.279706\pi\)
−0.347707 + 0.937603i \(0.613040\pi\)
\(24\) −2.28141 0.611303i −0.465692 0.124782i
\(25\) 9.00081 5.19662i 1.80016 1.03932i
\(26\) −0.562767 + 5.31751i −0.110368 + 1.04285i
\(27\) 4.61500i 0.888157i
\(28\) 0 0
\(29\) 9.34669 1.73564 0.867818 0.496882i \(-0.165522\pi\)
0.867818 + 0.496882i \(0.165522\pi\)
\(30\) −4.45703 2.57327i −0.813739 0.469813i
\(31\) 2.20361 8.22399i 0.395781 1.47707i −0.424666 0.905350i \(-0.639609\pi\)
0.820447 0.571723i \(-0.193725\pi\)
\(32\) 1.08577 + 0.290932i 0.191939 + 0.0514300i
\(33\) −0.595497 2.22242i −0.103663 0.386874i
\(34\) −1.42633 + 1.42633i −0.244614 + 0.244614i
\(35\) 0 0
\(36\) 0.442271i 0.0737118i
\(37\) 4.65133 1.24632i 0.764673 0.204894i 0.144656 0.989482i \(-0.453792\pi\)
0.620017 + 0.784588i \(0.287126\pi\)
\(38\) 2.37395 + 4.11181i 0.385106 + 0.667023i
\(39\) −3.15019 + 0.496614i −0.504434 + 0.0795218i
\(40\) −9.07320 5.23842i −1.43460 0.828266i
\(41\) −2.14628 2.14628i −0.335192 0.335192i 0.519362 0.854554i \(-0.326170\pi\)
−0.854554 + 0.519362i \(0.826170\pi\)
\(42\) 0 0
\(43\) 11.5495i 1.76128i 0.473786 + 0.880640i \(0.342887\pi\)
−0.473786 + 0.880640i \(0.657113\pi\)
\(44\) 0.134269 + 0.501099i 0.0202418 + 0.0755435i
\(45\) −2.25195 + 8.40438i −0.335700 + 1.25285i
\(46\) 0.617338 2.30394i 0.0910215 0.339697i
\(47\) 2.56800 + 9.58391i 0.374582 + 1.39796i 0.853955 + 0.520347i \(0.174197\pi\)
−0.479374 + 0.877611i \(0.659136\pi\)
\(48\) 3.85559i 0.556507i
\(49\) 0 0
\(50\) −10.8991 10.8991i −1.54137 1.54137i
\(51\) −1.04185 0.601515i −0.145889 0.0842289i
\(52\) 0.710285 0.111973i 0.0984988 0.0155279i
\(53\) 1.51173 + 2.61840i 0.207652 + 0.359665i 0.950975 0.309269i \(-0.100084\pi\)
−0.743322 + 0.668934i \(0.766751\pi\)
\(54\) 6.61105 1.77143i 0.899650 0.241061i
\(55\) 10.2059i 1.37617i
\(56\) 0 0
\(57\) −2.00229 + 2.00229i −0.265210 + 0.265210i
\(58\) −3.58764 13.3893i −0.471080 1.75810i
\(59\) −0.250278 0.0670618i −0.0325834 0.00873071i 0.242491 0.970154i \(-0.422036\pi\)
−0.275074 + 0.961423i \(0.588702\pi\)
\(60\) −0.179122 + 0.668491i −0.0231245 + 0.0863018i
\(61\) 0.288679 + 0.166669i 0.0369616 + 0.0213398i 0.518367 0.855158i \(-0.326540\pi\)
−0.481405 + 0.876498i \(0.659873\pi\)
\(62\) −12.6268 −1.60361
\(63\) 0 0
\(64\) 7.05112i 0.881390i
\(65\) −14.0675 1.48881i −1.74486 0.184664i
\(66\) −2.95508 + 1.70611i −0.363745 + 0.210008i
\(67\) −1.01621 0.272292i −0.124150 0.0332658i 0.196209 0.980562i \(-0.437137\pi\)
−0.320359 + 0.947296i \(0.603804\pi\)
\(68\) 0.234911 + 0.135626i 0.0284871 + 0.0164471i
\(69\) 1.42255 0.171255
\(70\) 0 0
\(71\) −0.333748 + 0.333748i −0.0396086 + 0.0396086i −0.726634 0.687025i \(-0.758916\pi\)
0.687025 + 0.726634i \(0.258916\pi\)
\(72\) 5.72013 1.53270i 0.674123 0.180631i
\(73\) −8.11275 2.17380i −0.949525 0.254425i −0.249365 0.968410i \(-0.580222\pi\)
−0.700161 + 0.713985i \(0.746888\pi\)
\(74\) −3.57074 6.18470i −0.415090 0.718957i
\(75\) 4.59638 7.96117i 0.530744 0.919276i
\(76\) 0.451465 0.451465i 0.0517866 0.0517866i
\(77\) 0 0
\(78\) 1.92058 + 4.32207i 0.217462 + 0.489378i
\(79\) −1.45162 + 2.51428i −0.163320 + 0.282878i −0.936057 0.351847i \(-0.885554\pi\)
0.772738 + 0.634726i \(0.218887\pi\)
\(80\) −4.42646 + 16.5198i −0.494894 + 1.84697i
\(81\) −1.28553 2.22661i −0.142837 0.247401i
\(82\) −2.25074 + 3.89840i −0.248553 + 0.430506i
\(83\) 3.84570 + 3.84570i 0.422120 + 0.422120i 0.885933 0.463813i \(-0.153519\pi\)
−0.463813 + 0.885933i \(0.653519\pi\)
\(84\) 0 0
\(85\) −3.77338 3.77338i −0.409281 0.409281i
\(86\) 16.5448 4.43317i 1.78407 0.478041i
\(87\) 7.15951 4.13355i 0.767580 0.443163i
\(88\) −6.01566 + 3.47314i −0.641272 + 0.370238i
\(89\) −1.91363 7.14176i −0.202844 0.757025i −0.990096 0.140393i \(-0.955163\pi\)
0.787251 0.616632i \(-0.211503\pi\)
\(90\) 12.9038 1.36018
\(91\) 0 0
\(92\) −0.320747 −0.0334402
\(93\) −1.94908 7.27408i −0.202111 0.754287i
\(94\) 12.7434 7.35740i 1.31438 0.758858i
\(95\) −10.8778 + 6.28033i −1.11604 + 0.644348i
\(96\) 0.960361 0.257328i 0.0980164 0.0262634i
\(97\) 7.45885 + 7.45885i 0.757332 + 0.757332i 0.975836 0.218504i \(-0.0701178\pi\)
−0.218504 + 0.975836i \(0.570118\pi\)
\(98\) 0 0
\(99\) 4.07915 + 4.07915i 0.409970 + 0.409970i
\(100\) −1.03636 + 1.79504i −0.103636 + 0.179504i
\(101\) 0.104651 + 0.181261i 0.0104132 + 0.0180362i 0.871185 0.490955i \(-0.163352\pi\)
−0.860772 + 0.508991i \(0.830019\pi\)
\(102\) −0.461772 + 1.72336i −0.0457222 + 0.170638i
\(103\) −8.17798 + 14.1647i −0.805800 + 1.39569i 0.109949 + 0.993937i \(0.464931\pi\)
−0.915749 + 0.401750i \(0.868402\pi\)
\(104\) 3.90973 + 8.79845i 0.383380 + 0.862759i
\(105\) 0 0
\(106\) 3.17063 3.17063i 0.307958 0.307958i
\(107\) −8.52958 + 14.7737i −0.824585 + 1.42822i 0.0776502 + 0.996981i \(0.475258\pi\)
−0.902236 + 0.431243i \(0.858075\pi\)
\(108\) −0.460186 0.797066i −0.0442814 0.0766977i
\(109\) 6.77341 + 1.81493i 0.648775 + 0.173839i 0.568175 0.822908i \(-0.307650\pi\)
0.0806001 + 0.996747i \(0.474316\pi\)
\(110\) −14.6201 + 3.91746i −1.39398 + 0.373515i
\(111\) 3.01171 3.01171i 0.285859 0.285859i
\(112\) 0 0
\(113\) 4.56982 0.429892 0.214946 0.976626i \(-0.431042\pi\)
0.214946 + 0.976626i \(0.431042\pi\)
\(114\) 3.63687 + 2.09975i 0.340624 + 0.196660i
\(115\) 6.09509 + 1.63318i 0.568370 + 0.152294i
\(116\) −1.61428 + 0.932007i −0.149883 + 0.0865347i
\(117\) 6.21762 5.02752i 0.574819 0.464794i
\(118\) 0.384268i 0.0353747i
\(119\) 0 0
\(120\) −9.26670 −0.845930
\(121\) 3.66616 + 2.11666i 0.333287 + 0.192424i
\(122\) 0.127949 0.477511i 0.0115839 0.0432318i
\(123\) −2.59322 0.694851i −0.233823 0.0626526i
\(124\) 0.439468 + 1.64012i 0.0394654 + 0.147287i
\(125\) 14.9623 14.9623i 1.33827 1.33827i
\(126\) 0 0
\(127\) 10.4126i 0.923968i −0.886888 0.461984i \(-0.847138\pi\)
0.886888 0.461984i \(-0.152862\pi\)
\(128\) 12.2724 3.28837i 1.08473 0.290654i
\(129\) 5.10773 + 8.84684i 0.449710 + 0.778921i
\(130\) 3.26696 + 20.7234i 0.286531 + 1.81756i
\(131\) −15.1481 8.74577i −1.32350 0.764121i −0.339212 0.940710i \(-0.610160\pi\)
−0.984285 + 0.176589i \(0.943494\pi\)
\(132\) 0.324459 + 0.324459i 0.0282405 + 0.0282405i
\(133\) 0 0
\(134\) 1.56025i 0.134785i
\(135\) 4.68633 + 17.4896i 0.403335 + 1.50527i
\(136\) −0.940031 + 3.50824i −0.0806070 + 0.300829i
\(137\) −5.21021 + 19.4448i −0.445138 + 1.66128i 0.270433 + 0.962739i \(0.412833\pi\)
−0.715571 + 0.698540i \(0.753833\pi\)
\(138\) −0.546032 2.03782i −0.0464813 0.173471i
\(139\) 14.6578i 1.24326i −0.783310 0.621631i \(-0.786470\pi\)
0.783310 0.621631i \(-0.213530\pi\)
\(140\) 0 0
\(141\) 6.20554 + 6.20554i 0.522600 + 0.522600i
\(142\) 0.606204 + 0.349992i 0.0508715 + 0.0293707i
\(143\) −5.51834 + 7.58385i −0.461467 + 0.634193i
\(144\) −4.83351 8.37188i −0.402792 0.697657i
\(145\) 35.4215 9.49115i 2.94159 0.788197i
\(146\) 12.4560i 1.03087i
\(147\) 0 0
\(148\) −0.679062 + 0.679062i −0.0558186 + 0.0558186i
\(149\) 5.66017 + 21.1240i 0.463699 + 1.73055i 0.661166 + 0.750239i \(0.270062\pi\)
−0.197467 + 0.980310i \(0.563272\pi\)
\(150\) −13.1688 3.52856i −1.07523 0.288106i
\(151\) 3.50181 13.0689i 0.284973 1.06353i −0.663886 0.747834i \(-0.731094\pi\)
0.948859 0.315700i \(-0.102239\pi\)
\(152\) 7.40360 + 4.27447i 0.600511 + 0.346705i
\(153\) 3.01632 0.243855
\(154\) 0 0
\(155\) 33.4044i 2.68311i
\(156\) 0.494555 0.399893i 0.0395961 0.0320170i
\(157\) 11.1379 6.43044i 0.888897 0.513205i 0.0153156 0.999883i \(-0.495125\pi\)
0.873582 + 0.486678i \(0.161791\pi\)
\(158\) 4.15893 + 1.11438i 0.330867 + 0.0886554i
\(159\) 2.31596 + 1.33712i 0.183667 + 0.106040i
\(160\) 4.41022 0.348659
\(161\) 0 0
\(162\) −2.69621 + 2.69621i −0.211834 + 0.211834i
\(163\) 10.3474 2.77257i 0.810468 0.217164i 0.170293 0.985393i \(-0.445529\pi\)
0.640175 + 0.768229i \(0.278862\pi\)
\(164\) 0.584704 + 0.156671i 0.0456577 + 0.0122339i
\(165\) −4.51355 7.81769i −0.351379 0.608607i
\(166\) 4.03288 6.98516i 0.313012 0.542153i
\(167\) −6.07140 + 6.07140i −0.469819 + 0.469819i −0.901856 0.432037i \(-0.857795\pi\)
0.432037 + 0.901856i \(0.357795\pi\)
\(168\) 0 0
\(169\) 9.64834 + 8.71261i 0.742180 + 0.670201i
\(170\) −3.95705 + 6.85380i −0.303492 + 0.525663i
\(171\) 1.83755 6.85785i 0.140521 0.524433i
\(172\) −1.15166 1.99473i −0.0878132 0.152097i
\(173\) 1.77614 3.07637i 0.135037 0.233892i −0.790574 0.612366i \(-0.790218\pi\)
0.925612 + 0.378474i \(0.123551\pi\)
\(174\) −8.66948 8.66948i −0.657232 0.657232i
\(175\) 0 0
\(176\) 8.01805 + 8.01805i 0.604383 + 0.604383i
\(177\) −0.221370 + 0.0593158i −0.0166392 + 0.00445845i
\(178\) −9.49615 + 5.48260i −0.711766 + 0.410938i
\(179\) −14.9201 + 8.61412i −1.11518 + 0.643850i −0.940166 0.340716i \(-0.889330\pi\)
−0.175014 + 0.984566i \(0.555997\pi\)
\(180\) −0.449107 1.67609i −0.0334744 0.124928i
\(181\) −6.21868 −0.462231 −0.231115 0.972926i \(-0.574238\pi\)
−0.231115 + 0.972926i \(0.574238\pi\)
\(182\) 0 0
\(183\) 0.294836 0.0217949
\(184\) −1.11156 4.14840i −0.0819453 0.305824i
\(185\) 16.3617 9.44644i 1.20294 0.694516i
\(186\) −9.67208 + 5.58418i −0.709192 + 0.409452i
\(187\) −3.41753 + 0.915725i −0.249915 + 0.0669644i
\(188\) −1.39919 1.39919i −0.102046 0.102046i
\(189\) 0 0
\(190\) 13.1720 + 13.1720i 0.955599 + 0.955599i
\(191\) 6.15368 10.6585i 0.445264 0.771221i −0.552806 0.833310i \(-0.686443\pi\)
0.998071 + 0.0620893i \(0.0197763\pi\)
\(192\) 3.11834 + 5.40112i 0.225047 + 0.389792i
\(193\) 5.55301 20.7241i 0.399715 1.49176i −0.413885 0.910329i \(-0.635828\pi\)
0.813599 0.581426i \(-0.197505\pi\)
\(194\) 7.82190 13.5479i 0.561579 0.972684i
\(195\) −11.4341 + 5.08091i −0.818812 + 0.363852i
\(196\) 0 0
\(197\) −1.42501 + 1.42501i −0.101528 + 0.101528i −0.756046 0.654518i \(-0.772872\pi\)
0.654518 + 0.756046i \(0.272872\pi\)
\(198\) 4.27769 7.40918i 0.304002 0.526548i
\(199\) −3.33814 5.78184i −0.236635 0.409863i 0.723112 0.690731i \(-0.242711\pi\)
−0.959747 + 0.280868i \(0.909378\pi\)
\(200\) −26.8077 7.18310i −1.89559 0.507922i
\(201\) −0.898832 + 0.240841i −0.0633987 + 0.0169876i
\(202\) 0.219490 0.219490i 0.0154432 0.0154432i
\(203\) 0 0
\(204\) 0.239921 0.0167978
\(205\) −10.3133 5.95437i −0.720310 0.415871i
\(206\) 23.4301 + 6.27809i 1.63246 + 0.437415i
\(207\) −3.08886 + 1.78336i −0.214691 + 0.123952i
\(208\) 12.2215 9.88217i 0.847406 0.685205i
\(209\) 8.32789i 0.576052i
\(210\) 0 0
\(211\) −18.9896 −1.30730 −0.653648 0.756798i \(-0.726762\pi\)
−0.653648 + 0.756798i \(0.726762\pi\)
\(212\) −0.522188 0.301486i −0.0358640 0.0207061i
\(213\) −0.108050 + 0.403248i −0.00740346 + 0.0276301i
\(214\) 24.4375 + 6.54800i 1.67051 + 0.447612i
\(215\) 11.7280 + 43.7695i 0.799843 + 2.98505i
\(216\) 8.71408 8.71408i 0.592918 0.592918i
\(217\) 0 0
\(218\) 10.3996i 0.704353i
\(219\) −7.17568 + 1.92272i −0.484888 + 0.129925i
\(220\) 1.01769 + 1.76269i 0.0686125 + 0.118840i
\(221\) 0.763668 + 4.84420i 0.0513698 + 0.325856i
\(222\) −5.47034 3.15830i −0.367145 0.211971i
\(223\) −2.04467 2.04467i −0.136921 0.136921i 0.635324 0.772245i \(-0.280866\pi\)
−0.772245 + 0.635324i \(0.780866\pi\)
\(224\) 0 0
\(225\) 23.0488i 1.53658i
\(226\) −1.75408 6.54633i −0.116680 0.435455i
\(227\) 1.69881 6.34006i 0.112754 0.420805i −0.886355 0.463007i \(-0.846771\pi\)
0.999109 + 0.0422019i \(0.0134373\pi\)
\(228\) 0.146161 0.545479i 0.00967972 0.0361252i
\(229\) −0.369136 1.37763i −0.0243932 0.0910366i 0.952656 0.304050i \(-0.0983389\pi\)
−0.977049 + 0.213013i \(0.931672\pi\)
\(230\) 9.35819i 0.617060i
\(231\) 0 0
\(232\) −17.6485 17.6485i −1.15868 1.15868i
\(233\) 7.35621 + 4.24711i 0.481921 + 0.278237i 0.721217 0.692709i \(-0.243583\pi\)
−0.239295 + 0.970947i \(0.576916\pi\)
\(234\) −9.58857 6.97706i −0.626824 0.456105i
\(235\) 19.4641 + 33.7128i 1.26970 + 2.19918i
\(236\) 0.0499131 0.0133742i 0.00324907 0.000870585i
\(237\) 2.56790i 0.166803i
\(238\) 0 0
\(239\) −4.64810 + 4.64810i −0.300661 + 0.300661i −0.841272 0.540612i \(-0.818193\pi\)
0.540612 + 0.841272i \(0.318193\pi\)
\(240\) 3.91518 + 14.6117i 0.252724 + 0.943179i
\(241\) −10.4173 2.79130i −0.671034 0.179803i −0.0928137 0.995683i \(-0.529586\pi\)
−0.578221 + 0.815880i \(0.696253\pi\)
\(242\) 1.62492 6.06429i 0.104454 0.389827i
\(243\) −13.9595 8.05955i −0.895505 0.517020i
\(244\) −0.0664778 −0.00425580
\(245\) 0 0
\(246\) 3.98154i 0.253854i
\(247\) 11.4789 + 1.21485i 0.730385 + 0.0772987i
\(248\) −19.6895 + 11.3677i −1.25028 + 0.721852i
\(249\) 4.64654 + 1.24504i 0.294462 + 0.0789009i
\(250\) −27.1769 15.6906i −1.71882 0.992361i
\(251\) −28.0524 −1.77065 −0.885327 0.464968i \(-0.846066\pi\)
−0.885327 + 0.464968i \(0.846066\pi\)
\(252\) 0 0
\(253\) 2.95831 2.95831i 0.185988 0.185988i
\(254\) −14.9162 + 3.99678i −0.935925 + 0.250780i
\(255\) −4.55916 1.22162i −0.285506 0.0765010i
\(256\) −2.37016 4.10524i −0.148135 0.256578i
\(257\) −7.06032 + 12.2288i −0.440411 + 0.762813i −0.997720 0.0674915i \(-0.978500\pi\)
0.557309 + 0.830305i \(0.311834\pi\)
\(258\) 10.7127 10.7127i 0.666942 0.666942i
\(259\) 0 0
\(260\) 2.57809 1.14561i 0.159886 0.0710479i
\(261\) −10.3639 + 17.9509i −0.641511 + 1.11113i
\(262\) −6.71397 + 25.0569i −0.414790 + 1.54802i
\(263\) −11.1615 19.3323i −0.688248 1.19208i −0.972404 0.233302i \(-0.925047\pi\)
0.284157 0.958778i \(-0.408286\pi\)
\(264\) −3.07198 + 5.32082i −0.189067 + 0.327474i
\(265\) 8.38793 + 8.38793i 0.515267 + 0.515267i
\(266\) 0 0
\(267\) −4.62426 4.62426i −0.283000 0.283000i
\(268\) 0.202663 0.0543034i 0.0123796 0.00331711i
\(269\) 10.2451 5.91503i 0.624656 0.360645i −0.154023 0.988067i \(-0.549223\pi\)
0.778680 + 0.627422i \(0.215890\pi\)
\(270\) 23.2553 13.4265i 1.41527 0.817109i
\(271\) 1.27932 + 4.77450i 0.0777134 + 0.290030i 0.993835 0.110870i \(-0.0353639\pi\)
−0.916121 + 0.400901i \(0.868697\pi\)
\(272\) 5.92893 0.359494
\(273\) 0 0
\(274\) 29.8548 1.80359
\(275\) −6.99737 26.1145i −0.421957 1.57477i
\(276\) −0.245691 + 0.141850i −0.0147889 + 0.00853835i
\(277\) −0.730512 + 0.421761i −0.0438922 + 0.0253412i −0.521786 0.853077i \(-0.674734\pi\)
0.477893 + 0.878418i \(0.341401\pi\)
\(278\) −20.9976 + 5.62628i −1.25935 + 0.337442i
\(279\) 13.3512 + 13.3512i 0.799316 + 0.799316i
\(280\) 0 0
\(281\) −6.80029 6.80029i −0.405671 0.405671i 0.474555 0.880226i \(-0.342609\pi\)
−0.880226 + 0.474555i \(0.842609\pi\)
\(282\) 6.50758 11.2715i 0.387521 0.671206i
\(283\) 9.91175 + 17.1677i 0.589192 + 1.02051i 0.994338 + 0.106259i \(0.0338873\pi\)
−0.405146 + 0.914252i \(0.632779\pi\)
\(284\) 0.0243625 0.0909219i 0.00144565 0.00539522i
\(285\) −5.55491 + 9.62139i −0.329045 + 0.569922i
\(286\) 12.9821 + 4.99411i 0.767650 + 0.295308i
\(287\) 0 0
\(288\) −1.76270 + 1.76270i −0.103868 + 0.103868i
\(289\) 7.57502 13.1203i 0.445589 0.771784i
\(290\) −27.1924 47.0987i −1.59679 2.76573i
\(291\) 9.01210 + 2.41478i 0.528299 + 0.141557i
\(292\) 1.61793 0.433523i 0.0946822 0.0253700i
\(293\) −6.47711 + 6.47711i −0.378397 + 0.378397i −0.870524 0.492127i \(-0.836220\pi\)
0.492127 + 0.870524i \(0.336220\pi\)
\(294\) 0 0
\(295\) −1.01659 −0.0591879
\(296\) −11.1360 6.42936i −0.647266 0.373699i
\(297\) 11.5959 + 3.10710i 0.672861 + 0.180292i
\(298\) 28.0879 16.2165i 1.62709 0.939399i
\(299\) −3.64610 4.50920i −0.210859 0.260773i
\(300\) 1.83332i 0.105847i
\(301\) 0 0
\(302\) −20.0656 −1.15464
\(303\) 0.160325 + 0.0925634i 0.00921040 + 0.00531763i
\(304\) 3.61193 13.4799i 0.207158 0.773125i
\(305\) 1.26326 + 0.338490i 0.0723342 + 0.0193819i
\(306\) −1.15779 4.32092i −0.0661863 0.247011i
\(307\) −17.9487 + 17.9487i −1.02438 + 1.02438i −0.0246898 + 0.999695i \(0.507860\pi\)
−0.999695 + 0.0246898i \(0.992140\pi\)
\(308\) 0 0
\(309\) 14.4668i 0.822985i
\(310\) −47.8523 + 12.8220i −2.71783 + 0.728240i
\(311\) 6.73937 + 11.6729i 0.382155 + 0.661912i 0.991370 0.131093i \(-0.0418488\pi\)
−0.609215 + 0.793005i \(0.708515\pi\)
\(312\) 6.88592 + 5.01050i 0.389838 + 0.283664i
\(313\) −5.61548 3.24210i −0.317406 0.183254i 0.332830 0.942987i \(-0.391997\pi\)
−0.650236 + 0.759733i \(0.725330\pi\)
\(314\) −13.4869 13.4869i −0.761108 0.761108i
\(315\) 0 0
\(316\) 0.578994i 0.0325710i
\(317\) −8.10220 30.2378i −0.455065 1.69833i −0.687897 0.725808i \(-0.741466\pi\)
0.232832 0.972517i \(-0.425201\pi\)
\(318\) 1.02648 3.83088i 0.0575623 0.214825i
\(319\) 6.29277 23.4849i 0.352327 1.31490i
\(320\) 7.16010 + 26.7219i 0.400262 + 1.49380i
\(321\) 15.0887i 0.842171i
\(322\) 0 0
\(323\) 3.07902 + 3.07902i 0.171322 + 0.171322i
\(324\) 0.444054 + 0.256374i 0.0246696 + 0.0142430i
\(325\) −37.0162 + 5.83545i −2.05329 + 0.323693i
\(326\) −7.94348 13.7585i −0.439949 0.762013i
\(327\) 5.99104 1.60530i 0.331306 0.0887730i
\(328\) 8.10523i 0.447537i
\(329\) 0 0
\(330\) −9.46647 + 9.46647i −0.521112 + 0.521112i
\(331\) −3.23943 12.0897i −0.178055 0.664512i −0.996011 0.0892305i \(-0.971559\pi\)
0.817956 0.575281i \(-0.195107\pi\)
\(332\) −1.04767 0.280723i −0.0574985 0.0154067i
\(333\) −2.76392 + 10.3151i −0.151462 + 0.565264i
\(334\) 11.0278 + 6.36691i 0.603415 + 0.348382i
\(335\) −4.12767 −0.225518
\(336\) 0 0
\(337\) 4.54349i 0.247500i −0.992313 0.123750i \(-0.960508\pi\)
0.992313 0.123750i \(-0.0394920\pi\)
\(338\) 8.77751 17.1656i 0.477434 0.933687i
\(339\) 3.50046 2.02099i 0.190119 0.109765i
\(340\) 1.02797 + 0.275444i 0.0557496 + 0.0149381i
\(341\) −19.1804 11.0738i −1.03868 0.599680i
\(342\) −10.5293 −0.569359
\(343\) 0 0
\(344\) 21.8078 21.8078i 1.17580 1.17580i
\(345\) 5.39108 1.44453i 0.290246 0.0777711i
\(346\) −5.08869 1.36351i −0.273570 0.0733028i
\(347\) 5.56642 + 9.64133i 0.298821 + 0.517574i 0.975867 0.218368i \(-0.0700732\pi\)
−0.677045 + 0.735941i \(0.736740\pi\)
\(348\) −0.824356 + 1.42783i −0.0441901 + 0.0765395i
\(349\) 16.7058 16.7058i 0.894240 0.894240i −0.100679 0.994919i \(-0.532101\pi\)
0.994919 + 0.100679i \(0.0321014\pi\)
\(350\) 0 0
\(351\) 5.97430 15.5301i 0.318885 0.828937i
\(352\) 1.46202 2.53229i 0.0779259 0.134972i
\(353\) −1.58513 + 5.91578i −0.0843678 + 0.314865i −0.995194 0.0979257i \(-0.968779\pi\)
0.910826 + 0.412791i \(0.135446\pi\)
\(354\) 0.169942 + 0.294347i 0.00903229 + 0.0156444i
\(355\) −0.925909 + 1.60372i −0.0491421 + 0.0851167i
\(356\) 1.04265 + 1.04265i 0.0552603 + 0.0552603i
\(357\) 0 0
\(358\) 18.0668 + 18.0668i 0.954860 + 0.954860i
\(359\) −21.0100 + 5.62963i −1.10887 + 0.297120i −0.766371 0.642399i \(-0.777939\pi\)
−0.342497 + 0.939519i \(0.611273\pi\)
\(360\) 20.1214 11.6171i 1.06049 0.612274i
\(361\) −7.57833 + 4.37535i −0.398859 + 0.230282i
\(362\) 2.38698 + 8.90835i 0.125457 + 0.468212i
\(363\) 3.74435 0.196527
\(364\) 0 0
\(365\) −32.9526 −1.72482
\(366\) −0.113170 0.422356i −0.00591549 0.0220769i
\(367\) −14.0740 + 8.12564i −0.734658 + 0.424155i −0.820124 0.572186i \(-0.806095\pi\)
0.0854660 + 0.996341i \(0.472762\pi\)
\(368\) −6.07153 + 3.50540i −0.316500 + 0.182731i
\(369\) 6.50191 1.74218i 0.338476 0.0906944i
\(370\) −19.8124 19.8124i −1.03000 1.03000i
\(371\) 0 0
\(372\) 1.06197 + 1.06197i 0.0550604 + 0.0550604i
\(373\) −2.10783 + 3.65087i −0.109139 + 0.189035i −0.915422 0.402496i \(-0.868143\pi\)
0.806283 + 0.591531i \(0.201476\pi\)
\(374\) 2.62358 + 4.54417i 0.135662 + 0.234973i
\(375\) 4.84402 18.0781i 0.250144 0.933551i
\(376\) 13.2475 22.9454i 0.683188 1.18332i
\(377\) −31.4529 12.0997i −1.61991 0.623164i
\(378\) 0 0
\(379\) 18.1305 18.1305i 0.931303 0.931303i −0.0664849 0.997787i \(-0.521178\pi\)
0.997787 + 0.0664849i \(0.0211784\pi\)
\(380\) 1.25249 2.16937i 0.0642513 0.111287i
\(381\) −4.60494 7.97599i −0.235918 0.408623i
\(382\) −17.6305 4.72407i −0.902053 0.241704i
\(383\) 22.6703 6.07450i 1.15840 0.310392i 0.372073 0.928203i \(-0.378647\pi\)
0.786327 + 0.617811i \(0.211980\pi\)
\(384\) 7.94630 7.94630i 0.405508 0.405508i
\(385\) 0 0
\(386\) −31.8191 −1.61955
\(387\) −22.1815 12.8065i −1.12755 0.650989i
\(388\) −2.03199 0.544471i −0.103159 0.0276413i
\(389\) 16.8646 9.73676i 0.855067 0.493673i −0.00729024 0.999973i \(-0.502321\pi\)
0.862357 + 0.506300i \(0.168987\pi\)
\(390\) 11.6673 + 14.4292i 0.590799 + 0.730652i
\(391\) 2.18752i 0.110628i
\(392\) 0 0
\(393\) −15.4712 −0.780417
\(394\) 2.58833 + 1.49437i 0.130398 + 0.0752855i
\(395\) −2.94811 + 11.0025i −0.148336 + 0.553596i
\(396\) −1.11127 0.297764i −0.0558435 0.0149632i
\(397\) −3.09522 11.5515i −0.155345 0.579755i −0.999076 0.0429883i \(-0.986312\pi\)
0.843731 0.536767i \(-0.180354\pi\)
\(398\) −7.00124 + 7.00124i −0.350941 + 0.350941i
\(399\) 0 0
\(400\) 45.3051i 2.26525i
\(401\) 9.07687 2.43214i 0.453277 0.121455i −0.0249551 0.999689i \(-0.507944\pi\)
0.478233 + 0.878233i \(0.341278\pi\)
\(402\) 0.690017 + 1.19514i 0.0344149 + 0.0596084i
\(403\) −18.0618 + 24.8222i −0.899720 + 1.23648i
\(404\) −0.0361490 0.0208706i −0.00179848 0.00103835i
\(405\) −7.13285 7.13285i −0.354434 0.354434i
\(406\) 0 0
\(407\) 12.5262i 0.620903i
\(408\) 0.831452 + 3.10302i 0.0411630 + 0.153623i
\(409\) 4.99635 18.6466i 0.247054 0.922017i −0.725286 0.688447i \(-0.758293\pi\)
0.972340 0.233570i \(-0.0750407\pi\)
\(410\) −4.57106 + 17.0594i −0.225749 + 0.842505i
\(411\) 4.60840 + 17.1988i 0.227316 + 0.848354i
\(412\) 3.26188i 0.160701i
\(413\) 0 0
\(414\) 3.74032 + 3.74032i 0.183827 + 0.183827i
\(415\) 18.4793 + 10.6690i 0.907114 + 0.523723i
\(416\) −3.27716 2.38460i −0.160676 0.116915i
\(417\) −6.48239 11.2278i −0.317444 0.549829i
\(418\) 11.9298 3.19659i 0.583507 0.156350i
\(419\) 24.1967i 1.18208i −0.806641 0.591042i \(-0.798717\pi\)
0.806641 0.591042i \(-0.201283\pi\)
\(420\) 0 0
\(421\) −16.9872 + 16.9872i −0.827906 + 0.827906i −0.987227 0.159321i \(-0.949070\pi\)
0.159321 + 0.987227i \(0.449070\pi\)
\(422\) 7.28898 + 27.2028i 0.354822 + 1.32421i
\(423\) −21.2540 5.69498i −1.03340 0.276899i
\(424\) 2.08961 7.79855i 0.101481 0.378731i
\(425\) −12.2423 7.06809i −0.593838 0.342853i
\(426\) 0.619132 0.0299971
\(427\) 0 0
\(428\) 3.40212i 0.164448i
\(429\) −0.873086 + 8.24966i −0.0421530 + 0.398297i
\(430\) 58.1987 33.6010i 2.80659 1.62039i
\(431\) 26.5171 + 7.10522i 1.27728 + 0.342247i 0.832816 0.553549i \(-0.186727\pi\)
0.444465 + 0.895796i \(0.353394\pi\)
\(432\) −17.4220 10.0586i −0.838216 0.483945i
\(433\) 26.0271 1.25078 0.625391 0.780312i \(-0.284940\pi\)
0.625391 + 0.780312i \(0.284940\pi\)
\(434\) 0 0
\(435\) 22.9352 22.9352i 1.09966 1.09966i
\(436\) −1.35082 + 0.361952i −0.0646928 + 0.0173344i
\(437\) −4.97350 1.33265i −0.237915 0.0637491i
\(438\) 5.50864 + 9.54125i 0.263213 + 0.455899i
\(439\) 1.85272 3.20901i 0.0884257 0.153158i −0.818420 0.574620i \(-0.805150\pi\)
0.906846 + 0.421463i \(0.138483\pi\)
\(440\) −19.2709 + 19.2709i −0.918706 + 0.918706i
\(441\) 0 0
\(442\) 6.64626 2.95337i 0.316130 0.140477i
\(443\) −1.34404 + 2.32795i −0.0638573 + 0.110604i −0.896187 0.443678i \(-0.853674\pi\)
0.832329 + 0.554282i \(0.187007\pi\)
\(444\) −0.219845 + 0.820472i −0.0104334 + 0.0389379i
\(445\) −14.5043 25.1222i −0.687570 1.19091i
\(446\) −2.14419 + 3.71384i −0.101530 + 0.175855i
\(447\) 13.6777 + 13.6777i 0.646934 + 0.646934i
\(448\) 0 0
\(449\) 24.6366 + 24.6366i 1.16267 + 1.16267i 0.983888 + 0.178784i \(0.0572164\pi\)
0.178784 + 0.983888i \(0.442784\pi\)
\(450\) 33.0177 8.84706i 1.55647 0.417054i
\(451\) −6.83784 + 3.94783i −0.321981 + 0.185896i
\(452\) −0.789262 + 0.455681i −0.0371238 + 0.0214334i
\(453\) −3.09733 11.5594i −0.145525 0.543108i
\(454\) −9.73430 −0.456854
\(455\) 0 0
\(456\) 7.56149 0.354099
\(457\) 1.76442 + 6.58491i 0.0825361 + 0.308029i 0.994836 0.101493i \(-0.0323621\pi\)
−0.912300 + 0.409522i \(0.865695\pi\)
\(458\) −1.83179 + 1.05758i −0.0855939 + 0.0494177i
\(459\) 5.43605 3.13850i 0.253733 0.146493i
\(460\) −1.21555 + 0.325705i −0.0566752 + 0.0151861i
\(461\) −5.06375 5.06375i −0.235842 0.235842i 0.579284 0.815126i \(-0.303332\pi\)
−0.815126 + 0.579284i \(0.803332\pi\)
\(462\) 0 0
\(463\) −14.8196 14.8196i −0.688725 0.688725i 0.273226 0.961950i \(-0.411909\pi\)
−0.961950 + 0.273226i \(0.911909\pi\)
\(464\) −20.3715 + 35.2845i −0.945724 + 1.63804i
\(465\) −14.7730 25.5876i −0.685082 1.18660i
\(466\) 3.26043 12.1681i 0.151036 0.563676i
\(467\) 0.228257 0.395352i 0.0105625 0.0182947i −0.860696 0.509119i \(-0.829971\pi\)
0.871258 + 0.490825i \(0.163304\pi\)
\(468\) −0.572537 + 1.48830i −0.0264655 + 0.0687969i
\(469\) 0 0
\(470\) 40.8229 40.8229i 1.88302 1.88302i
\(471\) 5.68769 9.85137i 0.262075 0.453927i
\(472\) 0.345951 + 0.599204i 0.0159237 + 0.0275806i
\(473\) 29.0198 + 7.77583i 1.33433 + 0.357533i
\(474\) 3.67855 0.985664i 0.168961 0.0452731i
\(475\) −23.5279 + 23.5279i −1.07953 + 1.07953i
\(476\) 0 0
\(477\) −6.70504 −0.307003
\(478\) 8.44260 + 4.87434i 0.386155 + 0.222947i
\(479\) 31.7426 + 8.50540i 1.45036 + 0.388622i 0.896148 0.443756i \(-0.146354\pi\)
0.554209 + 0.832378i \(0.313021\pi\)
\(480\) 3.37821 1.95041i 0.154193 0.0890236i
\(481\) −17.2658 1.82729i −0.787251 0.0833171i
\(482\) 15.9943i 0.728519i
\(483\) 0 0
\(484\) −0.844253 −0.0383751
\(485\) 35.8412 + 20.6929i 1.62747 + 0.939617i
\(486\) −6.18717 + 23.0908i −0.280656 + 1.04742i
\(487\) −11.1655 2.99178i −0.505956 0.135571i −0.00319321 0.999995i \(-0.501016\pi\)
−0.502763 + 0.864424i \(0.667683\pi\)
\(488\) −0.230381 0.859792i −0.0104288 0.0389210i
\(489\) 6.69986 6.69986i 0.302978 0.302978i
\(490\) 0 0
\(491\) 0.946627i 0.0427207i −0.999772 0.0213603i \(-0.993200\pi\)
0.999772 0.0213603i \(-0.00679973\pi\)
\(492\) 0.517167 0.138575i 0.0233157 0.00624743i
\(493\) −6.35636 11.0095i −0.286276 0.495845i
\(494\) −2.66579 16.9100i −0.119940 0.760816i
\(495\) 19.6011 + 11.3167i 0.881004 + 0.508648i
\(496\) 26.2434 + 26.2434i 1.17836 + 1.17836i
\(497\) 0 0
\(498\) 7.13412i 0.319688i
\(499\) 5.69198 + 21.2427i 0.254808 + 0.950956i 0.968197 + 0.250188i \(0.0804924\pi\)
−0.713389 + 0.700768i \(0.752841\pi\)
\(500\) −1.09220 + 4.07615i −0.0488447 + 0.182291i
\(501\) −1.96560 + 7.33572i −0.0878165 + 0.327736i
\(502\) 10.7677 + 40.1855i 0.480585 + 1.79357i
\(503\) 1.12263i 0.0500556i 0.999687 + 0.0250278i \(0.00796742\pi\)
−0.999687 + 0.0250278i \(0.992033\pi\)
\(504\) 0 0
\(505\) 0.580663 + 0.580663i 0.0258392 + 0.0258392i
\(506\) −5.37335 3.10230i −0.238875 0.137914i
\(507\) 11.2437 + 2.40687i 0.499350 + 0.106893i
\(508\) 1.03829 + 1.79838i 0.0460669 + 0.0797902i
\(509\) 18.5635 4.97409i 0.822815 0.220473i 0.177238 0.984168i \(-0.443284\pi\)
0.645577 + 0.763695i \(0.276617\pi\)
\(510\) 6.99997i 0.309964i
\(511\) 0 0
\(512\) 12.9970 12.9970i 0.574390 0.574390i
\(513\) −3.82398 14.2713i −0.168833 0.630092i
\(514\) 20.2280 + 5.42008i 0.892219 + 0.239069i
\(515\) −16.6088 + 61.9848i −0.731870 + 2.73137i
\(516\) −1.76433 1.01864i −0.0776703 0.0448430i
\(517\) 25.8099 1.13512
\(518\) 0 0
\(519\) 3.14197i 0.137917i
\(520\) 23.7513 + 29.3736i 1.04156 + 1.28812i
\(521\) −19.3198 + 11.1543i −0.846416 + 0.488678i −0.859440 0.511237i \(-0.829187\pi\)
0.0130243 + 0.999915i \(0.495854\pi\)
\(522\) 29.6930 + 7.95620i 1.29963 + 0.348234i
\(523\) −15.3793 8.87924i −0.672489 0.388262i 0.124530 0.992216i \(-0.460258\pi\)
−0.797019 + 0.603954i \(0.793591\pi\)
\(524\) 3.48835 0.152389
\(525\) 0 0
\(526\) −23.4095 + 23.4095i −1.02070 + 1.02070i
\(527\) −11.1857 + 2.99720i −0.487257 + 0.130560i
\(528\) 9.68774 + 2.59582i 0.421605 + 0.112969i
\(529\) −10.2067 17.6785i −0.443768 0.768628i
\(530\) 8.79620 15.2355i 0.382082 0.661786i
\(531\) 0.406313 0.406313i 0.0176325 0.0176325i
\(532\) 0 0
\(533\) 4.44408 + 10.0010i 0.192494 + 0.433190i
\(534\) −4.84933 + 8.39929i −0.209851 + 0.363473i
\(535\) −17.3228 + 64.6497i −0.748931 + 2.79505i
\(536\) 1.40467 + 2.43296i 0.0606725 + 0.105088i
\(537\) −7.61914 + 13.1967i −0.328790 + 0.569482i
\(538\) −12.4059 12.4059i −0.534854 0.534854i
\(539\) 0 0
\(540\) −2.55337 2.55337i −0.109879 0.109879i
\(541\) −12.8109 + 3.43267i −0.550783 + 0.147582i −0.523468 0.852045i \(-0.675362\pi\)
−0.0273145 + 0.999627i \(0.508696\pi\)
\(542\) 6.34848 3.66530i 0.272691 0.157438i
\(543\) −4.76348 + 2.75019i −0.204420 + 0.118022i
\(544\) −0.395706 1.47680i −0.0169658 0.0633171i
\(545\) 27.5124 1.17850
\(546\) 0 0
\(547\) −14.0683 −0.601515 −0.300757 0.953701i \(-0.597239\pi\)
−0.300757 + 0.953701i \(0.597239\pi\)
\(548\) −1.03908 3.87788i −0.0443871 0.165655i
\(549\) −0.640195 + 0.369617i −0.0273229 + 0.0157749i
\(550\) −34.7236 + 20.0477i −1.48062 + 0.854835i
\(551\) −28.9034 + 7.74464i −1.23133 + 0.329933i
\(552\) −2.68607 2.68607i −0.114327 0.114327i
\(553\) 0 0
\(554\) 0.884579 + 0.884579i 0.0375822 + 0.0375822i
\(555\) 8.35532 14.4718i 0.354664 0.614295i
\(556\) 1.46161 + 2.53158i 0.0619861 + 0.107363i
\(557\) −4.39869 + 16.4161i −0.186379 + 0.695574i 0.807953 + 0.589247i \(0.200576\pi\)
−0.994331 + 0.106327i \(0.966091\pi\)
\(558\) 14.0011 24.2505i 0.592712 1.02661i
\(559\) 14.9513 38.8656i 0.632371 1.64384i
\(560\) 0 0
\(561\) −2.21283 + 2.21283i −0.0934260 + 0.0934260i
\(562\) −7.13128 + 12.3517i −0.300815 + 0.521026i
\(563\) −8.62337 14.9361i −0.363432 0.629482i 0.625091 0.780552i \(-0.285062\pi\)
−0.988523 + 0.151069i \(0.951728\pi\)
\(564\) −1.69056 0.452983i −0.0711853 0.0190740i
\(565\) 17.3184 4.64045i 0.728590 0.195225i
\(566\) 20.7884 20.7884i 0.873800 0.873800i
\(567\) 0 0
\(568\) 1.26037 0.0528840
\(569\) 13.5496 + 7.82285i 0.568028 + 0.327951i 0.756361 0.654154i \(-0.226975\pi\)
−0.188333 + 0.982105i \(0.560309\pi\)
\(570\) 15.9150 + 4.26441i 0.666605 + 0.178616i
\(571\) −10.5267 + 6.07757i −0.440527 + 0.254338i −0.703821 0.710377i \(-0.748524\pi\)
0.263294 + 0.964716i \(0.415191\pi\)
\(572\) 0.196858 1.86008i 0.00823105 0.0777740i
\(573\) 10.8858i 0.454760i
\(574\) 0 0
\(575\) 16.7156 0.697089
\(576\) −13.5421 7.81853i −0.564253 0.325772i
\(577\) 10.1232 37.7804i 0.421435 1.57282i −0.350151 0.936693i \(-0.613870\pi\)
0.771586 0.636125i \(-0.219464\pi\)
\(578\) −21.7026 5.81521i −0.902711 0.241881i
\(579\) −4.91161 18.3304i −0.204120 0.761785i
\(580\) −5.17130 + 5.17130i −0.214726 + 0.214726i
\(581\) 0 0
\(582\) 13.8369i 0.573556i
\(583\) 7.59690 2.03558i 0.314632 0.0843053i
\(584\) 11.2140 + 19.4232i 0.464037 + 0.803736i
\(585\) 18.4579 25.3667i 0.763141 1.04878i
\(586\) 11.7647 + 6.79237i 0.485996 + 0.280590i
\(587\) 6.17868 + 6.17868i 0.255021 + 0.255021i 0.823026 0.568004i \(-0.192284\pi\)
−0.568004 + 0.823026i \(0.692284\pi\)
\(588\) 0 0
\(589\) 27.2575i 1.12313i
\(590\) 0.390207 + 1.45627i 0.0160646 + 0.0599538i
\(591\) −0.461345 + 1.72176i −0.0189772 + 0.0708239i
\(592\) −5.43281 + 20.2755i −0.223287 + 0.833320i
\(593\) −8.75200 32.6629i −0.359402 1.34130i −0.874854 0.484387i \(-0.839043\pi\)
0.515453 0.856918i \(-0.327624\pi\)
\(594\) 17.8039i 0.730502i
\(595\) 0 0
\(596\) −3.08397 3.08397i −0.126324 0.126324i
\(597\) −5.11400 2.95257i −0.209302 0.120841i
\(598\) −5.05996 + 6.95390i −0.206917 + 0.284366i
\(599\) −5.13357 8.89161i −0.209752 0.363301i 0.741884 0.670528i \(-0.233932\pi\)
−0.951636 + 0.307227i \(0.900599\pi\)
\(600\) −23.7113 + 6.35342i −0.968009 + 0.259377i
\(601\) 4.09959i 0.167226i −0.996498 0.0836128i \(-0.973354\pi\)
0.996498 0.0836128i \(-0.0266459\pi\)
\(602\) 0 0
\(603\) 1.64976 1.64976i 0.0671835 0.0671835i
\(604\) 0.698368 + 2.60634i 0.0284162 + 0.106051i
\(605\) 16.0432 + 4.29875i 0.652247 + 0.174769i
\(606\) 0.0710593 0.265197i 0.00288658 0.0107729i
\(607\) 6.28556 + 3.62897i 0.255123 + 0.147295i 0.622108 0.782932i \(-0.286277\pi\)
−0.366985 + 0.930227i \(0.619610\pi\)
\(608\) −3.59867 −0.145946
\(609\) 0 0
\(610\) 1.93957i 0.0785308i
\(611\) 3.76507 35.5756i 0.152318 1.43923i
\(612\) −0.520955 + 0.300773i −0.0210583 + 0.0121580i
\(613\) −20.8038 5.57436i −0.840257 0.225146i −0.187073 0.982346i \(-0.559900\pi\)
−0.653183 + 0.757200i \(0.726567\pi\)
\(614\) 32.6012 + 18.8223i 1.31568 + 0.759606i
\(615\) −10.5332 −0.424740
\(616\) 0 0
\(617\) −28.5301 + 28.5301i −1.14858 + 1.14858i −0.161748 + 0.986832i \(0.551713\pi\)
−0.986832 + 0.161748i \(0.948287\pi\)
\(618\) 20.7238 5.55294i 0.833635 0.223372i
\(619\) −33.2819 8.91786i −1.33771 0.358439i −0.482128 0.876101i \(-0.660136\pi\)
−0.855585 + 0.517662i \(0.826803\pi\)
\(620\) 3.33093 + 5.76934i 0.133773 + 0.231702i
\(621\) −3.71119 + 6.42797i −0.148925 + 0.257946i
\(622\) 14.1348 14.1348i 0.566754 0.566754i
\(623\) 0 0
\(624\) 4.99121 12.9746i 0.199808 0.519400i
\(625\) 15.5266 26.8929i 0.621065 1.07572i
\(626\) −2.48890 + 9.28871i −0.0994766 + 0.371252i
\(627\) 3.68299 + 6.37912i 0.147084 + 0.254758i
\(628\) −1.28243 + 2.22123i −0.0511744 + 0.0886366i
\(629\) −4.63126 4.63126i −0.184660 0.184660i
\(630\) 0 0
\(631\) −26.1762 26.1762i −1.04206 1.04206i −0.999076 0.0429839i \(-0.986314\pi\)
−0.0429839 0.999076i \(-0.513686\pi\)
\(632\) 7.48844 2.00652i 0.297874 0.0798151i
\(633\) −14.5459 + 8.39809i −0.578148 + 0.333794i
\(634\) −40.2062 + 23.2130i −1.59679 + 0.921907i
\(635\) −10.5735 39.4610i −0.419598 1.56596i
\(636\) −0.533325 −0.0211477
\(637\) 0 0
\(638\) −36.0579 −1.42755
\(639\) −0.270911 1.01105i −0.0107171 0.0399966i
\(640\) 43.1698 24.9241i 1.70644 0.985212i
\(641\) −10.1134 + 5.83896i −0.399454 + 0.230625i −0.686248 0.727367i \(-0.740744\pi\)
0.286794 + 0.957992i \(0.407410\pi\)
\(642\) 21.6148 5.79167i 0.853069 0.228579i
\(643\) 12.8214 + 12.8214i 0.505627 + 0.505627i 0.913181 0.407554i \(-0.133618\pi\)
−0.407554 + 0.913181i \(0.633618\pi\)
\(644\) 0 0
\(645\) 28.3405 + 28.3405i 1.11591 + 1.11591i
\(646\) 3.22889 5.59260i 0.127039 0.220038i
\(647\) 5.73484 + 9.93304i 0.225460 + 0.390508i 0.956457 0.291872i \(-0.0942782\pi\)
−0.730997 + 0.682380i \(0.760945\pi\)
\(648\) −1.77695 + 6.63165i −0.0698050 + 0.260516i
\(649\) −0.337005 + 0.583711i −0.0132286 + 0.0229126i
\(650\) 22.5677 + 50.7864i 0.885178 + 1.99200i
\(651\) 0 0
\(652\) −1.51064 + 1.51064i −0.0591614 + 0.0591614i
\(653\) 4.47691 7.75423i 0.175195 0.303446i −0.765034 0.643990i \(-0.777278\pi\)
0.940229 + 0.340544i \(0.110611\pi\)
\(654\) −4.59922 7.96608i −0.179844 0.311498i
\(655\) −66.2883 17.7619i −2.59010 0.694014i
\(656\) 12.7803 3.42446i 0.498986 0.133703i
\(657\) 13.1706 13.1706i 0.513835 0.513835i
\(658\) 0 0
\(659\) 22.2313 0.866009 0.433005 0.901392i \(-0.357453\pi\)
0.433005 + 0.901392i \(0.357453\pi\)
\(660\) 1.55909 + 0.900139i 0.0606874 + 0.0350379i
\(661\) −2.37521 0.636436i −0.0923850 0.0247545i 0.212330 0.977198i \(-0.431895\pi\)
−0.304715 + 0.952443i \(0.598561\pi\)
\(662\) −16.0753 + 9.28107i −0.624784 + 0.360719i
\(663\) 2.72730 + 3.37290i 0.105920 + 0.130993i
\(664\) 14.5230i 0.563600i
\(665\) 0 0
\(666\) 15.8374 0.613688
\(667\) 13.0185 + 7.51622i 0.504077 + 0.291029i
\(668\) 0.443192 1.65401i 0.0171476 0.0639957i
\(669\) −2.47045 0.661955i −0.0955132 0.0255927i
\(670\) 1.58437 + 5.91294i 0.0612094 + 0.228437i
\(671\) 0.613137 0.613137i 0.0236699 0.0236699i
\(672\) 0 0
\(673\) 6.44000i 0.248244i −0.992267 0.124122i \(-0.960389\pi\)
0.992267 0.124122i \(-0.0396114\pi\)
\(674\) −6.50861 + 1.74398i −0.250702 + 0.0671755i
\(675\) 23.9824 + 41.5387i 0.923083 + 1.59883i
\(676\) −2.53516 0.542686i −0.0975063 0.0208725i
\(677\) −4.00871 2.31443i −0.154067 0.0889507i 0.420984 0.907068i \(-0.361685\pi\)
−0.575052 + 0.818117i \(0.695018\pi\)
\(678\) −4.23871 4.23871i −0.162787 0.162787i
\(679\) 0 0
\(680\) 14.2499i 0.546458i
\(681\) −1.50259 5.60775i −0.0575795 0.214889i
\(682\) −8.50116 + 31.7268i −0.325526 + 1.21488i
\(683\) 4.69368 17.5171i 0.179599 0.670272i −0.816124 0.577877i \(-0.803881\pi\)
0.995722 0.0923945i \(-0.0294521\pi\)
\(684\) 0.366464 + 1.36766i 0.0140121 + 0.0522939i
\(685\) 78.9813i 3.01772i
\(686\) 0 0
\(687\) −0.892011 0.892011i −0.0340323 0.0340323i
\(688\) −43.6002 25.1726i −1.66224 0.959697i
\(689\) −1.69757 10.7683i −0.0646724 0.410238i
\(690\) −4.13863 7.16832i −0.157555 0.272893i
\(691\) −0.596708 + 0.159887i −0.0226998 + 0.00608240i −0.270151 0.962818i \(-0.587074\pi\)
0.247451 + 0.968900i \(0.420407\pi\)
\(692\) 0.708433i 0.0269306i
\(693\) 0 0
\(694\) 11.6747 11.6747i 0.443166 0.443166i
\(695\) −14.8844 55.5493i −0.564597 2.10711i
\(696\) −21.3237 5.71366i −0.808271 0.216576i
\(697\) −1.06851 + 3.98773i −0.0404726 + 0.151046i
\(698\) −30.3436 17.5189i −1.14852 0.663101i
\(699\) 7.51309 0.284171
\(700\) 0 0
\(701\) 14.4452i 0.545586i −0.962073 0.272793i \(-0.912053\pi\)
0.962073 0.272793i \(-0.0879474\pi\)
\(702\) −24.5403 2.59717i −0.926214 0.0980239i
\(703\) −13.3509 + 7.70815i −0.503539 + 0.290718i
\(704\) 17.7170 + 4.74725i 0.667734 + 0.178919i
\(705\) 29.8188 + 17.2159i 1.12304 + 0.648388i
\(706\) 9.08287 0.341838
\(707\) 0 0
\(708\) 0.0323185 0.0323185i 0.00121460 0.00121460i
\(709\) −3.17903 + 0.851819i −0.119391 + 0.0319907i −0.318020 0.948084i \(-0.603018\pi\)
0.198629 + 0.980075i \(0.436351\pi\)
\(710\) 2.65275 + 0.710803i 0.0995561 + 0.0266760i
\(711\) −3.21921 5.57583i −0.120730 0.209110i
\(712\) −9.87181 + 17.0985i −0.369962 + 0.640792i
\(713\) 9.68268 9.68268i 0.362619 0.362619i
\(714\) 0 0
\(715\) −13.2120 + 34.3444i −0.494100 + 1.28441i
\(716\) 1.71792 2.97552i 0.0642016 0.111201i
\(717\) −1.50481 + 5.61603i −0.0561982 + 0.209734i
\(718\) 16.1290 + 27.9363i 0.601930 + 1.04257i
\(719\) −24.6176 + 42.6390i −0.918083 + 1.59017i −0.115760 + 0.993277i \(0.536930\pi\)
−0.802323 + 0.596890i \(0.796403\pi\)
\(720\) −26.8190 26.8190i −0.999485 0.999485i
\(721\) 0 0
\(722\) 9.17662 + 9.17662i 0.341518 + 0.341518i
\(723\) −9.21401 + 2.46889i −0.342673 + 0.0918188i
\(724\) 1.07404 0.620097i 0.0399164 0.0230457i
\(725\) 84.1277 48.5712i 3.12443 1.80389i
\(726\) −1.43723 5.36383i −0.0533408 0.199070i
\(727\) −34.0096 −1.26135 −0.630674 0.776048i \(-0.717221\pi\)
−0.630674 + 0.776048i \(0.717221\pi\)
\(728\) 0 0
\(729\) −6.54406 −0.242372
\(730\) 12.6485 + 47.2050i 0.468144 + 1.74714i
\(731\) 13.6042 7.85441i 0.503171 0.290506i
\(732\) −0.0509216 + 0.0293996i −0.00188212 + 0.00108664i
\(733\) −36.2160 + 9.70406i −1.33767 + 0.358428i −0.855569 0.517688i \(-0.826793\pi\)
−0.482101 + 0.876116i \(0.660126\pi\)
\(734\) 17.0423 + 17.0423i 0.629042 + 0.629042i
\(735\) 0 0
\(736\) 1.27836 + 1.27836i 0.0471208 + 0.0471208i
\(737\) −1.36835 + 2.37005i −0.0504038 + 0.0873020i
\(738\) −4.99140 8.64536i −0.183736 0.318240i
\(739\) 1.10850 4.13697i 0.0407767 0.152181i −0.942536 0.334105i \(-0.891566\pi\)
0.983313 + 0.181924i \(0.0582326\pi\)
\(740\) −1.88391 + 3.26302i −0.0692538 + 0.119951i
\(741\) 9.33004 4.14595i 0.342748 0.152305i
\(742\) 0 0
\(743\) −25.3436 + 25.3436i −0.929767 + 0.929767i −0.997691 0.0679234i \(-0.978363\pi\)
0.0679234 + 0.997691i \(0.478363\pi\)
\(744\) −10.0547 + 17.4153i −0.368623 + 0.638474i
\(745\) 42.9011 + 74.3069i 1.57177 + 2.72239i
\(746\) 6.03899 + 1.61814i 0.221103 + 0.0592444i
\(747\) −11.6501 + 3.12164i −0.426256 + 0.114215i
\(748\) 0.498937 0.498937i 0.0182429 0.0182429i
\(749\) 0 0
\(750\) −27.7565 −1.01352
\(751\) 39.9450 + 23.0623i 1.45761 + 0.841554i 0.998894 0.0470273i \(-0.0149748\pi\)
0.458720 + 0.888581i \(0.348308\pi\)
\(752\) −41.7771 11.1941i −1.52346 0.408209i
\(753\) −21.4880 + 12.4061i −0.783067 + 0.452104i
\(754\) −5.26001 + 49.7011i −0.191558 + 1.81001i
\(755\) 53.0837i 1.93191i
\(756\) 0 0
\(757\) −38.5756 −1.40205 −0.701027 0.713135i \(-0.747275\pi\)
−0.701027 + 0.713135i \(0.747275\pi\)
\(758\) −32.9315 19.0130i −1.19612 0.690583i
\(759\) 0.957747 3.57436i 0.0347640 0.129741i
\(760\) 32.3982 + 8.68107i 1.17521 + 0.314896i
\(761\) 2.57337 + 9.60394i 0.0932845 + 0.348142i 0.996754 0.0805104i \(-0.0256550\pi\)
−0.903469 + 0.428653i \(0.858988\pi\)
\(762\) −9.65816 + 9.65816i −0.349878 + 0.349878i
\(763\) 0 0
\(764\) 2.45446i 0.0887993i
\(765\) 11.4311 3.06294i 0.413291 0.110741i
\(766\) −17.4036 30.1439i −0.628818 1.08914i
\(767\) 0.755407 + 0.549667i 0.0272762 + 0.0198473i
\(768\) −3.63106 2.09640i −0.131025 0.0756472i
\(769\) 28.4649 + 28.4649i 1.02647 + 1.02647i 0.999640 + 0.0268295i \(0.00854111\pi\)
0.0268295 + 0.999640i \(0.491459\pi\)
\(770\) 0 0
\(771\) 12.4896i 0.449803i
\(772\) 1.10744 + 4.13302i 0.0398577 + 0.148751i
\(773\) −6.61690 + 24.6946i −0.237993 + 0.888203i 0.738783 + 0.673943i \(0.235401\pi\)
−0.976777 + 0.214260i \(0.931266\pi\)
\(774\) −9.83129 + 36.6909i −0.353379 + 1.31883i
\(775\) −22.9027 85.4739i −0.822688 3.07031i
\(776\) 28.1677i 1.01116i
\(777\) 0 0
\(778\) −20.4214 20.4214i −0.732141 0.732141i
\(779\) 8.41547 + 4.85867i 0.301515 + 0.174080i
\(780\) 1.46816 2.01769i 0.0525685 0.0722448i
\(781\) 0.613891 + 1.06329i 0.0219667 + 0.0380475i
\(782\) −3.13366 + 0.839661i −0.112059 + 0.0300262i
\(783\) 43.1350i 1.54152i
\(784\) 0 0
\(785\) 35.6797 35.6797i 1.27346 1.27346i
\(786\) 5.93847 + 22.1627i 0.211818 + 0.790516i
\(787\) −17.5248 4.69577i −0.624693 0.167386i −0.0674326 0.997724i \(-0.521481\pi\)
−0.557260 + 0.830338i \(0.688147\pi\)
\(788\) 0.104021 0.388213i 0.00370561 0.0138295i
\(789\) −17.0993 9.87229i −0.608751 0.351463i
\(790\) 16.8928 0.601020
\(791\) 0 0
\(792\) 15.4046i 0.547378i
\(793\) −0.755686 0.934571i −0.0268352 0.0331876i
\(794\) −15.3597 + 8.86791i −0.545094 + 0.314710i
\(795\) 10.1347 + 2.71557i 0.359439 + 0.0963114i
\(796\) 1.15307 + 0.665728i 0.0408696 + 0.0235961i
\(797\) 6.98547 0.247438 0.123719 0.992317i \(-0.460518\pi\)
0.123719 + 0.992317i \(0.460518\pi\)
\(798\) 0 0
\(799\) 9.54256 9.54256i 0.337592 0.337592i
\(800\) 11.2847 3.02373i 0.398975 0.106905i
\(801\) 15.8381 + 4.24380i 0.559611 + 0.149947i
\(802\) −6.96815 12.0692i −0.246054 0.426178i
\(803\) −10.9240 + 18.9209i −0.385500 + 0.667706i
\(804\) 0.131223 0.131223i 0.00462789 0.00462789i
\(805\) 0 0
\(806\) 42.4910 + 16.3459i 1.49668 + 0.575761i
\(807\) 5.23181 9.06176i 0.184168 0.318989i
\(808\) 0.144656 0.539862i 0.00508897 0.0189923i
\(809\) −1.00660 1.74348i −0.0353902 0.0612976i 0.847788 0.530336i \(-0.177934\pi\)
−0.883178 + 0.469038i \(0.844601\pi\)
\(810\) −7.48003 + 12.9558i −0.262821 + 0.455220i
\(811\) −19.2255 19.2255i −0.675097 0.675097i 0.283790 0.958887i \(-0.408408\pi\)
−0.958887 + 0.283790i \(0.908408\pi\)
\(812\) 0 0
\(813\) 3.09147 + 3.09147i 0.108422 + 0.108422i
\(814\) −17.9440 + 4.80809i −0.628938 + 0.168523i
\(815\) 36.3983 21.0146i 1.27498 0.736109i
\(816\) 4.54153 2.62206i 0.158985 0.0917903i
\(817\) −9.56987 35.7152i −0.334807 1.24952i
\(818\) −28.6294 −1.00100
\(819\) 0 0
\(820\) 2.37497 0.0829374
\(821\) 2.49536 + 9.31280i 0.0870885 + 0.325019i 0.995702 0.0926203i \(-0.0295243\pi\)
−0.908613 + 0.417639i \(0.862858\pi\)
\(822\) 22.8686 13.2032i 0.797635 0.460515i
\(823\) 15.6607 9.04171i 0.545898 0.315174i −0.201568 0.979475i \(-0.564604\pi\)
0.747466 + 0.664300i \(0.231270\pi\)
\(824\) 42.1876 11.3041i 1.46967 0.393798i
\(825\) −16.9090 16.9090i −0.588697 0.588697i
\(826\) 0 0
\(827\) 12.8291 + 12.8291i 0.446111 + 0.446111i 0.894059 0.447949i \(-0.147845\pi\)
−0.447949 + 0.894059i \(0.647845\pi\)
\(828\) 0.355656 0.616014i 0.0123599 0.0214080i
\(829\) −14.1033 24.4277i −0.489829 0.848409i 0.510102 0.860114i \(-0.329608\pi\)
−0.999931 + 0.0117047i \(0.996274\pi\)
\(830\) 8.19043 30.5671i 0.284294 1.06100i
\(831\) −0.373046 + 0.646134i −0.0129408 + 0.0224141i
\(832\) 9.12795 23.7280i 0.316455 0.822621i
\(833\) 0 0
\(834\) −13.5958 + 13.5958i −0.470785 + 0.470785i
\(835\) −16.8438 + 29.1742i −0.582902 + 1.00962i
\(836\) −0.830418 1.43833i −0.0287206 0.0497455i
\(837\) 37.9537 + 10.1697i 1.31187 + 0.351515i
\(838\) −34.6620 + 9.28767i −1.19738 + 0.320837i
\(839\) −7.67294 + 7.67294i −0.264899 + 0.264899i −0.827041 0.562142i \(-0.809978\pi\)
0.562142 + 0.827041i \(0.309978\pi\)
\(840\) 0 0
\(841\) 58.3606 2.01243
\(842\) 30.8548 + 17.8140i 1.06333 + 0.613912i
\(843\) −8.21639 2.20158i −0.282988 0.0758263i
\(844\) 3.27973 1.89355i 0.112893 0.0651787i
\(845\) 45.4119 + 23.2210i 1.56222 + 0.798828i
\(846\) 32.6326i 1.12193i
\(847\) 0 0
\(848\) −13.1796 −0.452588
\(849\) 15.1847 + 8.76689i 0.521137 + 0.300879i
\(850\) −5.42604 + 20.2503i −0.186112 + 0.694579i
\(851\) 7.48080 + 2.00448i 0.256439 + 0.0687125i
\(852\) −0.0215485 0.0804200i −0.000738238 0.00275514i
\(853\) −10.4908 + 10.4908i −0.359198 + 0.359198i −0.863517 0.504319i \(-0.831744\pi\)
0.504319 + 0.863517i \(0.331744\pi\)
\(854\) 0 0
\(855\) 27.8554i 0.952634i
\(856\) 44.0014 11.7901i 1.50394 0.402979i
\(857\) −8.61727 14.9255i −0.294360 0.509847i 0.680476 0.732771i \(-0.261773\pi\)
−0.974836 + 0.222924i \(0.928440\pi\)
\(858\) 12.1529 1.91585i 0.414892 0.0654061i
\(859\) 32.5438 + 18.7892i 1.11038 + 0.641079i 0.938928 0.344113i \(-0.111820\pi\)
0.171453 + 0.985192i \(0.445154\pi\)
\(860\) −6.39005 6.39005i −0.217899 0.217899i
\(861\) 0 0
\(862\) 40.7133i 1.38670i
\(863\) 0.319657 + 1.19297i 0.0108812 + 0.0406093i 0.971153 0.238457i \(-0.0766417\pi\)
−0.960272 + 0.279067i \(0.909975\pi\)
\(864\) −1.34265 + 5.01085i −0.0456779 + 0.170472i
\(865\) 3.60719 13.4622i 0.122648 0.457729i
\(866\) −9.99026 37.2842i −0.339483 1.26697i
\(867\) 13.4001i 0.455092i
\(868\) 0 0
\(869\) 5.34017 + 5.34017i 0.181153 + 0.181153i
\(870\) −41.6585 24.0515i −1.41236 0.815424i
\(871\) 3.06719 + 2.23183i 0.103928 + 0.0756225i
\(872\) −9.36265 16.2166i −0.317059 0.549163i
\(873\) −22.5958 + 6.05452i −0.764752 + 0.204915i
\(874\) 7.63614i 0.258296i
\(875\) 0 0
\(876\) 1.04760 1.04760i 0.0353952 0.0353952i
\(877\) −12.2540 45.7327i −0.413789 1.54428i −0.787249 0.616636i \(-0.788495\pi\)
0.373460 0.927646i \(-0.378171\pi\)
\(878\) −5.30810 1.42230i −0.179140 0.0480004i
\(879\) −2.09695 + 7.82591i −0.0707283 + 0.263962i
\(880\) 38.5282 + 22.2443i 1.29879 + 0.749855i
\(881\) −25.5041 −0.859255 −0.429627 0.903006i \(-0.641355\pi\)
−0.429627 + 0.903006i \(0.641355\pi\)
\(882\) 0 0
\(883\) 34.7968i 1.17101i 0.810670 + 0.585503i \(0.199103\pi\)
−0.810670 + 0.585503i \(0.800897\pi\)
\(884\) −0.614935 0.760502i −0.0206825 0.0255784i
\(885\) −0.778700 + 0.449582i −0.0261757 + 0.0151125i
\(886\) 3.85071 + 1.03180i 0.129367 + 0.0346638i
\(887\) 39.3189 + 22.7008i 1.32020 + 0.762217i 0.983760 0.179488i \(-0.0574441\pi\)
0.336439 + 0.941705i \(0.390777\pi\)
\(888\) −11.3735 −0.381669
\(889\) 0 0
\(890\) −30.4205 + 30.4205i −1.01970 + 1.01970i
\(891\) −6.46018 + 1.73100i −0.216424 + 0.0579907i
\(892\) 0.557023 + 0.149254i 0.0186505 + 0.00499739i
\(893\) −15.8824 27.5091i −0.531484 0.920558i
\(894\) 14.3434 24.8436i 0.479717 0.830894i
\(895\) −47.7959 + 47.7959i −1.59764 + 1.59764i
\(896\) 0 0
\(897\) −4.78707 1.84154i −0.159836 0.0614873i
\(898\) 25.8357 44.7488i 0.862149 1.49329i
\(899\) 20.5965 76.8671i 0.686931 2.56366i
\(900\) −2.29831 3.98080i −0.0766105 0.132693i
\(901\) 2.05616 3.56137i 0.0685005 0.118646i
\(902\) 8.27996 + 8.27996i 0.275693 + 0.275693i
\(903\) 0 0
\(904\) −8.62877 8.62877i −0.286989 0.286989i
\(905\) −23.5671 + 6.31480i −0.783398 + 0.209911i
\(906\) −15.3701 + 8.87394i −0.510638 + 0.294817i
\(907\) 0.0976763 0.0563935i 0.00324329 0.00187251i −0.498377 0.866960i \(-0.666071\pi\)
0.501621 + 0.865088i \(0.332737\pi\)
\(908\) 0.338796 + 1.26440i 0.0112433 + 0.0419607i
\(909\) −0.464163 −0.0153953
\(910\) 0 0
\(911\) −0.606928 −0.0201084 −0.0100542 0.999949i \(-0.503200\pi\)
−0.0100542 + 0.999949i \(0.503200\pi\)
\(912\) −3.19473 11.9229i −0.105788 0.394807i
\(913\) 12.2521 7.07372i 0.405484 0.234106i
\(914\) 8.75571 5.05511i 0.289613 0.167208i
\(915\) 1.11735 0.299393i 0.0369384 0.00989762i
\(916\) 0.201125 + 0.201125i 0.00664536 + 0.00664536i
\(917\) 0 0
\(918\) −6.58253 6.58253i −0.217256 0.217256i
\(919\) −24.4824 + 42.4048i −0.807600 + 1.39880i 0.106922 + 0.994267i \(0.465900\pi\)
−0.914522 + 0.404536i \(0.867433\pi\)
\(920\) −8.42503 14.5926i −0.277765 0.481103i
\(921\) −5.81084 + 21.6863i −0.191474 + 0.714589i
\(922\) −5.31022 + 9.19757i −0.174883 + 0.302906i
\(923\) 1.55516 0.691058i 0.0511886 0.0227465i
\(924\) 0 0
\(925\) 35.3890 35.3890i 1.16358 1.16358i
\(926\) −15.5409 + 26.9176i −0.510706 + 0.884568i
\(927\) −18.1361 31.4126i −0.595666 1.03172i
\(928\) 10.1484 + 2.71925i 0.333137 + 0.0892638i
\(929\) 15.1918 4.07062i 0.498426 0.133553i −0.000843401 1.00000i \(-0.500268\pi\)
0.499269 + 0.866447i \(0.333602\pi\)
\(930\) −30.9841 + 30.9841i −1.01601 + 1.01601i
\(931\) 0 0
\(932\) −1.69401 −0.0554890
\(933\) 10.3247 + 5.96094i 0.338014 + 0.195152i
\(934\) −0.653962 0.175229i −0.0213983 0.00573366i
\(935\) −12.0217 + 6.94071i −0.393150 + 0.226985i
\(936\) −21.2332 2.24717i −0.694028 0.0734510i
\(937\) 2.27169i 0.0742129i 0.999311 + 0.0371065i \(0.0118141\pi\)
−0.999311 + 0.0371065i \(0.988186\pi\)
\(938\) 0 0
\(939\) −5.73524 −0.187163
\(940\) −6.72336 3.88173i −0.219292 0.126608i
\(941\) 7.39357 27.5932i 0.241023 0.899512i −0.734317 0.678807i \(-0.762498\pi\)
0.975341 0.220705i \(-0.0708358\pi\)
\(942\) −16.2954 4.36634i −0.530933 0.142263i
\(943\) −1.26348 4.71537i −0.0411446 0.153554i
\(944\) 0.798656 0.798656i 0.0259940 0.0259940i
\(945\) 0 0
\(946\) 44.5559i 1.44864i
\(947\) 0.735176 0.196990i 0.0238900 0.00640131i −0.246854 0.969053i \(-0.579397\pi\)
0.270744 + 0.962651i \(0.412730\pi\)
\(948\) −0.256059 0.443506i −0.00831640 0.0144044i
\(949\) 24.4865 + 17.8174i 0.794864 + 0.578378i
\(950\) 42.7350 + 24.6731i 1.38651 + 0.800500i
\(951\) −19.5788 19.5788i −0.634887 0.634887i
\(952\) 0 0
\(953\) 7.93535i 0.257051i 0.991706 + 0.128526i \(0.0410244\pi\)
−0.991706 + 0.128526i \(0.958976\pi\)
\(954\) 2.57367 + 9.60507i 0.0833257 + 0.310976i
\(955\) 12.4976 46.6416i 0.404412 1.50929i
\(956\) 0.339296 1.26627i 0.0109736 0.0409540i
\(957\) −5.56592 20.7723i −0.179921 0.671473i
\(958\) 48.7364i 1.57460i
\(959\) 0 0
\(960\) 17.3023 + 17.3023i 0.558429 + 0.558429i
\(961\) −35.9314 20.7450i −1.15908 0.669194i
\(962\) 4.00970 + 25.4348i 0.129278 + 0.820052i
\(963\) −18.9158 32.7631i −0.609553 1.05578i
\(964\) 2.07752 0.556670i 0.0669124 0.0179291i
\(965\) 84.1778i 2.70978i
\(966\) 0 0
\(967\) −1.26298 + 1.26298i −0.0406147 + 0.0406147i −0.727122 0.686508i \(-0.759143\pi\)
0.686508 + 0.727122i \(0.259143\pi\)
\(968\) −2.92578 10.9192i −0.0940383 0.350956i
\(969\) 3.72021 + 0.996826i 0.119510 + 0.0320227i
\(970\) 15.8856 59.2858i 0.510055 1.90355i
\(971\) −0.300693 0.173605i −0.00964970 0.00557126i 0.495167 0.868798i \(-0.335107\pi\)
−0.504817 + 0.863226i \(0.668440\pi\)
\(972\) 3.21464 0.103110
\(973\) 0 0
\(974\) 17.1431i 0.549299i
\(975\) −25.7735 + 20.8402i −0.825413 + 0.667422i
\(976\) −1.25838 + 0.726525i −0.0402797 + 0.0232555i
\(977\) 10.7627 + 2.88386i 0.344329 + 0.0922627i 0.426839 0.904328i \(-0.359627\pi\)
−0.0825101 + 0.996590i \(0.526294\pi\)
\(978\) −12.1693 7.02596i −0.389132 0.224666i
\(979\) −19.2331 −0.614693
\(980\) 0 0
\(981\) −10.9963 + 10.9963i −0.351084 + 0.351084i
\(982\) −1.35606 + 0.363354i −0.0432735 + 0.0115951i
\(983\) −32.3796 8.67608i −1.03275 0.276724i −0.297643 0.954677i \(-0.596201\pi\)
−0.735105 + 0.677953i \(0.762867\pi\)
\(984\) 3.58452 + 6.20857i 0.114270 + 0.197922i
\(985\) −3.95339 + 6.84747i −0.125965 + 0.218178i
\(986\) −13.3315 + 13.3315i −0.424561 + 0.424561i
\(987\) 0 0
\(988\) −2.10368 + 0.934803i −0.0669270 + 0.0297400i
\(989\) −9.28761 + 16.0866i −0.295329 + 0.511525i
\(990\) 8.68762 32.4227i 0.276111 1.03046i
\(991\) −17.8999 31.0035i −0.568608 0.984858i −0.996704 0.0811244i \(-0.974149\pi\)
0.428096 0.903733i \(-0.359184\pi\)
\(992\) 4.78525 8.28829i 0.151932 0.263154i
\(993\) −7.82804 7.82804i −0.248415 0.248415i
\(994\) 0 0
\(995\) −18.5219 18.5219i −0.587183 0.587183i
\(996\) −0.926661 + 0.248298i −0.0293624 + 0.00786763i
\(997\) −53.9761 + 31.1631i −1.70944 + 0.986946i −0.774193 + 0.632949i \(0.781844\pi\)
−0.935247 + 0.353996i \(0.884823\pi\)
\(998\) 28.2457 16.3077i 0.894102 0.516210i
\(999\) 5.75176 + 21.4659i 0.181978 + 0.679150i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 637.2.bc.c.460.10 112
7.2 even 3 637.2.i.b.538.10 yes 56
7.3 odd 6 inner 637.2.bc.c.31.20 112
7.4 even 3 inner 637.2.bc.c.31.19 112
7.5 odd 6 637.2.i.b.538.9 yes 56
7.6 odd 2 inner 637.2.bc.c.460.9 112
13.8 odd 4 inner 637.2.bc.c.411.20 112
91.34 even 4 inner 637.2.bc.c.411.19 112
91.47 even 12 637.2.i.b.489.9 56
91.60 odd 12 inner 637.2.bc.c.619.9 112
91.73 even 12 inner 637.2.bc.c.619.10 112
91.86 odd 12 637.2.i.b.489.10 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.i.b.489.9 56 91.47 even 12
637.2.i.b.489.10 yes 56 91.86 odd 12
637.2.i.b.538.9 yes 56 7.5 odd 6
637.2.i.b.538.10 yes 56 7.2 even 3
637.2.bc.c.31.19 112 7.4 even 3 inner
637.2.bc.c.31.20 112 7.3 odd 6 inner
637.2.bc.c.411.19 112 91.34 even 4 inner
637.2.bc.c.411.20 112 13.8 odd 4 inner
637.2.bc.c.460.9 112 7.6 odd 2 inner
637.2.bc.c.460.10 112 1.1 even 1 trivial
637.2.bc.c.619.9 112 91.60 odd 12 inner
637.2.bc.c.619.10 112 91.73 even 12 inner