Properties

Label 648.2.d.e.325.1
Level $648$
Weight $2$
Character 648.325
Analytic conductor $5.174$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [648,2,Mod(325,648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(648, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("648.325");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 325.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 648.325
Dual form 648.2.d.e.325.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(1.73205 + 1.00000i) q^{4} +3.73205i q^{5} -0.732051 q^{7} +(-2.00000 - 2.00000i) q^{8} +(1.36603 - 5.09808i) q^{10} +4.73205i q^{11} -2.46410i q^{13} +(1.00000 + 0.267949i) q^{14} +(2.00000 + 3.46410i) q^{16} +3.73205 q^{17} +3.26795i q^{19} +(-3.73205 + 6.46410i) q^{20} +(1.73205 - 6.46410i) q^{22} -8.73205 q^{23} -8.92820 q^{25} +(-0.901924 + 3.36603i) q^{26} +(-1.26795 - 0.732051i) q^{28} -5.19615i q^{29} +2.00000 q^{31} +(-1.46410 - 5.46410i) q^{32} +(-5.09808 - 1.36603i) q^{34} -2.73205i q^{35} -5.00000i q^{37} +(1.19615 - 4.46410i) q^{38} +(7.46410 - 7.46410i) q^{40} -4.53590 q^{41} +9.66025i q^{43} +(-4.73205 + 8.19615i) q^{44} +(11.9282 + 3.19615i) q^{46} -3.46410 q^{47} -6.46410 q^{49} +(12.1962 + 3.26795i) q^{50} +(2.46410 - 4.26795i) q^{52} -0.928203i q^{53} -17.6603 q^{55} +(1.46410 + 1.46410i) q^{56} +(-1.90192 + 7.09808i) q^{58} +8.39230i q^{59} +9.00000i q^{61} +(-2.73205 - 0.732051i) q^{62} +8.00000i q^{64} +9.19615 q^{65} +4.73205i q^{67} +(6.46410 + 3.73205i) q^{68} +(-1.00000 + 3.73205i) q^{70} -5.66025 q^{71} +9.00000 q^{73} +(-1.83013 + 6.83013i) q^{74} +(-3.26795 + 5.66025i) q^{76} -3.46410i q^{77} +5.26795 q^{79} +(-12.9282 + 7.46410i) q^{80} +(6.19615 + 1.66025i) q^{82} -14.0000i q^{83} +13.9282i q^{85} +(3.53590 - 13.1962i) q^{86} +(9.46410 - 9.46410i) q^{88} +11.7321 q^{89} +1.80385i q^{91} +(-15.1244 - 8.73205i) q^{92} +(4.73205 + 1.26795i) q^{94} -12.1962 q^{95} -8.00000 q^{97} +(8.83013 + 2.36603i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 4 q^{7} - 8 q^{8} + 2 q^{10} + 4 q^{14} + 8 q^{16} + 8 q^{17} - 8 q^{20} - 28 q^{23} - 8 q^{25} - 14 q^{26} - 12 q^{28} + 8 q^{31} + 8 q^{32} - 10 q^{34} - 16 q^{38} + 16 q^{40} - 32 q^{41}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.965926 0.258819i
\(3\) 0 0
\(4\) 1.73205 + 1.00000i 0.866025 + 0.500000i
\(5\) 3.73205i 1.66902i 0.550990 + 0.834512i \(0.314250\pi\)
−0.550990 + 0.834512i \(0.685750\pi\)
\(6\) 0 0
\(7\) −0.732051 −0.276689 −0.138345 0.990384i \(-0.544178\pi\)
−0.138345 + 0.990384i \(0.544178\pi\)
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 0 0
\(10\) 1.36603 5.09808i 0.431975 1.61215i
\(11\) 4.73205i 1.42677i 0.700774 + 0.713384i \(0.252838\pi\)
−0.700774 + 0.713384i \(0.747162\pi\)
\(12\) 0 0
\(13\) 2.46410i 0.683419i −0.939806 0.341709i \(-0.888994\pi\)
0.939806 0.341709i \(-0.111006\pi\)
\(14\) 1.00000 + 0.267949i 0.267261 + 0.0716124i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 3.73205 0.905155 0.452578 0.891725i \(-0.350505\pi\)
0.452578 + 0.891725i \(0.350505\pi\)
\(18\) 0 0
\(19\) 3.26795i 0.749719i 0.927082 + 0.374859i \(0.122309\pi\)
−0.927082 + 0.374859i \(0.877691\pi\)
\(20\) −3.73205 + 6.46410i −0.834512 + 1.44542i
\(21\) 0 0
\(22\) 1.73205 6.46410i 0.369274 1.37815i
\(23\) −8.73205 −1.82076 −0.910379 0.413775i \(-0.864210\pi\)
−0.910379 + 0.413775i \(0.864210\pi\)
\(24\) 0 0
\(25\) −8.92820 −1.78564
\(26\) −0.901924 + 3.36603i −0.176882 + 0.660132i
\(27\) 0 0
\(28\) −1.26795 0.732051i −0.239620 0.138345i
\(29\) 5.19615i 0.964901i −0.875923 0.482451i \(-0.839747\pi\)
0.875923 0.482451i \(-0.160253\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) −1.46410 5.46410i −0.258819 0.965926i
\(33\) 0 0
\(34\) −5.09808 1.36603i −0.874313 0.234271i
\(35\) 2.73205i 0.461801i
\(36\) 0 0
\(37\) 5.00000i 0.821995i −0.911636 0.410997i \(-0.865181\pi\)
0.911636 0.410997i \(-0.134819\pi\)
\(38\) 1.19615 4.46410i 0.194042 0.724173i
\(39\) 0 0
\(40\) 7.46410 7.46410i 1.18018 1.18018i
\(41\) −4.53590 −0.708388 −0.354194 0.935172i \(-0.615245\pi\)
−0.354194 + 0.935172i \(0.615245\pi\)
\(42\) 0 0
\(43\) 9.66025i 1.47317i 0.676342 + 0.736587i \(0.263564\pi\)
−0.676342 + 0.736587i \(0.736436\pi\)
\(44\) −4.73205 + 8.19615i −0.713384 + 1.23562i
\(45\) 0 0
\(46\) 11.9282 + 3.19615i 1.75872 + 0.471247i
\(47\) −3.46410 −0.505291 −0.252646 0.967559i \(-0.581301\pi\)
−0.252646 + 0.967559i \(0.581301\pi\)
\(48\) 0 0
\(49\) −6.46410 −0.923443
\(50\) 12.1962 + 3.26795i 1.72480 + 0.462158i
\(51\) 0 0
\(52\) 2.46410 4.26795i 0.341709 0.591858i
\(53\) 0.928203i 0.127499i −0.997966 0.0637493i \(-0.979694\pi\)
0.997966 0.0637493i \(-0.0203058\pi\)
\(54\) 0 0
\(55\) −17.6603 −2.38131
\(56\) 1.46410 + 1.46410i 0.195649 + 0.195649i
\(57\) 0 0
\(58\) −1.90192 + 7.09808i −0.249735 + 0.932023i
\(59\) 8.39230i 1.09259i 0.837594 + 0.546293i \(0.183961\pi\)
−0.837594 + 0.546293i \(0.816039\pi\)
\(60\) 0 0
\(61\) 9.00000i 1.15233i 0.817333 + 0.576166i \(0.195452\pi\)
−0.817333 + 0.576166i \(0.804548\pi\)
\(62\) −2.73205 0.732051i −0.346971 0.0929705i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 9.19615 1.14064
\(66\) 0 0
\(67\) 4.73205i 0.578112i 0.957312 + 0.289056i \(0.0933414\pi\)
−0.957312 + 0.289056i \(0.906659\pi\)
\(68\) 6.46410 + 3.73205i 0.783887 + 0.452578i
\(69\) 0 0
\(70\) −1.00000 + 3.73205i −0.119523 + 0.446065i
\(71\) −5.66025 −0.671749 −0.335874 0.941907i \(-0.609032\pi\)
−0.335874 + 0.941907i \(0.609032\pi\)
\(72\) 0 0
\(73\) 9.00000 1.05337 0.526685 0.850060i \(-0.323435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(74\) −1.83013 + 6.83013i −0.212748 + 0.793986i
\(75\) 0 0
\(76\) −3.26795 + 5.66025i −0.374859 + 0.649276i
\(77\) 3.46410i 0.394771i
\(78\) 0 0
\(79\) 5.26795 0.592691 0.296345 0.955081i \(-0.404232\pi\)
0.296345 + 0.955081i \(0.404232\pi\)
\(80\) −12.9282 + 7.46410i −1.44542 + 0.834512i
\(81\) 0 0
\(82\) 6.19615 + 1.66025i 0.684251 + 0.183344i
\(83\) 14.0000i 1.53670i −0.640030 0.768350i \(-0.721078\pi\)
0.640030 0.768350i \(-0.278922\pi\)
\(84\) 0 0
\(85\) 13.9282i 1.51073i
\(86\) 3.53590 13.1962i 0.381286 1.42298i
\(87\) 0 0
\(88\) 9.46410 9.46410i 1.00888 1.00888i
\(89\) 11.7321 1.24359 0.621797 0.783178i \(-0.286403\pi\)
0.621797 + 0.783178i \(0.286403\pi\)
\(90\) 0 0
\(91\) 1.80385i 0.189095i
\(92\) −15.1244 8.73205i −1.57682 0.910379i
\(93\) 0 0
\(94\) 4.73205 + 1.26795i 0.488074 + 0.130779i
\(95\) −12.1962 −1.25130
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 8.83013 + 2.36603i 0.891978 + 0.239005i
\(99\) 0 0
\(100\) −15.4641 8.92820i −1.54641 0.892820i
\(101\) 8.00000i 0.796030i 0.917379 + 0.398015i \(0.130301\pi\)
−0.917379 + 0.398015i \(0.869699\pi\)
\(102\) 0 0
\(103\) −3.46410 −0.341328 −0.170664 0.985329i \(-0.554591\pi\)
−0.170664 + 0.985329i \(0.554591\pi\)
\(104\) −4.92820 + 4.92820i −0.483250 + 0.483250i
\(105\) 0 0
\(106\) −0.339746 + 1.26795i −0.0329990 + 0.123154i
\(107\) 10.3923i 1.00466i 0.864675 + 0.502331i \(0.167524\pi\)
−0.864675 + 0.502331i \(0.832476\pi\)
\(108\) 0 0
\(109\) 12.8564i 1.23142i 0.787973 + 0.615710i \(0.211131\pi\)
−0.787973 + 0.615710i \(0.788869\pi\)
\(110\) 24.1244 + 6.46410i 2.30017 + 0.616328i
\(111\) 0 0
\(112\) −1.46410 2.53590i −0.138345 0.239620i
\(113\) 7.73205 0.727370 0.363685 0.931522i \(-0.381518\pi\)
0.363685 + 0.931522i \(0.381518\pi\)
\(114\) 0 0
\(115\) 32.5885i 3.03889i
\(116\) 5.19615 9.00000i 0.482451 0.835629i
\(117\) 0 0
\(118\) 3.07180 11.4641i 0.282782 1.05536i
\(119\) −2.73205 −0.250447
\(120\) 0 0
\(121\) −11.3923 −1.03566
\(122\) 3.29423 12.2942i 0.298245 1.11307i
\(123\) 0 0
\(124\) 3.46410 + 2.00000i 0.311086 + 0.179605i
\(125\) 14.6603i 1.31125i
\(126\) 0 0
\(127\) −13.6603 −1.21215 −0.606076 0.795407i \(-0.707257\pi\)
−0.606076 + 0.795407i \(0.707257\pi\)
\(128\) 2.92820 10.9282i 0.258819 0.965926i
\(129\) 0 0
\(130\) −12.5622 3.36603i −1.10178 0.295220i
\(131\) 0.196152i 0.0171379i 0.999963 + 0.00856896i \(0.00272762\pi\)
−0.999963 + 0.00856896i \(0.997272\pi\)
\(132\) 0 0
\(133\) 2.39230i 0.207439i
\(134\) 1.73205 6.46410i 0.149626 0.558413i
\(135\) 0 0
\(136\) −7.46410 7.46410i −0.640041 0.640041i
\(137\) 17.1962 1.46917 0.734583 0.678519i \(-0.237378\pi\)
0.734583 + 0.678519i \(0.237378\pi\)
\(138\) 0 0
\(139\) 19.4641i 1.65092i −0.564458 0.825462i \(-0.690915\pi\)
0.564458 0.825462i \(-0.309085\pi\)
\(140\) 2.73205 4.73205i 0.230900 0.399931i
\(141\) 0 0
\(142\) 7.73205 + 2.07180i 0.648859 + 0.173861i
\(143\) 11.6603 0.975079
\(144\) 0 0
\(145\) 19.3923 1.61044
\(146\) −12.2942 3.29423i −1.01748 0.272632i
\(147\) 0 0
\(148\) 5.00000 8.66025i 0.410997 0.711868i
\(149\) 5.19615i 0.425685i −0.977086 0.212843i \(-0.931728\pi\)
0.977086 0.212843i \(-0.0682722\pi\)
\(150\) 0 0
\(151\) 13.8564 1.12762 0.563809 0.825905i \(-0.309335\pi\)
0.563809 + 0.825905i \(0.309335\pi\)
\(152\) 6.53590 6.53590i 0.530131 0.530131i
\(153\) 0 0
\(154\) −1.26795 + 4.73205i −0.102174 + 0.381320i
\(155\) 7.46410i 0.599531i
\(156\) 0 0
\(157\) 2.46410i 0.196657i −0.995154 0.0983284i \(-0.968650\pi\)
0.995154 0.0983284i \(-0.0313495\pi\)
\(158\) −7.19615 1.92820i −0.572495 0.153400i
\(159\) 0 0
\(160\) 20.3923 5.46410i 1.61215 0.431975i
\(161\) 6.39230 0.503784
\(162\) 0 0
\(163\) 6.53590i 0.511931i 0.966686 + 0.255966i \(0.0823934\pi\)
−0.966686 + 0.255966i \(0.917607\pi\)
\(164\) −7.85641 4.53590i −0.613482 0.354194i
\(165\) 0 0
\(166\) −5.12436 + 19.1244i −0.397727 + 1.48434i
\(167\) 14.7321 1.14000 0.570000 0.821645i \(-0.306943\pi\)
0.570000 + 0.821645i \(0.306943\pi\)
\(168\) 0 0
\(169\) 6.92820 0.532939
\(170\) 5.09808 19.0263i 0.391005 1.45925i
\(171\) 0 0
\(172\) −9.66025 + 16.7321i −0.736587 + 1.27581i
\(173\) 1.73205i 0.131685i 0.997830 + 0.0658427i \(0.0209736\pi\)
−0.997830 + 0.0658427i \(0.979026\pi\)
\(174\) 0 0
\(175\) 6.53590 0.494067
\(176\) −16.3923 + 9.46410i −1.23562 + 0.713384i
\(177\) 0 0
\(178\) −16.0263 4.29423i −1.20122 0.321866i
\(179\) 14.0000i 1.04641i −0.852207 0.523205i \(-0.824736\pi\)
0.852207 0.523205i \(-0.175264\pi\)
\(180\) 0 0
\(181\) 6.53590i 0.485810i −0.970050 0.242905i \(-0.921900\pi\)
0.970050 0.242905i \(-0.0781002\pi\)
\(182\) 0.660254 2.46410i 0.0489413 0.182651i
\(183\) 0 0
\(184\) 17.4641 + 17.4641i 1.28747 + 1.28747i
\(185\) 18.6603 1.37193
\(186\) 0 0
\(187\) 17.6603i 1.29145i
\(188\) −6.00000 3.46410i −0.437595 0.252646i
\(189\) 0 0
\(190\) 16.6603 + 4.46410i 1.20866 + 0.323860i
\(191\) −16.5885 −1.20030 −0.600149 0.799888i \(-0.704892\pi\)
−0.600149 + 0.799888i \(0.704892\pi\)
\(192\) 0 0
\(193\) 10.8564 0.781461 0.390731 0.920505i \(-0.372222\pi\)
0.390731 + 0.920505i \(0.372222\pi\)
\(194\) 10.9282 + 2.92820i 0.784599 + 0.210233i
\(195\) 0 0
\(196\) −11.1962 6.46410i −0.799725 0.461722i
\(197\) 4.12436i 0.293848i 0.989148 + 0.146924i \(0.0469373\pi\)
−0.989148 + 0.146924i \(0.953063\pi\)
\(198\) 0 0
\(199\) 2.39230 0.169586 0.0847930 0.996399i \(-0.472977\pi\)
0.0847930 + 0.996399i \(0.472977\pi\)
\(200\) 17.8564 + 17.8564i 1.26264 + 1.26264i
\(201\) 0 0
\(202\) 2.92820 10.9282i 0.206028 0.768906i
\(203\) 3.80385i 0.266978i
\(204\) 0 0
\(205\) 16.9282i 1.18232i
\(206\) 4.73205 + 1.26795i 0.329698 + 0.0883422i
\(207\) 0 0
\(208\) 8.53590 4.92820i 0.591858 0.341709i
\(209\) −15.4641 −1.06967
\(210\) 0 0
\(211\) 26.0526i 1.79353i 0.442505 + 0.896766i \(0.354090\pi\)
−0.442505 + 0.896766i \(0.645910\pi\)
\(212\) 0.928203 1.60770i 0.0637493 0.110417i
\(213\) 0 0
\(214\) 3.80385 14.1962i 0.260026 0.970429i
\(215\) −36.0526 −2.45876
\(216\) 0 0
\(217\) −1.46410 −0.0993897
\(218\) 4.70577 17.5622i 0.318715 1.18946i
\(219\) 0 0
\(220\) −30.5885 17.6603i −2.06227 1.19065i
\(221\) 9.19615i 0.618600i
\(222\) 0 0
\(223\) 23.1244 1.54852 0.774261 0.632867i \(-0.218122\pi\)
0.774261 + 0.632867i \(0.218122\pi\)
\(224\) 1.07180 + 4.00000i 0.0716124 + 0.267261i
\(225\) 0 0
\(226\) −10.5622 2.83013i −0.702586 0.188257i
\(227\) 6.73205i 0.446822i 0.974724 + 0.223411i \(0.0717192\pi\)
−0.974724 + 0.223411i \(0.928281\pi\)
\(228\) 0 0
\(229\) 11.3923i 0.752825i −0.926452 0.376412i \(-0.877158\pi\)
0.926452 0.376412i \(-0.122842\pi\)
\(230\) −11.9282 + 44.5167i −0.786522 + 2.93534i
\(231\) 0 0
\(232\) −10.3923 + 10.3923i −0.682288 + 0.682288i
\(233\) −3.73205 −0.244495 −0.122247 0.992500i \(-0.539010\pi\)
−0.122247 + 0.992500i \(0.539010\pi\)
\(234\) 0 0
\(235\) 12.9282i 0.843343i
\(236\) −8.39230 + 14.5359i −0.546293 + 0.946206i
\(237\) 0 0
\(238\) 3.73205 + 1.00000i 0.241913 + 0.0648204i
\(239\) −7.85641 −0.508189 −0.254094 0.967179i \(-0.581777\pi\)
−0.254094 + 0.967179i \(0.581777\pi\)
\(240\) 0 0
\(241\) −4.46410 −0.287558 −0.143779 0.989610i \(-0.545925\pi\)
−0.143779 + 0.989610i \(0.545925\pi\)
\(242\) 15.5622 + 4.16987i 1.00037 + 0.268050i
\(243\) 0 0
\(244\) −9.00000 + 15.5885i −0.576166 + 0.997949i
\(245\) 24.1244i 1.54125i
\(246\) 0 0
\(247\) 8.05256 0.512372
\(248\) −4.00000 4.00000i −0.254000 0.254000i
\(249\) 0 0
\(250\) −5.36603 + 20.0263i −0.339377 + 1.26657i
\(251\) 7.26795i 0.458749i 0.973338 + 0.229374i \(0.0736680\pi\)
−0.973338 + 0.229374i \(0.926332\pi\)
\(252\) 0 0
\(253\) 41.3205i 2.59780i
\(254\) 18.6603 + 5.00000i 1.17085 + 0.313728i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 3.33975 0.208328 0.104164 0.994560i \(-0.466783\pi\)
0.104164 + 0.994560i \(0.466783\pi\)
\(258\) 0 0
\(259\) 3.66025i 0.227437i
\(260\) 15.9282 + 9.19615i 0.987825 + 0.570321i
\(261\) 0 0
\(262\) 0.0717968 0.267949i 0.00443562 0.0165540i
\(263\) 16.2487 1.00194 0.500969 0.865465i \(-0.332977\pi\)
0.500969 + 0.865465i \(0.332977\pi\)
\(264\) 0 0
\(265\) 3.46410 0.212798
\(266\) −0.875644 + 3.26795i −0.0536892 + 0.200371i
\(267\) 0 0
\(268\) −4.73205 + 8.19615i −0.289056 + 0.500660i
\(269\) 25.7321i 1.56891i 0.620185 + 0.784455i \(0.287057\pi\)
−0.620185 + 0.784455i \(0.712943\pi\)
\(270\) 0 0
\(271\) 10.7321 0.651926 0.325963 0.945383i \(-0.394312\pi\)
0.325963 + 0.945383i \(0.394312\pi\)
\(272\) 7.46410 + 12.9282i 0.452578 + 0.783887i
\(273\) 0 0
\(274\) −23.4904 6.29423i −1.41911 0.380248i
\(275\) 42.2487i 2.54769i
\(276\) 0 0
\(277\) 9.85641i 0.592214i 0.955155 + 0.296107i \(0.0956885\pi\)
−0.955155 + 0.296107i \(0.904311\pi\)
\(278\) −7.12436 + 26.5885i −0.427290 + 1.59467i
\(279\) 0 0
\(280\) −5.46410 + 5.46410i −0.326543 + 0.326543i
\(281\) −13.7321 −0.819185 −0.409593 0.912268i \(-0.634329\pi\)
−0.409593 + 0.912268i \(0.634329\pi\)
\(282\) 0 0
\(283\) 6.39230i 0.379983i −0.981786 0.189992i \(-0.939154\pi\)
0.981786 0.189992i \(-0.0608461\pi\)
\(284\) −9.80385 5.66025i −0.581751 0.335874i
\(285\) 0 0
\(286\) −15.9282 4.26795i −0.941854 0.252369i
\(287\) 3.32051 0.196003
\(288\) 0 0
\(289\) −3.07180 −0.180694
\(290\) −26.4904 7.09808i −1.55557 0.416813i
\(291\) 0 0
\(292\) 15.5885 + 9.00000i 0.912245 + 0.526685i
\(293\) 3.33975i 0.195110i 0.995230 + 0.0975550i \(0.0311022\pi\)
−0.995230 + 0.0975550i \(0.968898\pi\)
\(294\) 0 0
\(295\) −31.3205 −1.82355
\(296\) −10.0000 + 10.0000i −0.581238 + 0.581238i
\(297\) 0 0
\(298\) −1.90192 + 7.09808i −0.110175 + 0.411181i
\(299\) 21.5167i 1.24434i
\(300\) 0 0
\(301\) 7.07180i 0.407612i
\(302\) −18.9282 5.07180i −1.08920 0.291849i
\(303\) 0 0
\(304\) −11.3205 + 6.53590i −0.649276 + 0.374859i
\(305\) −33.5885 −1.92327
\(306\) 0 0
\(307\) 14.7846i 0.843802i 0.906642 + 0.421901i \(0.138637\pi\)
−0.906642 + 0.421901i \(0.861363\pi\)
\(308\) 3.46410 6.00000i 0.197386 0.341882i
\(309\) 0 0
\(310\) 2.73205 10.1962i 0.155170 0.579103i
\(311\) 19.3205 1.09557 0.547783 0.836621i \(-0.315472\pi\)
0.547783 + 0.836621i \(0.315472\pi\)
\(312\) 0 0
\(313\) 2.46410 0.139279 0.0696396 0.997572i \(-0.477815\pi\)
0.0696396 + 0.997572i \(0.477815\pi\)
\(314\) −0.901924 + 3.36603i −0.0508985 + 0.189956i
\(315\) 0 0
\(316\) 9.12436 + 5.26795i 0.513285 + 0.296345i
\(317\) 1.19615i 0.0671826i 0.999436 + 0.0335913i \(0.0106945\pi\)
−0.999436 + 0.0335913i \(0.989306\pi\)
\(318\) 0 0
\(319\) 24.5885 1.37669
\(320\) −29.8564 −1.66902
\(321\) 0 0
\(322\) −8.73205 2.33975i −0.486618 0.130389i
\(323\) 12.1962i 0.678612i
\(324\) 0 0
\(325\) 22.0000i 1.22034i
\(326\) 2.39230 8.92820i 0.132498 0.494487i
\(327\) 0 0
\(328\) 9.07180 + 9.07180i 0.500906 + 0.500906i
\(329\) 2.53590 0.139809
\(330\) 0 0
\(331\) 13.1244i 0.721380i 0.932686 + 0.360690i \(0.117459\pi\)
−0.932686 + 0.360690i \(0.882541\pi\)
\(332\) 14.0000 24.2487i 0.768350 1.33082i
\(333\) 0 0
\(334\) −20.1244 5.39230i −1.10116 0.295054i
\(335\) −17.6603 −0.964883
\(336\) 0 0
\(337\) 4.00000 0.217894 0.108947 0.994048i \(-0.465252\pi\)
0.108947 + 0.994048i \(0.465252\pi\)
\(338\) −9.46410 2.53590i −0.514779 0.137935i
\(339\) 0 0
\(340\) −13.9282 + 24.1244i −0.755363 + 1.30833i
\(341\) 9.46410i 0.512510i
\(342\) 0 0
\(343\) 9.85641 0.532196
\(344\) 19.3205 19.3205i 1.04169 1.04169i
\(345\) 0 0
\(346\) 0.633975 2.36603i 0.0340827 0.127198i
\(347\) 6.73205i 0.361395i 0.983539 + 0.180698i \(0.0578356\pi\)
−0.983539 + 0.180698i \(0.942164\pi\)
\(348\) 0 0
\(349\) 11.8564i 0.634659i 0.948315 + 0.317329i \(0.102786\pi\)
−0.948315 + 0.317329i \(0.897214\pi\)
\(350\) −8.92820 2.39230i −0.477233 0.127874i
\(351\) 0 0
\(352\) 25.8564 6.92820i 1.37815 0.369274i
\(353\) 6.92820 0.368751 0.184376 0.982856i \(-0.440974\pi\)
0.184376 + 0.982856i \(0.440974\pi\)
\(354\) 0 0
\(355\) 21.1244i 1.12116i
\(356\) 20.3205 + 11.7321i 1.07698 + 0.621797i
\(357\) 0 0
\(358\) −5.12436 + 19.1244i −0.270831 + 1.01075i
\(359\) −1.12436 −0.0593412 −0.0296706 0.999560i \(-0.509446\pi\)
−0.0296706 + 0.999560i \(0.509446\pi\)
\(360\) 0 0
\(361\) 8.32051 0.437921
\(362\) −2.39230 + 8.92820i −0.125737 + 0.469256i
\(363\) 0 0
\(364\) −1.80385 + 3.12436i −0.0945473 + 0.163761i
\(365\) 33.5885i 1.75810i
\(366\) 0 0
\(367\) 2.53590 0.132373 0.0661864 0.997807i \(-0.478917\pi\)
0.0661864 + 0.997807i \(0.478917\pi\)
\(368\) −17.4641 30.2487i −0.910379 1.57682i
\(369\) 0 0
\(370\) −25.4904 6.83013i −1.32518 0.355081i
\(371\) 0.679492i 0.0352775i
\(372\) 0 0
\(373\) 22.9282i 1.18718i −0.804769 0.593589i \(-0.797711\pi\)
0.804769 0.593589i \(-0.202289\pi\)
\(374\) 6.46410 24.1244i 0.334251 1.24744i
\(375\) 0 0
\(376\) 6.92820 + 6.92820i 0.357295 + 0.357295i
\(377\) −12.8038 −0.659432
\(378\) 0 0
\(379\) 10.0000i 0.513665i −0.966456 0.256833i \(-0.917321\pi\)
0.966456 0.256833i \(-0.0826790\pi\)
\(380\) −21.1244 12.1962i −1.08366 0.625649i
\(381\) 0 0
\(382\) 22.6603 + 6.07180i 1.15940 + 0.310660i
\(383\) 20.1962 1.03198 0.515988 0.856596i \(-0.327425\pi\)
0.515988 + 0.856596i \(0.327425\pi\)
\(384\) 0 0
\(385\) 12.9282 0.658882
\(386\) −14.8301 3.97372i −0.754834 0.202257i
\(387\) 0 0
\(388\) −13.8564 8.00000i −0.703452 0.406138i
\(389\) 16.9282i 0.858294i 0.903235 + 0.429147i \(0.141186\pi\)
−0.903235 + 0.429147i \(0.858814\pi\)
\(390\) 0 0
\(391\) −32.5885 −1.64807
\(392\) 12.9282 + 12.9282i 0.652973 + 0.652973i
\(393\) 0 0
\(394\) 1.50962 5.63397i 0.0760535 0.283836i
\(395\) 19.6603i 0.989215i
\(396\) 0 0
\(397\) 32.4641i 1.62933i 0.579934 + 0.814663i \(0.303078\pi\)
−0.579934 + 0.814663i \(0.696922\pi\)
\(398\) −3.26795 0.875644i −0.163807 0.0438921i
\(399\) 0 0
\(400\) −17.8564 30.9282i −0.892820 1.54641i
\(401\) 9.58846 0.478825 0.239412 0.970918i \(-0.423045\pi\)
0.239412 + 0.970918i \(0.423045\pi\)
\(402\) 0 0
\(403\) 4.92820i 0.245491i
\(404\) −8.00000 + 13.8564i −0.398015 + 0.689382i
\(405\) 0 0
\(406\) 1.39230 5.19615i 0.0690989 0.257881i
\(407\) 23.6603 1.17280
\(408\) 0 0
\(409\) 28.7128 1.41976 0.709879 0.704324i \(-0.248750\pi\)
0.709879 + 0.704324i \(0.248750\pi\)
\(410\) −6.19615 + 23.1244i −0.306006 + 1.14203i
\(411\) 0 0
\(412\) −6.00000 3.46410i −0.295599 0.170664i
\(413\) 6.14359i 0.302306i
\(414\) 0 0
\(415\) 52.2487 2.56479
\(416\) −13.4641 + 3.60770i −0.660132 + 0.176882i
\(417\) 0 0
\(418\) 21.1244 + 5.66025i 1.03323 + 0.276852i
\(419\) 21.4641i 1.04859i 0.851537 + 0.524295i \(0.175671\pi\)
−0.851537 + 0.524295i \(0.824329\pi\)
\(420\) 0 0
\(421\) 13.0000i 0.633581i −0.948495 0.316791i \(-0.897395\pi\)
0.948495 0.316791i \(-0.102605\pi\)
\(422\) 9.53590 35.5885i 0.464200 1.73242i
\(423\) 0 0
\(424\) −1.85641 + 1.85641i −0.0901551 + 0.0901551i
\(425\) −33.3205 −1.61628
\(426\) 0 0
\(427\) 6.58846i 0.318838i
\(428\) −10.3923 + 18.0000i −0.502331 + 0.870063i
\(429\) 0 0
\(430\) 49.2487 + 13.1962i 2.37498 + 0.636375i
\(431\) 21.7128 1.04587 0.522935 0.852373i \(-0.324837\pi\)
0.522935 + 0.852373i \(0.324837\pi\)
\(432\) 0 0
\(433\) −21.7846 −1.04690 −0.523451 0.852056i \(-0.675356\pi\)
−0.523451 + 0.852056i \(0.675356\pi\)
\(434\) 2.00000 + 0.535898i 0.0960031 + 0.0257239i
\(435\) 0 0
\(436\) −12.8564 + 22.2679i −0.615710 + 1.06644i
\(437\) 28.5359i 1.36506i
\(438\) 0 0
\(439\) −30.0000 −1.43182 −0.715911 0.698192i \(-0.753988\pi\)
−0.715911 + 0.698192i \(0.753988\pi\)
\(440\) 35.3205 + 35.3205i 1.68384 + 1.68384i
\(441\) 0 0
\(442\) −3.36603 + 12.5622i −0.160106 + 0.597522i
\(443\) 29.3205i 1.39306i −0.717528 0.696530i \(-0.754726\pi\)
0.717528 0.696530i \(-0.245274\pi\)
\(444\) 0 0
\(445\) 43.7846i 2.07559i
\(446\) −31.5885 8.46410i −1.49576 0.400787i
\(447\) 0 0
\(448\) 5.85641i 0.276689i
\(449\) 24.9282 1.17643 0.588217 0.808703i \(-0.299830\pi\)
0.588217 + 0.808703i \(0.299830\pi\)
\(450\) 0 0
\(451\) 21.4641i 1.01071i
\(452\) 13.3923 + 7.73205i 0.629921 + 0.363685i
\(453\) 0 0
\(454\) 2.46410 9.19615i 0.115646 0.431597i
\(455\) −6.73205 −0.315603
\(456\) 0 0
\(457\) −6.32051 −0.295661 −0.147830 0.989013i \(-0.547229\pi\)
−0.147830 + 0.989013i \(0.547229\pi\)
\(458\) −4.16987 + 15.5622i −0.194845 + 0.727173i
\(459\) 0 0
\(460\) 32.5885 56.4449i 1.51944 2.63176i
\(461\) 41.3205i 1.92449i 0.272188 + 0.962244i \(0.412253\pi\)
−0.272188 + 0.962244i \(0.587747\pi\)
\(462\) 0 0
\(463\) 13.4641 0.625730 0.312865 0.949798i \(-0.398711\pi\)
0.312865 + 0.949798i \(0.398711\pi\)
\(464\) 18.0000 10.3923i 0.835629 0.482451i
\(465\) 0 0
\(466\) 5.09808 + 1.36603i 0.236164 + 0.0632799i
\(467\) 24.7846i 1.14689i −0.819242 0.573447i \(-0.805606\pi\)
0.819242 0.573447i \(-0.194394\pi\)
\(468\) 0 0
\(469\) 3.46410i 0.159957i
\(470\) −4.73205 + 17.6603i −0.218273 + 0.814607i
\(471\) 0 0
\(472\) 16.7846 16.7846i 0.772574 0.772574i
\(473\) −45.7128 −2.10188
\(474\) 0 0
\(475\) 29.1769i 1.33873i
\(476\) −4.73205 2.73205i −0.216893 0.125223i
\(477\) 0 0
\(478\) 10.7321 + 2.87564i 0.490873 + 0.131529i
\(479\) −1.66025 −0.0758589 −0.0379295 0.999280i \(-0.512076\pi\)
−0.0379295 + 0.999280i \(0.512076\pi\)
\(480\) 0 0
\(481\) −12.3205 −0.561767
\(482\) 6.09808 + 1.63397i 0.277760 + 0.0744255i
\(483\) 0 0
\(484\) −19.7321 11.3923i −0.896911 0.517832i
\(485\) 29.8564i 1.35571i
\(486\) 0 0
\(487\) −25.7128 −1.16516 −0.582579 0.812774i \(-0.697956\pi\)
−0.582579 + 0.812774i \(0.697956\pi\)
\(488\) 18.0000 18.0000i 0.814822 0.814822i
\(489\) 0 0
\(490\) −8.83013 + 32.9545i −0.398904 + 1.48873i
\(491\) 13.8038i 0.622959i 0.950253 + 0.311479i \(0.100825\pi\)
−0.950253 + 0.311479i \(0.899175\pi\)
\(492\) 0 0
\(493\) 19.3923i 0.873385i
\(494\) −11.0000 2.94744i −0.494913 0.132612i
\(495\) 0 0
\(496\) 4.00000 + 6.92820i 0.179605 + 0.311086i
\(497\) 4.14359 0.185866
\(498\) 0 0
\(499\) 8.19615i 0.366910i 0.983028 + 0.183455i \(0.0587282\pi\)
−0.983028 + 0.183455i \(0.941272\pi\)
\(500\) 14.6603 25.3923i 0.655626 1.13558i
\(501\) 0 0
\(502\) 2.66025 9.92820i 0.118733 0.443117i
\(503\) 0.679492 0.0302970 0.0151485 0.999885i \(-0.495178\pi\)
0.0151485 + 0.999885i \(0.495178\pi\)
\(504\) 0 0
\(505\) −29.8564 −1.32859
\(506\) −15.1244 + 56.4449i −0.672360 + 2.50928i
\(507\) 0 0
\(508\) −23.6603 13.6603i −1.04975 0.606076i
\(509\) 29.3205i 1.29961i −0.760102 0.649804i \(-0.774851\pi\)
0.760102 0.649804i \(-0.225149\pi\)
\(510\) 0 0
\(511\) −6.58846 −0.291456
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 0 0
\(514\) −4.56218 1.22243i −0.201229 0.0539192i
\(515\) 12.9282i 0.569685i
\(516\) 0 0
\(517\) 16.3923i 0.720933i
\(518\) 1.33975 5.00000i 0.0588651 0.219687i
\(519\) 0 0
\(520\) −18.3923 18.3923i −0.806556 0.806556i
\(521\) −26.7846 −1.17346 −0.586728 0.809784i \(-0.699584\pi\)
−0.586728 + 0.809784i \(0.699584\pi\)
\(522\) 0 0
\(523\) 13.2679i 0.580167i −0.957001 0.290083i \(-0.906317\pi\)
0.957001 0.290083i \(-0.0936831\pi\)
\(524\) −0.196152 + 0.339746i −0.00856896 + 0.0148419i
\(525\) 0 0
\(526\) −22.1962 5.94744i −0.967798 0.259321i
\(527\) 7.46410 0.325141
\(528\) 0 0
\(529\) 53.2487 2.31516
\(530\) −4.73205 1.26795i −0.205547 0.0550762i
\(531\) 0 0
\(532\) 2.39230 4.14359i 0.103720 0.179648i
\(533\) 11.1769i 0.484126i
\(534\) 0 0
\(535\) −38.7846 −1.67680
\(536\) 9.46410 9.46410i 0.408787 0.408787i
\(537\) 0 0
\(538\) 9.41858 35.1506i 0.406064 1.51545i
\(539\) 30.5885i 1.31754i
\(540\) 0 0
\(541\) 24.1769i 1.03945i −0.854335 0.519723i \(-0.826035\pi\)
0.854335 0.519723i \(-0.173965\pi\)
\(542\) −14.6603 3.92820i −0.629712 0.168731i
\(543\) 0 0
\(544\) −5.46410 20.3923i −0.234271 0.874313i
\(545\) −47.9808 −2.05527
\(546\) 0 0
\(547\) 26.0000i 1.11168i 0.831289 + 0.555840i \(0.187603\pi\)
−0.831289 + 0.555840i \(0.812397\pi\)
\(548\) 29.7846 + 17.1962i 1.27234 + 0.734583i
\(549\) 0 0
\(550\) −15.4641 + 57.7128i −0.659392 + 2.46088i
\(551\) 16.9808 0.723405
\(552\) 0 0
\(553\) −3.85641 −0.163991
\(554\) 3.60770 13.4641i 0.153276 0.572035i
\(555\) 0 0
\(556\) 19.4641 33.7128i 0.825462 1.42974i
\(557\) 13.0526i 0.553055i 0.961006 + 0.276527i \(0.0891836\pi\)
−0.961006 + 0.276527i \(0.910816\pi\)
\(558\) 0 0
\(559\) 23.8038 1.00680
\(560\) 9.46410 5.46410i 0.399931 0.230900i
\(561\) 0 0
\(562\) 18.7583 + 5.02628i 0.791272 + 0.212021i
\(563\) 24.2487i 1.02196i 0.859592 + 0.510981i \(0.170718\pi\)
−0.859592 + 0.510981i \(0.829282\pi\)
\(564\) 0 0
\(565\) 28.8564i 1.21400i
\(566\) −2.33975 + 8.73205i −0.0983469 + 0.367035i
\(567\) 0 0
\(568\) 11.3205 + 11.3205i 0.474998 + 0.474998i
\(569\) 33.5885 1.40810 0.704051 0.710150i \(-0.251373\pi\)
0.704051 + 0.710150i \(0.251373\pi\)
\(570\) 0 0
\(571\) 26.2487i 1.09847i 0.835667 + 0.549237i \(0.185082\pi\)
−0.835667 + 0.549237i \(0.814918\pi\)
\(572\) 20.1962 + 11.6603i 0.844444 + 0.487540i
\(573\) 0 0
\(574\) −4.53590 1.21539i −0.189325 0.0507294i
\(575\) 77.9615 3.25122
\(576\) 0 0
\(577\) −45.2487 −1.88373 −0.941864 0.335994i \(-0.890928\pi\)
−0.941864 + 0.335994i \(0.890928\pi\)
\(578\) 4.19615 + 1.12436i 0.174537 + 0.0467670i
\(579\) 0 0
\(580\) 33.5885 + 19.3923i 1.39468 + 0.805222i
\(581\) 10.2487i 0.425188i
\(582\) 0 0
\(583\) 4.39230 0.181911
\(584\) −18.0000 18.0000i −0.744845 0.744845i
\(585\) 0 0
\(586\) 1.22243 4.56218i 0.0504982 0.188462i
\(587\) 42.3013i 1.74596i −0.487756 0.872980i \(-0.662184\pi\)
0.487756 0.872980i \(-0.337816\pi\)
\(588\) 0 0
\(589\) 6.53590i 0.269307i
\(590\) 42.7846 + 11.4641i 1.76141 + 0.471970i
\(591\) 0 0
\(592\) 17.3205 10.0000i 0.711868 0.410997i
\(593\) 14.4115 0.591811 0.295906 0.955217i \(-0.404379\pi\)
0.295906 + 0.955217i \(0.404379\pi\)
\(594\) 0 0
\(595\) 10.1962i 0.418001i
\(596\) 5.19615 9.00000i 0.212843 0.368654i
\(597\) 0 0
\(598\) 7.87564 29.3923i 0.322059 1.20194i
\(599\) 8.24871 0.337033 0.168517 0.985699i \(-0.446102\pi\)
0.168517 + 0.985699i \(0.446102\pi\)
\(600\) 0 0
\(601\) 17.2487 0.703590 0.351795 0.936077i \(-0.385571\pi\)
0.351795 + 0.936077i \(0.385571\pi\)
\(602\) −2.58846 + 9.66025i −0.105498 + 0.393723i
\(603\) 0 0
\(604\) 24.0000 + 13.8564i 0.976546 + 0.563809i
\(605\) 42.5167i 1.72855i
\(606\) 0 0
\(607\) −25.9090 −1.05161 −0.525806 0.850604i \(-0.676236\pi\)
−0.525806 + 0.850604i \(0.676236\pi\)
\(608\) 17.8564 4.78461i 0.724173 0.194042i
\(609\) 0 0
\(610\) 45.8827 + 12.2942i 1.85774 + 0.497779i
\(611\) 8.53590i 0.345325i
\(612\) 0 0
\(613\) 24.3923i 0.985196i 0.870257 + 0.492598i \(0.163953\pi\)
−0.870257 + 0.492598i \(0.836047\pi\)
\(614\) 5.41154 20.1962i 0.218392 0.815050i
\(615\) 0 0
\(616\) −6.92820 + 6.92820i −0.279145 + 0.279145i
\(617\) 26.1244 1.05173 0.525863 0.850569i \(-0.323742\pi\)
0.525863 + 0.850569i \(0.323742\pi\)
\(618\) 0 0
\(619\) 6.24871i 0.251157i −0.992084 0.125578i \(-0.959921\pi\)
0.992084 0.125578i \(-0.0400787\pi\)
\(620\) −7.46410 + 12.9282i −0.299766 + 0.519209i
\(621\) 0 0
\(622\) −26.3923 7.07180i −1.05824 0.283553i
\(623\) −8.58846 −0.344089
\(624\) 0 0
\(625\) 10.0718 0.402872
\(626\) −3.36603 0.901924i −0.134533 0.0360481i
\(627\) 0 0
\(628\) 2.46410 4.26795i 0.0983284 0.170310i
\(629\) 18.6603i 0.744033i
\(630\) 0 0
\(631\) 0.784610 0.0312348 0.0156174 0.999878i \(-0.495029\pi\)
0.0156174 + 0.999878i \(0.495029\pi\)
\(632\) −10.5359 10.5359i −0.419096 0.419096i
\(633\) 0 0
\(634\) 0.437822 1.63397i 0.0173881 0.0648934i
\(635\) 50.9808i 2.02311i
\(636\) 0 0
\(637\) 15.9282i 0.631098i
\(638\) −33.5885 9.00000i −1.32978 0.356313i
\(639\) 0 0
\(640\) 40.7846 + 10.9282i 1.61215 + 0.431975i
\(641\) −23.0526 −0.910521 −0.455261 0.890358i \(-0.650454\pi\)
−0.455261 + 0.890358i \(0.650454\pi\)
\(642\) 0 0
\(643\) 6.39230i 0.252088i −0.992025 0.126044i \(-0.959772\pi\)
0.992025 0.126044i \(-0.0402280\pi\)
\(644\) 11.0718 + 6.39230i 0.436290 + 0.251892i
\(645\) 0 0
\(646\) 4.46410 16.6603i 0.175638 0.655489i
\(647\) −49.7654 −1.95648 −0.978239 0.207480i \(-0.933474\pi\)
−0.978239 + 0.207480i \(0.933474\pi\)
\(648\) 0 0
\(649\) −39.7128 −1.55886
\(650\) 8.05256 30.0526i 0.315847 1.17876i
\(651\) 0 0
\(652\) −6.53590 + 11.3205i −0.255966 + 0.443345i
\(653\) 35.5692i 1.39193i 0.718075 + 0.695966i \(0.245023\pi\)
−0.718075 + 0.695966i \(0.754977\pi\)
\(654\) 0 0
\(655\) −0.732051 −0.0286036
\(656\) −9.07180 15.7128i −0.354194 0.613482i
\(657\) 0 0
\(658\) −3.46410 0.928203i −0.135045 0.0361851i
\(659\) 10.0526i 0.391592i 0.980645 + 0.195796i \(0.0627291\pi\)
−0.980645 + 0.195796i \(0.937271\pi\)
\(660\) 0 0
\(661\) 32.1769i 1.25154i 0.780009 + 0.625768i \(0.215215\pi\)
−0.780009 + 0.625768i \(0.784785\pi\)
\(662\) 4.80385 17.9282i 0.186707 0.696799i
\(663\) 0 0
\(664\) −28.0000 + 28.0000i −1.08661 + 1.08661i
\(665\) 8.92820 0.346221
\(666\) 0 0
\(667\) 45.3731i 1.75685i
\(668\) 25.5167 + 14.7321i 0.987269 + 0.570000i
\(669\) 0 0
\(670\) 24.1244 + 6.46410i 0.932005 + 0.249730i
\(671\) −42.5885 −1.64411
\(672\) 0 0
\(673\) −37.2487 −1.43583 −0.717916 0.696130i \(-0.754904\pi\)
−0.717916 + 0.696130i \(0.754904\pi\)
\(674\) −5.46410 1.46410i −0.210469 0.0563951i
\(675\) 0 0
\(676\) 12.0000 + 6.92820i 0.461538 + 0.266469i
\(677\) 29.3205i 1.12688i −0.826157 0.563439i \(-0.809478\pi\)
0.826157 0.563439i \(-0.190522\pi\)
\(678\) 0 0
\(679\) 5.85641 0.224748
\(680\) 27.8564 27.8564i 1.06824 1.06824i
\(681\) 0 0
\(682\) 3.46410 12.9282i 0.132647 0.495046i
\(683\) 34.1051i 1.30500i −0.757790 0.652498i \(-0.773721\pi\)
0.757790 0.652498i \(-0.226279\pi\)
\(684\) 0 0
\(685\) 64.1769i 2.45207i
\(686\) −13.4641 3.60770i −0.514062 0.137742i
\(687\) 0 0
\(688\) −33.4641 + 19.3205i −1.27581 + 0.736587i
\(689\) −2.28719 −0.0871349
\(690\) 0 0
\(691\) 12.7321i 0.484350i 0.970233 + 0.242175i \(0.0778608\pi\)
−0.970233 + 0.242175i \(0.922139\pi\)
\(692\) −1.73205 + 3.00000i −0.0658427 + 0.114043i
\(693\) 0 0
\(694\) 2.46410 9.19615i 0.0935360 0.349081i
\(695\) 72.6410 2.75543
\(696\) 0 0
\(697\) −16.9282 −0.641201
\(698\) 4.33975 16.1962i 0.164262 0.613033i
\(699\) 0 0
\(700\) 11.3205 + 6.53590i 0.427875 + 0.247034i
\(701\) 10.1244i 0.382392i −0.981552 0.191196i \(-0.938763\pi\)
0.981552 0.191196i \(-0.0612365\pi\)
\(702\) 0 0
\(703\) 16.3397 0.616265
\(704\) −37.8564 −1.42677
\(705\) 0 0
\(706\) −9.46410 2.53590i −0.356186 0.0954398i
\(707\) 5.85641i 0.220253i
\(708\) 0 0
\(709\) 47.3923i 1.77986i −0.456102 0.889928i \(-0.650755\pi\)
0.456102 0.889928i \(-0.349245\pi\)
\(710\) −7.73205 + 28.8564i −0.290179 + 1.08296i
\(711\) 0 0
\(712\) −23.4641 23.4641i −0.879354 0.879354i
\(713\) −17.4641 −0.654036
\(714\) 0 0
\(715\) 43.5167i 1.62743i
\(716\) 14.0000 24.2487i 0.523205 0.906217i
\(717\) 0 0
\(718\) 1.53590 + 0.411543i 0.0573192 + 0.0153586i
\(719\) 48.0526 1.79206 0.896029 0.443995i \(-0.146439\pi\)
0.896029 + 0.443995i \(0.146439\pi\)
\(720\) 0 0
\(721\) 2.53590 0.0944418
\(722\) −11.3660 3.04552i −0.423000 0.113342i
\(723\) 0 0
\(724\) 6.53590 11.3205i 0.242905 0.420723i
\(725\) 46.3923i 1.72297i
\(726\) 0 0
\(727\) −49.5167 −1.83647 −0.918236 0.396034i \(-0.870386\pi\)
−0.918236 + 0.396034i \(0.870386\pi\)
\(728\) 3.60770 3.60770i 0.133710 0.133710i
\(729\) 0 0
\(730\) 12.2942 45.8827i 0.455030 1.69819i
\(731\) 36.0526i 1.33345i
\(732\) 0 0
\(733\) 29.4641i 1.08828i −0.838994 0.544141i \(-0.816856\pi\)
0.838994 0.544141i \(-0.183144\pi\)
\(734\) −3.46410 0.928203i −0.127862 0.0342606i
\(735\) 0 0
\(736\) 12.7846 + 47.7128i 0.471247 + 1.75872i
\(737\) −22.3923 −0.824831
\(738\) 0 0
\(739\) 9.60770i 0.353425i −0.984263 0.176712i \(-0.943454\pi\)
0.984263 0.176712i \(-0.0565462\pi\)
\(740\) 32.3205 + 18.6603i 1.18813 + 0.685965i
\(741\) 0 0
\(742\) 0.248711 0.928203i 0.00913048 0.0340754i
\(743\) 30.7846 1.12938 0.564689 0.825304i \(-0.308996\pi\)
0.564689 + 0.825304i \(0.308996\pi\)
\(744\) 0 0
\(745\) 19.3923 0.710479
\(746\) −8.39230 + 31.3205i −0.307264 + 1.14673i
\(747\) 0 0
\(748\) −17.6603 + 30.5885i −0.645723 + 1.11842i
\(749\) 7.60770i 0.277979i
\(750\) 0 0
\(751\) −17.5167 −0.639192 −0.319596 0.947554i \(-0.603547\pi\)
−0.319596 + 0.947554i \(0.603547\pi\)
\(752\) −6.92820 12.0000i −0.252646 0.437595i
\(753\) 0 0
\(754\) 17.4904 + 4.68653i 0.636962 + 0.170673i
\(755\) 51.7128i 1.88202i
\(756\) 0 0
\(757\) 18.2487i 0.663261i −0.943409 0.331630i \(-0.892401\pi\)
0.943409 0.331630i \(-0.107599\pi\)
\(758\) −3.66025 + 13.6603i −0.132946 + 0.496163i
\(759\) 0 0
\(760\) 24.3923 + 24.3923i 0.884802 + 0.884802i
\(761\) −35.9808 −1.30430 −0.652151 0.758089i \(-0.726133\pi\)
−0.652151 + 0.758089i \(0.726133\pi\)
\(762\) 0 0
\(763\) 9.41154i 0.340721i
\(764\) −28.7321 16.5885i −1.03949 0.600149i
\(765\) 0 0
\(766\) −27.5885 7.39230i −0.996811 0.267095i
\(767\) 20.6795 0.746693
\(768\) 0 0
\(769\) −39.3923 −1.42052 −0.710261 0.703938i \(-0.751423\pi\)
−0.710261 + 0.703938i \(0.751423\pi\)
\(770\) −17.6603 4.73205i −0.636431 0.170531i
\(771\) 0 0
\(772\) 18.8038 + 10.8564i 0.676765 + 0.390731i
\(773\) 40.6603i 1.46245i 0.682138 + 0.731224i \(0.261051\pi\)
−0.682138 + 0.731224i \(0.738949\pi\)
\(774\) 0 0
\(775\) −17.8564 −0.641421
\(776\) 16.0000 + 16.0000i 0.574367 + 0.574367i
\(777\) 0 0
\(778\) 6.19615 23.1244i 0.222143 0.829048i
\(779\) 14.8231i 0.531092i
\(780\) 0 0
\(781\) 26.7846i 0.958429i
\(782\) 44.5167 + 11.9282i 1.59191 + 0.426552i
\(783\) 0 0
\(784\) −12.9282 22.3923i −0.461722 0.799725i
\(785\) 9.19615 0.328225
\(786\) 0 0
\(787\) 14.4449i 0.514904i −0.966291 0.257452i \(-0.917117\pi\)
0.966291 0.257452i \(-0.0828829\pi\)
\(788\) −4.12436 + 7.14359i −0.146924 + 0.254480i
\(789\) 0 0
\(790\) 7.19615 26.8564i 0.256028 0.955508i
\(791\) −5.66025 −0.201255
\(792\) 0 0
\(793\) 22.1769 0.787525
\(794\) 11.8827 44.3468i 0.421701 1.57381i
\(795\) 0 0
\(796\) 4.14359 + 2.39230i 0.146866 + 0.0847930i
\(797\) 12.2679i 0.434553i −0.976110 0.217277i \(-0.930283\pi\)
0.976110 0.217277i \(-0.0697173\pi\)
\(798\) 0 0
\(799\) −12.9282 −0.457367
\(800\) 13.0718 + 48.7846i 0.462158 + 1.72480i
\(801\) 0 0
\(802\) −13.0981 3.50962i −0.462509 0.123929i
\(803\) 42.5885i 1.50291i
\(804\) 0 0
\(805\) 23.8564i 0.840828i
\(806\) −1.80385 + 6.73205i −0.0635378 + 0.237126i
\(807\) 0 0
\(808\) 16.0000 16.0000i 0.562878 0.562878i
\(809\) 49.0526 1.72460 0.862298 0.506401i \(-0.169024\pi\)
0.862298 + 0.506401i \(0.169024\pi\)
\(810\) 0 0
\(811\) 48.7846i 1.71306i 0.516098 + 0.856530i \(0.327384\pi\)
−0.516098 + 0.856530i \(0.672616\pi\)
\(812\) −3.80385 + 6.58846i −0.133489 + 0.231210i
\(813\) 0 0
\(814\) −32.3205 8.66025i −1.13283 0.303542i
\(815\) −24.3923 −0.854425
\(816\) 0 0
\(817\) −31.5692 −1.10447
\(818\) −39.2224 10.5096i −1.37138 0.367460i
\(819\) 0 0
\(820\) 16.9282 29.3205i 0.591158 1.02392i
\(821\) 1.58846i 0.0554375i −0.999616 0.0277188i \(-0.991176\pi\)
0.999616 0.0277188i \(-0.00882429\pi\)
\(822\) 0 0
\(823\) −17.6077 −0.613766 −0.306883 0.951747i \(-0.599286\pi\)
−0.306883 + 0.951747i \(0.599286\pi\)
\(824\) 6.92820 + 6.92820i 0.241355 + 0.241355i
\(825\) 0 0
\(826\) −2.24871 + 8.39230i −0.0782427 + 0.292006i
\(827\) 12.3397i 0.429095i −0.976714 0.214548i \(-0.931172\pi\)
0.976714 0.214548i \(-0.0688277\pi\)
\(828\) 0 0
\(829\) 53.1769i 1.84691i −0.383706 0.923455i \(-0.625352\pi\)
0.383706 0.923455i \(-0.374648\pi\)
\(830\) −71.3731 19.1244i −2.47740 0.663816i
\(831\) 0 0
\(832\) 19.7128 0.683419
\(833\) −24.1244 −0.835859
\(834\) 0 0
\(835\) 54.9808i 1.90269i
\(836\) −26.7846 15.4641i −0.926365 0.534837i
\(837\) 0 0
\(838\) 7.85641 29.3205i 0.271395 1.01286i
\(839\) −41.8038 −1.44323 −0.721615 0.692295i \(-0.756600\pi\)
−0.721615 + 0.692295i \(0.756600\pi\)
\(840\) 0 0
\(841\) 2.00000 0.0689655
\(842\) −4.75833 + 17.7583i −0.163983 + 0.611992i
\(843\) 0 0
\(844\) −26.0526 + 45.1244i −0.896766 + 1.55324i
\(845\) 25.8564i 0.889487i
\(846\) 0 0
\(847\) 8.33975 0.286557
\(848\) 3.21539 1.85641i 0.110417 0.0637493i
\(849\) 0 0
\(850\) 45.5167 + 12.1962i 1.56121 + 0.418325i
\(851\) 43.6603i 1.49665i
\(852\) 0 0
\(853\) 5.07180i 0.173655i 0.996223 + 0.0868275i \(0.0276729\pi\)
−0.996223 + 0.0868275i \(0.972327\pi\)
\(854\) −2.41154 + 9.00000i −0.0825213 + 0.307974i
\(855\) 0 0
\(856\) 20.7846 20.7846i 0.710403 0.710403i
\(857\) −0.124356 −0.00424791 −0.00212395 0.999998i \(-0.500676\pi\)
−0.00212395 + 0.999998i \(0.500676\pi\)
\(858\) 0 0
\(859\) 2.00000i 0.0682391i −0.999418 0.0341196i \(-0.989137\pi\)
0.999418 0.0341196i \(-0.0108627\pi\)
\(860\) −62.4449 36.0526i −2.12935 1.22938i
\(861\) 0 0
\(862\) −29.6603 7.94744i −1.01023 0.270691i
\(863\) 25.5167 0.868597 0.434299 0.900769i \(-0.356996\pi\)
0.434299 + 0.900769i \(0.356996\pi\)
\(864\) 0 0
\(865\) −6.46410 −0.219786
\(866\) 29.7583 + 7.97372i 1.01123 + 0.270958i
\(867\) 0 0
\(868\) −2.53590 1.46410i −0.0860740 0.0496948i
\(869\) 24.9282i 0.845631i
\(870\) 0 0
\(871\) 11.6603 0.395093
\(872\) 25.7128 25.7128i 0.870746 0.870746i
\(873\) 0 0
\(874\) −10.4449 + 38.9808i −0.353303 + 1.31854i
\(875\) 10.7321i 0.362810i
\(876\) 0 0
\(877\) 57.1051i 1.92830i −0.265353 0.964151i \(-0.585488\pi\)
0.265353 0.964151i \(-0.414512\pi\)
\(878\) 40.9808 + 10.9808i 1.38303 + 0.370583i
\(879\) 0 0
\(880\) −35.3205 61.1769i −1.19065 2.06227i
\(881\) −27.8564 −0.938506 −0.469253 0.883064i \(-0.655477\pi\)
−0.469253 + 0.883064i \(0.655477\pi\)
\(882\) 0 0
\(883\) 1.32051i 0.0444386i −0.999753 0.0222193i \(-0.992927\pi\)
0.999753 0.0222193i \(-0.00707321\pi\)
\(884\) 9.19615 15.9282i 0.309300 0.535723i
\(885\) 0 0
\(886\) −10.7321 + 40.0526i −0.360550 + 1.34559i
\(887\) −2.19615 −0.0737396 −0.0368698 0.999320i \(-0.511739\pi\)
−0.0368698 + 0.999320i \(0.511739\pi\)
\(888\) 0 0
\(889\) 10.0000 0.335389
\(890\) 16.0263 59.8109i 0.537202 2.00487i
\(891\) 0 0
\(892\) 40.0526 + 23.1244i 1.34106 + 0.774261i
\(893\) 11.3205i 0.378826i
\(894\) 0 0
\(895\) 52.2487 1.74648
\(896\) −2.14359 + 8.00000i −0.0716124 + 0.267261i
\(897\) 0 0
\(898\) −34.0526 9.12436i −1.13635 0.304484i
\(899\) 10.3923i 0.346603i
\(900\) 0 0
\(901\) 3.46410i 0.115406i
\(902\) −7.85641 + 29.3205i −0.261590 + 0.976266i
\(903\) 0 0
\(904\) −15.4641 15.4641i −0.514328 0.514328i
\(905\) 24.3923 0.810828
\(906\) 0 0
\(907\) 32.3923i 1.07557i −0.843082 0.537784i \(-0.819261\pi\)
0.843082 0.537784i \(-0.180739\pi\)
\(908\) −6.73205 + 11.6603i −0.223411 + 0.386959i
\(909\) 0 0
\(910\) 9.19615 + 2.46410i 0.304849 + 0.0816842i
\(911\) −16.7321 −0.554358 −0.277179 0.960818i \(-0.589399\pi\)
−0.277179 + 0.960818i \(0.589399\pi\)
\(912\) 0 0
\(913\) 66.2487 2.19251
\(914\) 8.63397 + 2.31347i 0.285586 + 0.0765227i
\(915\) 0 0
\(916\) 11.3923 19.7321i 0.376412 0.651965i
\(917\) 0.143594i 0.00474188i
\(918\) 0 0
\(919\) 16.9808 0.560144 0.280072 0.959979i \(-0.409642\pi\)
0.280072 + 0.959979i \(0.409642\pi\)
\(920\) −65.1769 + 65.1769i −2.14882 + 2.14882i
\(921\) 0 0
\(922\) 15.1244 56.4449i 0.498094 1.85891i
\(923\) 13.9474i 0.459086i
\(924\) 0 0
\(925\) 44.6410i 1.46779i
\(926\) −18.3923 4.92820i −0.604409 0.161951i
\(927\) 0 0
\(928\) −28.3923 + 7.60770i −0.932023 + 0.249735i
\(929\) 0.516660 0.0169511 0.00847554 0.999964i \(-0.497302\pi\)
0.00847554 + 0.999964i \(0.497302\pi\)
\(930\) 0 0
\(931\) 21.1244i 0.692323i
\(932\) −6.46410 3.73205i −0.211739 0.122247i
\(933\) 0 0
\(934\) −9.07180 + 33.8564i −0.296838 + 1.10782i
\(935\) −65.9090 −2.15545
\(936\) 0 0
\(937\) −7.24871 −0.236805 −0.118403 0.992966i \(-0.537777\pi\)
−0.118403 + 0.992966i \(0.537777\pi\)
\(938\) −1.26795 + 4.73205i −0.0414000 + 0.154507i
\(939\) 0 0
\(940\) 12.9282 22.3923i 0.421671 0.730356i
\(941\) 18.3731i 0.598945i −0.954105 0.299472i \(-0.903189\pi\)
0.954105 0.299472i \(-0.0968107\pi\)
\(942\) 0 0
\(943\) 39.6077 1.28980
\(944\) −29.0718 + 16.7846i −0.946206 + 0.546293i
\(945\) 0 0
\(946\) 62.4449 + 16.7321i 2.03026 + 0.544006i
\(947\) 20.1962i 0.656287i −0.944628 0.328143i \(-0.893577\pi\)
0.944628 0.328143i \(-0.106423\pi\)
\(948\) 0 0
\(949\) 22.1769i 0.719893i
\(950\) −10.6795 + 39.8564i −0.346488 + 1.29311i
\(951\) 0 0
\(952\) 5.46410 + 5.46410i 0.177093 + 0.177093i
\(953\) −26.6603 −0.863610 −0.431805 0.901967i \(-0.642123\pi\)
−0.431805 + 0.901967i \(0.642123\pi\)
\(954\) 0 0
\(955\) 61.9090i 2.00333i
\(956\) −13.6077 7.85641i −0.440104 0.254094i
\(957\) 0 0
\(958\) 2.26795 + 0.607695i 0.0732741 + 0.0196337i
\(959\) −12.5885 −0.406502
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 16.8301 + 4.50962i 0.542625 + 0.145396i
\(963\) 0 0
\(964\) −7.73205 4.46410i −0.249033 0.143779i
\(965\) 40.5167i 1.30428i
\(966\) 0 0
\(967\) 10.1962 0.327886 0.163943 0.986470i \(-0.447579\pi\)
0.163943 + 0.986470i \(0.447579\pi\)
\(968\) 22.7846 + 22.7846i 0.732325 + 0.732325i
\(969\) 0 0
\(970\) −10.9282 + 40.7846i −0.350883 + 1.30951i
\(971\) 51.1244i 1.64066i −0.571891 0.820329i \(-0.693790\pi\)
0.571891 0.820329i \(-0.306210\pi\)
\(972\) 0 0
\(973\) 14.2487i 0.456793i
\(974\) 35.1244 + 9.41154i 1.12546 + 0.301565i
\(975\) 0 0
\(976\) −31.1769 + 18.0000i −0.997949 + 0.576166i
\(977\) 22.7846 0.728944 0.364472 0.931214i \(-0.381249\pi\)
0.364472 + 0.931214i \(0.381249\pi\)
\(978\) 0 0
\(979\) 55.5167i 1.77432i
\(980\) 24.1244 41.7846i 0.770624 1.33476i
\(981\) 0 0
\(982\) 5.05256 18.8564i 0.161234 0.601732i
\(983\) 1.46410 0.0466976 0.0233488 0.999727i \(-0.492567\pi\)
0.0233488 + 0.999727i \(0.492567\pi\)
\(984\) 0 0
\(985\) −15.3923 −0.490440
\(986\) −7.09808 + 26.4904i −0.226049 + 0.843626i
\(987\) 0 0
\(988\) 13.9474 + 8.05256i 0.443727 + 0.256186i
\(989\) 84.3538i 2.68230i
\(990\) 0 0
\(991\) 2.58846 0.0822251 0.0411125 0.999155i \(-0.486910\pi\)
0.0411125 + 0.999155i \(0.486910\pi\)
\(992\) −2.92820 10.9282i −0.0929705 0.346971i
\(993\) 0 0
\(994\) −5.66025 1.51666i −0.179532 0.0481055i
\(995\) 8.92820i 0.283043i
\(996\) 0 0
\(997\) 27.9282i 0.884495i 0.896893 + 0.442248i \(0.145819\pi\)
−0.896893 + 0.442248i \(0.854181\pi\)
\(998\) 3.00000 11.1962i 0.0949633 0.354408i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.d.e.325.1 4
3.2 odd 2 648.2.d.i.325.4 yes 4
4.3 odd 2 2592.2.d.h.1297.4 4
8.3 odd 2 2592.2.d.h.1297.1 4
8.5 even 2 inner 648.2.d.e.325.2 yes 4
9.2 odd 6 648.2.n.l.109.1 4
9.4 even 3 648.2.n.m.541.1 4
9.5 odd 6 648.2.n.a.541.2 4
9.7 even 3 648.2.n.b.109.2 4
12.11 even 2 2592.2.d.g.1297.1 4
24.5 odd 2 648.2.d.i.325.3 yes 4
24.11 even 2 2592.2.d.g.1297.4 4
36.7 odd 6 2592.2.r.b.433.1 4
36.11 even 6 2592.2.r.k.433.2 4
36.23 even 6 2592.2.r.a.2161.1 4
36.31 odd 6 2592.2.r.j.2161.2 4
72.5 odd 6 648.2.n.l.541.1 4
72.11 even 6 2592.2.r.a.433.1 4
72.13 even 6 648.2.n.b.541.2 4
72.29 odd 6 648.2.n.a.109.1 4
72.43 odd 6 2592.2.r.j.433.2 4
72.59 even 6 2592.2.r.k.2161.2 4
72.61 even 6 648.2.n.m.109.2 4
72.67 odd 6 2592.2.r.b.2161.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
648.2.d.e.325.1 4 1.1 even 1 trivial
648.2.d.e.325.2 yes 4 8.5 even 2 inner
648.2.d.i.325.3 yes 4 24.5 odd 2
648.2.d.i.325.4 yes 4 3.2 odd 2
648.2.n.a.109.1 4 72.29 odd 6
648.2.n.a.541.2 4 9.5 odd 6
648.2.n.b.109.2 4 9.7 even 3
648.2.n.b.541.2 4 72.13 even 6
648.2.n.l.109.1 4 9.2 odd 6
648.2.n.l.541.1 4 72.5 odd 6
648.2.n.m.109.2 4 72.61 even 6
648.2.n.m.541.1 4 9.4 even 3
2592.2.d.g.1297.1 4 12.11 even 2
2592.2.d.g.1297.4 4 24.11 even 2
2592.2.d.h.1297.1 4 8.3 odd 2
2592.2.d.h.1297.4 4 4.3 odd 2
2592.2.r.a.433.1 4 72.11 even 6
2592.2.r.a.2161.1 4 36.23 even 6
2592.2.r.b.433.1 4 36.7 odd 6
2592.2.r.b.2161.1 4 72.67 odd 6
2592.2.r.j.433.2 4 72.43 odd 6
2592.2.r.j.2161.2 4 36.31 odd 6
2592.2.r.k.433.2 4 36.11 even 6
2592.2.r.k.2161.2 4 72.59 even 6