Properties

Label 648.2.n.a.109.1
Level $648$
Weight $2$
Character 648.109
Analytic conductor $5.174$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [648,2,Mod(109,648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(648, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("648.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 109.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 648.109
Dual form 648.2.n.a.541.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +2.00000i q^{4} +(-3.23205 - 1.86603i) q^{5} +(0.366025 + 0.633975i) q^{7} +(2.00000 - 2.00000i) q^{8} +(1.36603 + 5.09808i) q^{10} +(4.09808 - 2.36603i) q^{11} +(-2.13397 - 1.23205i) q^{13} +(0.267949 - 1.00000i) q^{14} -4.00000 q^{16} -3.73205 q^{17} -3.26795i q^{19} +(3.73205 - 6.46410i) q^{20} +(-6.46410 - 1.73205i) q^{22} +(-4.36603 + 7.56218i) q^{23} +(4.46410 + 7.73205i) q^{25} +(0.901924 + 3.36603i) q^{26} +(-1.26795 + 0.732051i) q^{28} +(-4.50000 + 2.59808i) q^{29} +(-1.00000 + 1.73205i) q^{31} +(4.00000 + 4.00000i) q^{32} +(3.73205 + 3.73205i) q^{34} -2.73205i q^{35} +5.00000i q^{37} +(-3.26795 + 3.26795i) q^{38} +(-10.1962 + 2.73205i) q^{40} +(-2.26795 + 3.92820i) q^{41} +(-8.36603 + 4.83013i) q^{43} +(4.73205 + 8.19615i) q^{44} +(11.9282 - 3.19615i) q^{46} +(-1.73205 - 3.00000i) q^{47} +(3.23205 - 5.59808i) q^{49} +(3.26795 - 12.1962i) q^{50} +(2.46410 - 4.26795i) q^{52} -0.928203i q^{53} -17.6603 q^{55} +(2.00000 + 0.535898i) q^{56} +(7.09808 + 1.90192i) q^{58} +(-7.26795 - 4.19615i) q^{59} +(-7.79423 + 4.50000i) q^{61} +(2.73205 - 0.732051i) q^{62} -8.00000i q^{64} +(4.59808 + 7.96410i) q^{65} +(4.09808 + 2.36603i) q^{67} -7.46410i q^{68} +(-2.73205 + 2.73205i) q^{70} +5.66025 q^{71} +9.00000 q^{73} +(5.00000 - 5.00000i) q^{74} +6.53590 q^{76} +(3.00000 + 1.73205i) q^{77} +(-2.63397 - 4.56218i) q^{79} +(12.9282 + 7.46410i) q^{80} +(6.19615 - 1.66025i) q^{82} +(-12.1244 + 7.00000i) q^{83} +(12.0622 + 6.96410i) q^{85} +(13.1962 + 3.53590i) q^{86} +(3.46410 - 12.9282i) q^{88} -11.7321 q^{89} -1.80385i q^{91} +(-15.1244 - 8.73205i) q^{92} +(-1.26795 + 4.73205i) q^{94} +(-6.09808 + 10.5622i) q^{95} +(4.00000 + 6.92820i) q^{97} +(-8.83013 + 2.36603i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 6 q^{5} - 2 q^{7} + 8 q^{8} + 2 q^{10} + 6 q^{11} - 12 q^{13} + 8 q^{14} - 16 q^{16} - 8 q^{17} + 8 q^{20} - 12 q^{22} - 14 q^{23} + 4 q^{25} + 14 q^{26} - 12 q^{28} - 18 q^{29} - 4 q^{31}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.707107 0.707107i
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) −3.23205 1.86603i −1.44542 0.834512i −0.447214 0.894427i \(-0.647584\pi\)
−0.998203 + 0.0599153i \(0.980917\pi\)
\(6\) 0 0
\(7\) 0.366025 + 0.633975i 0.138345 + 0.239620i 0.926870 0.375382i \(-0.122489\pi\)
−0.788526 + 0.615002i \(0.789155\pi\)
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) 0 0
\(10\) 1.36603 + 5.09808i 0.431975 + 1.61215i
\(11\) 4.09808 2.36603i 1.23562 0.713384i 0.267421 0.963580i \(-0.413828\pi\)
0.968195 + 0.250196i \(0.0804951\pi\)
\(12\) 0 0
\(13\) −2.13397 1.23205i −0.591858 0.341709i 0.173974 0.984750i \(-0.444339\pi\)
−0.765832 + 0.643041i \(0.777673\pi\)
\(14\) 0.267949 1.00000i 0.0716124 0.267261i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −3.73205 −0.905155 −0.452578 0.891725i \(-0.649495\pi\)
−0.452578 + 0.891725i \(0.649495\pi\)
\(18\) 0 0
\(19\) 3.26795i 0.749719i −0.927082 0.374859i \(-0.877691\pi\)
0.927082 0.374859i \(-0.122309\pi\)
\(20\) 3.73205 6.46410i 0.834512 1.44542i
\(21\) 0 0
\(22\) −6.46410 1.73205i −1.37815 0.369274i
\(23\) −4.36603 + 7.56218i −0.910379 + 1.57682i −0.0968500 + 0.995299i \(0.530877\pi\)
−0.813529 + 0.581524i \(0.802457\pi\)
\(24\) 0 0
\(25\) 4.46410 + 7.73205i 0.892820 + 1.54641i
\(26\) 0.901924 + 3.36603i 0.176882 + 0.660132i
\(27\) 0 0
\(28\) −1.26795 + 0.732051i −0.239620 + 0.138345i
\(29\) −4.50000 + 2.59808i −0.835629 + 0.482451i −0.855776 0.517346i \(-0.826920\pi\)
0.0201471 + 0.999797i \(0.493587\pi\)
\(30\) 0 0
\(31\) −1.00000 + 1.73205i −0.179605 + 0.311086i −0.941745 0.336327i \(-0.890815\pi\)
0.762140 + 0.647412i \(0.224149\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 0 0
\(34\) 3.73205 + 3.73205i 0.640041 + 0.640041i
\(35\) 2.73205i 0.461801i
\(36\) 0 0
\(37\) 5.00000i 0.821995i 0.911636 + 0.410997i \(0.134819\pi\)
−0.911636 + 0.410997i \(0.865181\pi\)
\(38\) −3.26795 + 3.26795i −0.530131 + 0.530131i
\(39\) 0 0
\(40\) −10.1962 + 2.73205i −1.61215 + 0.431975i
\(41\) −2.26795 + 3.92820i −0.354194 + 0.613482i −0.986980 0.160845i \(-0.948578\pi\)
0.632786 + 0.774327i \(0.281911\pi\)
\(42\) 0 0
\(43\) −8.36603 + 4.83013i −1.27581 + 0.736587i −0.976075 0.217436i \(-0.930231\pi\)
−0.299732 + 0.954023i \(0.596897\pi\)
\(44\) 4.73205 + 8.19615i 0.713384 + 1.23562i
\(45\) 0 0
\(46\) 11.9282 3.19615i 1.75872 0.471247i
\(47\) −1.73205 3.00000i −0.252646 0.437595i 0.711608 0.702577i \(-0.247967\pi\)
−0.964253 + 0.264982i \(0.914634\pi\)
\(48\) 0 0
\(49\) 3.23205 5.59808i 0.461722 0.799725i
\(50\) 3.26795 12.1962i 0.462158 1.72480i
\(51\) 0 0
\(52\) 2.46410 4.26795i 0.341709 0.591858i
\(53\) 0.928203i 0.127499i −0.997966 0.0637493i \(-0.979694\pi\)
0.997966 0.0637493i \(-0.0203058\pi\)
\(54\) 0 0
\(55\) −17.6603 −2.38131
\(56\) 2.00000 + 0.535898i 0.267261 + 0.0716124i
\(57\) 0 0
\(58\) 7.09808 + 1.90192i 0.932023 + 0.249735i
\(59\) −7.26795 4.19615i −0.946206 0.546293i −0.0543060 0.998524i \(-0.517295\pi\)
−0.891900 + 0.452232i \(0.850628\pi\)
\(60\) 0 0
\(61\) −7.79423 + 4.50000i −0.997949 + 0.576166i −0.907641 0.419748i \(-0.862118\pi\)
−0.0903080 + 0.995914i \(0.528785\pi\)
\(62\) 2.73205 0.732051i 0.346971 0.0929705i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 4.59808 + 7.96410i 0.570321 + 0.987825i
\(66\) 0 0
\(67\) 4.09808 + 2.36603i 0.500660 + 0.289056i 0.728986 0.684529i \(-0.239992\pi\)
−0.228326 + 0.973585i \(0.573325\pi\)
\(68\) 7.46410i 0.905155i
\(69\) 0 0
\(70\) −2.73205 + 2.73205i −0.326543 + 0.326543i
\(71\) 5.66025 0.671749 0.335874 0.941907i \(-0.390968\pi\)
0.335874 + 0.941907i \(0.390968\pi\)
\(72\) 0 0
\(73\) 9.00000 1.05337 0.526685 0.850060i \(-0.323435\pi\)
0.526685 + 0.850060i \(0.323435\pi\)
\(74\) 5.00000 5.00000i 0.581238 0.581238i
\(75\) 0 0
\(76\) 6.53590 0.749719
\(77\) 3.00000 + 1.73205i 0.341882 + 0.197386i
\(78\) 0 0
\(79\) −2.63397 4.56218i −0.296345 0.513285i 0.678952 0.734183i \(-0.262435\pi\)
−0.975297 + 0.220898i \(0.929101\pi\)
\(80\) 12.9282 + 7.46410i 1.44542 + 0.834512i
\(81\) 0 0
\(82\) 6.19615 1.66025i 0.684251 0.183344i
\(83\) −12.1244 + 7.00000i −1.33082 + 0.768350i −0.985426 0.170107i \(-0.945589\pi\)
−0.345395 + 0.938457i \(0.612255\pi\)
\(84\) 0 0
\(85\) 12.0622 + 6.96410i 1.30833 + 0.755363i
\(86\) 13.1962 + 3.53590i 1.42298 + 0.381286i
\(87\) 0 0
\(88\) 3.46410 12.9282i 0.369274 1.37815i
\(89\) −11.7321 −1.24359 −0.621797 0.783178i \(-0.713597\pi\)
−0.621797 + 0.783178i \(0.713597\pi\)
\(90\) 0 0
\(91\) 1.80385i 0.189095i
\(92\) −15.1244 8.73205i −1.57682 0.910379i
\(93\) 0 0
\(94\) −1.26795 + 4.73205i −0.130779 + 0.488074i
\(95\) −6.09808 + 10.5622i −0.625649 + 1.08366i
\(96\) 0 0
\(97\) 4.00000 + 6.92820i 0.406138 + 0.703452i 0.994453 0.105180i \(-0.0335417\pi\)
−0.588315 + 0.808632i \(0.700208\pi\)
\(98\) −8.83013 + 2.36603i −0.891978 + 0.239005i
\(99\) 0 0
\(100\) −15.4641 + 8.92820i −1.54641 + 0.892820i
\(101\) 6.92820 4.00000i 0.689382 0.398015i −0.113998 0.993481i \(-0.536366\pi\)
0.803380 + 0.595466i \(0.203033\pi\)
\(102\) 0 0
\(103\) 1.73205 3.00000i 0.170664 0.295599i −0.767988 0.640464i \(-0.778742\pi\)
0.938652 + 0.344865i \(0.112075\pi\)
\(104\) −6.73205 + 1.80385i −0.660132 + 0.176882i
\(105\) 0 0
\(106\) −0.928203 + 0.928203i −0.0901551 + 0.0901551i
\(107\) 10.3923i 1.00466i 0.864675 + 0.502331i \(0.167524\pi\)
−0.864675 + 0.502331i \(0.832476\pi\)
\(108\) 0 0
\(109\) 12.8564i 1.23142i −0.787973 0.615710i \(-0.788869\pi\)
0.787973 0.615710i \(-0.211131\pi\)
\(110\) 17.6603 + 17.6603i 1.68384 + 1.68384i
\(111\) 0 0
\(112\) −1.46410 2.53590i −0.138345 0.239620i
\(113\) 3.86603 6.69615i 0.363685 0.629921i −0.624879 0.780721i \(-0.714852\pi\)
0.988564 + 0.150800i \(0.0481851\pi\)
\(114\) 0 0
\(115\) 28.2224 16.2942i 2.63176 1.51944i
\(116\) −5.19615 9.00000i −0.482451 0.835629i
\(117\) 0 0
\(118\) 3.07180 + 11.4641i 0.282782 + 1.05536i
\(119\) −1.36603 2.36603i −0.125223 0.216893i
\(120\) 0 0
\(121\) 5.69615 9.86603i 0.517832 0.896911i
\(122\) 12.2942 + 3.29423i 1.11307 + 0.298245i
\(123\) 0 0
\(124\) −3.46410 2.00000i −0.311086 0.179605i
\(125\) 14.6603i 1.31125i
\(126\) 0 0
\(127\) −13.6603 −1.21215 −0.606076 0.795407i \(-0.707257\pi\)
−0.606076 + 0.795407i \(0.707257\pi\)
\(128\) −8.00000 + 8.00000i −0.707107 + 0.707107i
\(129\) 0 0
\(130\) 3.36603 12.5622i 0.295220 1.10178i
\(131\) −0.169873 0.0980762i −0.0148419 0.00856896i 0.492561 0.870278i \(-0.336061\pi\)
−0.507403 + 0.861709i \(0.669394\pi\)
\(132\) 0 0
\(133\) 2.07180 1.19615i 0.179648 0.103720i
\(134\) −1.73205 6.46410i −0.149626 0.558413i
\(135\) 0 0
\(136\) −7.46410 + 7.46410i −0.640041 + 0.640041i
\(137\) 8.59808 + 14.8923i 0.734583 + 1.27234i 0.954906 + 0.296908i \(0.0959556\pi\)
−0.220323 + 0.975427i \(0.570711\pi\)
\(138\) 0 0
\(139\) −16.8564 9.73205i −1.42974 0.825462i −0.432642 0.901566i \(-0.642419\pi\)
−0.997100 + 0.0761041i \(0.975752\pi\)
\(140\) 5.46410 0.461801
\(141\) 0 0
\(142\) −5.66025 5.66025i −0.474998 0.474998i
\(143\) −11.6603 −0.975079
\(144\) 0 0
\(145\) 19.3923 1.61044
\(146\) −9.00000 9.00000i −0.744845 0.744845i
\(147\) 0 0
\(148\) −10.0000 −0.821995
\(149\) 4.50000 + 2.59808i 0.368654 + 0.212843i 0.672870 0.739760i \(-0.265061\pi\)
−0.304216 + 0.952603i \(0.598394\pi\)
\(150\) 0 0
\(151\) −6.92820 12.0000i −0.563809 0.976546i −0.997159 0.0753205i \(-0.976002\pi\)
0.433350 0.901226i \(-0.357331\pi\)
\(152\) −6.53590 6.53590i −0.530131 0.530131i
\(153\) 0 0
\(154\) −1.26795 4.73205i −0.102174 0.381320i
\(155\) 6.46410 3.73205i 0.519209 0.299766i
\(156\) 0 0
\(157\) −2.13397 1.23205i −0.170310 0.0983284i 0.412422 0.910993i \(-0.364683\pi\)
−0.582732 + 0.812664i \(0.698016\pi\)
\(158\) −1.92820 + 7.19615i −0.153400 + 0.572495i
\(159\) 0 0
\(160\) −5.46410 20.3923i −0.431975 1.61215i
\(161\) −6.39230 −0.503784
\(162\) 0 0
\(163\) 6.53590i 0.511931i −0.966686 0.255966i \(-0.917607\pi\)
0.966686 0.255966i \(-0.0823934\pi\)
\(164\) −7.85641 4.53590i −0.613482 0.354194i
\(165\) 0 0
\(166\) 19.1244 + 5.12436i 1.48434 + 0.397727i
\(167\) 7.36603 12.7583i 0.570000 0.987269i −0.426565 0.904457i \(-0.640276\pi\)
0.996565 0.0828123i \(-0.0263902\pi\)
\(168\) 0 0
\(169\) −3.46410 6.00000i −0.266469 0.461538i
\(170\) −5.09808 19.0263i −0.391005 1.45925i
\(171\) 0 0
\(172\) −9.66025 16.7321i −0.736587 1.27581i
\(173\) 1.50000 0.866025i 0.114043 0.0658427i −0.441894 0.897067i \(-0.645693\pi\)
0.555936 + 0.831225i \(0.312360\pi\)
\(174\) 0 0
\(175\) −3.26795 + 5.66025i −0.247034 + 0.427875i
\(176\) −16.3923 + 9.46410i −1.23562 + 0.713384i
\(177\) 0 0
\(178\) 11.7321 + 11.7321i 0.879354 + 0.879354i
\(179\) 14.0000i 1.04641i −0.852207 0.523205i \(-0.824736\pi\)
0.852207 0.523205i \(-0.175264\pi\)
\(180\) 0 0
\(181\) 6.53590i 0.485810i 0.970050 + 0.242905i \(0.0781002\pi\)
−0.970050 + 0.242905i \(0.921900\pi\)
\(182\) −1.80385 + 1.80385i −0.133710 + 0.133710i
\(183\) 0 0
\(184\) 6.39230 + 23.8564i 0.471247 + 1.75872i
\(185\) 9.33013 16.1603i 0.685965 1.18813i
\(186\) 0 0
\(187\) −15.2942 + 8.83013i −1.11842 + 0.645723i
\(188\) 6.00000 3.46410i 0.437595 0.252646i
\(189\) 0 0
\(190\) 16.6603 4.46410i 1.20866 0.323860i
\(191\) −8.29423 14.3660i −0.600149 1.03949i −0.992798 0.119801i \(-0.961774\pi\)
0.392649 0.919689i \(-0.371559\pi\)
\(192\) 0 0
\(193\) −5.42820 + 9.40192i −0.390731 + 0.676765i −0.992546 0.121870i \(-0.961111\pi\)
0.601815 + 0.798635i \(0.294444\pi\)
\(194\) 2.92820 10.9282i 0.210233 0.784599i
\(195\) 0 0
\(196\) 11.1962 + 6.46410i 0.799725 + 0.461722i
\(197\) 4.12436i 0.293848i 0.989148 + 0.146924i \(0.0469373\pi\)
−0.989148 + 0.146924i \(0.953063\pi\)
\(198\) 0 0
\(199\) 2.39230 0.169586 0.0847930 0.996399i \(-0.472977\pi\)
0.0847930 + 0.996399i \(0.472977\pi\)
\(200\) 24.3923 + 6.53590i 1.72480 + 0.462158i
\(201\) 0 0
\(202\) −10.9282 2.92820i −0.768906 0.206028i
\(203\) −3.29423 1.90192i −0.231210 0.133489i
\(204\) 0 0
\(205\) 14.6603 8.46410i 1.02392 0.591158i
\(206\) −4.73205 + 1.26795i −0.329698 + 0.0883422i
\(207\) 0 0
\(208\) 8.53590 + 4.92820i 0.591858 + 0.341709i
\(209\) −7.73205 13.3923i −0.534837 0.926365i
\(210\) 0 0
\(211\) 22.5622 + 13.0263i 1.55324 + 0.896766i 0.997875 + 0.0651625i \(0.0207566\pi\)
0.555370 + 0.831604i \(0.312577\pi\)
\(212\) 1.85641 0.127499
\(213\) 0 0
\(214\) 10.3923 10.3923i 0.710403 0.710403i
\(215\) 36.0526 2.45876
\(216\) 0 0
\(217\) −1.46410 −0.0993897
\(218\) −12.8564 + 12.8564i −0.870746 + 0.870746i
\(219\) 0 0
\(220\) 35.3205i 2.38131i
\(221\) 7.96410 + 4.59808i 0.535723 + 0.309300i
\(222\) 0 0
\(223\) −11.5622 20.0263i −0.774261 1.34106i −0.935209 0.354096i \(-0.884789\pi\)
0.160948 0.986963i \(-0.448545\pi\)
\(224\) −1.07180 + 4.00000i −0.0716124 + 0.267261i
\(225\) 0 0
\(226\) −10.5622 + 2.83013i −0.702586 + 0.188257i
\(227\) 5.83013 3.36603i 0.386959 0.223411i −0.293883 0.955842i \(-0.594947\pi\)
0.680842 + 0.732431i \(0.261614\pi\)
\(228\) 0 0
\(229\) −9.86603 5.69615i −0.651965 0.376412i 0.137243 0.990537i \(-0.456176\pi\)
−0.789209 + 0.614125i \(0.789509\pi\)
\(230\) −44.5167 11.9282i −2.93534 0.786522i
\(231\) 0 0
\(232\) −3.80385 + 14.1962i −0.249735 + 0.932023i
\(233\) 3.73205 0.244495 0.122247 0.992500i \(-0.460990\pi\)
0.122247 + 0.992500i \(0.460990\pi\)
\(234\) 0 0
\(235\) 12.9282i 0.843343i
\(236\) 8.39230 14.5359i 0.546293 0.946206i
\(237\) 0 0
\(238\) −1.00000 + 3.73205i −0.0648204 + 0.241913i
\(239\) −3.92820 + 6.80385i −0.254094 + 0.440104i −0.964649 0.263538i \(-0.915111\pi\)
0.710555 + 0.703642i \(0.248444\pi\)
\(240\) 0 0
\(241\) 2.23205 + 3.86603i 0.143779 + 0.249033i 0.928917 0.370289i \(-0.120741\pi\)
−0.785138 + 0.619321i \(0.787408\pi\)
\(242\) −15.5622 + 4.16987i −1.00037 + 0.268050i
\(243\) 0 0
\(244\) −9.00000 15.5885i −0.576166 0.997949i
\(245\) −20.8923 + 12.0622i −1.33476 + 0.770624i
\(246\) 0 0
\(247\) −4.02628 + 6.97372i −0.256186 + 0.443727i
\(248\) 1.46410 + 5.46410i 0.0929705 + 0.346971i
\(249\) 0 0
\(250\) −14.6603 + 14.6603i −0.927196 + 0.927196i
\(251\) 7.26795i 0.458749i 0.973338 + 0.229374i \(0.0736680\pi\)
−0.973338 + 0.229374i \(0.926332\pi\)
\(252\) 0 0
\(253\) 41.3205i 2.59780i
\(254\) 13.6603 + 13.6603i 0.857121 + 0.857121i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 1.66987 2.89230i 0.104164 0.180417i −0.809232 0.587489i \(-0.800117\pi\)
0.913396 + 0.407072i \(0.133450\pi\)
\(258\) 0 0
\(259\) −3.16987 + 1.83013i −0.196966 + 0.113719i
\(260\) −15.9282 + 9.19615i −0.987825 + 0.570321i
\(261\) 0 0
\(262\) 0.0717968 + 0.267949i 0.00443562 + 0.0165540i
\(263\) 8.12436 + 14.0718i 0.500969 + 0.867704i 0.999999 + 0.00111953i \(0.000356359\pi\)
−0.499030 + 0.866585i \(0.666310\pi\)
\(264\) 0 0
\(265\) −1.73205 + 3.00000i −0.106399 + 0.184289i
\(266\) −3.26795 0.875644i −0.200371 0.0536892i
\(267\) 0 0
\(268\) −4.73205 + 8.19615i −0.289056 + 0.500660i
\(269\) 25.7321i 1.56891i 0.620185 + 0.784455i \(0.287057\pi\)
−0.620185 + 0.784455i \(0.712943\pi\)
\(270\) 0 0
\(271\) 10.7321 0.651926 0.325963 0.945383i \(-0.394312\pi\)
0.325963 + 0.945383i \(0.394312\pi\)
\(272\) 14.9282 0.905155
\(273\) 0 0
\(274\) 6.29423 23.4904i 0.380248 1.41911i
\(275\) 36.5885 + 21.1244i 2.20637 + 1.27385i
\(276\) 0 0
\(277\) −8.53590 + 4.92820i −0.512872 + 0.296107i −0.734014 0.679135i \(-0.762355\pi\)
0.221141 + 0.975242i \(0.429022\pi\)
\(278\) 7.12436 + 26.5885i 0.427290 + 1.59467i
\(279\) 0 0
\(280\) −5.46410 5.46410i −0.326543 0.326543i
\(281\) −6.86603 11.8923i −0.409593 0.709435i 0.585251 0.810852i \(-0.300996\pi\)
−0.994844 + 0.101417i \(0.967663\pi\)
\(282\) 0 0
\(283\) −5.53590 3.19615i −0.329075 0.189992i 0.326355 0.945247i \(-0.394179\pi\)
−0.655430 + 0.755256i \(0.727513\pi\)
\(284\) 11.3205i 0.671749i
\(285\) 0 0
\(286\) 11.6603 + 11.6603i 0.689485 + 0.689485i
\(287\) −3.32051 −0.196003
\(288\) 0 0
\(289\) −3.07180 −0.180694
\(290\) −19.3923 19.3923i −1.13876 1.13876i
\(291\) 0 0
\(292\) 18.0000i 1.05337i
\(293\) −2.89230 1.66987i −0.168970 0.0975550i 0.413130 0.910672i \(-0.364436\pi\)
−0.582100 + 0.813117i \(0.697769\pi\)
\(294\) 0 0
\(295\) 15.6603 + 27.1244i 0.911775 + 1.57924i
\(296\) 10.0000 + 10.0000i 0.581238 + 0.581238i
\(297\) 0 0
\(298\) −1.90192 7.09808i −0.110175 0.411181i
\(299\) 18.6340 10.7583i 1.07763 0.622170i
\(300\) 0 0
\(301\) −6.12436 3.53590i −0.353002 0.203806i
\(302\) −5.07180 + 18.9282i −0.291849 + 1.08920i
\(303\) 0 0
\(304\) 13.0718i 0.749719i
\(305\) 33.5885 1.92327
\(306\) 0 0
\(307\) 14.7846i 0.843802i −0.906642 0.421901i \(-0.861363\pi\)
0.906642 0.421901i \(-0.138637\pi\)
\(308\) −3.46410 + 6.00000i −0.197386 + 0.341882i
\(309\) 0 0
\(310\) −10.1962 2.73205i −0.579103 0.155170i
\(311\) 9.66025 16.7321i 0.547783 0.948788i −0.450643 0.892704i \(-0.648805\pi\)
0.998426 0.0560835i \(-0.0178613\pi\)
\(312\) 0 0
\(313\) −1.23205 2.13397i −0.0696396 0.120619i 0.829103 0.559096i \(-0.188852\pi\)
−0.898743 + 0.438476i \(0.855518\pi\)
\(314\) 0.901924 + 3.36603i 0.0508985 + 0.189956i
\(315\) 0 0
\(316\) 9.12436 5.26795i 0.513285 0.296345i
\(317\) 1.03590 0.598076i 0.0581818 0.0335913i −0.470627 0.882332i \(-0.655972\pi\)
0.528809 + 0.848741i \(0.322639\pi\)
\(318\) 0 0
\(319\) −12.2942 + 21.2942i −0.688345 + 1.19225i
\(320\) −14.9282 + 25.8564i −0.834512 + 1.44542i
\(321\) 0 0
\(322\) 6.39230 + 6.39230i 0.356229 + 0.356229i
\(323\) 12.1962i 0.678612i
\(324\) 0 0
\(325\) 22.0000i 1.22034i
\(326\) −6.53590 + 6.53590i −0.361990 + 0.361990i
\(327\) 0 0
\(328\) 3.32051 + 12.3923i 0.183344 + 0.684251i
\(329\) 1.26795 2.19615i 0.0699043 0.121078i
\(330\) 0 0
\(331\) −11.3660 + 6.56218i −0.624733 + 0.360690i −0.778710 0.627385i \(-0.784125\pi\)
0.153976 + 0.988075i \(0.450792\pi\)
\(332\) −14.0000 24.2487i −0.768350 1.33082i
\(333\) 0 0
\(334\) −20.1244 + 5.39230i −1.10116 + 0.295054i
\(335\) −8.83013 15.2942i −0.482441 0.835613i
\(336\) 0 0
\(337\) −2.00000 + 3.46410i −0.108947 + 0.188702i −0.915344 0.402673i \(-0.868081\pi\)
0.806397 + 0.591375i \(0.201415\pi\)
\(338\) −2.53590 + 9.46410i −0.137935 + 0.514779i
\(339\) 0 0
\(340\) −13.9282 + 24.1244i −0.755363 + 1.30833i
\(341\) 9.46410i 0.512510i
\(342\) 0 0
\(343\) 9.85641 0.532196
\(344\) −7.07180 + 26.3923i −0.381286 + 1.42298i
\(345\) 0 0
\(346\) −2.36603 0.633975i −0.127198 0.0340827i
\(347\) −5.83013 3.36603i −0.312978 0.180698i 0.335281 0.942118i \(-0.391169\pi\)
−0.648258 + 0.761421i \(0.724502\pi\)
\(348\) 0 0
\(349\) −10.2679 + 5.92820i −0.549631 + 0.317329i −0.748973 0.662600i \(-0.769453\pi\)
0.199342 + 0.979930i \(0.436119\pi\)
\(350\) 8.92820 2.39230i 0.477233 0.127874i
\(351\) 0 0
\(352\) 25.8564 + 6.92820i 1.37815 + 0.369274i
\(353\) 3.46410 + 6.00000i 0.184376 + 0.319348i 0.943366 0.331754i \(-0.107640\pi\)
−0.758990 + 0.651102i \(0.774307\pi\)
\(354\) 0 0
\(355\) −18.2942 10.5622i −0.970957 0.560582i
\(356\) 23.4641i 1.24359i
\(357\) 0 0
\(358\) −14.0000 + 14.0000i −0.739923 + 0.739923i
\(359\) 1.12436 0.0593412 0.0296706 0.999560i \(-0.490554\pi\)
0.0296706 + 0.999560i \(0.490554\pi\)
\(360\) 0 0
\(361\) 8.32051 0.437921
\(362\) 6.53590 6.53590i 0.343519 0.343519i
\(363\) 0 0
\(364\) 3.60770 0.189095
\(365\) −29.0885 16.7942i −1.52256 0.879050i
\(366\) 0 0
\(367\) −1.26795 2.19615i −0.0661864 0.114638i 0.831033 0.556223i \(-0.187750\pi\)
−0.897220 + 0.441585i \(0.854417\pi\)
\(368\) 17.4641 30.2487i 0.910379 1.57682i
\(369\) 0 0
\(370\) −25.4904 + 6.83013i −1.32518 + 0.355081i
\(371\) 0.588457 0.339746i 0.0305512 0.0176387i
\(372\) 0 0
\(373\) −19.8564 11.4641i −1.02813 0.593589i −0.111679 0.993744i \(-0.535623\pi\)
−0.916447 + 0.400156i \(0.868956\pi\)
\(374\) 24.1244 + 6.46410i 1.24744 + 0.334251i
\(375\) 0 0
\(376\) −9.46410 2.53590i −0.488074 0.130779i
\(377\) 12.8038 0.659432
\(378\) 0 0
\(379\) 10.0000i 0.513665i 0.966456 + 0.256833i \(0.0826790\pi\)
−0.966456 + 0.256833i \(0.917321\pi\)
\(380\) −21.1244 12.1962i −1.08366 0.625649i
\(381\) 0 0
\(382\) −6.07180 + 22.6603i −0.310660 + 1.15940i
\(383\) 10.0981 17.4904i 0.515988 0.893717i −0.483840 0.875156i \(-0.660758\pi\)
0.999828 0.0185603i \(-0.00590828\pi\)
\(384\) 0 0
\(385\) −6.46410 11.1962i −0.329441 0.570609i
\(386\) 14.8301 3.97372i 0.754834 0.202257i
\(387\) 0 0
\(388\) −13.8564 + 8.00000i −0.703452 + 0.406138i
\(389\) 14.6603 8.46410i 0.743304 0.429147i −0.0799651 0.996798i \(-0.525481\pi\)
0.823270 + 0.567651i \(0.192148\pi\)
\(390\) 0 0
\(391\) 16.2942 28.2224i 0.824035 1.42727i
\(392\) −4.73205 17.6603i −0.239005 0.891978i
\(393\) 0 0
\(394\) 4.12436 4.12436i 0.207782 0.207782i
\(395\) 19.6603i 0.989215i
\(396\) 0 0
\(397\) 32.4641i 1.62933i −0.579934 0.814663i \(-0.696922\pi\)
0.579934 0.814663i \(-0.303078\pi\)
\(398\) −2.39230 2.39230i −0.119915 0.119915i
\(399\) 0 0
\(400\) −17.8564 30.9282i −0.892820 1.54641i
\(401\) 4.79423 8.30385i 0.239412 0.414674i −0.721133 0.692796i \(-0.756379\pi\)
0.960546 + 0.278122i \(0.0897119\pi\)
\(402\) 0 0
\(403\) 4.26795 2.46410i 0.212602 0.122746i
\(404\) 8.00000 + 13.8564i 0.398015 + 0.689382i
\(405\) 0 0
\(406\) 1.39230 + 5.19615i 0.0690989 + 0.257881i
\(407\) 11.8301 + 20.4904i 0.586398 + 1.01567i
\(408\) 0 0
\(409\) −14.3564 + 24.8660i −0.709879 + 1.22955i 0.255023 + 0.966935i \(0.417917\pi\)
−0.964902 + 0.262611i \(0.915416\pi\)
\(410\) −23.1244 6.19615i −1.14203 0.306006i
\(411\) 0 0
\(412\) 6.00000 + 3.46410i 0.295599 + 0.170664i
\(413\) 6.14359i 0.302306i
\(414\) 0 0
\(415\) 52.2487 2.56479
\(416\) −3.60770 13.4641i −0.176882 0.660132i
\(417\) 0 0
\(418\) −5.66025 + 21.1244i −0.276852 + 1.03323i
\(419\) −18.5885 10.7321i −0.908106 0.524295i −0.0282844 0.999600i \(-0.509004\pi\)
−0.879821 + 0.475305i \(0.842338\pi\)
\(420\) 0 0
\(421\) 11.2583 6.50000i 0.548697 0.316791i −0.199899 0.979817i \(-0.564061\pi\)
0.748596 + 0.663026i \(0.230728\pi\)
\(422\) −9.53590 35.5885i −0.464200 1.73242i
\(423\) 0 0
\(424\) −1.85641 1.85641i −0.0901551 0.0901551i
\(425\) −16.6603 28.8564i −0.808141 1.39974i
\(426\) 0 0
\(427\) −5.70577 3.29423i −0.276122 0.159419i
\(428\) −20.7846 −1.00466
\(429\) 0 0
\(430\) −36.0526 36.0526i −1.73861 1.73861i
\(431\) −21.7128 −1.04587 −0.522935 0.852373i \(-0.675163\pi\)
−0.522935 + 0.852373i \(0.675163\pi\)
\(432\) 0 0
\(433\) −21.7846 −1.04690 −0.523451 0.852056i \(-0.675356\pi\)
−0.523451 + 0.852056i \(0.675356\pi\)
\(434\) 1.46410 + 1.46410i 0.0702791 + 0.0702791i
\(435\) 0 0
\(436\) 25.7128 1.23142
\(437\) 24.7128 + 14.2679i 1.18217 + 0.682529i
\(438\) 0 0
\(439\) 15.0000 + 25.9808i 0.715911 + 1.23999i 0.962607 + 0.270901i \(0.0873217\pi\)
−0.246696 + 0.969093i \(0.579345\pi\)
\(440\) −35.3205 + 35.3205i −1.68384 + 1.68384i
\(441\) 0 0
\(442\) −3.36603 12.5622i −0.160106 0.597522i
\(443\) −25.3923 + 14.6603i −1.20642 + 0.696530i −0.961976 0.273133i \(-0.911940\pi\)
−0.244448 + 0.969662i \(0.578607\pi\)
\(444\) 0 0
\(445\) 37.9186 + 21.8923i 1.79751 + 1.03779i
\(446\) −8.46410 + 31.5885i −0.400787 + 1.49576i
\(447\) 0 0
\(448\) 5.07180 2.92820i 0.239620 0.138345i
\(449\) −24.9282 −1.17643 −0.588217 0.808703i \(-0.700170\pi\)
−0.588217 + 0.808703i \(0.700170\pi\)
\(450\) 0 0
\(451\) 21.4641i 1.01071i
\(452\) 13.3923 + 7.73205i 0.629921 + 0.363685i
\(453\) 0 0
\(454\) −9.19615 2.46410i −0.431597 0.115646i
\(455\) −3.36603 + 5.83013i −0.157802 + 0.273321i
\(456\) 0 0
\(457\) 3.16025 + 5.47372i 0.147830 + 0.256050i 0.930425 0.366481i \(-0.119438\pi\)
−0.782595 + 0.622531i \(0.786104\pi\)
\(458\) 4.16987 + 15.5622i 0.194845 + 0.727173i
\(459\) 0 0
\(460\) 32.5885 + 56.4449i 1.51944 + 2.63176i
\(461\) 35.7846 20.6603i 1.66666 0.962244i 0.697233 0.716844i \(-0.254414\pi\)
0.969422 0.245400i \(-0.0789193\pi\)
\(462\) 0 0
\(463\) −6.73205 + 11.6603i −0.312865 + 0.541898i −0.978981 0.203950i \(-0.934622\pi\)
0.666116 + 0.745848i \(0.267955\pi\)
\(464\) 18.0000 10.3923i 0.835629 0.482451i
\(465\) 0 0
\(466\) −3.73205 3.73205i −0.172884 0.172884i
\(467\) 24.7846i 1.14689i −0.819242 0.573447i \(-0.805606\pi\)
0.819242 0.573447i \(-0.194394\pi\)
\(468\) 0 0
\(469\) 3.46410i 0.159957i
\(470\) 12.9282 12.9282i 0.596334 0.596334i
\(471\) 0 0
\(472\) −22.9282 + 6.14359i −1.05536 + 0.282782i
\(473\) −22.8564 + 39.5885i −1.05094 + 1.82028i
\(474\) 0 0
\(475\) 25.2679 14.5885i 1.15937 0.669364i
\(476\) 4.73205 2.73205i 0.216893 0.125223i
\(477\) 0 0
\(478\) 10.7321 2.87564i 0.490873 0.131529i
\(479\) −0.830127 1.43782i −0.0379295 0.0656958i 0.846437 0.532488i \(-0.178743\pi\)
−0.884367 + 0.466792i \(0.845410\pi\)
\(480\) 0 0
\(481\) 6.16025 10.6699i 0.280883 0.486504i
\(482\) 1.63397 6.09808i 0.0744255 0.277760i
\(483\) 0 0
\(484\) 19.7321 + 11.3923i 0.896911 + 0.517832i
\(485\) 29.8564i 1.35571i
\(486\) 0 0
\(487\) −25.7128 −1.16516 −0.582579 0.812774i \(-0.697956\pi\)
−0.582579 + 0.812774i \(0.697956\pi\)
\(488\) −6.58846 + 24.5885i −0.298245 + 1.11307i
\(489\) 0 0
\(490\) 32.9545 + 8.83013i 1.48873 + 0.398904i
\(491\) −11.9545 6.90192i −0.539498 0.311479i 0.205377 0.978683i \(-0.434158\pi\)
−0.744876 + 0.667203i \(0.767491\pi\)
\(492\) 0 0
\(493\) 16.7942 9.69615i 0.756374 0.436693i
\(494\) 11.0000 2.94744i 0.494913 0.132612i
\(495\) 0 0
\(496\) 4.00000 6.92820i 0.179605 0.311086i
\(497\) 2.07180 + 3.58846i 0.0929328 + 0.160964i
\(498\) 0 0
\(499\) 7.09808 + 4.09808i 0.317754 + 0.183455i 0.650391 0.759600i \(-0.274605\pi\)
−0.332637 + 0.943055i \(0.607938\pi\)
\(500\) 29.3205 1.31125
\(501\) 0 0
\(502\) 7.26795 7.26795i 0.324384 0.324384i
\(503\) −0.679492 −0.0302970 −0.0151485 0.999885i \(-0.504822\pi\)
−0.0151485 + 0.999885i \(0.504822\pi\)
\(504\) 0 0
\(505\) −29.8564 −1.32859
\(506\) 41.3205 41.3205i 1.83692 1.83692i
\(507\) 0 0
\(508\) 27.3205i 1.21215i
\(509\) 25.3923 + 14.6603i 1.12549 + 0.649804i 0.942798 0.333365i \(-0.108184\pi\)
0.182696 + 0.983169i \(0.441517\pi\)
\(510\) 0 0
\(511\) 3.29423 + 5.70577i 0.145728 + 0.252408i
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) 0 0
\(514\) −4.56218 + 1.22243i −0.201229 + 0.0539192i
\(515\) −11.1962 + 6.46410i −0.493361 + 0.284842i
\(516\) 0 0
\(517\) −14.1962 8.19615i −0.624346 0.360466i
\(518\) 5.00000 + 1.33975i 0.219687 + 0.0588651i
\(519\) 0 0
\(520\) 25.1244 + 6.73205i 1.10178 + 0.295220i
\(521\) 26.7846 1.17346 0.586728 0.809784i \(-0.300416\pi\)
0.586728 + 0.809784i \(0.300416\pi\)
\(522\) 0 0
\(523\) 13.2679i 0.580167i 0.957001 + 0.290083i \(0.0936831\pi\)
−0.957001 + 0.290083i \(0.906317\pi\)
\(524\) 0.196152 0.339746i 0.00856896 0.0148419i
\(525\) 0 0
\(526\) 5.94744 22.1962i 0.259321 0.967798i
\(527\) 3.73205 6.46410i 0.162571 0.281581i
\(528\) 0 0
\(529\) −26.6244 46.1147i −1.15758 2.00499i
\(530\) 4.73205 1.26795i 0.205547 0.0550762i
\(531\) 0 0
\(532\) 2.39230 + 4.14359i 0.103720 + 0.179648i
\(533\) 9.67949 5.58846i 0.419265 0.242063i
\(534\) 0 0
\(535\) 19.3923 33.5885i 0.838402 1.45216i
\(536\) 12.9282 3.46410i 0.558413 0.149626i
\(537\) 0 0
\(538\) 25.7321 25.7321i 1.10939 1.10939i
\(539\) 30.5885i 1.31754i
\(540\) 0 0
\(541\) 24.1769i 1.03945i 0.854335 + 0.519723i \(0.173965\pi\)
−0.854335 + 0.519723i \(0.826035\pi\)
\(542\) −10.7321 10.7321i −0.460981 0.460981i
\(543\) 0 0
\(544\) −14.9282 14.9282i −0.640041 0.640041i
\(545\) −23.9904 + 41.5526i −1.02764 + 1.77992i
\(546\) 0 0
\(547\) −22.5167 + 13.0000i −0.962743 + 0.555840i −0.897016 0.441998i \(-0.854270\pi\)
−0.0657267 + 0.997838i \(0.520937\pi\)
\(548\) −29.7846 + 17.1962i −1.27234 + 0.734583i
\(549\) 0 0
\(550\) −15.4641 57.7128i −0.659392 2.46088i
\(551\) 8.49038 + 14.7058i 0.361702 + 0.626487i
\(552\) 0 0
\(553\) 1.92820 3.33975i 0.0819955 0.142020i
\(554\) 13.4641 + 3.60770i 0.572035 + 0.153276i
\(555\) 0 0
\(556\) 19.4641 33.7128i 0.825462 1.42974i
\(557\) 13.0526i 0.553055i 0.961006 + 0.276527i \(0.0891836\pi\)
−0.961006 + 0.276527i \(0.910816\pi\)
\(558\) 0 0
\(559\) 23.8038 1.00680
\(560\) 10.9282i 0.461801i
\(561\) 0 0
\(562\) −5.02628 + 18.7583i −0.212021 + 0.791272i
\(563\) −21.0000 12.1244i −0.885044 0.510981i −0.0127261 0.999919i \(-0.504051\pi\)
−0.872318 + 0.488938i \(0.837384\pi\)
\(564\) 0 0
\(565\) −24.9904 + 14.4282i −1.05135 + 0.606999i
\(566\) 2.33975 + 8.73205i 0.0983469 + 0.367035i
\(567\) 0 0
\(568\) 11.3205 11.3205i 0.474998 0.474998i
\(569\) 16.7942 + 29.0885i 0.704051 + 1.21945i 0.967033 + 0.254651i \(0.0819606\pi\)
−0.262982 + 0.964801i \(0.584706\pi\)
\(570\) 0 0
\(571\) 22.7321 + 13.1244i 0.951307 + 0.549237i 0.893487 0.449090i \(-0.148252\pi\)
0.0578201 + 0.998327i \(0.481585\pi\)
\(572\) 23.3205i 0.975079i
\(573\) 0 0
\(574\) 3.32051 + 3.32051i 0.138595 + 0.138595i
\(575\) −77.9615 −3.25122
\(576\) 0 0
\(577\) −45.2487 −1.88373 −0.941864 0.335994i \(-0.890928\pi\)
−0.941864 + 0.335994i \(0.890928\pi\)
\(578\) 3.07180 + 3.07180i 0.127770 + 0.127770i
\(579\) 0 0
\(580\) 38.7846i 1.61044i
\(581\) −8.87564 5.12436i −0.368224 0.212594i
\(582\) 0 0
\(583\) −2.19615 3.80385i −0.0909553 0.157539i
\(584\) 18.0000 18.0000i 0.744845 0.744845i
\(585\) 0 0
\(586\) 1.22243 + 4.56218i 0.0504982 + 0.188462i
\(587\) −36.6340 + 21.1506i −1.51205 + 0.872980i −0.512145 + 0.858899i \(0.671149\pi\)
−0.999901 + 0.0140812i \(0.995518\pi\)
\(588\) 0 0
\(589\) 5.66025 + 3.26795i 0.233227 + 0.134654i
\(590\) 11.4641 42.7846i 0.471970 1.76141i
\(591\) 0 0
\(592\) 20.0000i 0.821995i
\(593\) −14.4115 −0.591811 −0.295906 0.955217i \(-0.595621\pi\)
−0.295906 + 0.955217i \(0.595621\pi\)
\(594\) 0 0
\(595\) 10.1962i 0.418001i
\(596\) −5.19615 + 9.00000i −0.212843 + 0.368654i
\(597\) 0 0
\(598\) −29.3923 7.87564i −1.20194 0.322059i
\(599\) 4.12436 7.14359i 0.168517 0.291879i −0.769382 0.638789i \(-0.779436\pi\)
0.937899 + 0.346910i \(0.112769\pi\)
\(600\) 0 0
\(601\) −8.62436 14.9378i −0.351795 0.609326i 0.634769 0.772702i \(-0.281095\pi\)
−0.986564 + 0.163375i \(0.947762\pi\)
\(602\) 2.58846 + 9.66025i 0.105498 + 0.393723i
\(603\) 0 0
\(604\) 24.0000 13.8564i 0.976546 0.563809i
\(605\) −36.8205 + 21.2583i −1.49697 + 0.864274i
\(606\) 0 0
\(607\) 12.9545 22.4378i 0.525806 0.910723i −0.473742 0.880664i \(-0.657097\pi\)
0.999548 0.0300594i \(-0.00956963\pi\)
\(608\) 13.0718 13.0718i 0.530131 0.530131i
\(609\) 0 0
\(610\) −33.5885 33.5885i −1.35996 1.35996i
\(611\) 8.53590i 0.345325i
\(612\) 0 0
\(613\) 24.3923i 0.985196i −0.870257 0.492598i \(-0.836047\pi\)
0.870257 0.492598i \(-0.163953\pi\)
\(614\) −14.7846 + 14.7846i −0.596658 + 0.596658i
\(615\) 0 0
\(616\) 9.46410 2.53590i 0.381320 0.102174i
\(617\) 13.0622 22.6244i 0.525863 0.910822i −0.473683 0.880696i \(-0.657076\pi\)
0.999546 0.0301266i \(-0.00959106\pi\)
\(618\) 0 0
\(619\) 5.41154 3.12436i 0.217508 0.125578i −0.387288 0.921959i \(-0.626588\pi\)
0.604796 + 0.796380i \(0.293255\pi\)
\(620\) 7.46410 + 12.9282i 0.299766 + 0.519209i
\(621\) 0 0
\(622\) −26.3923 + 7.07180i −1.05824 + 0.283553i
\(623\) −4.29423 7.43782i −0.172045 0.297990i
\(624\) 0 0
\(625\) −5.03590 + 8.72243i −0.201436 + 0.348897i
\(626\) −0.901924 + 3.36603i −0.0360481 + 0.134533i
\(627\) 0 0
\(628\) 2.46410 4.26795i 0.0983284 0.170310i
\(629\) 18.6603i 0.744033i
\(630\) 0 0
\(631\) 0.784610 0.0312348 0.0156174 0.999878i \(-0.495029\pi\)
0.0156174 + 0.999878i \(0.495029\pi\)
\(632\) −14.3923 3.85641i −0.572495 0.153400i
\(633\) 0 0
\(634\) −1.63397 0.437822i −0.0648934 0.0173881i
\(635\) 44.1506 + 25.4904i 1.75206 + 1.01155i
\(636\) 0 0
\(637\) −13.7942 + 7.96410i −0.546547 + 0.315549i
\(638\) 33.5885 9.00000i 1.32978 0.356313i
\(639\) 0 0
\(640\) 40.7846 10.9282i 1.61215 0.431975i
\(641\) −11.5263 19.9641i −0.455261 0.788535i 0.543442 0.839446i \(-0.317121\pi\)
−0.998703 + 0.0509118i \(0.983787\pi\)
\(642\) 0 0
\(643\) −5.53590 3.19615i −0.218315 0.126044i 0.386855 0.922141i \(-0.373561\pi\)
−0.605170 + 0.796097i \(0.706895\pi\)
\(644\) 12.7846i 0.503784i
\(645\) 0 0
\(646\) 12.1962 12.1962i 0.479851 0.479851i
\(647\) 49.7654 1.95648 0.978239 0.207480i \(-0.0665261\pi\)
0.978239 + 0.207480i \(0.0665261\pi\)
\(648\) 0 0
\(649\) −39.7128 −1.55886
\(650\) −22.0000 + 22.0000i −0.862911 + 0.862911i
\(651\) 0 0
\(652\) 13.0718 0.511931
\(653\) −30.8038 17.7846i −1.20545 0.695966i −0.243686 0.969854i \(-0.578357\pi\)
−0.961761 + 0.273889i \(0.911690\pi\)
\(654\) 0 0
\(655\) 0.366025 + 0.633975i 0.0143018 + 0.0247714i
\(656\) 9.07180 15.7128i 0.354194 0.613482i
\(657\) 0 0
\(658\) −3.46410 + 0.928203i −0.135045 + 0.0361851i
\(659\) 8.70577 5.02628i 0.339129 0.195796i −0.320758 0.947161i \(-0.603938\pi\)
0.659887 + 0.751365i \(0.270604\pi\)
\(660\) 0 0
\(661\) 27.8660 + 16.0885i 1.08386 + 0.625768i 0.931936 0.362623i \(-0.118119\pi\)
0.151927 + 0.988392i \(0.451452\pi\)
\(662\) 17.9282 + 4.80385i 0.696799 + 0.186707i
\(663\) 0 0
\(664\) −10.2487 + 38.2487i −0.397727 + 1.48434i
\(665\) −8.92820 −0.346221
\(666\) 0 0
\(667\) 45.3731i 1.75685i
\(668\) 25.5167 + 14.7321i 0.987269 + 0.570000i
\(669\) 0 0
\(670\) −6.46410 + 24.1244i −0.249730 + 0.932005i
\(671\) −21.2942 + 36.8827i −0.822055 + 1.42384i
\(672\) 0 0
\(673\) 18.6244 + 32.2583i 0.717916 + 1.24347i 0.961824 + 0.273669i \(0.0882372\pi\)
−0.243908 + 0.969798i \(0.578429\pi\)
\(674\) 5.46410 1.46410i 0.210469 0.0563951i
\(675\) 0 0
\(676\) 12.0000 6.92820i 0.461538 0.266469i
\(677\) −25.3923 + 14.6603i −0.975906 + 0.563439i −0.901031 0.433754i \(-0.857189\pi\)
−0.0748741 + 0.997193i \(0.523855\pi\)
\(678\) 0 0
\(679\) −2.92820 + 5.07180i −0.112374 + 0.194638i
\(680\) 38.0526 10.1962i 1.45925 0.391005i
\(681\) 0 0
\(682\) 9.46410 9.46410i 0.362399 0.362399i
\(683\) 34.1051i 1.30500i −0.757790 0.652498i \(-0.773721\pi\)
0.757790 0.652498i \(-0.226279\pi\)
\(684\) 0 0
\(685\) 64.1769i 2.45207i
\(686\) −9.85641 9.85641i −0.376319 0.376319i
\(687\) 0 0
\(688\) 33.4641 19.3205i 1.27581 0.736587i
\(689\) −1.14359 + 1.98076i −0.0435674 + 0.0754610i
\(690\) 0 0
\(691\) −11.0263 + 6.36603i −0.419459 + 0.242175i −0.694846 0.719159i \(-0.744527\pi\)
0.275387 + 0.961334i \(0.411194\pi\)
\(692\) 1.73205 + 3.00000i 0.0658427 + 0.114043i
\(693\) 0 0
\(694\) 2.46410 + 9.19615i 0.0935360 + 0.349081i
\(695\) 36.3205 + 62.9090i 1.37772 + 2.38627i
\(696\) 0 0
\(697\) 8.46410 14.6603i 0.320601 0.555297i
\(698\) 16.1962 + 4.33975i 0.613033 + 0.164262i
\(699\) 0 0
\(700\) −11.3205 6.53590i −0.427875 0.247034i
\(701\) 10.1244i 0.382392i −0.981552 0.191196i \(-0.938763\pi\)
0.981552 0.191196i \(-0.0612365\pi\)
\(702\) 0 0
\(703\) 16.3397 0.616265
\(704\) −18.9282 32.7846i −0.713384 1.23562i
\(705\) 0 0
\(706\) 2.53590 9.46410i 0.0954398 0.356186i
\(707\) 5.07180 + 2.92820i 0.190745 + 0.110126i
\(708\) 0 0
\(709\) 41.0429 23.6962i 1.54140 0.889928i 0.542649 0.839959i \(-0.317421\pi\)
0.998751 0.0499682i \(-0.0159120\pi\)
\(710\) 7.73205 + 28.8564i 0.290179 + 1.08296i
\(711\) 0 0
\(712\) −23.4641 + 23.4641i −0.879354 + 0.879354i
\(713\) −8.73205 15.1244i −0.327018 0.566412i
\(714\) 0 0
\(715\) 37.6865 + 21.7583i 1.40940 + 0.813715i
\(716\) 28.0000 1.04641
\(717\) 0 0
\(718\) −1.12436 1.12436i −0.0419606 0.0419606i
\(719\) −48.0526 −1.79206 −0.896029 0.443995i \(-0.853561\pi\)
−0.896029 + 0.443995i \(0.853561\pi\)
\(720\) 0 0
\(721\) 2.53590 0.0944418
\(722\) −8.32051 8.32051i −0.309657 0.309657i
\(723\) 0 0
\(724\) −13.0718 −0.485810
\(725\) −40.1769 23.1962i −1.49213 0.861483i
\(726\) 0 0
\(727\) 24.7583 + 42.8827i 0.918236 + 1.59043i 0.802094 + 0.597198i \(0.203719\pi\)
0.116142 + 0.993233i \(0.462947\pi\)
\(728\) −3.60770 3.60770i −0.133710 0.133710i
\(729\) 0 0
\(730\) 12.2942 + 45.8827i 0.455030 + 1.69819i
\(731\) 31.2224 18.0263i 1.15480 0.666726i
\(732\) 0 0
\(733\) −25.5167 14.7321i −0.942479 0.544141i −0.0517427 0.998660i \(-0.516478\pi\)
−0.890737 + 0.454520i \(0.849811\pi\)
\(734\) −0.928203 + 3.46410i −0.0342606 + 0.127862i
\(735\) 0 0
\(736\) −47.7128 + 12.7846i −1.75872 + 0.471247i
\(737\) 22.3923 0.824831
\(738\) 0 0
\(739\) 9.60770i 0.353425i 0.984263 + 0.176712i \(0.0565462\pi\)
−0.984263 + 0.176712i \(0.943454\pi\)
\(740\) 32.3205 + 18.6603i 1.18813 + 0.685965i
\(741\) 0 0
\(742\) −0.928203 0.248711i −0.0340754 0.00913048i
\(743\) 15.3923 26.6603i 0.564689 0.978070i −0.432390 0.901687i \(-0.642329\pi\)
0.997079 0.0763830i \(-0.0243372\pi\)
\(744\) 0 0
\(745\) −9.69615 16.7942i −0.355240 0.615293i
\(746\) 8.39230 + 31.3205i 0.307264 + 1.14673i
\(747\) 0 0
\(748\) −17.6603 30.5885i −0.645723 1.11842i
\(749\) −6.58846 + 3.80385i −0.240737 + 0.138990i
\(750\) 0 0
\(751\) 8.75833 15.1699i 0.319596 0.553557i −0.660808 0.750555i \(-0.729786\pi\)
0.980404 + 0.196999i \(0.0631195\pi\)
\(752\) 6.92820 + 12.0000i 0.252646 + 0.437595i
\(753\) 0 0
\(754\) −12.8038 12.8038i −0.466289 0.466289i
\(755\) 51.7128i 1.88202i
\(756\) 0 0
\(757\) 18.2487i 0.663261i 0.943409 + 0.331630i \(0.107599\pi\)
−0.943409 + 0.331630i \(0.892401\pi\)
\(758\) 10.0000 10.0000i 0.363216 0.363216i
\(759\) 0 0
\(760\) 8.92820 + 33.3205i 0.323860 + 1.20866i
\(761\) −17.9904 + 31.1603i −0.652151 + 1.12956i 0.330449 + 0.943824i \(0.392800\pi\)
−0.982600 + 0.185735i \(0.940534\pi\)
\(762\) 0 0
\(763\) 8.15064 4.70577i 0.295073 0.170360i
\(764\) 28.7321 16.5885i 1.03949 0.600149i
\(765\) 0 0
\(766\) −27.5885 + 7.39230i −0.996811 + 0.267095i
\(767\) 10.3397 + 17.9090i 0.373347 + 0.646655i
\(768\) 0 0
\(769\) 19.6962 34.1147i 0.710261 1.23021i −0.254497 0.967073i \(-0.581910\pi\)
0.964759 0.263135i \(-0.0847566\pi\)
\(770\) −4.73205 + 17.6603i −0.170531 + 0.636431i
\(771\) 0 0
\(772\) −18.8038 10.8564i −0.676765 0.390731i
\(773\) 40.6603i 1.46245i 0.682138 + 0.731224i \(0.261051\pi\)
−0.682138 + 0.731224i \(0.738949\pi\)
\(774\) 0 0
\(775\) −17.8564 −0.641421
\(776\) 21.8564 + 5.85641i 0.784599 + 0.210233i
\(777\) 0 0
\(778\) −23.1244 6.19615i −0.829048 0.222143i
\(779\) 12.8372 + 7.41154i 0.459939 + 0.265546i
\(780\) 0 0
\(781\) 23.1962 13.3923i 0.830024 0.479214i
\(782\) −44.5167 + 11.9282i −1.59191 + 0.426552i
\(783\) 0 0
\(784\) −12.9282 + 22.3923i −0.461722 + 0.799725i
\(785\) 4.59808 + 7.96410i 0.164112 + 0.284251i
\(786\) 0 0
\(787\) −12.5096 7.22243i −0.445920 0.257452i 0.260186 0.965559i \(-0.416216\pi\)
−0.706105 + 0.708107i \(0.749550\pi\)
\(788\) −8.24871 −0.293848
\(789\) 0 0
\(790\) 19.6603 19.6603i 0.699480 0.699480i
\(791\) 5.66025 0.201255
\(792\) 0 0
\(793\) 22.1769 0.787525
\(794\) −32.4641 + 32.4641i −1.15211 + 1.15211i
\(795\) 0 0
\(796\) 4.78461i 0.169586i
\(797\) 10.6244 + 6.13397i 0.376334 + 0.217277i 0.676222 0.736698i \(-0.263616\pi\)
−0.299888 + 0.953974i \(0.596949\pi\)
\(798\) 0 0
\(799\) 6.46410 + 11.1962i 0.228683 + 0.396091i
\(800\) −13.0718 + 48.7846i −0.462158 + 1.72480i
\(801\) 0 0
\(802\) −13.0981 + 3.50962i −0.462509 + 0.123929i
\(803\) 36.8827 21.2942i 1.30156 0.751457i
\(804\) 0 0
\(805\) 20.6603 + 11.9282i 0.728178 + 0.420414i
\(806\) −6.73205 1.80385i −0.237126 0.0635378i
\(807\) 0 0
\(808\) 5.85641 21.8564i 0.206028 0.768906i
\(809\) −49.0526 −1.72460 −0.862298 0.506401i \(-0.830976\pi\)
−0.862298 + 0.506401i \(0.830976\pi\)
\(810\) 0 0
\(811\) 48.7846i 1.71306i −0.516098 0.856530i \(-0.672616\pi\)
0.516098 0.856530i \(-0.327384\pi\)
\(812\) 3.80385 6.58846i 0.133489 0.231210i
\(813\) 0 0
\(814\) 8.66025 32.3205i 0.303542 1.13283i
\(815\) −12.1962 + 21.1244i −0.427213 + 0.739954i
\(816\) 0 0
\(817\) 15.7846 + 27.3397i 0.552234 + 0.956497i
\(818\) 39.2224 10.5096i 1.37138 0.367460i
\(819\) 0 0
\(820\) 16.9282 + 29.3205i 0.591158 + 1.02392i
\(821\) −1.37564 + 0.794229i −0.0480103 + 0.0277188i −0.523813 0.851833i \(-0.675491\pi\)
0.475803 + 0.879552i \(0.342158\pi\)
\(822\) 0 0
\(823\) 8.80385 15.2487i 0.306883 0.531537i −0.670796 0.741642i \(-0.734047\pi\)
0.977679 + 0.210105i \(0.0673807\pi\)
\(824\) −2.53590 9.46410i −0.0883422 0.329698i
\(825\) 0 0
\(826\) −6.14359 + 6.14359i −0.213763 + 0.213763i
\(827\) 12.3397i 0.429095i −0.976714 0.214548i \(-0.931172\pi\)
0.976714 0.214548i \(-0.0688277\pi\)
\(828\) 0 0
\(829\) 53.1769i 1.84691i 0.383706 + 0.923455i \(0.374648\pi\)
−0.383706 + 0.923455i \(0.625352\pi\)
\(830\) −52.2487 52.2487i −1.81358 1.81358i
\(831\) 0 0
\(832\) −9.85641 + 17.0718i −0.341709 + 0.591858i
\(833\) −12.0622 + 20.8923i −0.417930 + 0.723875i
\(834\) 0 0
\(835\) −47.6147 + 27.4904i −1.64778 + 0.951344i
\(836\) 26.7846 15.4641i 0.926365 0.534837i
\(837\) 0 0
\(838\) 7.85641 + 29.3205i 0.271395 + 1.01286i
\(839\) −20.9019 36.2032i −0.721615 1.24987i −0.960352 0.278789i \(-0.910067\pi\)
0.238738 0.971084i \(-0.423266\pi\)
\(840\) 0 0
\(841\) −1.00000 + 1.73205i −0.0344828 + 0.0597259i
\(842\) −17.7583 4.75833i −0.611992 0.163983i
\(843\) 0 0
\(844\) −26.0526 + 45.1244i −0.896766 + 1.55324i
\(845\) 25.8564i 0.889487i
\(846\) 0 0
\(847\) 8.33975 0.286557
\(848\) 3.71281i 0.127499i
\(849\) 0 0
\(850\) −12.1962 + 45.5167i −0.418325 + 1.56121i
\(851\) −37.8109 21.8301i −1.29614 0.748327i
\(852\) 0 0
\(853\) −4.39230 + 2.53590i −0.150390 + 0.0868275i −0.573307 0.819341i \(-0.694340\pi\)
0.422917 + 0.906168i \(0.361006\pi\)
\(854\) 2.41154 + 9.00000i 0.0825213 + 0.307974i
\(855\) 0 0
\(856\) 20.7846 + 20.7846i 0.710403 + 0.710403i
\(857\) −0.0621778 0.107695i −0.00212395 0.00367880i 0.864961 0.501838i \(-0.167343\pi\)
−0.867085 + 0.498159i \(0.834009\pi\)
\(858\) 0 0
\(859\) −1.73205 1.00000i −0.0590968 0.0341196i 0.470160 0.882581i \(-0.344196\pi\)
−0.529257 + 0.848461i \(0.677529\pi\)
\(860\) 72.1051i 2.45876i
\(861\) 0 0
\(862\) 21.7128 + 21.7128i 0.739541 + 0.739541i
\(863\) −25.5167 −0.868597 −0.434299 0.900769i \(-0.643004\pi\)
−0.434299 + 0.900769i \(0.643004\pi\)
\(864\) 0 0
\(865\) −6.46410 −0.219786
\(866\) 21.7846 + 21.7846i 0.740271 + 0.740271i
\(867\) 0 0
\(868\) 2.92820i 0.0993897i
\(869\) −21.5885 12.4641i −0.732338 0.422816i
\(870\) 0 0
\(871\) −5.83013 10.0981i −0.197546 0.342160i
\(872\) −25.7128 25.7128i −0.870746 0.870746i
\(873\) 0 0
\(874\) −10.4449 38.9808i −0.353303 1.31854i
\(875\) 9.29423 5.36603i 0.314202 0.181405i
\(876\) 0 0
\(877\) −49.4545 28.5526i −1.66996 0.964151i −0.967656 0.252274i \(-0.918822\pi\)
−0.702303 0.711878i \(-0.747845\pi\)
\(878\) 10.9808 40.9808i 0.370583 1.38303i
\(879\) 0 0
\(880\) 70.6410 2.38131
\(881\) 27.8564 0.938506 0.469253 0.883064i \(-0.344523\pi\)
0.469253 + 0.883064i \(0.344523\pi\)
\(882\) 0 0
\(883\) 1.32051i 0.0444386i 0.999753 + 0.0222193i \(0.00707321\pi\)
−0.999753 + 0.0222193i \(0.992927\pi\)
\(884\) −9.19615 + 15.9282i −0.309300 + 0.535723i
\(885\) 0 0
\(886\) 40.0526 + 10.7321i 1.34559 + 0.360550i
\(887\) −1.09808 + 1.90192i −0.0368698 + 0.0638604i −0.883871 0.467730i \(-0.845072\pi\)
0.847002 + 0.531590i \(0.178405\pi\)
\(888\) 0 0
\(889\) −5.00000 8.66025i −0.167695 0.290456i
\(890\) −16.0263 59.8109i −0.537202 2.00487i
\(891\) 0 0
\(892\) 40.0526 23.1244i 1.34106 0.774261i
\(893\) −9.80385 + 5.66025i −0.328073 + 0.189413i
\(894\) 0 0
\(895\) −26.1244 + 45.2487i −0.873241 + 1.51250i
\(896\) −8.00000 2.14359i −0.267261 0.0716124i
\(897\) 0 0
\(898\) 24.9282 + 24.9282i 0.831865 + 0.831865i
\(899\) 10.3923i 0.346603i
\(900\) 0 0
\(901\) 3.46410i 0.115406i
\(902\) 21.4641 21.4641i 0.714676 0.714676i
\(903\) 0 0
\(904\) −5.66025 21.1244i −0.188257 0.702586i
\(905\) 12.1962 21.1244i 0.405414 0.702197i
\(906\) 0 0
\(907\) 28.0526 16.1962i 0.931470 0.537784i 0.0441938 0.999023i \(-0.485928\pi\)
0.887276 + 0.461239i \(0.152595\pi\)
\(908\) 6.73205 + 11.6603i 0.223411 + 0.386959i
\(909\) 0 0
\(910\) 9.19615 2.46410i 0.304849 0.0816842i
\(911\) −8.36603 14.4904i −0.277179 0.480088i 0.693504 0.720453i \(-0.256066\pi\)
−0.970683 + 0.240365i \(0.922733\pi\)
\(912\) 0 0
\(913\) −33.1244 + 57.3731i −1.09626 + 1.89877i
\(914\) 2.31347 8.63397i 0.0765227 0.285586i
\(915\) 0 0
\(916\) 11.3923 19.7321i 0.376412 0.651965i
\(917\) 0.143594i 0.00474188i
\(918\) 0 0
\(919\) 16.9808 0.560144 0.280072 0.959979i \(-0.409642\pi\)
0.280072 + 0.959979i \(0.409642\pi\)
\(920\) 23.8564 89.0333i 0.786522 2.93534i
\(921\) 0 0
\(922\) −56.4449 15.1244i −1.85891 0.498094i
\(923\) −12.0788 6.97372i −0.397580 0.229543i
\(924\) 0 0
\(925\) −38.6603 + 22.3205i −1.27114 + 0.733894i
\(926\) 18.3923 4.92820i 0.604409 0.161951i
\(927\) 0 0
\(928\) −28.3923 7.60770i −0.932023 0.249735i
\(929\) 0.258330 + 0.447441i 0.00847554 + 0.0146801i 0.870232 0.492642i \(-0.163969\pi\)
−0.861757 + 0.507322i \(0.830635\pi\)
\(930\) 0 0
\(931\) −18.2942 10.5622i −0.599569 0.346161i
\(932\) 7.46410i 0.244495i
\(933\) 0 0
\(934\) −24.7846 + 24.7846i −0.810977 + 0.810977i
\(935\) 65.9090 2.15545
\(936\) 0 0
\(937\) −7.24871 −0.236805 −0.118403 0.992966i \(-0.537777\pi\)
−0.118403 + 0.992966i \(0.537777\pi\)
\(938\) 3.46410 3.46410i 0.113107 0.113107i
\(939\) 0 0
\(940\) −25.8564 −0.843343
\(941\) 15.9115 + 9.18653i 0.518701 + 0.299472i 0.736403 0.676543i \(-0.236523\pi\)
−0.217702 + 0.976015i \(0.569856\pi\)
\(942\) 0 0
\(943\) −19.8038 34.3013i −0.644902 1.11700i
\(944\) 29.0718 + 16.7846i 0.946206 + 0.546293i
\(945\) 0 0
\(946\) 62.4449 16.7321i 2.03026 0.544006i
\(947\) −17.4904 + 10.0981i −0.568361 + 0.328143i −0.756494 0.654000i \(-0.773090\pi\)
0.188133 + 0.982143i \(0.439756\pi\)
\(948\) 0 0
\(949\) −19.2058 11.0885i −0.623446 0.359947i
\(950\) −39.8564 10.6795i −1.29311 0.346488i
\(951\) 0 0
\(952\) −7.46410 2.00000i −0.241913 0.0648204i
\(953\) 26.6603 0.863610 0.431805 0.901967i \(-0.357877\pi\)
0.431805 + 0.901967i \(0.357877\pi\)
\(954\) 0 0
\(955\) 61.9090i 2.00333i
\(956\) −13.6077 7.85641i −0.440104 0.254094i
\(957\) 0 0
\(958\) −0.607695 + 2.26795i −0.0196337 + 0.0732741i
\(959\) −6.29423 + 10.9019i −0.203251 + 0.352041i
\(960\) 0 0
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) −16.8301 + 4.50962i −0.542625 + 0.145396i
\(963\) 0 0
\(964\) −7.73205 + 4.46410i −0.249033 + 0.143779i
\(965\) 35.0885 20.2583i 1.12954 0.652139i
\(966\) 0 0
\(967\) −5.09808 + 8.83013i −0.163943 + 0.283958i −0.936279 0.351256i \(-0.885755\pi\)
0.772336 + 0.635214i \(0.219088\pi\)
\(968\) −8.33975 31.1244i −0.268050 1.00037i
\(969\) 0 0
\(970\) −29.8564 + 29.8564i −0.958631 + 0.958631i
\(971\) 51.1244i 1.64066i −0.571891 0.820329i \(-0.693790\pi\)
0.571891 0.820329i \(-0.306210\pi\)
\(972\) 0 0
\(973\) 14.2487i 0.456793i
\(974\) 25.7128 + 25.7128i 0.823892 + 0.823892i
\(975\) 0 0
\(976\) 31.1769 18.0000i 0.997949 0.576166i
\(977\) 11.3923 19.7321i 0.364472 0.631284i −0.624219 0.781249i \(-0.714583\pi\)
0.988691 + 0.149965i \(0.0479161\pi\)
\(978\) 0 0
\(979\) −48.0788 + 27.7583i −1.53661 + 0.887160i
\(980\) −24.1244 41.7846i −0.770624 1.33476i
\(981\) 0 0
\(982\) 5.05256 + 18.8564i 0.161234 + 0.601732i
\(983\) 0.732051 + 1.26795i 0.0233488 + 0.0404413i 0.877464 0.479643i \(-0.159234\pi\)
−0.854115 + 0.520084i \(0.825901\pi\)
\(984\) 0 0
\(985\) 7.69615 13.3301i 0.245220 0.424733i
\(986\) −26.4904 7.09808i −0.843626 0.226049i
\(987\) 0 0
\(988\) −13.9474 8.05256i −0.443727 0.256186i
\(989\) 84.3538i 2.68230i
\(990\) 0 0
\(991\) 2.58846 0.0822251 0.0411125 0.999155i \(-0.486910\pi\)
0.0411125 + 0.999155i \(0.486910\pi\)
\(992\) −10.9282 + 2.92820i −0.346971 + 0.0929705i
\(993\) 0 0
\(994\) 1.51666 5.66025i 0.0481055 0.179532i
\(995\) −7.73205 4.46410i −0.245122 0.141522i
\(996\) 0 0
\(997\) −24.1865 + 13.9641i −0.765995 + 0.442248i −0.831444 0.555608i \(-0.812485\pi\)
0.0654489 + 0.997856i \(0.479152\pi\)
\(998\) −3.00000 11.1962i −0.0949633 0.354408i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.n.a.109.1 4
3.2 odd 2 648.2.n.m.109.2 4
4.3 odd 2 2592.2.r.a.433.1 4
8.3 odd 2 2592.2.r.k.433.2 4
8.5 even 2 648.2.n.l.109.1 4
9.2 odd 6 648.2.n.b.541.2 4
9.4 even 3 648.2.d.i.325.3 yes 4
9.5 odd 6 648.2.d.e.325.2 yes 4
9.7 even 3 648.2.n.l.541.1 4
12.11 even 2 2592.2.r.j.433.2 4
24.5 odd 2 648.2.n.b.109.2 4
24.11 even 2 2592.2.r.b.433.1 4
36.7 odd 6 2592.2.r.k.2161.2 4
36.11 even 6 2592.2.r.b.2161.1 4
36.23 even 6 2592.2.d.h.1297.1 4
36.31 odd 6 2592.2.d.g.1297.4 4
72.5 odd 6 648.2.d.e.325.1 4
72.11 even 6 2592.2.r.j.2161.2 4
72.13 even 6 648.2.d.i.325.4 yes 4
72.29 odd 6 648.2.n.m.541.1 4
72.43 odd 6 2592.2.r.a.2161.1 4
72.59 even 6 2592.2.d.h.1297.4 4
72.61 even 6 inner 648.2.n.a.541.2 4
72.67 odd 6 2592.2.d.g.1297.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
648.2.d.e.325.1 4 72.5 odd 6
648.2.d.e.325.2 yes 4 9.5 odd 6
648.2.d.i.325.3 yes 4 9.4 even 3
648.2.d.i.325.4 yes 4 72.13 even 6
648.2.n.a.109.1 4 1.1 even 1 trivial
648.2.n.a.541.2 4 72.61 even 6 inner
648.2.n.b.109.2 4 24.5 odd 2
648.2.n.b.541.2 4 9.2 odd 6
648.2.n.l.109.1 4 8.5 even 2
648.2.n.l.541.1 4 9.7 even 3
648.2.n.m.109.2 4 3.2 odd 2
648.2.n.m.541.1 4 72.29 odd 6
2592.2.d.g.1297.1 4 72.67 odd 6
2592.2.d.g.1297.4 4 36.31 odd 6
2592.2.d.h.1297.1 4 36.23 even 6
2592.2.d.h.1297.4 4 72.59 even 6
2592.2.r.a.433.1 4 4.3 odd 2
2592.2.r.a.2161.1 4 72.43 odd 6
2592.2.r.b.433.1 4 24.11 even 2
2592.2.r.b.2161.1 4 36.11 even 6
2592.2.r.j.433.2 4 12.11 even 2
2592.2.r.j.2161.2 4 72.11 even 6
2592.2.r.k.433.2 4 8.3 odd 2
2592.2.r.k.2161.2 4 36.7 odd 6