Properties

Label 65.2.t.a.28.4
Level $65$
Weight $2$
Character 65.28
Analytic conductor $0.519$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [65,2,Mod(7,65)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(65, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([3, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("65.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 65 = 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 65.t (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.519027613138\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 28.4
Root \(0.274809i\) of defining polynomial
Character \(\chi\) \(=\) 65.28
Dual form 65.2.t.a.7.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.237991 + 0.137404i) q^{2} +(0.611610 - 2.28256i) q^{3} +(-0.962240 + 1.66665i) q^{4} +(1.45395 - 1.69883i) q^{5} +(0.168076 + 0.627267i) q^{6} +(-0.193052 + 0.334376i) q^{7} -1.07848i q^{8} +(-2.23793 - 1.29207i) q^{9} +(-0.112600 + 0.604086i) q^{10} +(-1.12873 + 4.21249i) q^{11} +(3.21571 + 3.21571i) q^{12} +(-1.35750 + 3.34024i) q^{13} -0.106105i q^{14} +(-2.98844 - 4.35775i) q^{15} +(-1.77629 - 3.07663i) q^{16} +(1.90527 - 0.510514i) q^{17} +0.710144 q^{18} +(-4.83947 + 1.29673i) q^{19} +(1.43231 + 4.05791i) q^{20} +(0.645159 + 0.645159i) q^{21} +(-0.310185 - 1.15763i) q^{22} +(0.322241 + 0.0863441i) q^{23} +(-2.46170 - 0.659609i) q^{24} +(-0.772064 - 4.94003i) q^{25} +(-0.135891 - 0.981474i) q^{26} +(0.694880 - 0.694880i) q^{27} +(-0.371524 - 0.643499i) q^{28} +(7.07031 - 4.08205i) q^{29} +(1.30999 + 0.626482i) q^{30} +(-2.54187 + 2.54187i) q^{31} +(2.71347 + 1.56662i) q^{32} +(8.92491 + 5.15280i) q^{33} +(-0.383290 + 0.383290i) q^{34} +(0.287361 + 0.814128i) q^{35} +(4.30685 - 2.48656i) q^{36} +(-2.41251 - 4.17859i) q^{37} +(0.973575 - 0.973575i) q^{38} +(6.79403 + 5.14149i) q^{39} +(-1.83216 - 1.56806i) q^{40} +(4.49768 + 1.20515i) q^{41} +(-0.242190 - 0.0648946i) q^{42} +(-1.76471 - 6.58600i) q^{43} +(-5.93462 - 5.93462i) q^{44} +(-5.44885 + 1.92327i) q^{45} +(-0.0885545 + 0.0237281i) q^{46} -9.83310 q^{47} +(-8.10898 + 2.17280i) q^{48} +(3.42546 + 5.93307i) q^{49} +(0.862526 + 1.06960i) q^{50} -4.66112i q^{51} +(-4.26077 - 5.47658i) q^{52} +(-7.17155 - 7.17155i) q^{53} +(-0.0698958 + 0.260855i) q^{54} +(5.51519 + 8.04227i) q^{55} +(0.360618 + 0.208203i) q^{56} +11.8395i q^{57} +(-1.12178 + 1.94298i) q^{58} +(-0.628209 - 2.34451i) q^{59} +(10.1384 - 0.787474i) q^{60} +(-5.32338 + 9.22037i) q^{61} +(0.255679 - 0.954209i) q^{62} +(0.864073 - 0.498873i) q^{63} +6.24413 q^{64} +(3.70078 + 7.16270i) q^{65} -2.83207 q^{66} +(5.52170 - 3.18796i) q^{67} +(-0.982475 + 3.66665i) q^{68} +(0.394171 - 0.682724i) q^{69} +(-0.180254 - 0.154271i) q^{70} +(-1.12684 - 4.20542i) q^{71} +(-1.39347 + 2.41357i) q^{72} +6.08593i q^{73} +(1.14831 + 0.662979i) q^{74} +(-11.7481 - 1.25909i) q^{75} +(2.49554 - 9.31346i) q^{76} +(-1.19065 - 1.19065i) q^{77} +(-2.32338 - 0.290100i) q^{78} +3.34944i q^{79} +(-7.80932 - 1.45564i) q^{80} +(-5.03732 - 8.72489i) q^{81} +(-1.23600 + 0.331185i) q^{82} +5.18834 q^{83} +(-1.69605 + 0.454456i) q^{84} +(1.90288 - 3.97899i) q^{85} +(1.32493 + 1.32493i) q^{86} +(-4.99324 - 18.6350i) q^{87} +(4.54309 + 1.21732i) q^{88} +(4.82829 + 1.29374i) q^{89} +(1.03251 - 1.20642i) q^{90} +(-0.854827 - 1.09875i) q^{91} +(-0.453978 + 0.453978i) q^{92} +(4.24734 + 7.35661i) q^{93} +(2.34019 - 1.35111i) q^{94} +(-4.83341 + 10.1068i) q^{95} +(5.23549 - 5.23549i) q^{96} +(12.7722 + 7.37402i) q^{97} +(-1.63046 - 0.941346i) q^{98} +(7.96886 - 7.96886i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 8 q^{6} - 2 q^{7} + 12 q^{9} - 2 q^{10} - 16 q^{11} - 24 q^{12} - 4 q^{13} - 20 q^{15} - 2 q^{16} + 4 q^{17} - 20 q^{19} + 4 q^{21} + 16 q^{22} - 10 q^{23} + 32 q^{24}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/65\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.237991 + 0.137404i −0.168285 + 0.0971595i −0.581777 0.813348i \(-0.697642\pi\)
0.413492 + 0.910508i \(0.364309\pi\)
\(3\) 0.611610 2.28256i 0.353113 1.31784i −0.529729 0.848167i \(-0.677707\pi\)
0.882842 0.469669i \(-0.155627\pi\)
\(4\) −0.962240 + 1.66665i −0.481120 + 0.833324i
\(5\) 1.45395 1.69883i 0.650226 0.759741i
\(6\) 0.168076 + 0.627267i 0.0686166 + 0.256081i
\(7\) −0.193052 + 0.334376i −0.0729667 + 0.126382i −0.900200 0.435476i \(-0.856580\pi\)
0.827234 + 0.561858i \(0.189913\pi\)
\(8\) 1.07848i 0.381301i
\(9\) −2.23793 1.29207i −0.745977 0.430690i
\(10\) −0.112600 + 0.604086i −0.0356073 + 0.191029i
\(11\) −1.12873 + 4.21249i −0.340326 + 1.27011i 0.557653 + 0.830074i \(0.311702\pi\)
−0.897979 + 0.440039i \(0.854965\pi\)
\(12\) 3.21571 + 3.21571i 0.928295 + 0.928295i
\(13\) −1.35750 + 3.34024i −0.376502 + 0.926416i
\(14\) 0.106105i 0.0283576i
\(15\) −2.98844 4.35775i −0.771611 1.12517i
\(16\) −1.77629 3.07663i −0.444073 0.769157i
\(17\) 1.90527 0.510514i 0.462095 0.123818i −0.0202583 0.999795i \(-0.506449\pi\)
0.482353 + 0.875977i \(0.339782\pi\)
\(18\) 0.710144 0.167383
\(19\) −4.83947 + 1.29673i −1.11025 + 0.297491i −0.766932 0.641728i \(-0.778218\pi\)
−0.343318 + 0.939219i \(0.611551\pi\)
\(20\) 1.43231 + 4.05791i 0.320274 + 0.907376i
\(21\) 0.645159 + 0.645159i 0.140785 + 0.140785i
\(22\) −0.310185 1.15763i −0.0661318 0.246807i
\(23\) 0.322241 + 0.0863441i 0.0671918 + 0.0180040i 0.292258 0.956339i \(-0.405593\pi\)
−0.225067 + 0.974343i \(0.572260\pi\)
\(24\) −2.46170 0.659609i −0.502492 0.134642i
\(25\) −0.772064 4.94003i −0.154413 0.988006i
\(26\) −0.135891 0.981474i −0.0266504 0.192483i
\(27\) 0.694880 0.694880i 0.133730 0.133730i
\(28\) −0.371524 0.643499i −0.0702115 0.121610i
\(29\) 7.07031 4.08205i 1.31292 0.758017i 0.330345 0.943860i \(-0.392835\pi\)
0.982579 + 0.185843i \(0.0595016\pi\)
\(30\) 1.30999 + 0.626482i 0.239171 + 0.114379i
\(31\) −2.54187 + 2.54187i −0.456534 + 0.456534i −0.897516 0.440982i \(-0.854630\pi\)
0.440982 + 0.897516i \(0.354630\pi\)
\(32\) 2.71347 + 1.56662i 0.479678 + 0.276942i
\(33\) 8.92491 + 5.15280i 1.55363 + 0.896987i
\(34\) −0.383290 + 0.383290i −0.0657336 + 0.0657336i
\(35\) 0.287361 + 0.814128i 0.0485728 + 0.137613i
\(36\) 4.30685 2.48656i 0.717809 0.414427i
\(37\) −2.41251 4.17859i −0.396614 0.686956i 0.596691 0.802471i \(-0.296482\pi\)
−0.993306 + 0.115514i \(0.963148\pi\)
\(38\) 0.973575 0.973575i 0.157935 0.157935i
\(39\) 6.79403 + 5.14149i 1.08792 + 0.823297i
\(40\) −1.83216 1.56806i −0.289690 0.247931i
\(41\) 4.49768 + 1.20515i 0.702419 + 0.188213i 0.592314 0.805707i \(-0.298214\pi\)
0.110105 + 0.993920i \(0.464881\pi\)
\(42\) −0.242190 0.0648946i −0.0373707 0.0100135i
\(43\) −1.76471 6.58600i −0.269116 1.00436i −0.959682 0.281087i \(-0.909305\pi\)
0.690566 0.723269i \(-0.257362\pi\)
\(44\) −5.93462 5.93462i −0.894678 0.894678i
\(45\) −5.44885 + 1.92327i −0.812267 + 0.286704i
\(46\) −0.0885545 + 0.0237281i −0.0130566 + 0.00349852i
\(47\) −9.83310 −1.43430 −0.717152 0.696917i \(-0.754555\pi\)
−0.717152 + 0.696917i \(0.754555\pi\)
\(48\) −8.10898 + 2.17280i −1.17043 + 0.313616i
\(49\) 3.42546 + 5.93307i 0.489352 + 0.847582i
\(50\) 0.862526 + 1.06960i 0.121980 + 0.151264i
\(51\) 4.66112i 0.652687i
\(52\) −4.26077 5.47658i −0.590862 0.759466i
\(53\) −7.17155 7.17155i −0.985088 0.985088i 0.0148021 0.999890i \(-0.495288\pi\)
−0.999890 + 0.0148021i \(0.995288\pi\)
\(54\) −0.0698958 + 0.260855i −0.00951161 + 0.0354978i
\(55\) 5.51519 + 8.04227i 0.743668 + 1.08442i
\(56\) 0.360618 + 0.208203i 0.0481896 + 0.0278223i
\(57\) 11.8395i 1.56818i
\(58\) −1.12178 + 1.94298i −0.147297 + 0.255126i
\(59\) −0.628209 2.34451i −0.0817858 0.305229i 0.912900 0.408183i \(-0.133837\pi\)
−0.994686 + 0.102954i \(0.967171\pi\)
\(60\) 10.1384 0.787474i 1.30887 0.101662i
\(61\) −5.32338 + 9.22037i −0.681589 + 1.18055i 0.292906 + 0.956141i \(0.405378\pi\)
−0.974496 + 0.224406i \(0.927956\pi\)
\(62\) 0.255679 0.954209i 0.0324713 0.121185i
\(63\) 0.864073 0.498873i 0.108863 0.0628521i
\(64\) 6.24413 0.780516
\(65\) 3.70078 + 7.16270i 0.459025 + 0.888424i
\(66\) −2.83207 −0.348603
\(67\) 5.52170 3.18796i 0.674583 0.389471i −0.123228 0.992378i \(-0.539325\pi\)
0.797811 + 0.602908i \(0.205991\pi\)
\(68\) −0.982475 + 3.66665i −0.119143 + 0.444646i
\(69\) 0.394171 0.682724i 0.0474526 0.0821903i
\(70\) −0.180254 0.154271i −0.0215445 0.0184389i
\(71\) −1.12684 4.20542i −0.133731 0.499091i 0.866269 0.499578i \(-0.166512\pi\)
−1.00000 0.000486883i \(0.999845\pi\)
\(72\) −1.39347 + 2.41357i −0.164222 + 0.284442i
\(73\) 6.08593i 0.712304i 0.934428 + 0.356152i \(0.115912\pi\)
−0.934428 + 0.356152i \(0.884088\pi\)
\(74\) 1.14831 + 0.662979i 0.133489 + 0.0770697i
\(75\) −11.7481 1.25909i −1.35656 0.145387i
\(76\) 2.49554 9.31346i 0.286258 1.06833i
\(77\) −1.19065 1.19065i −0.135687 0.135687i
\(78\) −2.32338 0.290100i −0.263071 0.0328474i
\(79\) 3.34944i 0.376842i 0.982088 + 0.188421i \(0.0603369\pi\)
−0.982088 + 0.188421i \(0.939663\pi\)
\(80\) −7.80932 1.45564i −0.873108 0.162745i
\(81\) −5.03732 8.72489i −0.559702 0.969433i
\(82\) −1.23600 + 0.331185i −0.136493 + 0.0365733i
\(83\) 5.18834 0.569494 0.284747 0.958603i \(-0.408090\pi\)
0.284747 + 0.958603i \(0.408090\pi\)
\(84\) −1.69605 + 0.454456i −0.185054 + 0.0495852i
\(85\) 1.90288 3.97899i 0.206396 0.431582i
\(86\) 1.32493 + 1.32493i 0.142871 + 0.142871i
\(87\) −4.99324 18.6350i −0.535332 1.99788i
\(88\) 4.54309 + 1.21732i 0.484295 + 0.129766i
\(89\) 4.82829 + 1.29374i 0.511798 + 0.137136i 0.505470 0.862844i \(-0.331319\pi\)
0.00632782 + 0.999980i \(0.497986\pi\)
\(90\) 1.03251 1.20642i 0.108836 0.127167i
\(91\) −0.854827 1.09875i −0.0896102 0.115181i
\(92\) −0.453978 + 0.453978i −0.0473305 + 0.0473305i
\(93\) 4.24734 + 7.35661i 0.440429 + 0.762845i
\(94\) 2.34019 1.35111i 0.241372 0.139356i
\(95\) −4.83341 + 10.1068i −0.495898 + 1.03694i
\(96\) 5.23549 5.23549i 0.534345 0.534345i
\(97\) 12.7722 + 7.37402i 1.29682 + 0.748718i 0.979853 0.199719i \(-0.0640030\pi\)
0.316965 + 0.948437i \(0.397336\pi\)
\(98\) −1.63046 0.941346i −0.164701 0.0950903i
\(99\) 7.96886 7.96886i 0.800900 0.800900i
\(100\) 8.97621 + 3.46674i 0.897621 + 0.346674i
\(101\) 4.57218 2.63975i 0.454949 0.262665i −0.254969 0.966949i \(-0.582065\pi\)
0.709918 + 0.704284i \(0.248732\pi\)
\(102\) 0.640458 + 1.10930i 0.0634147 + 0.109838i
\(103\) −1.21001 + 1.21001i −0.119226 + 0.119226i −0.764203 0.644976i \(-0.776867\pi\)
0.644976 + 0.764203i \(0.276867\pi\)
\(104\) 3.60238 + 1.46404i 0.353243 + 0.143560i
\(105\) 2.03405 0.157989i 0.198503 0.0154181i
\(106\) 2.69217 + 0.721364i 0.261487 + 0.0700651i
\(107\) −3.91480 1.04897i −0.378458 0.101408i 0.0645749 0.997913i \(-0.479431\pi\)
−0.443033 + 0.896505i \(0.646098\pi\)
\(108\) 0.489479 + 1.82676i 0.0471002 + 0.175780i
\(109\) −5.02898 5.02898i −0.481689 0.481689i 0.423982 0.905671i \(-0.360632\pi\)
−0.905671 + 0.423982i \(0.860632\pi\)
\(110\) −2.41761 1.15618i −0.230510 0.110237i
\(111\) −11.0134 + 2.95103i −1.04535 + 0.280099i
\(112\) 1.37167 0.129610
\(113\) 3.83891 1.02863i 0.361134 0.0967655i −0.0736896 0.997281i \(-0.523477\pi\)
0.434824 + 0.900516i \(0.356811\pi\)
\(114\) −1.62679 2.81769i −0.152363 0.263901i
\(115\) 0.615206 0.421893i 0.0573682 0.0393417i
\(116\) 15.7116i 1.45879i
\(117\) 7.35381 5.72124i 0.679860 0.528929i
\(118\) 0.471653 + 0.471653i 0.0434192 + 0.0434192i
\(119\) −0.197111 + 0.735630i −0.0180692 + 0.0674351i
\(120\) −4.69975 + 3.22297i −0.429026 + 0.294216i
\(121\) −6.94473 4.00954i −0.631339 0.364504i
\(122\) 2.92582i 0.264892i
\(123\) 5.50165 9.52914i 0.496067 0.859213i
\(124\) −1.79052 6.68231i −0.160793 0.600089i
\(125\) −9.51483 5.87095i −0.851032 0.525113i
\(126\) −0.137095 + 0.237455i −0.0122134 + 0.0211542i
\(127\) −2.95156 + 11.0154i −0.261908 + 0.977455i 0.702207 + 0.711972i \(0.252198\pi\)
−0.964116 + 0.265483i \(0.914469\pi\)
\(128\) −6.91298 + 3.99121i −0.611027 + 0.352777i
\(129\) −16.1123 −1.41860
\(130\) −1.86494 1.19616i −0.163566 0.104910i
\(131\) 20.8627 1.82279 0.911393 0.411536i \(-0.135008\pi\)
0.911393 + 0.411536i \(0.135008\pi\)
\(132\) −17.1758 + 9.91645i −1.49496 + 0.863117i
\(133\) 0.500673 1.86854i 0.0434138 0.162023i
\(134\) −0.876078 + 1.51741i −0.0756816 + 0.131084i
\(135\) −0.170165 2.19080i −0.0146454 0.188554i
\(136\) −0.550580 2.05479i −0.0472119 0.176197i
\(137\) 0.121975 0.211266i 0.0104210 0.0180497i −0.860768 0.508998i \(-0.830016\pi\)
0.871189 + 0.490948i \(0.163349\pi\)
\(138\) 0.216643i 0.0184419i
\(139\) 10.1187 + 5.84202i 0.858255 + 0.495514i 0.863428 0.504473i \(-0.168313\pi\)
−0.00517263 + 0.999987i \(0.501647\pi\)
\(140\) −1.63337 0.304457i −0.138045 0.0257313i
\(141\) −6.01402 + 22.4446i −0.506472 + 1.89018i
\(142\) 0.846020 + 0.846020i 0.0709965 + 0.0709965i
\(143\) −12.5385 9.48868i −1.04852 0.793483i
\(144\) 9.18038i 0.765032i
\(145\) 3.34516 17.9464i 0.277800 1.49036i
\(146\) −0.836233 1.44840i −0.0692071 0.119870i
\(147\) 15.6376 4.19009i 1.28977 0.345593i
\(148\) 9.28566 0.763277
\(149\) −2.44620 + 0.655457i −0.200400 + 0.0536971i −0.357623 0.933866i \(-0.616413\pi\)
0.157223 + 0.987563i \(0.449746\pi\)
\(150\) 2.96895 1.31459i 0.242414 0.107336i
\(151\) 2.58498 + 2.58498i 0.210362 + 0.210362i 0.804421 0.594059i \(-0.202475\pi\)
−0.594059 + 0.804421i \(0.702475\pi\)
\(152\) 1.39850 + 5.21928i 0.113433 + 0.423339i
\(153\) −4.92348 1.31924i −0.398039 0.106654i
\(154\) 0.446964 + 0.119764i 0.0360174 + 0.00965083i
\(155\) 0.622463 + 8.01398i 0.0499974 + 0.643698i
\(156\) −15.1066 + 6.37592i −1.20949 + 0.510482i
\(157\) −2.21767 + 2.21767i −0.176990 + 0.176990i −0.790042 0.613053i \(-0.789941\pi\)
0.613053 + 0.790042i \(0.289941\pi\)
\(158\) −0.460228 0.797137i −0.0366137 0.0634169i
\(159\) −20.7557 + 11.9833i −1.64603 + 0.950337i
\(160\) 6.60667 2.33194i 0.522303 0.184356i
\(161\) −0.0910805 + 0.0910805i −0.00717815 + 0.00717815i
\(162\) 2.39768 + 1.38430i 0.188379 + 0.108761i
\(163\) −12.8283 7.40642i −1.00479 0.580116i −0.0951279 0.995465i \(-0.530326\pi\)
−0.909662 + 0.415349i \(0.863659\pi\)
\(164\) −6.33641 + 6.33641i −0.494790 + 0.494790i
\(165\) 21.7301 7.67002i 1.69169 0.597110i
\(166\) −1.23478 + 0.712900i −0.0958374 + 0.0553318i
\(167\) −1.73406 3.00348i −0.134186 0.232417i 0.791100 0.611686i \(-0.209509\pi\)
−0.925286 + 0.379270i \(0.876175\pi\)
\(168\) 0.695792 0.695792i 0.0536815 0.0536815i
\(169\) −9.31440 9.06873i −0.716492 0.697595i
\(170\) 0.0938613 + 1.20843i 0.00719883 + 0.0926823i
\(171\) 12.5059 + 3.35094i 0.956348 + 0.256253i
\(172\) 12.6746 + 3.39616i 0.966432 + 0.258955i
\(173\) −1.01194 3.77661i −0.0769362 0.287130i 0.916729 0.399509i \(-0.130819\pi\)
−0.993665 + 0.112379i \(0.964153\pi\)
\(174\) 3.74888 + 3.74888i 0.284202 + 0.284202i
\(175\) 1.80087 + 0.695523i 0.136133 + 0.0525766i
\(176\) 14.9652 4.00992i 1.12805 0.302259i
\(177\) −5.73569 −0.431121
\(178\) −1.32686 + 0.355530i −0.0994521 + 0.0266481i
\(179\) −3.24880 5.62708i −0.242827 0.420588i 0.718692 0.695329i \(-0.244741\pi\)
−0.961518 + 0.274741i \(0.911408\pi\)
\(180\) 2.03769 10.9320i 0.151881 0.814820i
\(181\) 11.9845i 0.890802i −0.895331 0.445401i \(-0.853061\pi\)
0.895331 0.445401i \(-0.146939\pi\)
\(182\) 0.354415 + 0.144037i 0.0262710 + 0.0106767i
\(183\) 17.7902 + 17.7902i 1.31509 + 1.31509i
\(184\) 0.0931205 0.347530i 0.00686493 0.0256203i
\(185\) −10.6064 1.97701i −0.779798 0.145352i
\(186\) −2.02166 1.16721i −0.148235 0.0855837i
\(187\) 8.60214i 0.629051i
\(188\) 9.46180 16.3883i 0.690073 1.19524i
\(189\) 0.0982030 + 0.366499i 0.00714322 + 0.0266588i
\(190\) −0.238412 3.06947i −0.0172963 0.222683i
\(191\) 2.59646 4.49719i 0.187873 0.325405i −0.756668 0.653799i \(-0.773174\pi\)
0.944541 + 0.328394i \(0.106507\pi\)
\(192\) 3.81897 14.2526i 0.275610 1.02859i
\(193\) 5.77996 3.33706i 0.416051 0.240207i −0.277335 0.960773i \(-0.589451\pi\)
0.693386 + 0.720566i \(0.256118\pi\)
\(194\) −4.05289 −0.290980
\(195\) 18.6127 4.06646i 1.33288 0.291205i
\(196\) −13.1845 −0.941748
\(197\) −16.9716 + 9.79857i −1.20918 + 0.698119i −0.962580 0.270999i \(-0.912646\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(198\) −0.801563 + 2.99147i −0.0569646 + 0.212595i
\(199\) −7.35302 + 12.7358i −0.521242 + 0.902817i 0.478453 + 0.878113i \(0.341198\pi\)
−0.999695 + 0.0247042i \(0.992136\pi\)
\(200\) −5.32773 + 0.832657i −0.376727 + 0.0588777i
\(201\) −3.89957 14.5534i −0.275054 1.02652i
\(202\) −0.725425 + 1.25647i −0.0510408 + 0.0884052i
\(203\) 3.15219i 0.221240i
\(204\) 7.76844 + 4.48511i 0.543900 + 0.314021i
\(205\) 8.58674 5.88858i 0.599724 0.411276i
\(206\) 0.121712 0.454234i 0.00848005 0.0316480i
\(207\) −0.609590 0.609590i −0.0423694 0.0423694i
\(208\) 12.6880 1.75673i 0.879754 0.121807i
\(209\) 21.8499i 1.51139i
\(210\) −0.462377 + 0.317087i −0.0319070 + 0.0218811i
\(211\) 10.7072 + 18.5453i 0.737111 + 1.27671i 0.953791 + 0.300471i \(0.0971440\pi\)
−0.216679 + 0.976243i \(0.569523\pi\)
\(212\) 18.8532 5.05170i 1.29484 0.346952i
\(213\) −10.2883 −0.704943
\(214\) 1.07582 0.288265i 0.0735416 0.0197054i
\(215\) −13.7543 6.57776i −0.938037 0.448599i
\(216\) −0.749414 0.749414i −0.0509912 0.0509912i
\(217\) −0.359227 1.34065i −0.0243859 0.0910095i
\(218\) 1.88786 + 0.505850i 0.127862 + 0.0342605i
\(219\) 13.8915 + 3.72221i 0.938700 + 0.251524i
\(220\) −18.7106 + 1.45329i −1.26147 + 0.0979809i
\(221\) −0.881153 + 7.05707i −0.0592728 + 0.474710i
\(222\) 2.21561 2.21561i 0.148702 0.148702i
\(223\) 13.6678 + 23.6733i 0.915264 + 1.58528i 0.806515 + 0.591214i \(0.201351\pi\)
0.108749 + 0.994069i \(0.465315\pi\)
\(224\) −1.04768 + 0.604878i −0.0700010 + 0.0404151i
\(225\) −4.65504 + 12.0530i −0.310336 + 0.803534i
\(226\) −0.772287 + 0.772287i −0.0513718 + 0.0513718i
\(227\) 5.99928 + 3.46369i 0.398186 + 0.229893i 0.685701 0.727883i \(-0.259496\pi\)
−0.287515 + 0.957776i \(0.592829\pi\)
\(228\) −19.7322 11.3924i −1.30680 0.754481i
\(229\) 4.56825 4.56825i 0.301879 0.301879i −0.539870 0.841749i \(-0.681527\pi\)
0.841749 + 0.539870i \(0.181527\pi\)
\(230\) −0.0884436 + 0.184939i −0.00583180 + 0.0121945i
\(231\) −3.44594 + 1.98951i −0.226726 + 0.130900i
\(232\) −4.40241 7.62520i −0.289032 0.500619i
\(233\) 5.49074 5.49074i 0.359711 0.359711i −0.503996 0.863706i \(-0.668137\pi\)
0.863706 + 0.503996i \(0.168137\pi\)
\(234\) −0.964019 + 2.37205i −0.0630199 + 0.155066i
\(235\) −14.2968 + 16.7048i −0.932622 + 1.08970i
\(236\) 4.51196 + 1.20898i 0.293703 + 0.0786976i
\(237\) 7.64529 + 2.04855i 0.496615 + 0.133068i
\(238\) −0.0541679 0.202157i −0.00351119 0.0131039i
\(239\) 8.33949 + 8.33949i 0.539437 + 0.539437i 0.923363 0.383927i \(-0.125429\pi\)
−0.383927 + 0.923363i \(0.625429\pi\)
\(240\) −8.09883 + 16.9349i −0.522777 + 1.09315i
\(241\) −1.40952 + 0.377680i −0.0907952 + 0.0243285i −0.303931 0.952694i \(-0.598299\pi\)
0.213135 + 0.977023i \(0.431632\pi\)
\(242\) 2.20371 0.141660
\(243\) −20.1483 + 5.39872i −1.29251 + 0.346328i
\(244\) −10.2447 17.7444i −0.655853 1.13597i
\(245\) 15.0597 + 2.80710i 0.962132 + 0.179339i
\(246\) 3.02380i 0.192791i
\(247\) 2.23817 17.9253i 0.142412 1.14056i
\(248\) 2.74136 + 2.74136i 0.174077 + 0.174077i
\(249\) 3.17324 11.8427i 0.201096 0.750500i
\(250\) 3.07114 + 0.0898555i 0.194236 + 0.00568296i
\(251\) −11.2668 6.50488i −0.711153 0.410585i 0.100335 0.994954i \(-0.468009\pi\)
−0.811488 + 0.584369i \(0.801342\pi\)
\(252\) 1.92014i 0.120958i
\(253\) −0.727447 + 1.25997i −0.0457342 + 0.0792139i
\(254\) −0.811113 3.02712i −0.0508938 0.189938i
\(255\) −7.91846 6.77703i −0.495873 0.424394i
\(256\) −5.14731 + 8.91540i −0.321707 + 0.557212i
\(257\) −7.62518 + 28.4576i −0.475646 + 1.77513i 0.143276 + 0.989683i \(0.454236\pi\)
−0.618922 + 0.785452i \(0.712430\pi\)
\(258\) 3.83458 2.21389i 0.238730 0.137831i
\(259\) 1.86296 0.115759
\(260\) −15.4987 0.724344i −0.961191 0.0449219i
\(261\) −21.0972 −1.30588
\(262\) −4.96515 + 2.86663i −0.306748 + 0.177101i
\(263\) −1.30768 + 4.88034i −0.0806351 + 0.300934i −0.994452 0.105192i \(-0.966454\pi\)
0.913817 + 0.406127i \(0.133121\pi\)
\(264\) 5.55719 9.62534i 0.342022 0.592399i
\(265\) −22.6103 + 1.75619i −1.38894 + 0.107882i
\(266\) 0.137589 + 0.513490i 0.00843614 + 0.0314841i
\(267\) 5.90606 10.2296i 0.361445 0.626041i
\(268\) 12.2703i 0.749529i
\(269\) 7.49111 + 4.32499i 0.456741 + 0.263699i 0.710673 0.703523i \(-0.248391\pi\)
−0.253932 + 0.967222i \(0.581724\pi\)
\(270\) 0.341524 + 0.498011i 0.0207845 + 0.0303080i
\(271\) 5.96047 22.2448i 0.362073 1.35127i −0.509273 0.860605i \(-0.670086\pi\)
0.871346 0.490669i \(-0.163248\pi\)
\(272\) −4.95497 4.95497i −0.300439 0.300439i
\(273\) −3.03079 + 1.27918i −0.183432 + 0.0774198i
\(274\) 0.0670394i 0.00405000i
\(275\) 21.6813 + 2.32366i 1.30743 + 0.140122i
\(276\) 0.758574 + 1.31389i 0.0456608 + 0.0790868i
\(277\) −20.9037 + 5.60114i −1.25598 + 0.336540i −0.824645 0.565650i \(-0.808625\pi\)
−0.431338 + 0.902190i \(0.641958\pi\)
\(278\) −3.21087 −0.192575
\(279\) 8.97282 2.40426i 0.537189 0.143939i
\(280\) 0.878021 0.309913i 0.0524718 0.0185208i
\(281\) 8.17717 + 8.17717i 0.487809 + 0.487809i 0.907614 0.419805i \(-0.137902\pi\)
−0.419805 + 0.907614i \(0.637902\pi\)
\(282\) −1.65270 6.16797i −0.0984171 0.367298i
\(283\) −4.34603 1.16452i −0.258345 0.0692233i 0.127322 0.991861i \(-0.459362\pi\)
−0.385667 + 0.922638i \(0.626029\pi\)
\(284\) 8.09325 + 2.16858i 0.480246 + 0.128681i
\(285\) 20.1133 + 17.2140i 1.19141 + 1.01967i
\(286\) 4.28783 + 0.535383i 0.253545 + 0.0316579i
\(287\) −1.27126 + 1.27126i −0.0750400 + 0.0750400i
\(288\) −4.04837 7.01198i −0.238552 0.413185i
\(289\) −11.3530 + 6.55467i −0.667825 + 0.385569i
\(290\) 1.66979 + 4.73072i 0.0980534 + 0.277797i
\(291\) 24.6432 24.6432i 1.44461 1.44461i
\(292\) −10.1431 5.85613i −0.593580 0.342704i
\(293\) 11.3497 + 6.55274i 0.663056 + 0.382815i 0.793440 0.608648i \(-0.208288\pi\)
−0.130385 + 0.991463i \(0.541621\pi\)
\(294\) −3.14588 + 3.14588i −0.183472 + 0.183472i
\(295\) −4.89631 2.34157i −0.285074 0.136332i
\(296\) −4.50653 + 2.60185i −0.261937 + 0.151229i
\(297\) 2.14284 + 3.71150i 0.124340 + 0.215363i
\(298\) 0.492111 0.492111i 0.0285072 0.0285072i
\(299\) −0.725851 + 0.959149i −0.0419770 + 0.0554690i
\(300\) 13.4030 18.3684i 0.773821 1.06050i
\(301\) 2.54288 + 0.681363i 0.146569 + 0.0392731i
\(302\) −0.970388 0.260015i −0.0558396 0.0149622i
\(303\) −3.22899 12.0508i −0.185501 0.692298i
\(304\) 12.5859 + 12.5859i 0.721849 + 0.721849i
\(305\) 7.92394 + 22.4495i 0.453723 + 1.28545i
\(306\) 1.35301 0.362539i 0.0773466 0.0207250i
\(307\) 7.75447 0.442571 0.221285 0.975209i \(-0.428975\pi\)
0.221285 + 0.975209i \(0.428975\pi\)
\(308\) 3.13008 0.838703i 0.178353 0.0477896i
\(309\) 2.02187 + 3.50198i 0.115020 + 0.199221i
\(310\) −1.24930 1.82173i −0.0709552 0.103467i
\(311\) 11.6030i 0.657947i −0.944339 0.328974i \(-0.893297\pi\)
0.944339 0.328974i \(-0.106703\pi\)
\(312\) 5.54500 7.32724i 0.313924 0.414823i
\(313\) −10.1565 10.1565i −0.574078 0.574078i 0.359188 0.933265i \(-0.383054\pi\)
−0.933265 + 0.359188i \(0.883054\pi\)
\(314\) 0.223069 0.832505i 0.0125885 0.0469810i
\(315\) 0.408817 2.19325i 0.0230342 0.123576i
\(316\) −5.58234 3.22297i −0.314031 0.181306i
\(317\) 21.7686i 1.22265i −0.791381 0.611323i \(-0.790638\pi\)
0.791381 0.611323i \(-0.209362\pi\)
\(318\) 3.29311 5.70384i 0.184669 0.319855i
\(319\) 9.21508 + 34.3911i 0.515945 + 1.92553i
\(320\) 9.07864 10.6077i 0.507512 0.592990i
\(321\) −4.78866 + 8.29420i −0.267277 + 0.462937i
\(322\) 0.00916151 0.0341912i 0.000510551 0.00190540i
\(323\) −8.55848 + 4.94124i −0.476206 + 0.274938i
\(324\) 19.3884 1.07714
\(325\) 17.5490 + 4.12720i 0.973441 + 0.228936i
\(326\) 4.07070 0.225455
\(327\) −14.5547 + 8.40318i −0.804878 + 0.464697i
\(328\) 1.29973 4.85066i 0.0717656 0.267833i
\(329\) 1.89830 3.28795i 0.104657 0.181270i
\(330\) −4.11768 + 4.81121i −0.226671 + 0.264848i
\(331\) −5.07792 18.9511i −0.279108 1.04164i −0.953038 0.302850i \(-0.902062\pi\)
0.673931 0.738795i \(-0.264605\pi\)
\(332\) −4.99243 + 8.64714i −0.273995 + 0.474573i
\(333\) 12.4685i 0.683272i
\(334\) 0.825383 + 0.476535i 0.0451630 + 0.0260748i
\(335\) 2.61247 14.0156i 0.142734 0.765753i
\(336\) 0.838924 3.13091i 0.0457671 0.170805i
\(337\) −9.35946 9.35946i −0.509842 0.509842i 0.404636 0.914478i \(-0.367398\pi\)
−0.914478 + 0.404636i \(0.867398\pi\)
\(338\) 3.46283 + 0.878441i 0.188353 + 0.0477809i
\(339\) 9.39165i 0.510084i
\(340\) 4.80055 + 7.00018i 0.260346 + 0.379638i
\(341\) −7.83852 13.5767i −0.424480 0.735220i
\(342\) −3.43672 + 0.920867i −0.185837 + 0.0497948i
\(343\) −5.34789 −0.288759
\(344\) −7.10288 + 1.90321i −0.382962 + 0.102614i
\(345\) −0.586730 1.66228i −0.0315885 0.0894940i
\(346\) 0.759754 + 0.759754i 0.0408446 + 0.0408446i
\(347\) −7.15698 26.7102i −0.384207 1.43388i −0.839414 0.543493i \(-0.817101\pi\)
0.455207 0.890386i \(-0.349565\pi\)
\(348\) 35.8627 + 9.60939i 1.92244 + 0.515118i
\(349\) −28.5113 7.63958i −1.52618 0.408938i −0.604406 0.796676i \(-0.706590\pi\)
−0.921769 + 0.387739i \(0.873256\pi\)
\(350\) −0.524160 + 0.0819196i −0.0280175 + 0.00437878i
\(351\) 1.37777 + 3.26436i 0.0735398 + 0.174239i
\(352\) −9.66215 + 9.66215i −0.514994 + 0.514994i
\(353\) −7.81777 13.5408i −0.416098 0.720702i 0.579445 0.815011i \(-0.303269\pi\)
−0.995543 + 0.0943088i \(0.969936\pi\)
\(354\) 1.36504 0.788109i 0.0725513 0.0418875i
\(355\) −8.78267 4.20015i −0.466136 0.222921i
\(356\) −6.80218 + 6.80218i −0.360515 + 0.360515i
\(357\) 1.55856 + 0.899837i 0.0824879 + 0.0476244i
\(358\) 1.54637 + 0.892798i 0.0817282 + 0.0471858i
\(359\) 14.0592 14.0592i 0.742017 0.742017i −0.230949 0.972966i \(-0.574183\pi\)
0.972966 + 0.230949i \(0.0741830\pi\)
\(360\) 2.07421 + 5.87648i 0.109320 + 0.309718i
\(361\) 5.28447 3.05099i 0.278130 0.160578i
\(362\) 1.64672 + 2.85221i 0.0865499 + 0.149909i
\(363\) −13.3995 + 13.3995i −0.703290 + 0.703290i
\(364\) 2.65378 0.367432i 0.139096 0.0192587i
\(365\) 10.3390 + 8.84863i 0.541167 + 0.463159i
\(366\) −6.67836 1.78946i −0.349084 0.0935367i
\(367\) 21.2746 + 5.70052i 1.11053 + 0.297565i 0.767045 0.641594i \(-0.221727\pi\)
0.343483 + 0.939159i \(0.388393\pi\)
\(368\) −0.306745 1.14479i −0.0159902 0.0596761i
\(369\) −8.50836 8.50836i −0.442928 0.442928i
\(370\) 2.79588 0.986854i 0.145351 0.0513041i
\(371\) 3.78247 1.01351i 0.196376 0.0526188i
\(372\) −16.3479 −0.847597
\(373\) 1.12584 0.301668i 0.0582937 0.0156198i −0.229554 0.973296i \(-0.573727\pi\)
0.287848 + 0.957676i \(0.407060\pi\)
\(374\) −1.18197 2.04723i −0.0611183 0.105860i
\(375\) −19.2201 + 18.1274i −0.992524 + 0.936096i
\(376\) 10.6048i 0.546901i
\(377\) 4.03708 + 29.1579i 0.207920 + 1.50171i
\(378\) −0.0737299 0.0737299i −0.00379226 0.00379226i
\(379\) 6.82640 25.4765i 0.350649 1.30864i −0.535224 0.844710i \(-0.679773\pi\)
0.885873 0.463928i \(-0.153560\pi\)
\(380\) −12.1936 17.7808i −0.625520 0.912136i
\(381\) 23.3380 + 13.4742i 1.19564 + 0.690304i
\(382\) 1.42706i 0.0730146i
\(383\) −16.4001 + 28.4058i −0.838004 + 1.45147i 0.0535563 + 0.998565i \(0.482944\pi\)
−0.891561 + 0.452901i \(0.850389\pi\)
\(384\) 4.88213 + 18.2204i 0.249140 + 0.929804i
\(385\) −3.75386 + 0.291570i −0.191314 + 0.0148598i
\(386\) −0.917054 + 1.58838i −0.0466768 + 0.0808466i
\(387\) −4.56027 + 17.0192i −0.231812 + 0.865132i
\(388\) −24.5798 + 14.1912i −1.24785 + 0.720447i
\(389\) 9.36826 0.474989 0.237495 0.971389i \(-0.423674\pi\)
0.237495 + 0.971389i \(0.423674\pi\)
\(390\) −3.87091 + 3.52525i −0.196011 + 0.178508i
\(391\) 0.658034 0.0332782
\(392\) 6.39871 3.69430i 0.323184 0.186590i
\(393\) 12.7599 47.6205i 0.643650 2.40213i
\(394\) 2.69273 4.66395i 0.135658 0.234966i
\(395\) 5.69014 + 4.86992i 0.286302 + 0.245032i
\(396\) 5.61333 + 20.9492i 0.282080 + 1.05274i
\(397\) 5.82600 10.0909i 0.292399 0.506449i −0.681978 0.731373i \(-0.738880\pi\)
0.974376 + 0.224924i \(0.0722133\pi\)
\(398\) 4.04135i 0.202574i
\(399\) −3.95883 2.28563i −0.198189 0.114425i
\(400\) −13.8272 + 11.1503i −0.691362 + 0.557515i
\(401\) −5.33600 + 19.9142i −0.266467 + 0.994469i 0.694879 + 0.719126i \(0.255458\pi\)
−0.961346 + 0.275342i \(0.911209\pi\)
\(402\) 2.92776 + 2.92776i 0.146024 + 0.146024i
\(403\) −5.03988 11.9411i −0.251054 0.594827i
\(404\) 10.1603i 0.505493i
\(405\) −22.1461 4.12799i −1.10045 0.205121i
\(406\) −0.433124 0.750193i −0.0214956 0.0372314i
\(407\) 20.3253 5.44616i 1.00749 0.269956i
\(408\) −5.02693 −0.248870
\(409\) 4.40250 1.17965i 0.217689 0.0583297i −0.148326 0.988939i \(-0.547388\pi\)
0.366015 + 0.930609i \(0.380722\pi\)
\(410\) −1.23445 + 2.58129i −0.0609653 + 0.127481i
\(411\) −0.407627 0.407627i −0.0201067 0.0201067i
\(412\) −0.852344 3.18099i −0.0419920 0.156716i
\(413\) 0.905223 + 0.242554i 0.0445431 + 0.0119353i
\(414\) 0.228837 + 0.0613168i 0.0112467 + 0.00301355i
\(415\) 7.54358 8.81412i 0.370300 0.432668i
\(416\) −8.91642 + 6.93695i −0.437163 + 0.340112i
\(417\) 19.5234 19.5234i 0.956067 0.956067i
\(418\) 3.00227 + 5.20008i 0.146846 + 0.254344i
\(419\) 0.564687 0.326022i 0.0275868 0.0159272i −0.486143 0.873879i \(-0.661597\pi\)
0.513730 + 0.857952i \(0.328263\pi\)
\(420\) −1.69393 + 3.54206i −0.0826553 + 0.172835i
\(421\) −5.58095 + 5.58095i −0.271999 + 0.271999i −0.829904 0.557906i \(-0.811605\pi\)
0.557906 + 0.829904i \(0.311605\pi\)
\(422\) −5.09642 2.94242i −0.248090 0.143235i
\(423\) 22.0058 + 12.7051i 1.06996 + 0.617741i
\(424\) −7.73438 + 7.73438i −0.375615 + 0.375615i
\(425\) −3.99295 9.01792i −0.193686 0.437434i
\(426\) 2.44853 1.41366i 0.118631 0.0684919i
\(427\) −2.05538 3.56002i −0.0994667 0.172281i
\(428\) 5.51524 5.51524i 0.266589 0.266589i
\(429\) −29.3271 + 22.8164i −1.41593 + 1.10159i
\(430\) 4.17722 0.324454i 0.201443 0.0156466i
\(431\) −34.5325 9.25295i −1.66337 0.445699i −0.700060 0.714084i \(-0.746843\pi\)
−0.963312 + 0.268385i \(0.913510\pi\)
\(432\) −3.37220 0.903577i −0.162245 0.0434734i
\(433\) 6.82761 + 25.4810i 0.328114 + 1.22454i 0.911144 + 0.412087i \(0.135200\pi\)
−0.583031 + 0.812450i \(0.698133\pi\)
\(434\) 0.269705 + 0.269705i 0.0129462 + 0.0129462i
\(435\) −38.9177 18.6117i −1.86596 0.892363i
\(436\) 13.2206 3.54246i 0.633154 0.169653i
\(437\) −1.67144 −0.0799558
\(438\) −3.81750 + 1.02290i −0.182407 + 0.0488759i
\(439\) −0.864675 1.49766i −0.0412687 0.0714794i 0.844653 0.535314i \(-0.179807\pi\)
−0.885922 + 0.463834i \(0.846473\pi\)
\(440\) 8.67343 5.94803i 0.413490 0.283561i
\(441\) 17.7038i 0.843036i
\(442\) −0.759965 1.80059i −0.0361478 0.0856455i
\(443\) 2.86737 + 2.86737i 0.136233 + 0.136233i 0.771935 0.635702i \(-0.219289\pi\)
−0.635702 + 0.771935i \(0.719289\pi\)
\(444\) 5.67920 21.1951i 0.269523 1.00587i
\(445\) 9.21793 6.32143i 0.436972 0.299665i
\(446\) −6.50564 3.75603i −0.308051 0.177853i
\(447\) 5.98448i 0.283056i
\(448\) −1.20544 + 2.08788i −0.0569517 + 0.0986432i
\(449\) −5.22508 19.5003i −0.246587 0.920274i −0.972579 0.232571i \(-0.925286\pi\)
0.725993 0.687702i \(-0.241381\pi\)
\(450\) −0.548277 3.50813i −0.0258460 0.165375i
\(451\) −10.1534 + 17.5861i −0.478103 + 0.828098i
\(452\) −1.97958 + 7.38790i −0.0931117 + 0.347497i
\(453\) 7.48135 4.31936i 0.351505 0.202941i
\(454\) −1.90370 −0.0893452
\(455\) −3.10947 0.145323i −0.145774 0.00681286i
\(456\) 12.7686 0.597946
\(457\) 12.8012 7.39079i 0.598816 0.345727i −0.169759 0.985486i \(-0.554299\pi\)
0.768576 + 0.639759i \(0.220966\pi\)
\(458\) −0.459507 + 1.71490i −0.0214713 + 0.0801321i
\(459\) 0.969184 1.67868i 0.0452377 0.0783539i
\(460\) 0.111172 + 1.43129i 0.00518341 + 0.0667344i
\(461\) −1.57205 5.86696i −0.0732175 0.273252i 0.919606 0.392843i \(-0.128508\pi\)
−0.992823 + 0.119591i \(0.961842\pi\)
\(462\) 0.546735 0.946973i 0.0254364 0.0440572i
\(463\) 36.0148i 1.67375i −0.547396 0.836874i \(-0.684381\pi\)
0.547396 0.836874i \(-0.315619\pi\)
\(464\) −25.1179 14.5018i −1.16607 0.673230i
\(465\) 18.6731 + 3.48062i 0.865943 + 0.161410i
\(466\) −0.552297 + 2.06120i −0.0255847 + 0.0954833i
\(467\) 7.68952 + 7.68952i 0.355829 + 0.355829i 0.862273 0.506444i \(-0.169040\pi\)
−0.506444 + 0.862273i \(0.669040\pi\)
\(468\) 2.45917 + 17.7614i 0.113675 + 0.821022i
\(469\) 2.46176i 0.113674i
\(470\) 1.10721 5.94004i 0.0510717 0.273993i
\(471\) 3.70562 + 6.41832i 0.170746 + 0.295741i
\(472\) −2.52851 + 0.677511i −0.116384 + 0.0311850i
\(473\) 29.7353 1.36723
\(474\) −2.10099 + 0.562959i −0.0965018 + 0.0258576i
\(475\) 10.1423 + 22.9060i 0.465360 + 1.05100i
\(476\) −1.03637 1.03637i −0.0475019 0.0475019i
\(477\) 6.78329 + 25.3156i 0.310586 + 1.15912i
\(478\) −3.13061 0.838843i −0.143191 0.0383678i
\(479\) −8.87096 2.37697i −0.405324 0.108606i 0.0503960 0.998729i \(-0.483952\pi\)
−0.455720 + 0.890123i \(0.650618\pi\)
\(480\) −1.28208 16.5064i −0.0585189 0.753408i
\(481\) 17.2325 2.38594i 0.785733 0.108789i
\(482\) 0.283559 0.283559i 0.0129157 0.0129157i
\(483\) 0.152191 + 0.263602i 0.00692492 + 0.0119943i
\(484\) 13.3650 7.71629i 0.607500 0.350740i
\(485\) 31.0973 10.9763i 1.41206 0.498410i
\(486\) 4.05331 4.05331i 0.183862 0.183862i
\(487\) 22.2840 + 12.8657i 1.00978 + 0.582998i 0.911128 0.412123i \(-0.135213\pi\)
0.0986549 + 0.995122i \(0.468546\pi\)
\(488\) 9.94399 + 5.74117i 0.450143 + 0.259890i
\(489\) −24.7515 + 24.7515i −1.11930 + 1.11930i
\(490\) −3.96980 + 1.40121i −0.179337 + 0.0633001i
\(491\) 11.4291 6.59859i 0.515788 0.297790i −0.219422 0.975630i \(-0.570417\pi\)
0.735210 + 0.677840i \(0.237084\pi\)
\(492\) 10.5878 + 18.3386i 0.477336 + 0.826769i
\(493\) 11.3869 11.3869i 0.512839 0.512839i
\(494\) 1.93035 + 4.57360i 0.0868504 + 0.205776i
\(495\) −1.95144 25.1241i −0.0877108 1.12924i
\(496\) 12.3355 + 3.30529i 0.553881 + 0.148412i
\(497\) 1.62373 + 0.435076i 0.0728341 + 0.0195158i
\(498\) 0.872033 + 3.25447i 0.0390767 + 0.145836i
\(499\) 16.7683 + 16.7683i 0.750650 + 0.750650i 0.974601 0.223950i \(-0.0718954\pi\)
−0.223950 + 0.974601i \(0.571895\pi\)
\(500\) 18.9404 10.2086i 0.847039 0.456543i
\(501\) −7.91620 + 2.12114i −0.353670 + 0.0947655i
\(502\) 3.57520 0.159569
\(503\) −7.28214 + 1.95124i −0.324695 + 0.0870017i −0.417485 0.908684i \(-0.637088\pi\)
0.0927898 + 0.995686i \(0.470422\pi\)
\(504\) −0.538025 0.931887i −0.0239655 0.0415095i
\(505\) 2.16322 11.6054i 0.0962622 0.516435i
\(506\) 0.399817i 0.0177740i
\(507\) −26.3967 + 15.7141i −1.17232 + 0.697889i
\(508\) −15.5186 15.5186i −0.688528 0.688528i
\(509\) −7.93327 + 29.6074i −0.351636 + 1.31232i 0.533030 + 0.846097i \(0.321053\pi\)
−0.884666 + 0.466226i \(0.845613\pi\)
\(510\) 2.81572 + 0.524843i 0.124682 + 0.0232404i
\(511\) −2.03499 1.17490i −0.0900225 0.0519745i
\(512\) 18.7939i 0.830581i
\(513\) −2.46178 + 4.26392i −0.108690 + 0.188257i
\(514\) −2.09547 7.82039i −0.0924271 0.344942i
\(515\) 0.296312 + 3.81491i 0.0130571 + 0.168105i
\(516\) 15.5039 26.8535i 0.682519 1.18216i
\(517\) 11.0989 41.4218i 0.488131 1.82173i
\(518\) −0.443368 + 0.255979i −0.0194805 + 0.0112471i
\(519\) −9.23923 −0.405557
\(520\) 7.72483 3.99122i 0.338756 0.175026i
\(521\) −7.16076 −0.313719 −0.156859 0.987621i \(-0.550137\pi\)
−0.156859 + 0.987621i \(0.550137\pi\)
\(522\) 5.02094 2.89884i 0.219761 0.126879i
\(523\) 2.78390 10.3897i 0.121731 0.454308i −0.877971 0.478714i \(-0.841103\pi\)
0.999702 + 0.0244065i \(0.00776960\pi\)
\(524\) −20.0750 + 34.7709i −0.876979 + 1.51897i
\(525\) 2.68900 3.68521i 0.117358 0.160836i
\(526\) −0.359362 1.34116i −0.0156689 0.0584773i
\(527\) −3.54528 + 6.14061i −0.154435 + 0.267489i
\(528\) 36.6115i 1.59331i
\(529\) −19.8222 11.4444i −0.861835 0.497581i
\(530\) 5.13975 3.52472i 0.223257 0.153104i
\(531\) −1.62338 + 6.05854i −0.0704487 + 0.262918i
\(532\) 2.63243 + 2.63243i 0.114130 + 0.114130i
\(533\) −10.1311 + 13.3873i −0.438826 + 0.579870i
\(534\) 3.24607i 0.140471i
\(535\) −7.47394 + 5.12544i −0.323127 + 0.221592i
\(536\) −3.43815 5.95505i −0.148505 0.257219i
\(537\) −14.8311 + 3.97399i −0.640011 + 0.171490i
\(538\) −2.37709 −0.102484
\(539\) −28.8594 + 7.73286i −1.24306 + 0.333078i
\(540\) 3.81504 + 1.82447i 0.164173 + 0.0785129i
\(541\) 11.1986 + 11.1986i 0.481464 + 0.481464i 0.905599 0.424135i \(-0.139422\pi\)
−0.424135 + 0.905599i \(0.639422\pi\)
\(542\) 1.63799 + 6.11306i 0.0703576 + 0.262578i
\(543\) −27.3554 7.32985i −1.17393 0.314554i
\(544\) 5.96966 + 1.59957i 0.255947 + 0.0685808i
\(545\) −15.8553 + 1.23152i −0.679166 + 0.0527523i
\(546\) 0.545536 0.720878i 0.0233468 0.0308507i
\(547\) −23.6205 + 23.6205i −1.00994 + 1.00994i −0.00999077 + 0.999950i \(0.503180\pi\)
−0.999950 + 0.00999077i \(0.996820\pi\)
\(548\) 0.234738 + 0.406578i 0.0100275 + 0.0173681i
\(549\) 23.8267 13.7564i 1.01690 0.587108i
\(550\) −5.47923 + 2.42609i −0.233635 + 0.103449i
\(551\) −28.9232 + 28.9232i −1.23217 + 1.23217i
\(552\) −0.736305 0.425106i −0.0313392 0.0180937i
\(553\) −1.11997 0.646616i −0.0476260 0.0274969i
\(554\) 4.20528 4.20528i 0.178665 0.178665i
\(555\) −10.9996 + 23.0006i −0.466908 + 0.976320i
\(556\) −19.4732 + 11.2429i −0.825847 + 0.476803i
\(557\) −15.5732 26.9736i −0.659859 1.14291i −0.980652 0.195759i \(-0.937283\pi\)
0.320793 0.947149i \(-0.396050\pi\)
\(558\) −1.80510 + 1.80510i −0.0764159 + 0.0764159i
\(559\) 24.3944 + 3.04592i 1.03177 + 0.128829i
\(560\) 1.99433 2.33023i 0.0842759 0.0984702i
\(561\) 19.6349 + 5.26115i 0.828986 + 0.222126i
\(562\) −3.06967 0.822517i −0.129486 0.0346958i
\(563\) −5.39509 20.1348i −0.227376 0.848579i −0.981439 0.191776i \(-0.938575\pi\)
0.754063 0.656802i \(-0.228091\pi\)
\(564\) −31.6204 31.6204i −1.33146 1.33146i
\(565\) 3.83410 8.01724i 0.161302 0.337288i
\(566\) 1.19433 0.320019i 0.0502013 0.0134514i
\(567\) 3.88985 0.163359
\(568\) −4.53546 + 1.21527i −0.190304 + 0.0509918i
\(569\) 20.8728 + 36.1527i 0.875031 + 1.51560i 0.856729 + 0.515766i \(0.172493\pi\)
0.0183019 + 0.999833i \(0.494174\pi\)
\(570\) −7.15206 1.33313i −0.299567 0.0558385i
\(571\) 19.2151i 0.804127i 0.915612 + 0.402064i \(0.131707\pi\)
−0.915612 + 0.402064i \(0.868293\pi\)
\(572\) 27.8793 11.7668i 1.16569 0.491996i
\(573\) −8.67709 8.67709i −0.362491 0.362491i
\(574\) 0.127872 0.477224i 0.00533727 0.0199190i
\(575\) 0.177752 1.65854i 0.00741278 0.0691660i
\(576\) −13.9739 8.06785i −0.582247 0.336160i
\(577\) 21.8168i 0.908243i 0.890940 + 0.454122i \(0.150047\pi\)
−0.890940 + 0.454122i \(0.849953\pi\)
\(578\) 1.80128 3.11991i 0.0749233 0.129771i
\(579\) −4.08196 15.2341i −0.169640 0.633107i
\(580\) 26.6914 + 22.8439i 1.10830 + 0.948542i
\(581\) −1.00162 + 1.73485i −0.0415541 + 0.0719738i
\(582\) −2.47879 + 9.25095i −0.102749 + 0.383464i
\(583\) 38.3048 22.1153i 1.58642 0.915922i
\(584\) 6.56356 0.271602
\(585\) 0.972630 20.8113i 0.0402133 0.860441i
\(586\) −3.60150 −0.148777
\(587\) 5.07084 2.92765i 0.209296 0.120837i −0.391688 0.920098i \(-0.628109\pi\)
0.600984 + 0.799261i \(0.294775\pi\)
\(588\) −8.06375 + 30.0943i −0.332543 + 1.24107i
\(589\) 9.00520 15.5975i 0.371053 0.642682i
\(590\) 1.48702 0.115500i 0.0612197 0.00475507i
\(591\) 11.9858 + 44.7316i 0.493030 + 1.84001i
\(592\) −8.57065 + 14.8448i −0.352252 + 0.610118i
\(593\) 45.6277i 1.87370i 0.349727 + 0.936852i \(0.386274\pi\)
−0.349727 + 0.936852i \(0.613726\pi\)
\(594\) −1.01995 0.588870i −0.0418492 0.0241616i
\(595\) 0.963122 + 1.40443i 0.0394842 + 0.0575759i
\(596\) 1.26141 4.70766i 0.0516695 0.192833i
\(597\) 24.5730 + 24.5730i 1.00571 + 1.00571i
\(598\) 0.0409550 0.328004i 0.00167477 0.0134131i
\(599\) 12.7240i 0.519888i 0.965624 + 0.259944i \(0.0837041\pi\)
−0.965624 + 0.259944i \(0.916296\pi\)
\(600\) −1.35790 + 12.6701i −0.0554362 + 0.517255i
\(601\) 12.3636 + 21.4144i 0.504321 + 0.873510i 0.999988 + 0.00499702i \(0.00159061\pi\)
−0.495666 + 0.868513i \(0.665076\pi\)
\(602\) −0.698805 + 0.187244i −0.0284812 + 0.00763151i
\(603\) −16.4763 −0.670965
\(604\) −6.79561 + 1.82088i −0.276510 + 0.0740905i
\(605\) −16.9088 + 5.96827i −0.687442 + 0.242644i
\(606\) 2.42430 + 2.42430i 0.0984804 + 0.0984804i
\(607\) 1.13924 + 4.25169i 0.0462402 + 0.172571i 0.985184 0.171499i \(-0.0548610\pi\)
−0.938944 + 0.344070i \(0.888194\pi\)
\(608\) −15.1632 4.06298i −0.614950 0.164775i
\(609\) 7.19505 + 1.92791i 0.291558 + 0.0781228i
\(610\) −4.97048 4.25400i −0.201249 0.172239i
\(611\) 13.3484 32.8449i 0.540019 1.32876i
\(612\) 6.93628 6.93628i 0.280382 0.280382i
\(613\) −0.580288 1.00509i −0.0234376 0.0405951i 0.854069 0.520160i \(-0.174128\pi\)
−0.877506 + 0.479565i \(0.840794\pi\)
\(614\) −1.84550 + 1.06550i −0.0744781 + 0.0430000i
\(615\) −8.18929 23.2013i −0.330224 0.935565i
\(616\) −1.28409 + 1.28409i −0.0517375 + 0.0517375i
\(617\) −33.3212 19.2380i −1.34146 0.774493i −0.354439 0.935079i \(-0.615328\pi\)
−0.987022 + 0.160587i \(0.948661\pi\)
\(618\) −0.962375 0.555628i −0.0387124 0.0223506i
\(619\) 24.7229 24.7229i 0.993698 0.993698i −0.00628240 0.999980i \(-0.502000\pi\)
0.999980 + 0.00628240i \(0.00199976\pi\)
\(620\) −13.9554 6.67394i −0.560464 0.268032i
\(621\) 0.283917 0.163920i 0.0113932 0.00657787i
\(622\) 1.59431 + 2.76142i 0.0639258 + 0.110723i
\(623\) −1.36470 + 1.36470i −0.0546757 + 0.0546757i
\(624\) 3.75027 30.0355i 0.150131 1.20238i
\(625\) −23.8078 + 7.62804i −0.952313 + 0.305122i
\(626\) 3.81269 + 1.02161i 0.152386 + 0.0408317i
\(627\) −49.8736 13.3636i −1.99176 0.533690i
\(628\) −1.56215 5.83002i −0.0623365 0.232643i
\(629\) −6.72971 6.72971i −0.268331 0.268331i
\(630\) 0.204067 + 0.578148i 0.00813024 + 0.0230340i
\(631\) −7.05694 + 1.89090i −0.280933 + 0.0752756i −0.396534 0.918020i \(-0.629787\pi\)
0.115601 + 0.993296i \(0.463120\pi\)
\(632\) 3.61231 0.143690
\(633\) 48.8794 13.0972i 1.94278 0.520567i
\(634\) 2.99110 + 5.18074i 0.118792 + 0.205753i
\(635\) 14.4218 + 21.0300i 0.572313 + 0.834549i
\(636\) 46.1232i 1.82891i
\(637\) −24.4679 + 3.38773i −0.969455 + 0.134227i
\(638\) −6.91860 6.91860i −0.273910 0.273910i
\(639\) −2.91191 + 10.8674i −0.115193 + 0.429907i
\(640\) −3.27072 + 17.5470i −0.129287 + 0.693607i
\(641\) −7.19858 4.15610i −0.284327 0.164156i 0.351054 0.936355i \(-0.385823\pi\)
−0.635381 + 0.772199i \(0.719157\pi\)
\(642\) 2.63193i 0.103874i
\(643\) −5.57779 + 9.66101i −0.219967 + 0.380993i −0.954797 0.297257i \(-0.903928\pi\)
0.734831 + 0.678250i \(0.237261\pi\)
\(644\) −0.0641579 0.239440i −0.00252817 0.00943528i
\(645\) −23.4264 + 27.3720i −0.922414 + 1.07777i
\(646\) 1.35789 2.35194i 0.0534257 0.0925360i
\(647\) 10.8961 40.6647i 0.428369 1.59870i −0.328085 0.944648i \(-0.606403\pi\)
0.756454 0.654047i \(-0.226930\pi\)
\(648\) −9.40963 + 5.43265i −0.369645 + 0.213415i
\(649\) 10.5853 0.415509
\(650\) −4.74360 + 1.42907i −0.186059 + 0.0560526i
\(651\) −3.27983 −0.128547
\(652\) 24.6878 14.2535i 0.966849 0.558211i
\(653\) −11.0577 + 41.2678i −0.432721 + 1.61494i 0.313742 + 0.949508i \(0.398417\pi\)
−0.746463 + 0.665427i \(0.768250\pi\)
\(654\) 2.30926 3.99976i 0.0902994 0.156403i
\(655\) 30.3334 35.4423i 1.18522 1.38485i
\(656\) −4.28140 15.9784i −0.167160 0.623851i
\(657\) 7.86345 13.6199i 0.306782 0.531363i
\(658\) 1.04334i 0.0406735i
\(659\) 15.2491 + 8.80408i 0.594021 + 0.342958i 0.766686 0.642023i \(-0.221904\pi\)
−0.172665 + 0.984981i \(0.555238\pi\)
\(660\) −8.12635 + 43.5968i −0.316318 + 1.69700i
\(661\) 7.21232 26.9167i 0.280527 1.04694i −0.671520 0.740987i \(-0.734358\pi\)
0.952047 0.305953i \(-0.0989751\pi\)
\(662\) 3.81246 + 3.81246i 0.148175 + 0.148175i
\(663\) 15.5692 + 6.32746i 0.604659 + 0.245738i
\(664\) 5.59552i 0.217148i
\(665\) −2.44638 3.56732i −0.0948665 0.138335i
\(666\) −1.71323 2.96740i −0.0663863 0.114985i
\(667\) 2.63080 0.704922i 0.101865 0.0272947i
\(668\) 6.67434 0.258238
\(669\) 62.3951 16.7187i 2.41234 0.646383i
\(670\) 1.30406 + 3.69455i 0.0503800 + 0.142733i
\(671\) −32.8320 32.8320i −1.26747 1.26747i
\(672\) 0.739899 + 2.76134i 0.0285422 + 0.106521i
\(673\) 7.05459 + 1.89027i 0.271934 + 0.0728646i 0.392209 0.919876i \(-0.371711\pi\)
−0.120275 + 0.992741i \(0.538378\pi\)
\(674\) 3.51350 + 0.941440i 0.135335 + 0.0362629i
\(675\) −3.96922 2.89624i −0.152775 0.111476i
\(676\) 24.0771 6.79753i 0.926042 0.261444i
\(677\) 3.26988 3.26988i 0.125672 0.125672i −0.641473 0.767145i \(-0.721677\pi\)
0.767145 + 0.641473i \(0.221677\pi\)
\(678\) 1.29045 + 2.23513i 0.0495595 + 0.0858397i
\(679\) −4.93138 + 2.84713i −0.189249 + 0.109263i
\(680\) −4.29126 2.05222i −0.164562 0.0786991i
\(681\) 11.5753 11.5753i 0.443566 0.443566i
\(682\) 3.73100 + 2.15409i 0.142867 + 0.0824845i
\(683\) 23.4651 + 13.5476i 0.897868 + 0.518384i 0.876508 0.481388i \(-0.159867\pi\)
0.0213600 + 0.999772i \(0.493200\pi\)
\(684\) −17.6185 + 17.6185i −0.673660 + 0.673660i
\(685\) −0.181561 0.514385i −0.00693709 0.0196536i
\(686\) 1.27275 0.734823i 0.0485939 0.0280557i
\(687\) −7.63332 13.2213i −0.291229 0.504424i
\(688\) −17.1280 + 17.1280i −0.653000 + 0.653000i
\(689\) 33.6901 14.2193i 1.28349 0.541714i
\(690\) 0.368040 + 0.314988i 0.0140111 + 0.0119914i
\(691\) −12.1374 3.25221i −0.461729 0.123720i 0.0204532 0.999791i \(-0.493489\pi\)
−0.482182 + 0.876071i \(0.660156\pi\)
\(692\) 7.26800 + 1.94746i 0.276288 + 0.0740311i
\(693\) 1.12619 + 4.20299i 0.0427804 + 0.159658i
\(694\) 5.37339 + 5.37339i 0.203971 + 0.203971i
\(695\) 24.6367 8.69594i 0.934522 0.329856i
\(696\) −20.0975 + 5.38511i −0.761795 + 0.204122i
\(697\) 9.18452 0.347889
\(698\) 7.83515 2.09942i 0.296565 0.0794643i
\(699\) −9.17475 15.8911i −0.347021 0.601058i
\(700\) −2.89207 + 2.33217i −0.109310 + 0.0881476i
\(701\) 39.3955i 1.48795i 0.668208 + 0.743974i \(0.267062\pi\)
−0.668208 + 0.743974i \(0.732938\pi\)
\(702\) −0.776434 0.587578i −0.0293046 0.0221767i
\(703\) 17.0938 + 17.0938i 0.644705 + 0.644705i
\(704\) −7.04795 + 26.3033i −0.265630 + 0.991343i
\(705\) 29.3856 + 42.8501i 1.10672 + 1.61383i
\(706\) 3.72112 + 2.14839i 0.140046 + 0.0808557i
\(707\) 2.03843i 0.0766631i
\(708\) 5.51911 9.55939i 0.207421 0.359264i
\(709\) −6.62303 24.7175i −0.248733 0.928285i −0.971470 0.237162i \(-0.923783\pi\)
0.722737 0.691123i \(-0.242884\pi\)
\(710\) 2.66732 0.207176i 0.100103 0.00777519i
\(711\) 4.32771 7.49582i 0.162302 0.281115i
\(712\) 1.39527 5.20722i 0.0522900 0.195149i
\(713\) −1.03857 + 0.599619i −0.0388948 + 0.0224559i
\(714\) −0.494566 −0.0185087
\(715\) −34.3500 + 7.50470i −1.28462 + 0.280660i
\(716\) 12.5045 0.467315
\(717\) 24.1359 13.9349i 0.901371 0.520407i
\(718\) −1.41417 + 5.27777i −0.0527765 + 0.196965i
\(719\) 4.34268 7.52174i 0.161955 0.280514i −0.773615 0.633656i \(-0.781554\pi\)
0.935570 + 0.353142i \(0.114887\pi\)
\(720\) 15.5959 + 13.3478i 0.581226 + 0.497443i
\(721\) −0.171004 0.638194i −0.00636851 0.0237676i
\(722\) −0.838438 + 1.45222i −0.0312034 + 0.0540460i
\(723\) 3.44830i 0.128244i
\(724\) 19.9740 + 11.5320i 0.742327 + 0.428583i
\(725\) −25.6242 31.7760i −0.951658 1.18013i
\(726\) 1.34781 5.03011i 0.0500220 0.186685i
\(727\) −17.4677 17.4677i −0.647841 0.647841i 0.304630 0.952471i \(-0.401467\pi\)
−0.952471 + 0.304630i \(0.901467\pi\)
\(728\) −1.18498 + 0.921915i −0.0439184 + 0.0341684i
\(729\) 19.0676i 0.706209i
\(730\) −3.67643 0.685277i −0.136071 0.0253632i
\(731\) −6.72450 11.6472i −0.248715 0.430786i
\(732\) −46.7685 + 12.5316i −1.72861 + 0.463180i
\(733\) −34.2413 −1.26473 −0.632365 0.774670i \(-0.717916\pi\)
−0.632365 + 0.774670i \(0.717916\pi\)
\(734\) −5.84646 + 1.56655i −0.215797 + 0.0578225i
\(735\) 15.6181 32.6579i 0.576081 1.20461i
\(736\) 0.739121 + 0.739121i 0.0272444 + 0.0272444i
\(737\) 7.19670 + 26.8584i 0.265094 + 0.989344i
\(738\) 3.19400 + 0.855830i 0.117573 + 0.0315035i
\(739\) −27.2869 7.31150i −1.00376 0.268958i −0.280743 0.959783i \(-0.590581\pi\)
−0.723022 + 0.690825i \(0.757247\pi\)
\(740\) 13.5009 15.7748i 0.496302 0.579893i
\(741\) −39.5467 16.0720i −1.45278 0.590421i
\(742\) −0.760935 + 0.760935i −0.0279348 + 0.0279348i
\(743\) −15.8384 27.4329i −0.581055 1.00642i −0.995355 0.0962765i \(-0.969307\pi\)
0.414299 0.910141i \(-0.364027\pi\)
\(744\) 7.93397 4.58068i 0.290873 0.167936i
\(745\) −2.44314 + 5.10868i −0.0895096 + 0.187168i
\(746\) −0.226489 + 0.226489i −0.00829237 + 0.00829237i
\(747\) −11.6111 6.70370i −0.424830 0.245275i
\(748\) −14.3367 8.27733i −0.524203 0.302649i
\(749\) 1.10651 1.10651i 0.0404309 0.0404309i
\(750\) 2.08344 6.95510i 0.0760764 0.253964i
\(751\) 2.11351 1.22024i 0.0771231 0.0445271i −0.460943 0.887430i \(-0.652489\pi\)
0.538066 + 0.842903i \(0.319155\pi\)
\(752\) 17.4665 + 30.2528i 0.636936 + 1.10321i
\(753\) −21.7387 + 21.7387i −0.792201 + 0.792201i
\(754\) −4.96721 6.38462i −0.180895 0.232514i
\(755\) 8.14986 0.633018i 0.296604 0.0230379i
\(756\) −0.705319 0.188990i −0.0256522 0.00687349i
\(757\) −41.2367 11.0493i −1.49877 0.401595i −0.586084 0.810250i \(-0.699331\pi\)
−0.912689 + 0.408655i \(0.865998\pi\)
\(758\) 1.87595 + 7.00115i 0.0681377 + 0.254293i
\(759\) 2.43105 + 2.43105i 0.0882416 + 0.0882416i
\(760\) 10.9000 + 5.21274i 0.395385 + 0.189086i
\(761\) −38.5996 + 10.3427i −1.39923 + 0.374923i −0.878069 0.478533i \(-0.841169\pi\)
−0.521164 + 0.853457i \(0.674502\pi\)
\(762\) −7.40565 −0.268279
\(763\) 2.65242 0.710715i 0.0960242 0.0257296i
\(764\) 4.99683 + 8.65476i 0.180779 + 0.313118i
\(765\) −9.39965 + 6.44605i −0.339845 + 0.233057i
\(766\) 9.01376i 0.325680i
\(767\) 8.68401 + 1.08429i 0.313561 + 0.0391516i
\(768\) 17.2018 + 17.2018i 0.620716 + 0.620716i
\(769\) −9.91969 + 37.0208i −0.357713 + 1.33500i 0.519322 + 0.854579i \(0.326184\pi\)
−0.877035 + 0.480426i \(0.840482\pi\)
\(770\) 0.853322 0.585187i 0.0307516 0.0210887i
\(771\) 60.2925 + 34.8099i 2.17138 + 1.25365i
\(772\) 12.8442i 0.462274i
\(773\) 7.28940 12.6256i 0.262181 0.454111i −0.704640 0.709565i \(-0.748891\pi\)
0.966821 + 0.255454i \(0.0822248\pi\)
\(774\) −1.25320 4.67701i −0.0450454 0.168112i
\(775\) 14.5194 + 10.5945i 0.521553 + 0.380564i
\(776\) 7.95274 13.7745i 0.285487 0.494477i
\(777\) 1.13940 4.25231i 0.0408759 0.152551i
\(778\) −2.22956 + 1.28724i −0.0799337 + 0.0461497i
\(779\) −23.3291 −0.835853
\(780\) −11.1325 + 34.9338i −0.398609 + 1.25083i
\(781\) 18.9872 0.679414
\(782\) −0.156606 + 0.0904167i −0.00560023 + 0.00323329i
\(783\) 2.07649 7.74955i 0.0742075 0.276946i
\(784\) 12.1692 21.0777i 0.434616 0.752777i
\(785\) 0.543072 + 6.99184i 0.0193831 + 0.249549i
\(786\) 3.50652 + 13.0865i 0.125073 + 0.466780i
\(787\) −0.473902 + 0.820823i −0.0168928 + 0.0292592i −0.874348 0.485299i \(-0.838711\pi\)
0.857455 + 0.514558i \(0.172044\pi\)
\(788\) 37.7143i 1.34352i
\(789\) 10.3399 + 5.96972i 0.368109 + 0.212528i
\(790\) −2.02335 0.377148i −0.0719876 0.0134183i
\(791\) −0.397158 + 1.48222i −0.0141213 + 0.0527015i
\(792\) −8.59426 8.59426i −0.305384 0.305384i
\(793\) −23.5718 30.2980i −0.837058 1.07591i
\(794\) 3.20207i 0.113637i
\(795\) −9.82008 + 52.6835i −0.348283 + 1.86849i
\(796\) −14.1507 24.5098i −0.501560 0.868727i
\(797\) −4.51774 + 1.21053i −0.160027 + 0.0428790i −0.337943 0.941167i \(-0.609731\pi\)
0.177916 + 0.984046i \(0.443064\pi\)
\(798\) 1.25622 0.0444698
\(799\) −18.7347 + 5.01994i −0.662785 + 0.177593i
\(800\) 5.64419 14.6142i 0.199552 0.516688i
\(801\) −9.13379 9.13379i −0.322726 0.322726i
\(802\) −1.46638 5.47260i −0.0517796 0.193244i
\(803\) −25.6369 6.86939i −0.904707 0.242415i
\(804\) 28.0077 + 7.50465i 0.987756 + 0.264668i
\(805\) 0.0223041 + 0.287157i 0.000786117 + 0.0101210i
\(806\) 2.84020 + 2.14937i 0.100042 + 0.0757082i
\(807\) 14.4537 14.4537i 0.508794 0.508794i
\(808\) −2.84692 4.93101i −0.100154 0.173472i
\(809\) 21.1627 12.2183i 0.744040 0.429572i −0.0794964 0.996835i \(-0.525331\pi\)
0.823536 + 0.567263i \(0.191998\pi\)
\(810\) 5.83779 2.06055i 0.205119 0.0724003i
\(811\) −9.34795 + 9.34795i −0.328251 + 0.328251i −0.851921 0.523670i \(-0.824562\pi\)
0.523670 + 0.851921i \(0.324562\pi\)
\(812\) −5.25359 3.03316i −0.184365 0.106443i
\(813\) −47.1295 27.2103i −1.65291 0.954305i
\(814\) −4.08893 + 4.08893i −0.143317 + 0.143317i
\(815\) −31.2340 + 11.0246i −1.09408 + 0.386174i
\(816\) −14.3405 + 8.27951i −0.502019 + 0.289841i
\(817\) 17.0806 + 29.5844i 0.597573 + 1.03503i
\(818\) −0.885667 + 0.885667i −0.0309666 + 0.0309666i
\(819\) 0.493378 + 3.56343i 0.0172400 + 0.124516i
\(820\) 1.55168 + 19.9773i 0.0541871 + 0.697638i
\(821\) −1.89876 0.508771i −0.0662672 0.0177562i 0.225533 0.974236i \(-0.427588\pi\)
−0.291800 + 0.956479i \(0.594254\pi\)
\(822\) 0.153021 + 0.0410019i 0.00533723 + 0.00143011i
\(823\) 4.25627 + 15.8846i 0.148364 + 0.553703i 0.999583 + 0.0288913i \(0.00919767\pi\)
−0.851218 + 0.524812i \(0.824136\pi\)
\(824\) 1.30498 + 1.30498i 0.0454610 + 0.0454610i
\(825\) 18.5644 48.0676i 0.646329 1.67350i
\(826\) −0.248763 + 0.0666558i −0.00865557 + 0.00231925i
\(827\) 27.3262 0.950225 0.475113 0.879925i \(-0.342407\pi\)
0.475113 + 0.879925i \(0.342407\pi\)
\(828\) 1.60254 0.429400i 0.0556922 0.0149227i
\(829\) 7.27764 + 12.6052i 0.252763 + 0.437798i 0.964286 0.264865i \(-0.0853274\pi\)
−0.711523 + 0.702663i \(0.751994\pi\)
\(830\) −0.584208 + 3.13420i −0.0202782 + 0.108790i
\(831\) 51.1397i 1.77402i
\(832\) −8.47639 + 20.8569i −0.293866 + 0.723082i
\(833\) 9.55534 + 9.55534i 0.331073 + 0.331073i
\(834\) −1.96380 + 7.32901i −0.0680009 + 0.253783i
\(835\) −7.62366 1.42103i −0.263827 0.0491768i
\(836\) 36.4161 + 21.0248i 1.25948 + 0.727159i
\(837\) 3.53259i 0.122104i
\(838\) −0.0895937 + 0.155181i −0.00309496 + 0.00536063i
\(839\) −6.33030 23.6250i −0.218546 0.815625i −0.984888 0.173192i \(-0.944592\pi\)
0.766342 0.642433i \(-0.222075\pi\)
\(840\) −0.170388 2.19368i −0.00587895 0.0756892i
\(841\) 18.8262 32.6080i 0.649180 1.12441i
\(842\) 0.561370 2.09506i 0.0193461 0.0722006i
\(843\) 23.6661 13.6636i 0.815104 0.470601i
\(844\) −41.2114 −1.41856
\(845\) −28.9489 + 2.63813i −0.995873 + 0.0907544i
\(846\) −6.98292 −0.240078
\(847\) 2.68139 1.54810i 0.0921335 0.0531933i
\(848\) −9.32543 + 34.8030i −0.320237 + 1.19514i
\(849\) −5.31615 + 9.20784i −0.182450 + 0.316012i
\(850\) 2.18939 + 1.59754i 0.0750954 + 0.0547951i
\(851\) −0.416612 1.55482i −0.0142813 0.0532985i
\(852\) 9.89982 17.1470i 0.339162 0.587446i
\(853\) 2.94669i 0.100893i 0.998727 + 0.0504464i \(0.0160644\pi\)
−0.998727 + 0.0504464i \(0.983936\pi\)
\(854\) 0.978324 + 0.564835i 0.0334775 + 0.0193283i
\(855\) 23.8756 16.3733i 0.816528 0.559955i
\(856\) −1.13129 + 4.22204i −0.0386667 + 0.144306i
\(857\) −13.0632 13.0632i −0.446229 0.446229i 0.447870 0.894099i \(-0.352183\pi\)
−0.894099 + 0.447870i \(0.852183\pi\)
\(858\) 3.84452 9.45978i 0.131250 0.322951i
\(859\) 3.08382i 0.105219i 0.998615 + 0.0526093i \(0.0167538\pi\)
−0.998615 + 0.0526093i \(0.983246\pi\)
\(860\) 24.1978 16.5942i 0.825137 0.565859i
\(861\) 2.12421 + 3.67923i 0.0723928 + 0.125388i
\(862\) 9.48982 2.54279i 0.323225 0.0866078i
\(863\) 50.9818 1.73544 0.867720 0.497053i \(-0.165585\pi\)
0.867720 + 0.497053i \(0.165585\pi\)
\(864\) 2.97415 0.796920i 0.101183 0.0271118i
\(865\) −7.88713 3.77188i −0.268170 0.128248i
\(866\) −5.12611 5.12611i −0.174192 0.174192i
\(867\) 8.01780 + 29.9228i 0.272299 + 1.01623i
\(868\) 2.58006 + 0.691326i 0.0875730 + 0.0234651i
\(869\) −14.1095 3.78062i −0.478631 0.128249i
\(870\) 11.8194 0.918039i 0.400715 0.0311244i
\(871\) 3.15284 + 22.7715i 0.106830 + 0.771581i
\(872\) −5.42366 + 5.42366i −0.183668 + 0.183668i
\(873\) −19.0555 33.0051i −0.644931 1.11705i
\(874\) 0.397788 0.229663i 0.0134554 0.00776846i
\(875\) 3.79996 2.04813i 0.128462 0.0692394i
\(876\) −19.5706 + 19.5706i −0.661228 + 0.661228i
\(877\) −23.1824 13.3844i −0.782814 0.451958i 0.0546128 0.998508i \(-0.482608\pi\)
−0.837427 + 0.546550i \(0.815941\pi\)
\(878\) 0.411570 + 0.237620i 0.0138898 + 0.00801929i
\(879\) 21.8986 21.8986i 0.738621 0.738621i
\(880\) 14.9465 31.2536i 0.503846 1.05356i
\(881\) 27.2630 15.7403i 0.918512 0.530303i 0.0353521 0.999375i \(-0.488745\pi\)
0.883160 + 0.469072i \(0.155411\pi\)
\(882\) 2.43257 + 4.21334i 0.0819089 + 0.141870i
\(883\) 27.3576 27.3576i 0.920657 0.920657i −0.0764191 0.997076i \(-0.524349\pi\)
0.997076 + 0.0764191i \(0.0243487\pi\)
\(884\) −10.9138 8.25917i −0.367070 0.277786i
\(885\) −8.33941 + 9.74398i −0.280326 + 0.327540i
\(886\) −1.07640 0.288420i −0.0361623 0.00968965i
\(887\) 1.32670 + 0.355489i 0.0445463 + 0.0119362i 0.281023 0.959701i \(-0.409326\pi\)
−0.236477 + 0.971637i \(0.575993\pi\)
\(888\) 3.18263 + 11.8777i 0.106802 + 0.398591i
\(889\) −3.11346 3.11346i −0.104422 0.104422i
\(890\) −1.32520 + 2.77103i −0.0444206 + 0.0928851i
\(891\) 42.4393 11.3716i 1.42177 0.380962i
\(892\) −52.6068 −1.76141
\(893\) 47.5870 12.7509i 1.59244 0.426692i
\(894\) −0.822293 1.42425i −0.0275016 0.0476341i
\(895\) −14.2831 2.66233i −0.477430 0.0889918i
\(896\) 3.08204i 0.102964i
\(897\) 1.74538 + 2.24342i 0.0582764 + 0.0749057i
\(898\) 3.92294 + 3.92294i 0.130910 + 0.130910i
\(899\) −7.59580 + 28.3479i −0.253334 + 0.945456i
\(900\) −15.6089 19.3562i −0.520296 0.645207i
\(901\) −17.3249 10.0025i −0.577176 0.333233i
\(902\) 5.58046i 0.185809i
\(903\) 3.11050 5.38754i 0.103511 0.179286i
\(904\) −1.10936 4.14019i −0.0368968 0.137701i
\(905\) −20.3597 17.4249i −0.676779 0.579223i
\(906\) −1.18700 + 2.05594i −0.0394354 + 0.0683040i
\(907\) −6.02625 + 22.4903i −0.200098 + 0.746777i 0.790790 + 0.612088i \(0.209670\pi\)
−0.990888 + 0.134689i \(0.956996\pi\)
\(908\) −11.5455 + 6.66580i −0.383151 + 0.221212i
\(909\) −13.6430 −0.452508
\(910\) 0.759995 0.392669i 0.0251936 0.0130169i
\(911\) 2.89704 0.0959832 0.0479916 0.998848i \(-0.484718\pi\)
0.0479916 + 0.998848i \(0.484718\pi\)
\(912\) 36.4256 21.0304i 1.20617 0.696385i
\(913\) −5.85624 + 21.8558i −0.193813 + 0.723322i
\(914\) −2.03105 + 3.51789i −0.0671813 + 0.116361i
\(915\) 56.0886 4.35653i 1.85423 0.144022i
\(916\) 3.21792 + 12.0094i 0.106323 + 0.396803i
\(917\) −4.02759 + 6.97599i −0.133003 + 0.230368i
\(918\) 0.532680i 0.0175811i
\(919\) −14.3846 8.30494i −0.474503 0.273955i 0.243620 0.969871i \(-0.421665\pi\)
−0.718123 + 0.695916i \(0.754998\pi\)
\(920\) −0.455003 0.663488i −0.0150010 0.0218745i
\(921\) 4.74271 17.7000i 0.156278 0.583236i
\(922\) 1.18028 + 1.18028i 0.0388704 + 0.0388704i
\(923\) 15.5768 + 1.94494i 0.512716 + 0.0640183i
\(924\) 7.65756i 0.251915i
\(925\) −18.7798 + 15.1440i −0.617475 + 0.497932i
\(926\) 4.94858 + 8.57120i 0.162621 + 0.281667i
\(927\) 4.27135 1.14451i 0.140290 0.0375905i
\(928\) 25.5801 0.839708
\(929\) 41.3672 11.0843i 1.35721 0.363664i 0.494420 0.869223i \(-0.335380\pi\)
0.862792 + 0.505559i \(0.168714\pi\)
\(930\) −4.92228 + 1.73740i −0.161408 + 0.0569717i
\(931\) −24.2710 24.2710i −0.795451 0.795451i
\(932\) 3.86773 + 14.4346i 0.126692 + 0.472820i
\(933\) −26.4846 7.09653i −0.867067 0.232330i
\(934\) −2.88661 0.773465i −0.0944528 0.0253086i
\(935\) 14.6136 + 12.5071i 0.477916 + 0.409025i
\(936\) −6.17025 7.93095i −0.201681 0.259231i
\(937\) 27.9881 27.9881i 0.914331 0.914331i −0.0822783 0.996609i \(-0.526220\pi\)
0.996609 + 0.0822783i \(0.0262196\pi\)
\(938\) −0.338257 0.585878i −0.0110445 0.0191296i
\(939\) −29.3945 + 16.9709i −0.959254 + 0.553826i
\(940\) −14.0840 39.9018i −0.459371 1.30145i
\(941\) −4.15042 + 4.15042i −0.135300 + 0.135300i −0.771513 0.636213i \(-0.780500\pi\)
0.636213 + 0.771513i \(0.280500\pi\)
\(942\) −1.76381 1.01834i −0.0574680 0.0331792i
\(943\) 1.34528 + 0.776696i 0.0438083 + 0.0252927i
\(944\) −6.09729 + 6.09729i −0.198450 + 0.198450i
\(945\) 0.765402 + 0.366040i 0.0248985 + 0.0119073i
\(946\) −7.07675 + 4.08576i −0.230085 + 0.132840i
\(947\) 12.4299 + 21.5292i 0.403918 + 0.699606i 0.994195 0.107595i \(-0.0343148\pi\)
−0.590277 + 0.807201i \(0.700982\pi\)
\(948\) −10.7708 + 10.7708i −0.349820 + 0.349820i
\(949\) −20.3285 8.26164i −0.659890 0.268184i
\(950\) −5.56115 4.05783i −0.180428 0.131653i
\(951\) −49.6881 13.3139i −1.61125 0.431732i
\(952\) 0.793363 + 0.212581i 0.0257130 + 0.00688979i
\(953\) 8.46463 + 31.5904i 0.274196 + 1.02331i 0.956378 + 0.292131i \(0.0943645\pi\)
−0.682182 + 0.731182i \(0.738969\pi\)
\(954\) −5.09284 5.09284i −0.164887 0.164887i
\(955\) −3.86486 10.9496i −0.125064 0.354322i
\(956\) −21.9236 + 5.87441i −0.709059 + 0.189992i
\(957\) 84.1358 2.71973
\(958\) 2.43782 0.653211i 0.0787622 0.0211043i
\(959\) 0.0470949 + 0.0815707i 0.00152077 + 0.00263405i
\(960\) −18.6602 27.2103i −0.602254 0.878209i
\(961\) 18.0777i 0.583153i
\(962\) −3.77334 + 2.93565i −0.121657 + 0.0946491i
\(963\) 7.40571 + 7.40571i 0.238646 + 0.238646i
\(964\) 0.726837 2.71259i 0.0234098 0.0873667i
\(965\) 2.73466 14.6711i 0.0880318 0.472280i
\(966\) −0.0724402 0.0418234i −0.00233072 0.00134564i
\(967\) 30.0090i 0.965023i −0.875890 0.482512i \(-0.839725\pi\)
0.875890 0.482512i \(-0.160275\pi\)
\(968\) −4.32422 + 7.48976i −0.138986 + 0.240730i
\(969\) 6.04422 + 22.5573i 0.194168 + 0.724646i
\(970\) −5.89269 + 6.88518i −0.189203 + 0.221070i
\(971\) 3.13659 5.43273i 0.100658 0.174345i −0.811298 0.584633i \(-0.801239\pi\)
0.911956 + 0.410288i \(0.134572\pi\)
\(972\) 10.3897 38.7750i 0.333251 1.24371i
\(973\) −3.90686 + 2.25563i −0.125248 + 0.0723120i
\(974\) −7.07119 −0.226575
\(975\) 20.1537 37.5323i 0.645435 1.20200i
\(976\) 37.8235 1.21070
\(977\) 13.4772 7.78106i 0.431174 0.248938i −0.268673 0.963231i \(-0.586585\pi\)
0.699847 + 0.714293i \(0.253252\pi\)
\(978\) 2.48968 9.29160i 0.0796111 0.297113i
\(979\) −10.8997 + 18.8788i −0.348356 + 0.603370i
\(980\) −19.1695 + 22.3982i −0.612349 + 0.715484i
\(981\) 4.75672 + 17.7523i 0.151870 + 0.566788i
\(982\) −1.81335 + 3.14082i −0.0578663 + 0.100227i
\(983\) 53.4558i 1.70498i 0.522746 + 0.852488i \(0.324907\pi\)
−0.522746 + 0.852488i \(0.675093\pi\)
\(984\) −10.2770 5.93342i −0.327619 0.189151i
\(985\) −8.02974 + 43.0786i −0.255849 + 1.37260i
\(986\) −1.14537 + 4.27459i −0.0364761 + 0.136131i
\(987\) −6.34391 6.34391i −0.201929 0.201929i
\(988\) 27.7215 + 20.9787i 0.881939 + 0.667421i
\(989\) 2.27465i 0.0723297i
\(990\) 3.91658 + 5.71117i 0.124477 + 0.181513i
\(991\) 11.8198 + 20.4726i 0.375470 + 0.650333i 0.990397 0.138251i \(-0.0441480\pi\)
−0.614927 + 0.788584i \(0.710815\pi\)
\(992\) −10.8795 + 2.91514i −0.345423 + 0.0925558i
\(993\) −46.3626 −1.47127
\(994\) −0.446214 + 0.119563i −0.0141531 + 0.00379230i
\(995\) 10.9451 + 31.0088i 0.346983 + 0.983044i
\(996\) 16.6842 + 16.6842i 0.528658 + 0.528658i
\(997\) 13.3882 + 49.9653i 0.424007 + 1.58242i 0.766082 + 0.642743i \(0.222204\pi\)
−0.342075 + 0.939673i \(0.611130\pi\)
\(998\) −6.29473 1.68667i −0.199256 0.0533905i
\(999\) −4.58002 1.22721i −0.144906 0.0388273i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 65.2.t.a.28.4 yes 20
3.2 odd 2 585.2.dp.a.28.2 20
5.2 odd 4 65.2.o.a.2.4 20
5.3 odd 4 325.2.s.b.132.2 20
5.4 even 2 325.2.x.b.93.2 20
13.2 odd 12 845.2.k.d.268.6 20
13.3 even 3 845.2.f.e.408.6 20
13.4 even 6 845.2.t.e.188.4 20
13.5 odd 4 845.2.o.f.258.2 20
13.6 odd 12 845.2.o.g.488.2 20
13.7 odd 12 65.2.o.a.33.4 yes 20
13.8 odd 4 845.2.o.e.258.4 20
13.9 even 3 845.2.t.f.188.2 20
13.10 even 6 845.2.f.d.408.5 20
13.11 odd 12 845.2.k.e.268.5 20
13.12 even 2 845.2.t.g.418.2 20
15.2 even 4 585.2.cf.a.262.2 20
39.20 even 12 585.2.cf.a.163.2 20
65.2 even 12 845.2.f.d.437.6 20
65.7 even 12 inner 65.2.t.a.7.4 yes 20
65.12 odd 4 845.2.o.g.587.2 20
65.17 odd 12 845.2.o.f.357.2 20
65.22 odd 12 845.2.o.e.357.4 20
65.32 even 12 845.2.t.g.657.2 20
65.33 even 12 325.2.x.b.7.2 20
65.37 even 12 845.2.f.e.437.5 20
65.42 odd 12 845.2.k.e.577.5 20
65.47 even 4 845.2.t.f.427.2 20
65.57 even 4 845.2.t.e.427.4 20
65.59 odd 12 325.2.s.b.293.2 20
65.62 odd 12 845.2.k.d.577.6 20
195.137 odd 12 585.2.dp.a.397.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.4 20 5.2 odd 4
65.2.o.a.33.4 yes 20 13.7 odd 12
65.2.t.a.7.4 yes 20 65.7 even 12 inner
65.2.t.a.28.4 yes 20 1.1 even 1 trivial
325.2.s.b.132.2 20 5.3 odd 4
325.2.s.b.293.2 20 65.59 odd 12
325.2.x.b.7.2 20 65.33 even 12
325.2.x.b.93.2 20 5.4 even 2
585.2.cf.a.163.2 20 39.20 even 12
585.2.cf.a.262.2 20 15.2 even 4
585.2.dp.a.28.2 20 3.2 odd 2
585.2.dp.a.397.2 20 195.137 odd 12
845.2.f.d.408.5 20 13.10 even 6
845.2.f.d.437.6 20 65.2 even 12
845.2.f.e.408.6 20 13.3 even 3
845.2.f.e.437.5 20 65.37 even 12
845.2.k.d.268.6 20 13.2 odd 12
845.2.k.d.577.6 20 65.62 odd 12
845.2.k.e.268.5 20 13.11 odd 12
845.2.k.e.577.5 20 65.42 odd 12
845.2.o.e.258.4 20 13.8 odd 4
845.2.o.e.357.4 20 65.22 odd 12
845.2.o.f.258.2 20 13.5 odd 4
845.2.o.f.357.2 20 65.17 odd 12
845.2.o.g.488.2 20 13.6 odd 12
845.2.o.g.587.2 20 65.12 odd 4
845.2.t.e.188.4 20 13.4 even 6
845.2.t.e.427.4 20 65.57 even 4
845.2.t.f.188.2 20 13.9 even 3
845.2.t.f.427.2 20 65.47 even 4
845.2.t.g.418.2 20 13.12 even 2
845.2.t.g.657.2 20 65.32 even 12