Properties

Label 845.2.o.f.258.2
Level $845$
Weight $2$
Character 845.258
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(258,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.258");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 258.2
Root \(0.274809i\) of defining polynomial
Character \(\chi\) \(=\) 845.258
Dual form 845.2.o.f.357.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.137404 + 0.237991i) q^{2} +(0.611610 - 2.28256i) q^{3} +(0.962240 - 1.66665i) q^{4} +(-1.69883 - 1.45395i) q^{5} +(0.627267 - 0.168076i) q^{6} +(-0.334376 - 0.193052i) q^{7} +1.07848 q^{8} +(-2.23793 - 1.29207i) q^{9} +(0.112600 - 0.604086i) q^{10} +(-4.21249 - 1.12873i) q^{11} +(-3.21571 - 3.21571i) q^{12} -0.106105i q^{14} +(-4.35775 + 2.98844i) q^{15} +(-1.77629 - 3.07663i) q^{16} +(-1.90527 + 0.510514i) q^{17} -0.710144i q^{18} +(1.29673 + 4.83947i) q^{19} +(-4.05791 + 1.43231i) q^{20} +(-0.645159 + 0.645159i) q^{21} +(-0.310185 - 1.15763i) q^{22} +(-0.322241 - 0.0863441i) q^{23} +(0.659609 - 2.46170i) q^{24} +(0.772064 + 4.94003i) q^{25} +(0.694880 - 0.694880i) q^{27} +(-0.643499 + 0.371524i) q^{28} +(7.07031 - 4.08205i) q^{29} +(-1.30999 - 0.626482i) q^{30} +(2.54187 + 2.54187i) q^{31} +(1.56662 - 2.71347i) q^{32} +(-5.15280 + 8.92491i) q^{33} +(-0.383290 - 0.383290i) q^{34} +(0.287361 + 0.814128i) q^{35} +(-4.30685 + 2.48656i) q^{36} +(4.17859 - 2.41251i) q^{37} +(-0.973575 + 0.973575i) q^{38} +(-1.83216 - 1.56806i) q^{40} +(1.20515 - 4.49768i) q^{41} +(-0.242190 - 0.0648946i) q^{42} +(1.76471 + 6.58600i) q^{43} +(-5.93462 + 5.93462i) q^{44} +(1.92327 + 5.44885i) q^{45} +(-0.0237281 - 0.0885545i) q^{46} -9.83310i q^{47} +(-8.10898 + 2.17280i) q^{48} +(-3.42546 - 5.93307i) q^{49} +(-1.06960 + 0.862526i) q^{50} +4.66112i q^{51} +(-7.17155 - 7.17155i) q^{53} +(0.260855 + 0.0698958i) q^{54} +(5.51519 + 8.04227i) q^{55} +(-0.360618 - 0.208203i) q^{56} +11.8395 q^{57} +(1.94298 + 1.12178i) q^{58} +(2.34451 - 0.628209i) q^{59} +(0.787474 + 10.1384i) q^{60} +(-5.32338 + 9.22037i) q^{61} +(-0.255679 + 0.954209i) q^{62} +(0.498873 + 0.864073i) q^{63} -6.24413 q^{64} -2.83207 q^{66} +(-3.18796 - 5.52170i) q^{67} +(-0.982475 + 3.66665i) q^{68} +(-0.394171 + 0.682724i) q^{69} +(-0.154271 + 0.180254i) q^{70} +(-4.20542 + 1.12684i) q^{71} +(-2.41357 - 1.39347i) q^{72} -6.08593 q^{73} +(1.14831 + 0.662979i) q^{74} +(11.7481 + 1.25909i) q^{75} +(9.31346 + 2.49554i) q^{76} +(1.19065 + 1.19065i) q^{77} +3.34944i q^{79} +(-1.45564 + 7.80932i) q^{80} +(-5.03732 - 8.72489i) q^{81} +(1.23600 - 0.331185i) q^{82} -5.18834i q^{83} +(0.454456 + 1.69605i) q^{84} +(3.97899 + 1.90288i) q^{85} +(-1.32493 + 1.32493i) q^{86} +(-4.99324 - 18.6350i) q^{87} +(-4.54309 - 1.21732i) q^{88} +(-1.29374 + 4.82829i) q^{89} +(-1.03251 + 1.20642i) q^{90} +(-0.453978 + 0.453978i) q^{92} +(7.35661 - 4.24734i) q^{93} +(2.34019 - 1.35111i) q^{94} +(4.83341 - 10.1068i) q^{95} +(-5.23549 - 5.23549i) q^{96} +(7.37402 - 12.7722i) q^{97} +(0.941346 - 1.63046i) q^{98} +(7.96886 + 7.96886i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} - 2 q^{3} - 6 q^{4} + 6 q^{5} - 4 q^{6} - 6 q^{7} - 12 q^{8} + 12 q^{9} + 2 q^{10} - 8 q^{11} + 24 q^{12} - 12 q^{15} - 2 q^{16} - 4 q^{17} + 16 q^{19} - 8 q^{20} - 4 q^{21} + 16 q^{22} + 10 q^{23}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.137404 + 0.237991i 0.0971595 + 0.168285i 0.910508 0.413492i \(-0.135691\pi\)
−0.813348 + 0.581777i \(0.802358\pi\)
\(3\) 0.611610 2.28256i 0.353113 1.31784i −0.529729 0.848167i \(-0.677707\pi\)
0.882842 0.469669i \(-0.155627\pi\)
\(4\) 0.962240 1.66665i 0.481120 0.833324i
\(5\) −1.69883 1.45395i −0.759741 0.650226i
\(6\) 0.627267 0.168076i 0.256081 0.0686166i
\(7\) −0.334376 0.193052i −0.126382 0.0729667i 0.435476 0.900200i \(-0.356580\pi\)
−0.561858 + 0.827234i \(0.689913\pi\)
\(8\) 1.07848 0.381301
\(9\) −2.23793 1.29207i −0.745977 0.430690i
\(10\) 0.112600 0.604086i 0.0356073 0.191029i
\(11\) −4.21249 1.12873i −1.27011 0.340326i −0.440039 0.897979i \(-0.645035\pi\)
−0.830074 + 0.557653i \(0.811702\pi\)
\(12\) −3.21571 3.21571i −0.928295 0.928295i
\(13\) 0 0
\(14\) 0.106105i 0.0283576i
\(15\) −4.35775 + 2.98844i −1.12517 + 0.771611i
\(16\) −1.77629 3.07663i −0.444073 0.769157i
\(17\) −1.90527 + 0.510514i −0.462095 + 0.123818i −0.482353 0.875977i \(-0.660218\pi\)
0.0202583 + 0.999795i \(0.493551\pi\)
\(18\) 0.710144i 0.167383i
\(19\) 1.29673 + 4.83947i 0.297491 + 1.11025i 0.939219 + 0.343318i \(0.111551\pi\)
−0.641728 + 0.766932i \(0.721782\pi\)
\(20\) −4.05791 + 1.43231i −0.907376 + 0.320274i
\(21\) −0.645159 + 0.645159i −0.140785 + 0.140785i
\(22\) −0.310185 1.15763i −0.0661318 0.246807i
\(23\) −0.322241 0.0863441i −0.0671918 0.0180040i 0.225067 0.974343i \(-0.427740\pi\)
−0.292258 + 0.956339i \(0.594407\pi\)
\(24\) 0.659609 2.46170i 0.134642 0.502492i
\(25\) 0.772064 + 4.94003i 0.154413 + 0.988006i
\(26\) 0 0
\(27\) 0.694880 0.694880i 0.133730 0.133730i
\(28\) −0.643499 + 0.371524i −0.121610 + 0.0702115i
\(29\) 7.07031 4.08205i 1.31292 0.758017i 0.330345 0.943860i \(-0.392835\pi\)
0.982579 + 0.185843i \(0.0595016\pi\)
\(30\) −1.30999 0.626482i −0.239171 0.114379i
\(31\) 2.54187 + 2.54187i 0.456534 + 0.456534i 0.897516 0.440982i \(-0.145370\pi\)
−0.440982 + 0.897516i \(0.645370\pi\)
\(32\) 1.56662 2.71347i 0.276942 0.479678i
\(33\) −5.15280 + 8.92491i −0.896987 + 1.55363i
\(34\) −0.383290 0.383290i −0.0657336 0.0657336i
\(35\) 0.287361 + 0.814128i 0.0485728 + 0.137613i
\(36\) −4.30685 + 2.48656i −0.717809 + 0.414427i
\(37\) 4.17859 2.41251i 0.686956 0.396614i −0.115514 0.993306i \(-0.536852\pi\)
0.802471 + 0.596691i \(0.203518\pi\)
\(38\) −0.973575 + 0.973575i −0.157935 + 0.157935i
\(39\) 0 0
\(40\) −1.83216 1.56806i −0.289690 0.247931i
\(41\) 1.20515 4.49768i 0.188213 0.702419i −0.805707 0.592314i \(-0.798214\pi\)
0.993920 0.110105i \(-0.0351188\pi\)
\(42\) −0.242190 0.0648946i −0.0373707 0.0100135i
\(43\) 1.76471 + 6.58600i 0.269116 + 1.00436i 0.959682 + 0.281087i \(0.0906948\pi\)
−0.690566 + 0.723269i \(0.742638\pi\)
\(44\) −5.93462 + 5.93462i −0.894678 + 0.894678i
\(45\) 1.92327 + 5.44885i 0.286704 + 0.812267i
\(46\) −0.0237281 0.0885545i −0.00349852 0.0130566i
\(47\) 9.83310i 1.43430i −0.696917 0.717152i \(-0.745445\pi\)
0.696917 0.717152i \(-0.254555\pi\)
\(48\) −8.10898 + 2.17280i −1.17043 + 0.313616i
\(49\) −3.42546 5.93307i −0.489352 0.847582i
\(50\) −1.06960 + 0.862526i −0.151264 + 0.121980i
\(51\) 4.66112i 0.652687i
\(52\) 0 0
\(53\) −7.17155 7.17155i −0.985088 0.985088i 0.0148021 0.999890i \(-0.495288\pi\)
−0.999890 + 0.0148021i \(0.995288\pi\)
\(54\) 0.260855 + 0.0698958i 0.0354978 + 0.00951161i
\(55\) 5.51519 + 8.04227i 0.743668 + 1.08442i
\(56\) −0.360618 0.208203i −0.0481896 0.0278223i
\(57\) 11.8395 1.56818
\(58\) 1.94298 + 1.12178i 0.255126 + 0.147297i
\(59\) 2.34451 0.628209i 0.305229 0.0817858i −0.102954 0.994686i \(-0.532829\pi\)
0.408183 + 0.912900i \(0.366163\pi\)
\(60\) 0.787474 + 10.1384i 0.101662 + 1.30887i
\(61\) −5.32338 + 9.22037i −0.681589 + 1.18055i 0.292906 + 0.956141i \(0.405378\pi\)
−0.974496 + 0.224406i \(0.927956\pi\)
\(62\) −0.255679 + 0.954209i −0.0324713 + 0.121185i
\(63\) 0.498873 + 0.864073i 0.0628521 + 0.108863i
\(64\) −6.24413 −0.780516
\(65\) 0 0
\(66\) −2.83207 −0.348603
\(67\) −3.18796 5.52170i −0.389471 0.674583i 0.602908 0.797811i \(-0.294009\pi\)
−0.992378 + 0.123228i \(0.960675\pi\)
\(68\) −0.982475 + 3.66665i −0.119143 + 0.444646i
\(69\) −0.394171 + 0.682724i −0.0474526 + 0.0821903i
\(70\) −0.154271 + 0.180254i −0.0184389 + 0.0215445i
\(71\) −4.20542 + 1.12684i −0.499091 + 0.133731i −0.499578 0.866269i \(-0.666512\pi\)
0.000486883 1.00000i \(0.499845\pi\)
\(72\) −2.41357 1.39347i −0.284442 0.164222i
\(73\) −6.08593 −0.712304 −0.356152 0.934428i \(-0.615912\pi\)
−0.356152 + 0.934428i \(0.615912\pi\)
\(74\) 1.14831 + 0.662979i 0.133489 + 0.0770697i
\(75\) 11.7481 + 1.25909i 1.35656 + 0.145387i
\(76\) 9.31346 + 2.49554i 1.06833 + 0.286258i
\(77\) 1.19065 + 1.19065i 0.135687 + 0.135687i
\(78\) 0 0
\(79\) 3.34944i 0.376842i 0.982088 + 0.188421i \(0.0603369\pi\)
−0.982088 + 0.188421i \(0.939663\pi\)
\(80\) −1.45564 + 7.80932i −0.162745 + 0.873108i
\(81\) −5.03732 8.72489i −0.559702 0.969433i
\(82\) 1.23600 0.331185i 0.136493 0.0365733i
\(83\) 5.18834i 0.569494i −0.958603 0.284747i \(-0.908090\pi\)
0.958603 0.284747i \(-0.0919096\pi\)
\(84\) 0.454456 + 1.69605i 0.0495852 + 0.185054i
\(85\) 3.97899 + 1.90288i 0.431582 + 0.206396i
\(86\) −1.32493 + 1.32493i −0.142871 + 0.142871i
\(87\) −4.99324 18.6350i −0.535332 1.99788i
\(88\) −4.54309 1.21732i −0.484295 0.129766i
\(89\) −1.29374 + 4.82829i −0.137136 + 0.511798i 0.862844 + 0.505470i \(0.168681\pi\)
−0.999980 + 0.00632782i \(0.997986\pi\)
\(90\) −1.03251 + 1.20642i −0.108836 + 0.127167i
\(91\) 0 0
\(92\) −0.453978 + 0.453978i −0.0473305 + 0.0473305i
\(93\) 7.35661 4.24734i 0.762845 0.440429i
\(94\) 2.34019 1.35111i 0.241372 0.139356i
\(95\) 4.83341 10.1068i 0.495898 1.03694i
\(96\) −5.23549 5.23549i −0.534345 0.534345i
\(97\) 7.37402 12.7722i 0.748718 1.29682i −0.199719 0.979853i \(-0.564003\pi\)
0.948437 0.316965i \(-0.102664\pi\)
\(98\) 0.941346 1.63046i 0.0950903 0.164701i
\(99\) 7.96886 + 7.96886i 0.800900 + 0.800900i
\(100\) 8.97621 + 3.46674i 0.897621 + 0.346674i
\(101\) −4.57218 + 2.63975i −0.454949 + 0.262665i −0.709918 0.704284i \(-0.751268\pi\)
0.254969 + 0.966949i \(0.417935\pi\)
\(102\) −1.10930 + 0.640458i −0.109838 + 0.0634147i
\(103\) 1.21001 1.21001i 0.119226 0.119226i −0.644976 0.764203i \(-0.723133\pi\)
0.764203 + 0.644976i \(0.223133\pi\)
\(104\) 0 0
\(105\) 2.03405 0.157989i 0.198503 0.0154181i
\(106\) 0.721364 2.69217i 0.0700651 0.261487i
\(107\) −3.91480 1.04897i −0.378458 0.101408i 0.0645749 0.997913i \(-0.479431\pi\)
−0.443033 + 0.896505i \(0.646098\pi\)
\(108\) −0.489479 1.82676i −0.0471002 0.175780i
\(109\) −5.02898 + 5.02898i −0.481689 + 0.481689i −0.905671 0.423982i \(-0.860632\pi\)
0.423982 + 0.905671i \(0.360632\pi\)
\(110\) −1.15618 + 2.41761i −0.110237 + 0.230510i
\(111\) −2.95103 11.0134i −0.280099 1.04535i
\(112\) 1.37167i 0.129610i
\(113\) 3.83891 1.02863i 0.361134 0.0967655i −0.0736896 0.997281i \(-0.523477\pi\)
0.434824 + 0.900516i \(0.356811\pi\)
\(114\) 1.62679 + 2.81769i 0.152363 + 0.263901i
\(115\) 0.421893 + 0.615206i 0.0393417 + 0.0573682i
\(116\) 15.7116i 1.45879i
\(117\) 0 0
\(118\) 0.471653 + 0.471653i 0.0434192 + 0.0434192i
\(119\) 0.735630 + 0.197111i 0.0674351 + 0.0180692i
\(120\) −4.69975 + 3.22297i −0.429026 + 0.294216i
\(121\) 6.94473 + 4.00954i 0.631339 + 0.364504i
\(122\) −2.92582 −0.264892
\(123\) −9.52914 5.50165i −0.859213 0.496067i
\(124\) 6.68231 1.79052i 0.600089 0.160793i
\(125\) 5.87095 9.51483i 0.525113 0.851032i
\(126\) −0.137095 + 0.237455i −0.0122134 + 0.0211542i
\(127\) 2.95156 11.0154i 0.261908 0.977455i −0.702207 0.711972i \(-0.747802\pi\)
0.964116 0.265483i \(-0.0855313\pi\)
\(128\) −3.99121 6.91298i −0.352777 0.611027i
\(129\) 16.1123 1.41860
\(130\) 0 0
\(131\) 20.8627 1.82279 0.911393 0.411536i \(-0.135008\pi\)
0.911393 + 0.411536i \(0.135008\pi\)
\(132\) 9.91645 + 17.1758i 0.863117 + 1.49496i
\(133\) 0.500673 1.86854i 0.0434138 0.162023i
\(134\) 0.876078 1.51741i 0.0756816 0.131084i
\(135\) −2.19080 + 0.170165i −0.188554 + 0.0146454i
\(136\) −2.05479 + 0.550580i −0.176197 + 0.0472119i
\(137\) 0.211266 + 0.121975i 0.0180497 + 0.0104210i 0.508998 0.860768i \(-0.330016\pi\)
−0.490948 + 0.871189i \(0.663349\pi\)
\(138\) −0.216643 −0.0184419
\(139\) 10.1187 + 5.84202i 0.858255 + 0.495514i 0.863428 0.504473i \(-0.168313\pi\)
−0.00517263 + 0.999987i \(0.501647\pi\)
\(140\) 1.63337 + 0.304457i 0.138045 + 0.0257313i
\(141\) −22.4446 6.01402i −1.89018 0.506472i
\(142\) −0.846020 0.846020i −0.0709965 0.0709965i
\(143\) 0 0
\(144\) 9.18038i 0.765032i
\(145\) −17.9464 3.34516i −1.49036 0.277800i
\(146\) −0.836233 1.44840i −0.0692071 0.119870i
\(147\) −15.6376 + 4.19009i −1.28977 + 0.345593i
\(148\) 9.28566i 0.763277i
\(149\) 0.655457 + 2.44620i 0.0536971 + 0.200400i 0.987563 0.157223i \(-0.0502540\pi\)
−0.933866 + 0.357623i \(0.883587\pi\)
\(150\) 1.31459 + 2.96895i 0.107336 + 0.242414i
\(151\) −2.58498 + 2.58498i −0.210362 + 0.210362i −0.804421 0.594059i \(-0.797525\pi\)
0.594059 + 0.804421i \(0.297525\pi\)
\(152\) 1.39850 + 5.21928i 0.113433 + 0.423339i
\(153\) 4.92348 + 1.31924i 0.398039 + 0.106654i
\(154\) −0.119764 + 0.446964i −0.00965083 + 0.0360174i
\(155\) −0.622463 8.01398i −0.0499974 0.643698i
\(156\) 0 0
\(157\) −2.21767 + 2.21767i −0.176990 + 0.176990i −0.790042 0.613053i \(-0.789941\pi\)
0.613053 + 0.790042i \(0.289941\pi\)
\(158\) −0.797137 + 0.460228i −0.0634169 + 0.0366137i
\(159\) −20.7557 + 11.9833i −1.64603 + 0.950337i
\(160\) −6.60667 + 2.33194i −0.522303 + 0.184356i
\(161\) 0.0910805 + 0.0910805i 0.00717815 + 0.00717815i
\(162\) 1.38430 2.39768i 0.108761 0.188379i
\(163\) 7.40642 12.8283i 0.580116 1.00479i −0.415349 0.909662i \(-0.636341\pi\)
0.995465 0.0951279i \(-0.0303260\pi\)
\(164\) −6.33641 6.33641i −0.494790 0.494790i
\(165\) 21.7301 7.67002i 1.69169 0.597110i
\(166\) 1.23478 0.712900i 0.0958374 0.0553318i
\(167\) 3.00348 1.73406i 0.232417 0.134186i −0.379270 0.925286i \(-0.623825\pi\)
0.611686 + 0.791100i \(0.290491\pi\)
\(168\) −0.695792 + 0.695792i −0.0536815 + 0.0536815i
\(169\) 0 0
\(170\) 0.0938613 + 1.20843i 0.00719883 + 0.0926823i
\(171\) 3.35094 12.5059i 0.256253 0.956348i
\(172\) 12.6746 + 3.39616i 0.966432 + 0.258955i
\(173\) 1.01194 + 3.77661i 0.0769362 + 0.287130i 0.993665 0.112379i \(-0.0358472\pi\)
−0.916729 + 0.399509i \(0.869181\pi\)
\(174\) 3.74888 3.74888i 0.284202 0.284202i
\(175\) 0.695523 1.80087i 0.0525766 0.136133i
\(176\) 4.00992 + 14.9652i 0.302259 + 1.12805i
\(177\) 5.73569i 0.431121i
\(178\) −1.32686 + 0.355530i −0.0994521 + 0.0266481i
\(179\) 3.24880 + 5.62708i 0.242827 + 0.420588i 0.961518 0.274741i \(-0.0885921\pi\)
−0.718692 + 0.695329i \(0.755259\pi\)
\(180\) 10.9320 + 2.03769i 0.814820 + 0.151881i
\(181\) 11.9845i 0.890802i 0.895331 + 0.445401i \(0.146939\pi\)
−0.895331 + 0.445401i \(0.853061\pi\)
\(182\) 0 0
\(183\) 17.7902 + 17.7902i 1.31509 + 1.31509i
\(184\) −0.347530 0.0931205i −0.0256203 0.00686493i
\(185\) −10.6064 1.97701i −0.779798 0.145352i
\(186\) 2.02166 + 1.16721i 0.148235 + 0.0855837i
\(187\) 8.60214 0.629051
\(188\) −16.3883 9.46180i −1.19524 0.690073i
\(189\) −0.366499 + 0.0982030i −0.0266588 + 0.00714322i
\(190\) 3.06947 0.238412i 0.222683 0.0172963i
\(191\) 2.59646 4.49719i 0.187873 0.325405i −0.756668 0.653799i \(-0.773174\pi\)
0.944541 + 0.328394i \(0.106507\pi\)
\(192\) −3.81897 + 14.2526i −0.275610 + 1.02859i
\(193\) 3.33706 + 5.77996i 0.240207 + 0.416051i 0.960773 0.277335i \(-0.0894513\pi\)
−0.720566 + 0.693386i \(0.756118\pi\)
\(194\) 4.05289 0.290980
\(195\) 0 0
\(196\) −13.1845 −0.941748
\(197\) 9.79857 + 16.9716i 0.698119 + 1.20918i 0.969118 + 0.246598i \(0.0793127\pi\)
−0.270999 + 0.962580i \(0.587354\pi\)
\(198\) −0.801563 + 2.99147i −0.0569646 + 0.212595i
\(199\) 7.35302 12.7358i 0.521242 0.902817i −0.478453 0.878113i \(-0.658802\pi\)
0.999695 0.0247042i \(-0.00786439\pi\)
\(200\) 0.832657 + 5.32773i 0.0588777 + 0.376727i
\(201\) −14.5534 + 3.89957i −1.02652 + 0.275054i
\(202\) −1.25647 0.725425i −0.0884052 0.0510408i
\(203\) −3.15219 −0.221240
\(204\) 7.76844 + 4.48511i 0.543900 + 0.314021i
\(205\) −8.58674 + 5.88858i −0.599724 + 0.411276i
\(206\) 0.454234 + 0.121712i 0.0316480 + 0.00848005i
\(207\) 0.609590 + 0.609590i 0.0423694 + 0.0423694i
\(208\) 0 0
\(209\) 21.8499i 1.51139i
\(210\) 0.317087 + 0.462377i 0.0218811 + 0.0319070i
\(211\) 10.7072 + 18.5453i 0.737111 + 1.27671i 0.953791 + 0.300471i \(0.0971440\pi\)
−0.216679 + 0.976243i \(0.569523\pi\)
\(212\) −18.8532 + 5.05170i −1.29484 + 0.346952i
\(213\) 10.2883i 0.704943i
\(214\) −0.288265 1.07582i −0.0197054 0.0735416i
\(215\) 6.57776 13.7543i 0.448599 0.938037i
\(216\) 0.749414 0.749414i 0.0509912 0.0509912i
\(217\) −0.359227 1.34065i −0.0243859 0.0910095i
\(218\) −1.88786 0.505850i −0.127862 0.0342605i
\(219\) −3.72221 + 13.8915i −0.251524 + 0.938700i
\(220\) 18.7106 1.45329i 1.26147 0.0979809i
\(221\) 0 0
\(222\) 2.21561 2.21561i 0.148702 0.148702i
\(223\) 23.6733 13.6678i 1.58528 0.915264i 0.591214 0.806515i \(-0.298649\pi\)
0.994069 0.108749i \(-0.0346846\pi\)
\(224\) −1.04768 + 0.604878i −0.0700010 + 0.0404151i
\(225\) 4.65504 12.0530i 0.310336 0.803534i
\(226\) 0.772287 + 0.772287i 0.0513718 + 0.0513718i
\(227\) 3.46369 5.99928i 0.229893 0.398186i −0.727883 0.685701i \(-0.759496\pi\)
0.957776 + 0.287515i \(0.0928290\pi\)
\(228\) 11.3924 19.7322i 0.754481 1.30680i
\(229\) 4.56825 + 4.56825i 0.301879 + 0.301879i 0.841749 0.539870i \(-0.181527\pi\)
−0.539870 + 0.841749i \(0.681527\pi\)
\(230\) −0.0884436 + 0.184939i −0.00583180 + 0.0121945i
\(231\) 3.44594 1.98951i 0.226726 0.130900i
\(232\) 7.62520 4.40241i 0.500619 0.289032i
\(233\) −5.49074 + 5.49074i −0.359711 + 0.359711i −0.863706 0.503996i \(-0.831863\pi\)
0.503996 + 0.863706i \(0.331863\pi\)
\(234\) 0 0
\(235\) −14.2968 + 16.7048i −0.932622 + 1.08970i
\(236\) 1.20898 4.51196i 0.0786976 0.293703i
\(237\) 7.64529 + 2.04855i 0.496615 + 0.133068i
\(238\) 0.0541679 + 0.202157i 0.00351119 + 0.0131039i
\(239\) 8.33949 8.33949i 0.539437 0.539437i −0.383927 0.923363i \(-0.625429\pi\)
0.923363 + 0.383927i \(0.125429\pi\)
\(240\) 16.9349 + 8.09883i 1.09315 + 0.522777i
\(241\) −0.377680 1.40952i −0.0243285 0.0907952i 0.952694 0.303931i \(-0.0982991\pi\)
−0.977023 + 0.213135i \(0.931632\pi\)
\(242\) 2.20371i 0.141660i
\(243\) −20.1483 + 5.39872i −1.29251 + 0.346328i
\(244\) 10.2447 + 17.7444i 0.655853 + 1.13597i
\(245\) −2.80710 + 15.0597i −0.179339 + 0.962132i
\(246\) 3.02380i 0.192791i
\(247\) 0 0
\(248\) 2.74136 + 2.74136i 0.174077 + 0.174077i
\(249\) −11.8427 3.17324i −0.750500 0.201096i
\(250\) 3.07114 + 0.0898555i 0.194236 + 0.00568296i
\(251\) 11.2668 + 6.50488i 0.711153 + 0.410585i 0.811488 0.584369i \(-0.198658\pi\)
−0.100335 + 0.994954i \(0.531991\pi\)
\(252\) 1.92014 0.120958
\(253\) 1.25997 + 0.727447i 0.0792139 + 0.0457342i
\(254\) 3.02712 0.811113i 0.189938 0.0508938i
\(255\) 6.77703 7.91846i 0.424394 0.495873i
\(256\) −5.14731 + 8.91540i −0.321707 + 0.557212i
\(257\) 7.62518 28.4576i 0.475646 1.77513i −0.143276 0.989683i \(-0.545764\pi\)
0.618922 0.785452i \(-0.287570\pi\)
\(258\) 2.21389 + 3.83458i 0.137831 + 0.238730i
\(259\) −1.86296 −0.115759
\(260\) 0 0
\(261\) −21.0972 −1.30588
\(262\) 2.86663 + 4.96515i 0.177101 + 0.306748i
\(263\) −1.30768 + 4.88034i −0.0806351 + 0.300934i −0.994452 0.105192i \(-0.966454\pi\)
0.913817 + 0.406127i \(0.133121\pi\)
\(264\) −5.55719 + 9.62534i −0.342022 + 0.592399i
\(265\) 1.75619 + 22.6103i 0.107882 + 1.38894i
\(266\) 0.513490 0.137589i 0.0314841 0.00843614i
\(267\) 10.2296 + 5.90606i 0.626041 + 0.361445i
\(268\) −12.2703 −0.749529
\(269\) 7.49111 + 4.32499i 0.456741 + 0.263699i 0.710673 0.703523i \(-0.248391\pi\)
−0.253932 + 0.967222i \(0.581724\pi\)
\(270\) −0.341524 0.498011i −0.0207845 0.0303080i
\(271\) 22.2448 + 5.96047i 1.35127 + 0.362073i 0.860605 0.509273i \(-0.170086\pi\)
0.490669 + 0.871346i \(0.336752\pi\)
\(272\) 4.95497 + 4.95497i 0.300439 + 0.300439i
\(273\) 0 0
\(274\) 0.0670394i 0.00405000i
\(275\) 2.32366 21.6813i 0.140122 1.30743i
\(276\) 0.758574 + 1.31389i 0.0456608 + 0.0790868i
\(277\) 20.9037 5.60114i 1.25598 0.336540i 0.431338 0.902190i \(-0.358042\pi\)
0.824645 + 0.565650i \(0.191375\pi\)
\(278\) 3.21087i 0.192575i
\(279\) −2.40426 8.97282i −0.143939 0.537189i
\(280\) 0.309913 + 0.878021i 0.0185208 + 0.0524718i
\(281\) −8.17717 + 8.17717i −0.487809 + 0.487809i −0.907614 0.419805i \(-0.862098\pi\)
0.419805 + 0.907614i \(0.362098\pi\)
\(282\) −1.65270 6.16797i −0.0984171 0.367298i
\(283\) 4.34603 + 1.16452i 0.258345 + 0.0692233i 0.385667 0.922638i \(-0.373971\pi\)
−0.127322 + 0.991861i \(0.540638\pi\)
\(284\) −2.16858 + 8.09325i −0.128681 + 0.480246i
\(285\) −20.1133 17.2140i −1.19141 1.01967i
\(286\) 0 0
\(287\) −1.27126 + 1.27126i −0.0750400 + 0.0750400i
\(288\) −7.01198 + 4.04837i −0.413185 + 0.238552i
\(289\) −11.3530 + 6.55467i −0.667825 + 0.385569i
\(290\) −1.66979 4.73072i −0.0980534 0.277797i
\(291\) −24.6432 24.6432i −1.44461 1.44461i
\(292\) −5.85613 + 10.1431i −0.342704 + 0.593580i
\(293\) −6.55274 + 11.3497i −0.382815 + 0.663056i −0.991463 0.130385i \(-0.958379\pi\)
0.608648 + 0.793440i \(0.291712\pi\)
\(294\) −3.14588 3.14588i −0.183472 0.183472i
\(295\) −4.89631 2.34157i −0.285074 0.136332i
\(296\) 4.50653 2.60185i 0.261937 0.151229i
\(297\) −3.71150 + 2.14284i −0.215363 + 0.124340i
\(298\) −0.492111 + 0.492111i −0.0285072 + 0.0285072i
\(299\) 0 0
\(300\) 13.4030 18.3684i 0.773821 1.06050i
\(301\) 0.681363 2.54288i 0.0392731 0.146569i
\(302\) −0.970388 0.260015i −0.0558396 0.0149622i
\(303\) 3.22899 + 12.0508i 0.185501 + 0.692298i
\(304\) 12.5859 12.5859i 0.721849 0.721849i
\(305\) 22.4495 7.92394i 1.28545 0.453723i
\(306\) 0.362539 + 1.35301i 0.0207250 + 0.0773466i
\(307\) 7.75447i 0.442571i 0.975209 + 0.221285i \(0.0710252\pi\)
−0.975209 + 0.221285i \(0.928975\pi\)
\(308\) 3.13008 0.838703i 0.178353 0.0477896i
\(309\) −2.02187 3.50198i −0.115020 0.199221i
\(310\) 1.82173 1.24930i 0.103467 0.0709552i
\(311\) 11.6030i 0.657947i 0.944339 + 0.328974i \(0.106703\pi\)
−0.944339 + 0.328974i \(0.893297\pi\)
\(312\) 0 0
\(313\) −10.1565 10.1565i −0.574078 0.574078i 0.359188 0.933265i \(-0.383054\pi\)
−0.933265 + 0.359188i \(0.883054\pi\)
\(314\) −0.832505 0.223069i −0.0469810 0.0125885i
\(315\) 0.408817 2.19325i 0.0230342 0.123576i
\(316\) 5.58234 + 3.22297i 0.314031 + 0.181306i
\(317\) −21.7686 −1.22265 −0.611323 0.791381i \(-0.709362\pi\)
−0.611323 + 0.791381i \(0.709362\pi\)
\(318\) −5.70384 3.29311i −0.319855 0.184669i
\(319\) −34.3911 + 9.21508i −1.92553 + 0.515945i
\(320\) 10.6077 + 9.07864i 0.592990 + 0.507512i
\(321\) −4.78866 + 8.29420i −0.267277 + 0.462937i
\(322\) −0.00916151 + 0.0341912i −0.000510551 + 0.00190540i
\(323\) −4.94124 8.55848i −0.274938 0.476206i
\(324\) −19.3884 −1.07714
\(325\) 0 0
\(326\) 4.07070 0.225455
\(327\) 8.40318 + 14.5547i 0.464697 + 0.804878i
\(328\) 1.29973 4.85066i 0.0717656 0.267833i
\(329\) −1.89830 + 3.28795i −0.104657 + 0.181270i
\(330\) 4.81121 + 4.11768i 0.264848 + 0.226671i
\(331\) −18.9511 + 5.07792i −1.04164 + 0.279108i −0.738795 0.673931i \(-0.764605\pi\)
−0.302850 + 0.953038i \(0.597938\pi\)
\(332\) −8.64714 4.99243i −0.474573 0.273995i
\(333\) −12.4685 −0.683272
\(334\) 0.825383 + 0.476535i 0.0451630 + 0.0260748i
\(335\) −2.61247 + 14.0156i −0.142734 + 0.765753i
\(336\) 3.13091 + 0.838924i 0.170805 + 0.0457671i
\(337\) 9.35946 + 9.35946i 0.509842 + 0.509842i 0.914478 0.404636i \(-0.132602\pi\)
−0.404636 + 0.914478i \(0.632602\pi\)
\(338\) 0 0
\(339\) 9.39165i 0.510084i
\(340\) 7.00018 4.80055i 0.379638 0.260346i
\(341\) −7.83852 13.5767i −0.424480 0.735220i
\(342\) 3.43672 0.920867i 0.185837 0.0497948i
\(343\) 5.34789i 0.288759i
\(344\) 1.90321 + 7.10288i 0.102614 + 0.382962i
\(345\) 1.66228 0.586730i 0.0894940 0.0315885i
\(346\) −0.759754 + 0.759754i −0.0408446 + 0.0408446i
\(347\) −7.15698 26.7102i −0.384207 1.43388i −0.839414 0.543493i \(-0.817101\pi\)
0.455207 0.890386i \(-0.349565\pi\)
\(348\) −35.8627 9.60939i −1.92244 0.515118i
\(349\) 7.63958 28.5113i 0.408938 1.52618i −0.387739 0.921769i \(-0.626744\pi\)
0.796676 0.604406i \(-0.206590\pi\)
\(350\) 0.524160 0.0819196i 0.0280175 0.00437878i
\(351\) 0 0
\(352\) −9.66215 + 9.66215i −0.514994 + 0.514994i
\(353\) −13.5408 + 7.81777i −0.720702 + 0.416098i −0.815011 0.579445i \(-0.803269\pi\)
0.0943088 + 0.995543i \(0.469936\pi\)
\(354\) 1.36504 0.788109i 0.0725513 0.0418875i
\(355\) 8.78267 + 4.20015i 0.466136 + 0.222921i
\(356\) 6.80218 + 6.80218i 0.360515 + 0.360515i
\(357\) 0.899837 1.55856i 0.0476244 0.0824879i
\(358\) −0.892798 + 1.54637i −0.0471858 + 0.0817282i
\(359\) 14.0592 + 14.0592i 0.742017 + 0.742017i 0.972966 0.230949i \(-0.0741830\pi\)
−0.230949 + 0.972966i \(0.574183\pi\)
\(360\) 2.07421 + 5.87648i 0.109320 + 0.309718i
\(361\) −5.28447 + 3.05099i −0.278130 + 0.160578i
\(362\) −2.85221 + 1.64672i −0.149909 + 0.0865499i
\(363\) 13.3995 13.3995i 0.703290 0.703290i
\(364\) 0 0
\(365\) 10.3390 + 8.84863i 0.541167 + 0.463159i
\(366\) −1.78946 + 6.67836i −0.0935367 + 0.349084i
\(367\) 21.2746 + 5.70052i 1.11053 + 0.297565i 0.767045 0.641594i \(-0.221727\pi\)
0.343483 + 0.939159i \(0.388393\pi\)
\(368\) 0.306745 + 1.14479i 0.0159902 + 0.0596761i
\(369\) −8.50836 + 8.50836i −0.442928 + 0.442928i
\(370\) −0.986854 2.79588i −0.0513041 0.145351i
\(371\) 1.01351 + 3.78247i 0.0526188 + 0.196376i
\(372\) 16.3479i 0.847597i
\(373\) 1.12584 0.301668i 0.0582937 0.0156198i −0.229554 0.973296i \(-0.573727\pi\)
0.287848 + 0.957676i \(0.407060\pi\)
\(374\) 1.18197 + 2.04723i 0.0611183 + 0.105860i
\(375\) −18.1274 19.2201i −0.936096 0.992524i
\(376\) 10.6048i 0.546901i
\(377\) 0 0
\(378\) −0.0737299 0.0737299i −0.00379226 0.00379226i
\(379\) −25.4765 6.82640i −1.30864 0.350649i −0.463928 0.885873i \(-0.653560\pi\)
−0.844710 + 0.535224i \(0.820227\pi\)
\(380\) −12.1936 17.7808i −0.625520 0.912136i
\(381\) −23.3380 13.4742i −1.19564 0.690304i
\(382\) 1.42706 0.0730146
\(383\) 28.4058 + 16.4001i 1.45147 + 0.838004i 0.998565 0.0535563i \(-0.0170557\pi\)
0.452901 + 0.891561i \(0.350389\pi\)
\(384\) −18.2204 + 4.88213i −0.929804 + 0.249140i
\(385\) −0.291570 3.75386i −0.0148598 0.191314i
\(386\) −0.917054 + 1.58838i −0.0466768 + 0.0808466i
\(387\) 4.56027 17.0192i 0.231812 0.865132i
\(388\) −14.1912 24.5798i −0.720447 1.24785i
\(389\) −9.36826 −0.474989 −0.237495 0.971389i \(-0.576326\pi\)
−0.237495 + 0.971389i \(0.576326\pi\)
\(390\) 0 0
\(391\) 0.658034 0.0332782
\(392\) −3.69430 6.39871i −0.186590 0.323184i
\(393\) 12.7599 47.6205i 0.643650 2.40213i
\(394\) −2.69273 + 4.66395i −0.135658 + 0.234966i
\(395\) 4.86992 5.69014i 0.245032 0.286302i
\(396\) 20.9492 5.61333i 1.05274 0.282080i
\(397\) 10.0909 + 5.82600i 0.506449 + 0.292399i 0.731373 0.681978i \(-0.238880\pi\)
−0.224924 + 0.974376i \(0.572213\pi\)
\(398\) 4.04135 0.202574
\(399\) −3.95883 2.28563i −0.198189 0.114425i
\(400\) 13.8272 11.1503i 0.691362 0.557515i
\(401\) −19.9142 5.33600i −0.994469 0.266467i −0.275342 0.961346i \(-0.588791\pi\)
−0.719126 + 0.694879i \(0.755458\pi\)
\(402\) −2.92776 2.92776i −0.146024 0.146024i
\(403\) 0 0
\(404\) 10.1603i 0.505493i
\(405\) −4.12799 + 22.1461i −0.205121 + 1.10045i
\(406\) −0.433124 0.750193i −0.0214956 0.0372314i
\(407\) −20.3253 + 5.44616i −1.00749 + 0.269956i
\(408\) 5.02693i 0.248870i
\(409\) −1.17965 4.40250i −0.0583297 0.217689i 0.930609 0.366015i \(-0.119278\pi\)
−0.988939 + 0.148326i \(0.952612\pi\)
\(410\) −2.58129 1.23445i −0.127481 0.0609653i
\(411\) 0.407627 0.407627i 0.0201067 0.0201067i
\(412\) −0.852344 3.18099i −0.0419920 0.156716i
\(413\) −0.905223 0.242554i −0.0445431 0.0119353i
\(414\) −0.0613168 + 0.228837i −0.00301355 + 0.0112467i
\(415\) −7.54358 + 8.81412i −0.370300 + 0.432668i
\(416\) 0 0
\(417\) 19.5234 19.5234i 0.956067 0.956067i
\(418\) 5.20008 3.00227i 0.254344 0.146846i
\(419\) 0.564687 0.326022i 0.0275868 0.0159272i −0.486143 0.873879i \(-0.661597\pi\)
0.513730 + 0.857952i \(0.328263\pi\)
\(420\) 1.69393 3.54206i 0.0826553 0.172835i
\(421\) 5.58095 + 5.58095i 0.271999 + 0.271999i 0.829904 0.557906i \(-0.188395\pi\)
−0.557906 + 0.829904i \(0.688395\pi\)
\(422\) −2.94242 + 5.09642i −0.143235 + 0.248090i
\(423\) −12.7051 + 22.0058i −0.617741 + 1.06996i
\(424\) −7.73438 7.73438i −0.375615 0.375615i
\(425\) −3.99295 9.01792i −0.193686 0.437434i
\(426\) −2.44853 + 1.41366i −0.118631 + 0.0684919i
\(427\) 3.56002 2.05538i 0.172281 0.0994667i
\(428\) −5.51524 + 5.51524i −0.266589 + 0.266589i
\(429\) 0 0
\(430\) 4.17722 0.324454i 0.201443 0.0156466i
\(431\) −9.25295 + 34.5325i −0.445699 + 1.66337i 0.268385 + 0.963312i \(0.413510\pi\)
−0.714084 + 0.700060i \(0.753157\pi\)
\(432\) −3.37220 0.903577i −0.162245 0.0434734i
\(433\) −6.82761 25.4810i −0.328114 1.22454i −0.911144 0.412087i \(-0.864800\pi\)
0.583031 0.812450i \(-0.301867\pi\)
\(434\) 0.269705 0.269705i 0.0129462 0.0129462i
\(435\) −18.6117 + 38.9177i −0.892363 + 1.86596i
\(436\) 3.54246 + 13.2206i 0.169653 + 0.633154i
\(437\) 1.67144i 0.0799558i
\(438\) −3.81750 + 1.02290i −0.182407 + 0.0488759i
\(439\) 0.864675 + 1.49766i 0.0412687 + 0.0714794i 0.885922 0.463834i \(-0.153527\pi\)
−0.844653 + 0.535314i \(0.820193\pi\)
\(440\) 5.94803 + 8.67343i 0.283561 + 0.413490i
\(441\) 17.7038i 0.843036i
\(442\) 0 0
\(443\) 2.86737 + 2.86737i 0.136233 + 0.136233i 0.771935 0.635702i \(-0.219289\pi\)
−0.635702 + 0.771935i \(0.719289\pi\)
\(444\) −21.1951 5.67920i −1.00587 0.269523i
\(445\) 9.21793 6.32143i 0.436972 0.299665i
\(446\) 6.50564 + 3.75603i 0.308051 + 0.177853i
\(447\) 5.98448 0.283056
\(448\) 2.08788 + 1.20544i 0.0986432 + 0.0569517i
\(449\) 19.5003 5.22508i 0.920274 0.246587i 0.232571 0.972579i \(-0.425286\pi\)
0.687702 + 0.725993i \(0.258619\pi\)
\(450\) 3.50813 0.548277i 0.165375 0.0258460i
\(451\) −10.1534 + 17.5861i −0.478103 + 0.828098i
\(452\) 1.97958 7.38790i 0.0931117 0.347497i
\(453\) 4.31936 + 7.48135i 0.202941 + 0.351505i
\(454\) 1.90370 0.0893452
\(455\) 0 0
\(456\) 12.7686 0.597946
\(457\) −7.39079 12.8012i −0.345727 0.598816i 0.639759 0.768576i \(-0.279034\pi\)
−0.985486 + 0.169759i \(0.945701\pi\)
\(458\) −0.459507 + 1.71490i −0.0214713 + 0.0801321i
\(459\) −0.969184 + 1.67868i −0.0452377 + 0.0783539i
\(460\) 1.43129 0.111172i 0.0667344 0.00518341i
\(461\) −5.86696 + 1.57205i −0.273252 + 0.0732175i −0.392843 0.919606i \(-0.628508\pi\)
0.119591 + 0.992823i \(0.461842\pi\)
\(462\) 0.946973 + 0.546735i 0.0440572 + 0.0254364i
\(463\) 36.0148 1.67375 0.836874 0.547396i \(-0.184381\pi\)
0.836874 + 0.547396i \(0.184381\pi\)
\(464\) −25.1179 14.5018i −1.16607 0.673230i
\(465\) −18.6731 3.48062i −0.865943 0.161410i
\(466\) −2.06120 0.552297i −0.0954833 0.0255847i
\(467\) −7.68952 7.68952i −0.355829 0.355829i 0.506444 0.862273i \(-0.330960\pi\)
−0.862273 + 0.506444i \(0.830960\pi\)
\(468\) 0 0
\(469\) 2.46176i 0.113674i
\(470\) −5.94004 1.10721i −0.273993 0.0510717i
\(471\) 3.70562 + 6.41832i 0.170746 + 0.295741i
\(472\) 2.52851 0.677511i 0.116384 0.0311850i
\(473\) 29.7353i 1.36723i
\(474\) 0.562959 + 2.10099i 0.0258576 + 0.0965018i
\(475\) −22.9060 + 10.1423i −1.05100 + 0.465360i
\(476\) 1.03637 1.03637i 0.0475019 0.0475019i
\(477\) 6.78329 + 25.3156i 0.310586 + 1.15912i
\(478\) 3.13061 + 0.838843i 0.143191 + 0.0383678i
\(479\) 2.37697 8.87096i 0.108606 0.405324i −0.890123 0.455720i \(-0.849382\pi\)
0.998729 + 0.0503960i \(0.0160484\pi\)
\(480\) 1.28208 + 16.5064i 0.0585189 + 0.753408i
\(481\) 0 0
\(482\) 0.283559 0.283559i 0.0129157 0.0129157i
\(483\) 0.263602 0.152191i 0.0119943 0.00692492i
\(484\) 13.3650 7.71629i 0.607500 0.350740i
\(485\) −31.0973 + 10.9763i −1.41206 + 0.498410i
\(486\) −4.05331 4.05331i −0.183862 0.183862i
\(487\) 12.8657 22.2840i 0.582998 1.00978i −0.412123 0.911128i \(-0.635213\pi\)
0.995122 0.0986549i \(-0.0314540\pi\)
\(488\) −5.74117 + 9.94399i −0.259890 + 0.450143i
\(489\) −24.7515 24.7515i −1.11930 1.11930i
\(490\) −3.96980 + 1.40121i −0.179337 + 0.0633001i
\(491\) −11.4291 + 6.59859i −0.515788 + 0.297790i −0.735210 0.677840i \(-0.762916\pi\)
0.219422 + 0.975630i \(0.429583\pi\)
\(492\) −18.3386 + 10.5878i −0.826769 + 0.477336i
\(493\) −11.3869 + 11.3869i −0.512839 + 0.512839i
\(494\) 0 0
\(495\) −1.95144 25.1241i −0.0877108 1.12924i
\(496\) 3.30529 12.3355i 0.148412 0.553881i
\(497\) 1.62373 + 0.435076i 0.0728341 + 0.0195158i
\(498\) −0.872033 3.25447i −0.0390767 0.145836i
\(499\) 16.7683 16.7683i 0.750650 0.750650i −0.223950 0.974601i \(-0.571895\pi\)
0.974601 + 0.223950i \(0.0718954\pi\)
\(500\) −10.2086 18.9404i −0.456543 0.847039i
\(501\) −2.12114 7.91620i −0.0947655 0.353670i
\(502\) 3.57520i 0.159569i
\(503\) −7.28214 + 1.95124i −0.324695 + 0.0870017i −0.417485 0.908684i \(-0.637088\pi\)
0.0927898 + 0.995686i \(0.470422\pi\)
\(504\) 0.538025 + 0.931887i 0.0239655 + 0.0415095i
\(505\) 11.6054 + 2.16322i 0.516435 + 0.0962622i
\(506\) 0.399817i 0.0177740i
\(507\) 0 0
\(508\) −15.5186 15.5186i −0.688528 0.688528i
\(509\) 29.6074 + 7.93327i 1.31232 + 0.351636i 0.846097 0.533030i \(-0.178947\pi\)
0.466226 + 0.884666i \(0.345613\pi\)
\(510\) 2.81572 + 0.524843i 0.124682 + 0.0232404i
\(511\) 2.03499 + 1.17490i 0.0900225 + 0.0519745i
\(512\) −18.7939 −0.830581
\(513\) 4.26392 + 2.46178i 0.188257 + 0.108690i
\(514\) 7.82039 2.09547i 0.344942 0.0924271i
\(515\) −3.81491 + 0.296312i −0.168105 + 0.0130571i
\(516\) 15.5039 26.8535i 0.682519 1.18216i
\(517\) −11.0989 + 41.4218i −0.488131 + 1.82173i
\(518\) −0.255979 0.443368i −0.0112471 0.0194805i
\(519\) 9.23923 0.405557
\(520\) 0 0
\(521\) −7.16076 −0.313719 −0.156859 0.987621i \(-0.550137\pi\)
−0.156859 + 0.987621i \(0.550137\pi\)
\(522\) −2.89884 5.02094i −0.126879 0.219761i
\(523\) 2.78390 10.3897i 0.121731 0.454308i −0.877971 0.478714i \(-0.841103\pi\)
0.999702 + 0.0244065i \(0.00776960\pi\)
\(524\) 20.0750 34.7709i 0.876979 1.51897i
\(525\) −3.68521 2.68900i −0.160836 0.117358i
\(526\) −1.34116 + 0.359362i −0.0584773 + 0.0156689i
\(527\) −6.14061 3.54528i −0.267489 0.154435i
\(528\) 36.6115 1.59331
\(529\) −19.8222 11.4444i −0.861835 0.497581i
\(530\) −5.13975 + 3.52472i −0.223257 + 0.153104i
\(531\) −6.05854 1.62338i −0.262918 0.0704487i
\(532\) −2.63243 2.63243i −0.114130 0.114130i
\(533\) 0 0
\(534\) 3.24607i 0.140471i
\(535\) 5.12544 + 7.47394i 0.221592 + 0.323127i
\(536\) −3.43815 5.95505i −0.148505 0.257219i
\(537\) 14.8311 3.97399i 0.640011 0.171490i
\(538\) 2.37709i 0.102484i
\(539\) 7.73286 + 28.8594i 0.333078 + 1.24306i
\(540\) −1.82447 + 3.81504i −0.0785129 + 0.164173i
\(541\) −11.1986 + 11.1986i −0.481464 + 0.481464i −0.905599 0.424135i \(-0.860578\pi\)
0.424135 + 0.905599i \(0.360578\pi\)
\(542\) 1.63799 + 6.11306i 0.0703576 + 0.262578i
\(543\) 27.3554 + 7.32985i 1.17393 + 0.314554i
\(544\) −1.59957 + 5.96966i −0.0685808 + 0.255947i
\(545\) 15.8553 1.23152i 0.679166 0.0527523i
\(546\) 0 0
\(547\) −23.6205 + 23.6205i −1.00994 + 1.00994i −0.00999077 + 0.999950i \(0.503180\pi\)
−0.999950 + 0.00999077i \(0.996820\pi\)
\(548\) 0.406578 0.234738i 0.0173681 0.0100275i
\(549\) 23.8267 13.7564i 1.01690 0.587108i
\(550\) 5.47923 2.42609i 0.233635 0.103449i
\(551\) 28.9232 + 28.9232i 1.23217 + 1.23217i
\(552\) −0.425106 + 0.736305i −0.0180937 + 0.0313392i
\(553\) 0.646616 1.11997i 0.0274969 0.0476260i
\(554\) 4.20528 + 4.20528i 0.178665 + 0.178665i
\(555\) −10.9996 + 23.0006i −0.466908 + 0.976320i
\(556\) 19.4732 11.2429i 0.825847 0.476803i
\(557\) 26.9736 15.5732i 1.14291 0.659859i 0.195759 0.980652i \(-0.437283\pi\)
0.947149 + 0.320793i \(0.103950\pi\)
\(558\) 1.80510 1.80510i 0.0764159 0.0764159i
\(559\) 0 0
\(560\) 1.99433 2.33023i 0.0842759 0.0984702i
\(561\) 5.26115 19.6349i 0.222126 0.828986i
\(562\) −3.06967 0.822517i −0.129486 0.0346958i
\(563\) 5.39509 + 20.1348i 0.227376 + 0.848579i 0.981439 + 0.191776i \(0.0614248\pi\)
−0.754063 + 0.656802i \(0.771909\pi\)
\(564\) −31.6204 + 31.6204i −1.33146 + 1.33146i
\(565\) −8.01724 3.83410i −0.337288 0.161302i
\(566\) 0.320019 + 1.19433i 0.0134514 + 0.0502013i
\(567\) 3.88985i 0.163359i
\(568\) −4.53546 + 1.21527i −0.190304 + 0.0509918i
\(569\) −20.8728 36.1527i −0.875031 1.51560i −0.856729 0.515766i \(-0.827507\pi\)
−0.0183019 0.999833i \(-0.505826\pi\)
\(570\) 1.33313 7.15206i 0.0558385 0.299567i
\(571\) 19.2151i 0.804127i −0.915612 0.402064i \(-0.868293\pi\)
0.915612 0.402064i \(-0.131707\pi\)
\(572\) 0 0
\(573\) −8.67709 8.67709i −0.362491 0.362491i
\(574\) −0.477224 0.127872i −0.0199190 0.00533727i
\(575\) 0.177752 1.65854i 0.00741278 0.0691660i
\(576\) 13.9739 + 8.06785i 0.582247 + 0.336160i
\(577\) 21.8168 0.908243 0.454122 0.890940i \(-0.349953\pi\)
0.454122 + 0.890940i \(0.349953\pi\)
\(578\) −3.11991 1.80128i −0.129771 0.0749233i
\(579\) 15.2341 4.08196i 0.633107 0.169640i
\(580\) −22.8439 + 26.6914i −0.948542 + 1.10830i
\(581\) −1.00162 + 1.73485i −0.0415541 + 0.0719738i
\(582\) 2.47879 9.25095i 0.102749 0.383464i
\(583\) 22.1153 + 38.3048i 0.915922 + 1.58642i
\(584\) −6.56356 −0.271602
\(585\) 0 0
\(586\) −3.60150 −0.148777
\(587\) −2.92765 5.07084i −0.120837 0.209296i 0.799261 0.600984i \(-0.205225\pi\)
−0.920098 + 0.391688i \(0.871891\pi\)
\(588\) −8.06375 + 30.0943i −0.332543 + 1.24107i
\(589\) −9.00520 + 15.5975i −0.371053 + 0.642682i
\(590\) −0.115500 1.48702i −0.00475507 0.0612197i
\(591\) 44.7316 11.9858i 1.84001 0.493030i
\(592\) −14.8448 8.57065i −0.610118 0.352252i
\(593\) −45.6277 −1.87370 −0.936852 0.349727i \(-0.886274\pi\)
−0.936852 + 0.349727i \(0.886274\pi\)
\(594\) −1.01995 0.588870i −0.0418492 0.0241616i
\(595\) −0.963122 1.40443i −0.0394842 0.0575759i
\(596\) 4.70766 + 1.26141i 0.192833 + 0.0516695i
\(597\) −24.5730 24.5730i −1.00571 1.00571i
\(598\) 0 0
\(599\) 12.7240i 0.519888i 0.965624 + 0.259944i \(0.0837041\pi\)
−0.965624 + 0.259944i \(0.916296\pi\)
\(600\) 12.6701 + 1.35790i 0.517255 + 0.0554362i
\(601\) 12.3636 + 21.4144i 0.504321 + 0.873510i 0.999988 + 0.00499702i \(0.00159061\pi\)
−0.495666 + 0.868513i \(0.665076\pi\)
\(602\) 0.698805 0.187244i 0.0284812 0.00763151i
\(603\) 16.4763i 0.670965i
\(604\) 1.82088 + 6.79561i 0.0740905 + 0.276510i
\(605\) −5.96827 16.9088i −0.242644 0.687442i
\(606\) −2.42430 + 2.42430i −0.0984804 + 0.0984804i
\(607\) 1.13924 + 4.25169i 0.0462402 + 0.172571i 0.985184 0.171499i \(-0.0548610\pi\)
−0.938944 + 0.344070i \(0.888194\pi\)
\(608\) 15.1632 + 4.06298i 0.614950 + 0.164775i
\(609\) −1.92791 + 7.19505i −0.0781228 + 0.291558i
\(610\) 4.97048 + 4.25400i 0.201249 + 0.172239i
\(611\) 0 0
\(612\) 6.93628 6.93628i 0.280382 0.280382i
\(613\) −1.00509 + 0.580288i −0.0405951 + 0.0234376i −0.520160 0.854069i \(-0.674128\pi\)
0.479565 + 0.877506i \(0.340794\pi\)
\(614\) −1.84550 + 1.06550i −0.0744781 + 0.0430000i
\(615\) 8.18929 + 23.2013i 0.330224 + 0.935565i
\(616\) 1.28409 + 1.28409i 0.0517375 + 0.0517375i
\(617\) −19.2380 + 33.3212i −0.774493 + 1.34146i 0.160587 + 0.987022i \(0.448661\pi\)
−0.935079 + 0.354439i \(0.884672\pi\)
\(618\) 0.555628 0.962375i 0.0223506 0.0387124i
\(619\) 24.7229 + 24.7229i 0.993698 + 0.993698i 0.999980 0.00628240i \(-0.00199976\pi\)
−0.00628240 + 0.999980i \(0.502000\pi\)
\(620\) −13.9554 6.67394i −0.560464 0.268032i
\(621\) −0.283917 + 0.163920i −0.0113932 + 0.00657787i
\(622\) −2.76142 + 1.59431i −0.110723 + 0.0639258i
\(623\) 1.36470 1.36470i 0.0546757 0.0546757i
\(624\) 0 0
\(625\) −23.8078 + 7.62804i −0.952313 + 0.305122i
\(626\) 1.02161 3.81269i 0.0408317 0.152386i
\(627\) −49.8736 13.3636i −1.99176 0.533690i
\(628\) 1.56215 + 5.83002i 0.0623365 + 0.232643i
\(629\) −6.72971 + 6.72971i −0.268331 + 0.268331i
\(630\) 0.578148 0.204067i 0.0230340 0.00813024i
\(631\) −1.89090 7.05694i −0.0752756 0.280933i 0.918020 0.396534i \(-0.129787\pi\)
−0.993296 + 0.115601i \(0.963120\pi\)
\(632\) 3.61231i 0.143690i
\(633\) 48.8794 13.0972i 1.94278 0.520567i
\(634\) −2.99110 5.18074i −0.118792 0.205753i
\(635\) −21.0300 + 14.4218i −0.834549 + 0.572313i
\(636\) 46.1232i 1.82891i
\(637\) 0 0
\(638\) −6.91860 6.91860i −0.273910 0.273910i
\(639\) 10.8674 + 2.91191i 0.429907 + 0.115193i
\(640\) −3.27072 + 17.5470i −0.129287 + 0.693607i
\(641\) 7.19858 + 4.15610i 0.284327 + 0.164156i 0.635381 0.772199i \(-0.280843\pi\)
−0.351054 + 0.936355i \(0.614177\pi\)
\(642\) −2.63193 −0.103874
\(643\) 9.66101 + 5.57779i 0.380993 + 0.219967i 0.678250 0.734831i \(-0.262739\pi\)
−0.297257 + 0.954797i \(0.596072\pi\)
\(644\) 0.239440 0.0641579i 0.00943528 0.00252817i
\(645\) −27.3720 23.4264i −1.07777 0.922414i
\(646\) 1.35789 2.35194i 0.0534257 0.0925360i
\(647\) −10.8961 + 40.6647i −0.428369 + 1.59870i 0.328085 + 0.944648i \(0.393597\pi\)
−0.756454 + 0.654047i \(0.773070\pi\)
\(648\) −5.43265 9.40963i −0.213415 0.369645i
\(649\) −10.5853 −0.415509
\(650\) 0 0
\(651\) −3.27983 −0.128547
\(652\) −14.2535 24.6878i −0.558211 0.966849i
\(653\) −11.0577 + 41.2678i −0.432721 + 1.61494i 0.313742 + 0.949508i \(0.398417\pi\)
−0.746463 + 0.665427i \(0.768250\pi\)
\(654\) −2.30926 + 3.99976i −0.0902994 + 0.156403i
\(655\) −35.4423 30.3334i −1.38485 1.18522i
\(656\) −15.9784 + 4.28140i −0.623851 + 0.167160i
\(657\) 13.6199 + 7.86345i 0.531363 + 0.306782i
\(658\) −1.04334 −0.0406735
\(659\) 15.2491 + 8.80408i 0.594021 + 0.342958i 0.766686 0.642023i \(-0.221904\pi\)
−0.172665 + 0.984981i \(0.555238\pi\)
\(660\) 8.12635 43.5968i 0.316318 1.69700i
\(661\) 26.9167 + 7.21232i 1.04694 + 0.280527i 0.740987 0.671520i \(-0.234358\pi\)
0.305953 + 0.952047i \(0.401025\pi\)
\(662\) −3.81246 3.81246i −0.148175 0.148175i
\(663\) 0 0
\(664\) 5.59552i 0.217148i
\(665\) −3.56732 + 2.44638i −0.138335 + 0.0948665i
\(666\) −1.71323 2.96740i −0.0663863 0.114985i
\(667\) −2.63080 + 0.704922i −0.101865 + 0.0272947i
\(668\) 6.67434i 0.258238i
\(669\) −16.7187 62.3951i −0.646383 2.41234i
\(670\) −3.69455 + 1.30406i −0.142733 + 0.0503800i
\(671\) 32.8320 32.8320i 1.26747 1.26747i
\(672\) 0.739899 + 2.76134i 0.0285422 + 0.106521i
\(673\) −7.05459 1.89027i −0.271934 0.0728646i 0.120275 0.992741i \(-0.461622\pi\)
−0.392209 + 0.919876i \(0.628289\pi\)
\(674\) −0.941440 + 3.51350i −0.0362629 + 0.135335i
\(675\) 3.96922 + 2.89624i 0.152775 + 0.111476i
\(676\) 0 0
\(677\) 3.26988 3.26988i 0.125672 0.125672i −0.641473 0.767145i \(-0.721677\pi\)
0.767145 + 0.641473i \(0.221677\pi\)
\(678\) 2.23513 1.29045i 0.0858397 0.0495595i
\(679\) −4.93138 + 2.84713i −0.189249 + 0.109263i
\(680\) 4.29126 + 2.05222i 0.164562 + 0.0786991i
\(681\) −11.5753 11.5753i −0.443566 0.443566i
\(682\) 2.15409 3.73100i 0.0824845 0.142867i
\(683\) −13.5476 + 23.4651i −0.518384 + 0.897868i 0.481388 + 0.876508i \(0.340133\pi\)
−0.999772 + 0.0213600i \(0.993200\pi\)
\(684\) −17.6185 17.6185i −0.673660 0.673660i
\(685\) −0.181561 0.514385i −0.00693709 0.0196536i
\(686\) −1.27275 + 0.734823i −0.0485939 + 0.0280557i
\(687\) 13.2213 7.63332i 0.504424 0.291229i
\(688\) 17.1280 17.1280i 0.653000 0.653000i
\(689\) 0 0
\(690\) 0.368040 + 0.314988i 0.0140111 + 0.0119914i
\(691\) −3.25221 + 12.1374i −0.123720 + 0.461729i −0.999791 0.0204532i \(-0.993489\pi\)
0.876071 + 0.482182i \(0.160156\pi\)
\(692\) 7.26800 + 1.94746i 0.276288 + 0.0740311i
\(693\) −1.12619 4.20299i −0.0427804 0.159658i
\(694\) 5.37339 5.37339i 0.203971 0.203971i
\(695\) −8.69594 24.6367i −0.329856 0.934522i
\(696\) −5.38511 20.0975i −0.204122 0.761795i
\(697\) 9.18452i 0.347889i
\(698\) 7.83515 2.09942i 0.296565 0.0794643i
\(699\) 9.17475 + 15.8911i 0.347021 + 0.601058i
\(700\) −2.33217 2.89207i −0.0881476 0.109310i
\(701\) 39.3955i 1.48795i −0.668208 0.743974i \(-0.732938\pi\)
0.668208 0.743974i \(-0.267062\pi\)
\(702\) 0 0
\(703\) 17.0938 + 17.0938i 0.644705 + 0.644705i
\(704\) 26.3033 + 7.04795i 0.991343 + 0.265630i
\(705\) 29.3856 + 42.8501i 1.10672 + 1.61383i
\(706\) −3.72112 2.14839i −0.140046 0.0808557i
\(707\) 2.03843 0.0766631
\(708\) −9.55939 5.51911i −0.359264 0.207421i
\(709\) 24.7175 6.62303i 0.928285 0.248733i 0.237162 0.971470i \(-0.423783\pi\)
0.691123 + 0.722737i \(0.257116\pi\)
\(710\) 0.207176 + 2.66732i 0.00777519 + 0.100103i
\(711\) 4.32771 7.49582i 0.162302 0.281115i
\(712\) −1.39527 + 5.20722i −0.0522900 + 0.195149i
\(713\) −0.599619 1.03857i −0.0224559 0.0388948i
\(714\) 0.494566 0.0185087
\(715\) 0 0
\(716\) 12.5045 0.467315
\(717\) −13.9349 24.1359i −0.520407 0.901371i
\(718\) −1.41417 + 5.27777i −0.0527765 + 0.196965i
\(719\) −4.34268 + 7.52174i −0.161955 + 0.280514i −0.935570 0.353142i \(-0.885113\pi\)
0.773615 + 0.633656i \(0.218446\pi\)
\(720\) 13.3478 15.5959i 0.497443 0.581226i
\(721\) −0.638194 + 0.171004i −0.0237676 + 0.00636851i
\(722\) −1.45222 0.838438i −0.0540460 0.0312034i
\(723\) −3.44830 −0.128244
\(724\) 19.9740 + 11.5320i 0.742327 + 0.428583i
\(725\) 25.6242 + 31.7760i 0.951658 + 1.18013i
\(726\) 5.03011 + 1.34781i 0.186685 + 0.0500220i
\(727\) 17.4677 + 17.4677i 0.647841 + 0.647841i 0.952471 0.304630i \(-0.0985327\pi\)
−0.304630 + 0.952471i \(0.598533\pi\)
\(728\) 0 0
\(729\) 19.0676i 0.706209i
\(730\) −0.685277 + 3.67643i −0.0253632 + 0.136071i
\(731\) −6.72450 11.6472i −0.248715 0.430786i
\(732\) 46.7685 12.5316i 1.72861 0.463180i
\(733\) 34.2413i 1.26473i 0.774670 + 0.632365i \(0.217916\pi\)
−0.774670 + 0.632365i \(0.782084\pi\)
\(734\) 1.56655 + 5.84646i 0.0578225 + 0.215797i
\(735\) 32.6579 + 15.6181i 1.20461 + 0.576081i
\(736\) −0.739121 + 0.739121i −0.0272444 + 0.0272444i
\(737\) 7.19670 + 26.8584i 0.265094 + 0.989344i
\(738\) −3.19400 0.855830i −0.117573 0.0315035i
\(739\) 7.31150 27.2869i 0.268958 1.00376i −0.690825 0.723022i \(-0.742753\pi\)
0.959783 0.280743i \(-0.0905808\pi\)
\(740\) −13.5009 + 15.7748i −0.496302 + 0.579893i
\(741\) 0 0
\(742\) −0.760935 + 0.760935i −0.0279348 + 0.0279348i
\(743\) −27.4329 + 15.8384i −1.00642 + 0.581055i −0.910141 0.414299i \(-0.864027\pi\)
−0.0962765 + 0.995355i \(0.530693\pi\)
\(744\) 7.93397 4.58068i 0.290873 0.167936i
\(745\) 2.44314 5.10868i 0.0895096 0.187168i
\(746\) 0.226489 + 0.226489i 0.00829237 + 0.00829237i
\(747\) −6.70370 + 11.6111i −0.245275 + 0.424830i
\(748\) 8.27733 14.3367i 0.302649 0.524203i
\(749\) 1.10651 + 1.10651i 0.0404309 + 0.0404309i
\(750\) 2.08344 6.95510i 0.0760764 0.253964i
\(751\) −2.11351 + 1.22024i −0.0771231 + 0.0445271i −0.538066 0.842903i \(-0.680845\pi\)
0.460943 + 0.887430i \(0.347511\pi\)
\(752\) −30.2528 + 17.4665i −1.10321 + 0.636936i
\(753\) 21.7387 21.7387i 0.792201 0.792201i
\(754\) 0 0
\(755\) 8.14986 0.633018i 0.296604 0.0230379i
\(756\) −0.188990 + 0.705319i −0.00687349 + 0.0256522i
\(757\) −41.2367 11.0493i −1.49877 0.401595i −0.586084 0.810250i \(-0.699331\pi\)
−0.912689 + 0.408655i \(0.865998\pi\)
\(758\) −1.87595 7.00115i −0.0681377 0.254293i
\(759\) 2.43105 2.43105i 0.0882416 0.0882416i
\(760\) 5.21274 10.9000i 0.189086 0.395385i
\(761\) −10.3427 38.5996i −0.374923 1.39923i −0.853457 0.521164i \(-0.825498\pi\)
0.478533 0.878069i \(-0.341169\pi\)
\(762\) 7.40565i 0.268279i
\(763\) 2.65242 0.710715i 0.0960242 0.0257296i
\(764\) −4.99683 8.65476i −0.180779 0.313118i
\(765\) −6.44605 9.39965i −0.233057 0.339845i
\(766\) 9.01376i 0.325680i
\(767\) 0 0
\(768\) 17.2018 + 17.2018i 0.620716 + 0.620716i
\(769\) 37.0208 + 9.91969i 1.33500 + 0.357713i 0.854579 0.519322i \(-0.173816\pi\)
0.480426 + 0.877035i \(0.340482\pi\)
\(770\) 0.853322 0.585187i 0.0307516 0.0210887i
\(771\) −60.2925 34.8099i −2.17138 1.25365i
\(772\) 12.8442 0.462274
\(773\) −12.6256 7.28940i −0.454111 0.262181i 0.255454 0.966821i \(-0.417775\pi\)
−0.709565 + 0.704640i \(0.751109\pi\)
\(774\) 4.67701 1.25320i 0.168112 0.0450454i
\(775\) −10.5945 + 14.5194i −0.380564 + 0.521553i
\(776\) 7.95274 13.7745i 0.285487 0.494477i
\(777\) −1.13940 + 4.25231i −0.0408759 + 0.152551i
\(778\) −1.28724 2.22956i −0.0461497 0.0799337i
\(779\) 23.3291 0.835853
\(780\) 0 0
\(781\) 18.9872 0.679414
\(782\) 0.0904167 + 0.156606i 0.00323329 + 0.00560023i
\(783\) 2.07649 7.74955i 0.0742075 0.276946i
\(784\) −12.1692 + 21.0777i −0.434616 + 0.752777i
\(785\) 6.99184 0.543072i 0.249549 0.0193831i
\(786\) 13.0865 3.50652i 0.466780 0.125073i
\(787\) −0.820823 0.473902i −0.0292592 0.0168928i 0.485299 0.874348i \(-0.338711\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(788\) 37.7143 1.34352
\(789\) 10.3399 + 5.96972i 0.368109 + 0.212528i
\(790\) 2.02335 + 0.377148i 0.0719876 + 0.0134183i
\(791\) −1.48222 0.397158i −0.0527015 0.0141213i
\(792\) 8.59426 + 8.59426i 0.305384 + 0.305384i
\(793\) 0 0
\(794\) 3.20207i 0.113637i
\(795\) 52.6835 + 9.82008i 1.86849 + 0.348283i
\(796\) −14.1507 24.5098i −0.501560 0.868727i
\(797\) 4.51774 1.21053i 0.160027 0.0428790i −0.177916 0.984046i \(-0.556936\pi\)
0.337943 + 0.941167i \(0.390269\pi\)
\(798\) 1.25622i 0.0444698i
\(799\) 5.01994 + 18.7347i 0.177593 + 0.662785i
\(800\) 14.6142 + 5.64419i 0.516688 + 0.199552i
\(801\) 9.13379 9.13379i 0.322726 0.322726i
\(802\) −1.46638 5.47260i −0.0517796 0.193244i
\(803\) 25.6369 + 6.86939i 0.904707 + 0.242415i
\(804\) −7.50465 + 28.0077i −0.264668 + 0.987756i
\(805\) −0.0223041 0.287157i −0.000786117 0.0101210i
\(806\) 0 0
\(807\) 14.4537 14.4537i 0.508794 0.508794i
\(808\) −4.93101 + 2.84692i −0.173472 + 0.100154i
\(809\) 21.1627 12.2183i 0.744040 0.429572i −0.0794964 0.996835i \(-0.525331\pi\)
0.823536 + 0.567263i \(0.191998\pi\)
\(810\) −5.83779 + 2.06055i −0.205119 + 0.0724003i
\(811\) 9.34795 + 9.34795i 0.328251 + 0.328251i 0.851921 0.523670i \(-0.175438\pi\)
−0.523670 + 0.851921i \(0.675438\pi\)
\(812\) −3.03316 + 5.25359i −0.106443 + 0.184365i
\(813\) 27.2103 47.1295i 0.954305 1.65291i
\(814\) −4.08893 4.08893i −0.143317 0.143317i
\(815\) −31.2340 + 11.0246i −1.09408 + 0.386174i
\(816\) 14.3405 8.27951i 0.502019 0.289841i
\(817\) −29.5844 + 17.0806i −1.03503 + 0.597573i
\(818\) 0.885667 0.885667i 0.0309666 0.0309666i
\(819\) 0 0
\(820\) 1.55168 + 19.9773i 0.0541871 + 0.697638i
\(821\) −0.508771 + 1.89876i −0.0177562 + 0.0662672i −0.974236 0.225533i \(-0.927588\pi\)
0.956479 + 0.291800i \(0.0942543\pi\)
\(822\) 0.153021 + 0.0410019i 0.00533723 + 0.00143011i
\(823\) −4.25627 15.8846i −0.148364 0.553703i −0.999583 0.0288913i \(-0.990802\pi\)
0.851218 0.524812i \(-0.175864\pi\)
\(824\) 1.30498 1.30498i 0.0454610 0.0454610i
\(825\) −48.0676 18.5644i −1.67350 0.646329i
\(826\) −0.0666558 0.248763i −0.00231925 0.00865557i
\(827\) 27.3262i 0.950225i 0.879925 + 0.475113i \(0.157593\pi\)
−0.879925 + 0.475113i \(0.842407\pi\)
\(828\) 1.60254 0.429400i 0.0556922 0.0149227i
\(829\) −7.27764 12.6052i −0.252763 0.437798i 0.711523 0.702663i \(-0.248006\pi\)
−0.964286 + 0.264865i \(0.914673\pi\)
\(830\) −3.13420 0.584208i −0.108790 0.0202782i
\(831\) 51.1397i 1.77402i
\(832\) 0 0
\(833\) 9.55534 + 9.55534i 0.331073 + 0.331073i
\(834\) 7.32901 + 1.96380i 0.253783 + 0.0680009i
\(835\) −7.62366 1.42103i −0.263827 0.0491768i
\(836\) −36.4161 21.0248i −1.25948 0.727159i
\(837\) 3.53259 0.122104
\(838\) 0.155181 + 0.0895937i 0.00536063 + 0.00309496i
\(839\) 23.6250 6.33030i 0.815625 0.218546i 0.173192 0.984888i \(-0.444592\pi\)
0.642433 + 0.766342i \(0.277925\pi\)
\(840\) 2.19368 0.170388i 0.0756892 0.00587895i
\(841\) 18.8262 32.6080i 0.649180 1.12441i
\(842\) −0.561370 + 2.09506i −0.0193461 + 0.0722006i
\(843\) 13.6636 + 23.6661i 0.470601 + 0.815104i
\(844\) 41.2114 1.41856
\(845\) 0 0
\(846\) −6.98292 −0.240078
\(847\) −1.54810 2.68139i −0.0531933 0.0921335i
\(848\) −9.32543 + 34.8030i −0.320237 + 1.19514i
\(849\) 5.31615 9.20784i 0.182450 0.316012i
\(850\) 1.59754 2.18939i 0.0547951 0.0750954i
\(851\) −1.55482 + 0.416612i −0.0532985 + 0.0142813i
\(852\) 17.1470 + 9.89982i 0.587446 + 0.339162i
\(853\) −2.94669 −0.100893 −0.0504464 0.998727i \(-0.516064\pi\)
−0.0504464 + 0.998727i \(0.516064\pi\)
\(854\) 0.978324 + 0.564835i 0.0334775 + 0.0193283i
\(855\) −23.8756 + 16.3733i −0.816528 + 0.559955i
\(856\) −4.22204 1.13129i −0.144306 0.0386667i
\(857\) 13.0632 + 13.0632i 0.446229 + 0.446229i 0.894099 0.447870i \(-0.147817\pi\)
−0.447870 + 0.894099i \(0.647817\pi\)
\(858\) 0 0
\(859\) 3.08382i 0.105219i 0.998615 + 0.0526093i \(0.0167538\pi\)
−0.998615 + 0.0526093i \(0.983246\pi\)
\(860\) −16.5942 24.1978i −0.565859 0.825137i
\(861\) 2.12421 + 3.67923i 0.0723928 + 0.125388i
\(862\) −9.48982 + 2.54279i −0.323225 + 0.0866078i
\(863\) 50.9818i 1.73544i −0.497053 0.867720i \(-0.665585\pi\)
0.497053 0.867720i \(-0.334415\pi\)
\(864\) −0.796920 2.97415i −0.0271118 0.101183i
\(865\) 3.77188 7.88713i 0.128248 0.268170i
\(866\) 5.12611 5.12611i 0.174192 0.174192i
\(867\) 8.01780 + 29.9228i 0.272299 + 1.01623i
\(868\) −2.58006 0.691326i −0.0875730 0.0234651i
\(869\) 3.78062 14.1095i 0.128249 0.478631i
\(870\) −11.8194 + 0.918039i −0.400715 + 0.0311244i
\(871\) 0 0
\(872\) −5.42366 + 5.42366i −0.183668 + 0.183668i
\(873\) −33.0051 + 19.0555i −1.11705 + 0.644931i
\(874\) 0.397788 0.229663i 0.0134554 0.00776846i
\(875\) −3.79996 + 2.04813i −0.128462 + 0.0692394i
\(876\) 19.5706 + 19.5706i 0.661228 + 0.661228i
\(877\) −13.3844 + 23.1824i −0.451958 + 0.782814i −0.998508 0.0546128i \(-0.982608\pi\)
0.546550 + 0.837427i \(0.315941\pi\)
\(878\) −0.237620 + 0.411570i −0.00801929 + 0.0138898i
\(879\) 21.8986 + 21.8986i 0.738621 + 0.738621i
\(880\) 14.9465 31.2536i 0.503846 1.05356i
\(881\) −27.2630 + 15.7403i −0.918512 + 0.530303i −0.883160 0.469072i \(-0.844589\pi\)
−0.0353521 + 0.999375i \(0.511255\pi\)
\(882\) −4.21334 + 2.43257i −0.141870 + 0.0819089i
\(883\) −27.3576 + 27.3576i −0.920657 + 0.920657i −0.997076 0.0764191i \(-0.975651\pi\)
0.0764191 + 0.997076i \(0.475651\pi\)
\(884\) 0 0
\(885\) −8.33941 + 9.74398i −0.280326 + 0.327540i
\(886\) −0.288420 + 1.07640i −0.00968965 + 0.0361623i
\(887\) 1.32670 + 0.355489i 0.0445463 + 0.0119362i 0.281023 0.959701i \(-0.409326\pi\)
−0.236477 + 0.971637i \(0.575993\pi\)
\(888\) −3.18263 11.8777i −0.106802 0.398591i
\(889\) −3.11346 + 3.11346i −0.104422 + 0.104422i
\(890\) 2.77103 + 1.32520i 0.0928851 + 0.0444206i
\(891\) 11.3716 + 42.4393i 0.380962 + 1.42177i
\(892\) 52.6068i 1.76141i
\(893\) 47.5870 12.7509i 1.59244 0.426692i
\(894\) 0.822293 + 1.42425i 0.0275016 + 0.0476341i
\(895\) 2.66233 14.2831i 0.0889918 0.477430i
\(896\) 3.08204i 0.102964i
\(897\) 0 0
\(898\) 3.92294 + 3.92294i 0.130910 + 0.130910i
\(899\) 28.3479 + 7.59580i 0.945456 + 0.253334i
\(900\) −15.6089 19.3562i −0.520296 0.645207i
\(901\) 17.3249 + 10.0025i 0.577176 + 0.333233i
\(902\) −5.58046 −0.185809
\(903\) −5.38754 3.11050i −0.179286 0.103511i
\(904\) 4.14019 1.10936i 0.137701 0.0368968i
\(905\) 17.4249 20.3597i 0.579223 0.676779i
\(906\) −1.18700 + 2.05594i −0.0394354 + 0.0683040i
\(907\) 6.02625 22.4903i 0.200098 0.746777i −0.790790 0.612088i \(-0.790330\pi\)
0.990888 0.134689i \(-0.0430036\pi\)
\(908\) −6.66580 11.5455i −0.221212 0.383151i
\(909\) 13.6430 0.452508
\(910\) 0 0
\(911\) 2.89704 0.0959832 0.0479916 0.998848i \(-0.484718\pi\)
0.0479916 + 0.998848i \(0.484718\pi\)
\(912\) −21.0304 36.4256i −0.696385 1.20617i
\(913\) −5.85624 + 21.8558i −0.193813 + 0.723322i
\(914\) 2.03105 3.51789i 0.0671813 0.116361i
\(915\) −4.35653 56.0886i −0.144022 1.85423i
\(916\) 12.0094 3.21792i 0.396803 0.106323i
\(917\) −6.97599 4.02759i −0.230368 0.133003i
\(918\) −0.532680 −0.0175811
\(919\) −14.3846 8.30494i −0.474503 0.273955i 0.243620 0.969871i \(-0.421665\pi\)
−0.718123 + 0.695916i \(0.754998\pi\)
\(920\) 0.455003 + 0.663488i 0.0150010 + 0.0218745i
\(921\) 17.7000 + 4.74271i 0.583236 + 0.156278i
\(922\) −1.18028 1.18028i −0.0388704 0.0388704i
\(923\) 0 0
\(924\) 7.65756i 0.251915i
\(925\) 15.1440 + 18.7798i 0.497932 + 0.617475i
\(926\) 4.94858 + 8.57120i 0.162621 + 0.281667i
\(927\) −4.27135 + 1.14451i −0.140290 + 0.0375905i
\(928\) 25.5801i 0.839708i
\(929\) −11.0843 41.3672i −0.363664 1.35721i −0.869223 0.494420i \(-0.835380\pi\)
0.505559 0.862792i \(-0.331286\pi\)
\(930\) −1.73740 4.92228i −0.0569717 0.161408i
\(931\) 24.2710 24.2710i 0.795451 0.795451i
\(932\) 3.86773 + 14.4346i 0.126692 + 0.472820i
\(933\) 26.4846 + 7.09653i 0.867067 + 0.232330i
\(934\) 0.773465 2.88661i 0.0253086 0.0944528i
\(935\) −14.6136 12.5071i −0.477916 0.409025i
\(936\) 0 0
\(937\) 27.9881 27.9881i 0.914331 0.914331i −0.0822783 0.996609i \(-0.526220\pi\)
0.996609 + 0.0822783i \(0.0262196\pi\)
\(938\) −0.585878 + 0.338257i −0.0191296 + 0.0110445i
\(939\) −29.3945 + 16.9709i −0.959254 + 0.553826i
\(940\) 14.0840 + 39.9018i 0.459371 + 1.30145i
\(941\) 4.15042 + 4.15042i 0.135300 + 0.135300i 0.771513 0.636213i \(-0.219500\pi\)
−0.636213 + 0.771513i \(0.719500\pi\)
\(942\) −1.01834 + 1.76381i −0.0331792 + 0.0574680i
\(943\) −0.776696 + 1.34528i −0.0252927 + 0.0438083i
\(944\) −6.09729 6.09729i −0.198450 0.198450i
\(945\) 0.765402 + 0.366040i 0.0248985 + 0.0119073i
\(946\) 7.07675 4.08576i 0.230085 0.132840i
\(947\) −21.5292 + 12.4299i −0.699606 + 0.403918i −0.807201 0.590277i \(-0.799018\pi\)
0.107595 + 0.994195i \(0.465685\pi\)
\(948\) 10.7708 10.7708i 0.349820 0.349820i
\(949\) 0 0
\(950\) −5.56115 4.05783i −0.180428 0.131653i
\(951\) −13.3139 + 49.6881i −0.431732 + 1.61125i
\(952\) 0.793363 + 0.212581i 0.0257130 + 0.00688979i
\(953\) −8.46463 31.5904i −0.274196 1.02331i −0.956378 0.292131i \(-0.905636\pi\)
0.682182 0.731182i \(-0.261031\pi\)
\(954\) −5.09284 + 5.09284i −0.164887 + 0.164887i
\(955\) −10.9496 + 3.86486i −0.354322 + 0.125064i
\(956\) −5.87441 21.9236i −0.189992 0.709059i
\(957\) 84.1358i 2.71973i
\(958\) 2.43782 0.653211i 0.0787622 0.0211043i
\(959\) −0.0470949 0.0815707i −0.00152077 0.00263405i
\(960\) 27.2103 18.6602i 0.878209 0.602254i
\(961\) 18.0777i 0.583153i
\(962\) 0 0
\(963\) 7.40571 + 7.40571i 0.238646 + 0.238646i
\(964\) −2.71259 0.726837i −0.0873667 0.0234098i
\(965\) 2.73466 14.6711i 0.0880318 0.472280i
\(966\) 0.0724402 + 0.0418234i 0.00233072 + 0.00134564i
\(967\) −30.0090 −0.965023 −0.482512 0.875890i \(-0.660275\pi\)
−0.482512 + 0.875890i \(0.660275\pi\)
\(968\) 7.48976 + 4.32422i 0.240730 + 0.138986i
\(969\) −22.5573 + 6.04422i −0.724646 + 0.194168i
\(970\) −6.88518 5.89269i −0.221070 0.189203i
\(971\) 3.13659 5.43273i 0.100658 0.174345i −0.811298 0.584633i \(-0.801239\pi\)
0.911956 + 0.410288i \(0.134572\pi\)
\(972\) −10.3897 + 38.7750i −0.333251 + 1.24371i
\(973\) −2.25563 3.90686i −0.0723120 0.125248i
\(974\) 7.07119 0.226575
\(975\) 0 0
\(976\) 37.8235 1.21070
\(977\) −7.78106 13.4772i −0.248938 0.431174i 0.714293 0.699847i \(-0.246748\pi\)
−0.963231 + 0.268673i \(0.913415\pi\)
\(978\) 2.48968 9.29160i 0.0796111 0.297113i
\(979\) 10.8997 18.8788i 0.348356 0.603370i
\(980\) 22.3982 + 19.1695i 0.715484 + 0.612349i
\(981\) 17.7523 4.75672i 0.566788 0.151870i
\(982\) −3.14082 1.81335i −0.100227 0.0578663i
\(983\) −53.4558 −1.70498 −0.852488 0.522746i \(-0.824907\pi\)
−0.852488 + 0.522746i \(0.824907\pi\)
\(984\) −10.2770 5.93342i −0.327619 0.189151i
\(985\) 8.02974 43.0786i 0.255849 1.37260i
\(986\) −4.27459 1.14537i −0.136131 0.0364761i
\(987\) 6.34391 + 6.34391i 0.201929 + 0.201929i
\(988\) 0 0
\(989\) 2.27465i 0.0723297i
\(990\) 5.71117 3.91658i 0.181513 0.124477i
\(991\) 11.8198 + 20.4726i 0.375470 + 0.650333i 0.990397 0.138251i \(-0.0441480\pi\)
−0.614927 + 0.788584i \(0.710815\pi\)
\(992\) 10.8795 2.91514i 0.345423 0.0925558i
\(993\) 46.3626i 1.47127i
\(994\) 0.119563 + 0.446214i 0.00379230 + 0.0141531i
\(995\) −31.0088 + 10.9451i −0.983044 + 0.346983i
\(996\) −16.6842 + 16.6842i −0.528658 + 0.528658i
\(997\) 13.3882 + 49.9653i 0.424007 + 1.58242i 0.766082 + 0.642743i \(0.222204\pi\)
−0.342075 + 0.939673i \(0.611130\pi\)
\(998\) 6.29473 + 1.68667i 0.199256 + 0.0533905i
\(999\) 1.22721 4.58002i 0.0388273 0.144906i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.o.f.258.2 20
5.2 odd 4 845.2.t.e.427.4 20
13.2 odd 12 845.2.f.d.408.5 20
13.3 even 3 845.2.k.d.268.6 20
13.4 even 6 65.2.o.a.33.4 yes 20
13.5 odd 4 845.2.t.g.418.2 20
13.6 odd 12 845.2.t.e.188.4 20
13.7 odd 12 845.2.t.f.188.2 20
13.8 odd 4 65.2.t.a.28.4 yes 20
13.9 even 3 845.2.o.g.488.2 20
13.10 even 6 845.2.k.e.268.5 20
13.11 odd 12 845.2.f.e.408.6 20
13.12 even 2 845.2.o.e.258.4 20
39.8 even 4 585.2.dp.a.28.2 20
39.17 odd 6 585.2.cf.a.163.2 20
65.2 even 12 845.2.k.d.577.6 20
65.4 even 6 325.2.s.b.293.2 20
65.7 even 12 845.2.o.e.357.4 20
65.8 even 4 325.2.s.b.132.2 20
65.12 odd 4 845.2.t.f.427.2 20
65.17 odd 12 65.2.t.a.7.4 yes 20
65.22 odd 12 845.2.t.g.657.2 20
65.32 even 12 inner 845.2.o.f.357.2 20
65.34 odd 4 325.2.x.b.93.2 20
65.37 even 12 845.2.k.e.577.5 20
65.42 odd 12 845.2.f.d.437.6 20
65.43 odd 12 325.2.x.b.7.2 20
65.47 even 4 65.2.o.a.2.4 20
65.57 even 4 845.2.o.g.587.2 20
65.62 odd 12 845.2.f.e.437.5 20
195.17 even 12 585.2.dp.a.397.2 20
195.47 odd 4 585.2.cf.a.262.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.4 20 65.47 even 4
65.2.o.a.33.4 yes 20 13.4 even 6
65.2.t.a.7.4 yes 20 65.17 odd 12
65.2.t.a.28.4 yes 20 13.8 odd 4
325.2.s.b.132.2 20 65.8 even 4
325.2.s.b.293.2 20 65.4 even 6
325.2.x.b.7.2 20 65.43 odd 12
325.2.x.b.93.2 20 65.34 odd 4
585.2.cf.a.163.2 20 39.17 odd 6
585.2.cf.a.262.2 20 195.47 odd 4
585.2.dp.a.28.2 20 39.8 even 4
585.2.dp.a.397.2 20 195.17 even 12
845.2.f.d.408.5 20 13.2 odd 12
845.2.f.d.437.6 20 65.42 odd 12
845.2.f.e.408.6 20 13.11 odd 12
845.2.f.e.437.5 20 65.62 odd 12
845.2.k.d.268.6 20 13.3 even 3
845.2.k.d.577.6 20 65.2 even 12
845.2.k.e.268.5 20 13.10 even 6
845.2.k.e.577.5 20 65.37 even 12
845.2.o.e.258.4 20 13.12 even 2
845.2.o.e.357.4 20 65.7 even 12
845.2.o.f.258.2 20 1.1 even 1 trivial
845.2.o.f.357.2 20 65.32 even 12 inner
845.2.o.g.488.2 20 13.9 even 3
845.2.o.g.587.2 20 65.57 even 4
845.2.t.e.188.4 20 13.6 odd 12
845.2.t.e.427.4 20 5.2 odd 4
845.2.t.f.188.2 20 13.7 odd 12
845.2.t.f.427.2 20 65.12 odd 4
845.2.t.g.418.2 20 13.5 odd 4
845.2.t.g.657.2 20 65.22 odd 12