Properties

Label 845.2.k.e.268.5
Level $845$
Weight $2$
Character 845.268
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(268,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.268");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 268.5
Root \(0.274809i\) of defining polynomial
Character \(\chi\) \(=\) 845.268
Dual form 845.2.k.e.577.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.274809 q^{2} +(1.67095 + 1.67095i) q^{3} -1.92448 q^{4} +(1.69883 + 1.45395i) q^{5} +(0.459191 + 0.459191i) q^{6} -0.386104i q^{7} -1.07848 q^{8} +2.58414i q^{9} +(0.466854 + 0.399558i) q^{10} +(-3.08375 + 3.08375i) q^{11} +(-3.21571 - 3.21571i) q^{12} -0.106105i q^{14} +(0.409188 + 5.26814i) q^{15} +3.55258 q^{16} +(1.39475 + 1.39475i) q^{17} +0.710144i q^{18} +(-3.54274 + 3.54274i) q^{19} +(-3.26937 - 2.79810i) q^{20} +(0.645159 - 0.645159i) q^{21} +(-0.847442 + 0.847442i) q^{22} +(0.235896 - 0.235896i) q^{23} +(-1.80209 - 1.80209i) q^{24} +(0.772064 + 4.94003i) q^{25} +(0.694880 - 0.694880i) q^{27} +0.743049i q^{28} +8.16410i q^{29} +(0.112448 + 1.44773i) q^{30} +(-2.54187 - 2.54187i) q^{31} +3.13324 q^{32} -10.3056 q^{33} +(0.383290 + 0.383290i) q^{34} +(0.561375 - 0.655925i) q^{35} -4.97313i q^{36} -4.82502i q^{37} +(-0.973575 + 0.973575i) q^{38} +(-1.83216 - 1.56806i) q^{40} +(-3.29253 - 3.29253i) q^{41} +(0.177295 - 0.177295i) q^{42} +(4.82129 - 4.82129i) q^{43} +(5.93462 - 5.93462i) q^{44} +(-3.75721 + 4.39002i) q^{45} +(0.0648264 - 0.0648264i) q^{46} +9.83310i q^{47} +(5.93619 + 5.93619i) q^{48} +6.85092 q^{49} +(0.212170 + 1.35756i) q^{50} +4.66112i q^{51} +(-7.17155 - 7.17155i) q^{53} +(0.190959 - 0.190959i) q^{54} +(-9.72240 + 0.755161i) q^{55} +0.416405i q^{56} -11.8395 q^{57} +2.24356i q^{58} +(1.71630 + 1.71630i) q^{59} +(-0.787474 - 10.1384i) q^{60} +10.6468 q^{61} +(-0.698529 - 0.698529i) q^{62} +0.997746 q^{63} -6.24413 q^{64} -2.83207 q^{66} -6.37591 q^{67} +(-2.68417 - 2.68417i) q^{68} +0.788342 q^{69} +(0.154271 - 0.180254i) q^{70} +(-3.07858 - 3.07858i) q^{71} -2.78695i q^{72} +6.08593 q^{73} -1.32596i q^{74} +(-6.96446 + 9.54462i) q^{75} +(6.81793 - 6.81793i) q^{76} +(1.19065 + 1.19065i) q^{77} +3.34944i q^{79} +(6.03525 + 5.16528i) q^{80} +10.0746 q^{81} +(-0.904815 - 0.904815i) q^{82} +5.18834i q^{83} +(-1.24160 + 1.24160i) q^{84} +(0.341552 + 4.39735i) q^{85} +(1.32493 - 1.32493i) q^{86} +(-13.6418 + 13.6418i) q^{87} +(3.32577 - 3.32577i) q^{88} +(3.53455 + 3.53455i) q^{89} +(-1.03251 + 1.20642i) q^{90} +(-0.453978 + 0.453978i) q^{92} -8.49469i q^{93} +2.70222i q^{94} +(-11.1695 + 0.867558i) q^{95} +(5.23549 + 5.23549i) q^{96} +14.7480 q^{97} +1.88269 q^{98} +(-7.96886 - 7.96886i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{2} + 4 q^{3} + 12 q^{4} - 6 q^{5} + 4 q^{6} + 12 q^{8} + 8 q^{10} + 8 q^{11} + 24 q^{12} - 24 q^{15} + 4 q^{16} + 14 q^{17} - 4 q^{19} - 22 q^{20} + 4 q^{21} - 32 q^{22} - 8 q^{23} + 4 q^{24}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.274809 0.194319 0.0971595 0.995269i \(-0.469024\pi\)
0.0971595 + 0.995269i \(0.469024\pi\)
\(3\) 1.67095 + 1.67095i 0.964723 + 0.964723i 0.999399 0.0346758i \(-0.0110399\pi\)
−0.0346758 + 0.999399i \(0.511040\pi\)
\(4\) −1.92448 −0.962240
\(5\) 1.69883 + 1.45395i 0.759741 + 0.650226i
\(6\) 0.459191 + 0.459191i 0.187464 + 0.187464i
\(7\) 0.386104i 0.145933i −0.997334 0.0729667i \(-0.976753\pi\)
0.997334 0.0729667i \(-0.0232467\pi\)
\(8\) −1.07848 −0.381301
\(9\) 2.58414i 0.861380i
\(10\) 0.466854 + 0.399558i 0.147632 + 0.126351i
\(11\) −3.08375 + 3.08375i −0.929787 + 0.929787i −0.997692 0.0679048i \(-0.978369\pi\)
0.0679048 + 0.997692i \(0.478369\pi\)
\(12\) −3.21571 3.21571i −0.928295 0.928295i
\(13\) 0 0
\(14\) 0.106105i 0.0283576i
\(15\) 0.409188 + 5.26814i 0.105652 + 1.36023i
\(16\) 3.55258 0.888146
\(17\) 1.39475 + 1.39475i 0.338277 + 0.338277i 0.855719 0.517442i \(-0.173116\pi\)
−0.517442 + 0.855719i \(0.673116\pi\)
\(18\) 0.710144i 0.167383i
\(19\) −3.54274 + 3.54274i −0.812760 + 0.812760i −0.985047 0.172287i \(-0.944884\pi\)
0.172287 + 0.985047i \(0.444884\pi\)
\(20\) −3.26937 2.79810i −0.731053 0.625673i
\(21\) 0.645159 0.645159i 0.140785 0.140785i
\(22\) −0.847442 + 0.847442i −0.180675 + 0.180675i
\(23\) 0.235896 0.235896i 0.0491878 0.0491878i −0.682085 0.731273i \(-0.738927\pi\)
0.731273 + 0.682085i \(0.238927\pi\)
\(24\) −1.80209 1.80209i −0.367849 0.367849i
\(25\) 0.772064 + 4.94003i 0.154413 + 0.988006i
\(26\) 0 0
\(27\) 0.694880 0.694880i 0.133730 0.133730i
\(28\) 0.743049i 0.140423i
\(29\) 8.16410i 1.51603i 0.652235 + 0.758017i \(0.273832\pi\)
−0.652235 + 0.758017i \(0.726168\pi\)
\(30\) 0.112448 + 1.44773i 0.0205302 + 0.264318i
\(31\) −2.54187 2.54187i −0.456534 0.456534i 0.440982 0.897516i \(-0.354630\pi\)
−0.897516 + 0.440982i \(0.854630\pi\)
\(32\) 3.13324 0.553884
\(33\) −10.3056 −1.79397
\(34\) 0.383290 + 0.383290i 0.0657336 + 0.0657336i
\(35\) 0.561375 0.655925i 0.0948897 0.110872i
\(36\) 4.97313i 0.828855i
\(37\) 4.82502i 0.793229i −0.917985 0.396614i \(-0.870185\pi\)
0.917985 0.396614i \(-0.129815\pi\)
\(38\) −0.973575 + 0.973575i −0.157935 + 0.157935i
\(39\) 0 0
\(40\) −1.83216 1.56806i −0.289690 0.247931i
\(41\) −3.29253 3.29253i −0.514207 0.514207i 0.401606 0.915813i \(-0.368452\pi\)
−0.915813 + 0.401606i \(0.868452\pi\)
\(42\) 0.177295 0.177295i 0.0273573 0.0273573i
\(43\) 4.82129 4.82129i 0.735240 0.735240i −0.236413 0.971653i \(-0.575972\pi\)
0.971653 + 0.236413i \(0.0759718\pi\)
\(44\) 5.93462 5.93462i 0.894678 0.894678i
\(45\) −3.75721 + 4.39002i −0.560092 + 0.654426i
\(46\) 0.0648264 0.0648264i 0.00955813 0.00955813i
\(47\) 9.83310i 1.43430i 0.696917 + 0.717152i \(0.254555\pi\)
−0.696917 + 0.717152i \(0.745445\pi\)
\(48\) 5.93619 + 5.93619i 0.856815 + 0.856815i
\(49\) 6.85092 0.978703
\(50\) 0.212170 + 1.35756i 0.0300054 + 0.191988i
\(51\) 4.66112i 0.652687i
\(52\) 0 0
\(53\) −7.17155 7.17155i −0.985088 0.985088i 0.0148021 0.999890i \(-0.495288\pi\)
−0.999890 + 0.0148021i \(0.995288\pi\)
\(54\) 0.190959 0.190959i 0.0259862 0.0259862i
\(55\) −9.72240 + 0.755161i −1.31097 + 0.101826i
\(56\) 0.416405i 0.0556445i
\(57\) −11.8395 −1.56818
\(58\) 2.24356i 0.294594i
\(59\) 1.71630 + 1.71630i 0.223443 + 0.223443i 0.809947 0.586504i \(-0.199496\pi\)
−0.586504 + 0.809947i \(0.699496\pi\)
\(60\) −0.787474 10.1384i −0.101662 1.30887i
\(61\) 10.6468 1.36318 0.681589 0.731735i \(-0.261289\pi\)
0.681589 + 0.731735i \(0.261289\pi\)
\(62\) −0.698529 0.698529i −0.0887133 0.0887133i
\(63\) 0.997746 0.125704
\(64\) −6.24413 −0.780516
\(65\) 0 0
\(66\) −2.83207 −0.348603
\(67\) −6.37591 −0.778942 −0.389471 0.921039i \(-0.627342\pi\)
−0.389471 + 0.921039i \(0.627342\pi\)
\(68\) −2.68417 2.68417i −0.325504 0.325504i
\(69\) 0.788342 0.0949052
\(70\) 0.154271 0.180254i 0.0184389 0.0215445i
\(71\) −3.07858 3.07858i −0.365360 0.365360i 0.500422 0.865782i \(-0.333178\pi\)
−0.865782 + 0.500422i \(0.833178\pi\)
\(72\) 2.78695i 0.328445i
\(73\) 6.08593 0.712304 0.356152 0.934428i \(-0.384088\pi\)
0.356152 + 0.934428i \(0.384088\pi\)
\(74\) 1.32596i 0.154139i
\(75\) −6.96446 + 9.54462i −0.804187 + 1.10212i
\(76\) 6.81793 6.81793i 0.782070 0.782070i
\(77\) 1.19065 + 1.19065i 0.135687 + 0.135687i
\(78\) 0 0
\(79\) 3.34944i 0.376842i 0.982088 + 0.188421i \(0.0603369\pi\)
−0.982088 + 0.188421i \(0.939663\pi\)
\(80\) 6.03525 + 5.16528i 0.674761 + 0.577496i
\(81\) 10.0746 1.11940
\(82\) −0.904815 0.904815i −0.0999202 0.0999202i
\(83\) 5.18834i 0.569494i 0.958603 + 0.284747i \(0.0919096\pi\)
−0.958603 + 0.284747i \(0.908090\pi\)
\(84\) −1.24160 + 1.24160i −0.135469 + 0.135469i
\(85\) 0.341552 + 4.39735i 0.0370465 + 0.476959i
\(86\) 1.32493 1.32493i 0.142871 0.142871i
\(87\) −13.6418 + 13.6418i −1.46255 + 1.46255i
\(88\) 3.32577 3.32577i 0.354528 0.354528i
\(89\) 3.53455 + 3.53455i 0.374662 + 0.374662i 0.869172 0.494510i \(-0.164652\pi\)
−0.494510 + 0.869172i \(0.664652\pi\)
\(90\) −1.03251 + 1.20642i −0.108836 + 0.127167i
\(91\) 0 0
\(92\) −0.453978 + 0.453978i −0.0473305 + 0.0473305i
\(93\) 8.49469i 0.880858i
\(94\) 2.70222i 0.278713i
\(95\) −11.1695 + 0.867558i −1.14596 + 0.0890096i
\(96\) 5.23549 + 5.23549i 0.534345 + 0.534345i
\(97\) 14.7480 1.49744 0.748718 0.662889i \(-0.230670\pi\)
0.748718 + 0.662889i \(0.230670\pi\)
\(98\) 1.88269 0.190181
\(99\) −7.96886 7.96886i −0.800900 0.800900i
\(100\) −1.48582 9.50699i −0.148582 0.950699i
\(101\) 5.27950i 0.525329i −0.964887 0.262665i \(-0.915399\pi\)
0.964887 0.262665i \(-0.0846013\pi\)
\(102\) 1.28092i 0.126829i
\(103\) 1.21001 1.21001i 0.119226 0.119226i −0.644976 0.764203i \(-0.723133\pi\)
0.764203 + 0.644976i \(0.223133\pi\)
\(104\) 0 0
\(105\) 2.03405 0.157989i 0.198503 0.0154181i
\(106\) −1.97080 1.97080i −0.191421 0.191421i
\(107\) 2.86583 2.86583i 0.277050 0.277050i −0.554880 0.831930i \(-0.687236\pi\)
0.831930 + 0.554880i \(0.187236\pi\)
\(108\) −1.33728 + 1.33728i −0.128680 + 0.128680i
\(109\) 5.02898 5.02898i 0.481689 0.481689i −0.423982 0.905671i \(-0.639368\pi\)
0.905671 + 0.423982i \(0.139368\pi\)
\(110\) −2.67180 + 0.207525i −0.254746 + 0.0197867i
\(111\) 8.06237 8.06237i 0.765246 0.765246i
\(112\) 1.37167i 0.129610i
\(113\) −2.81027 2.81027i −0.264368 0.264368i 0.562458 0.826826i \(-0.309856\pi\)
−0.826826 + 0.562458i \(0.809856\pi\)
\(114\) −3.25359 −0.304726
\(115\) 0.743730 0.0577672i 0.0693532 0.00538682i
\(116\) 15.7116i 1.45879i
\(117\) 0 0
\(118\) 0.471653 + 0.471653i 0.0434192 + 0.0434192i
\(119\) 0.538519 0.538519i 0.0493659 0.0493659i
\(120\) −0.441301 5.68159i −0.0402851 0.518655i
\(121\) 8.01908i 0.729008i
\(122\) 2.92582 0.264892
\(123\) 11.0033i 0.992134i
\(124\) 4.89179 + 4.89179i 0.439296 + 0.439296i
\(125\) −5.87095 + 9.51483i −0.525113 + 0.851032i
\(126\) 0.274189 0.0244267
\(127\) 8.06380 + 8.06380i 0.715547 + 0.715547i 0.967690 0.252143i \(-0.0811354\pi\)
−0.252143 + 0.967690i \(0.581135\pi\)
\(128\) −7.98243 −0.705553
\(129\) 16.1123 1.41860
\(130\) 0 0
\(131\) 20.8627 1.82279 0.911393 0.411536i \(-0.135008\pi\)
0.911393 + 0.411536i \(0.135008\pi\)
\(132\) 19.8329 1.72623
\(133\) 1.36786 + 1.36786i 0.118609 + 0.118609i
\(134\) −1.75216 −0.151363
\(135\) 2.19080 0.170165i 0.188554 0.0146454i
\(136\) −1.50421 1.50421i −0.128985 0.128985i
\(137\) 0.243949i 0.0208420i 0.999946 + 0.0104210i \(0.00331717\pi\)
−0.999946 + 0.0104210i \(0.996683\pi\)
\(138\) 0.216643 0.0184419
\(139\) 11.6840i 0.991027i −0.868600 0.495514i \(-0.834980\pi\)
0.868600 0.495514i \(-0.165020\pi\)
\(140\) −1.08036 + 1.26232i −0.0913067 + 0.106685i
\(141\) −16.4306 + 16.4306i −1.38371 + 1.38371i
\(142\) −0.846020 0.846020i −0.0709965 0.0709965i
\(143\) 0 0
\(144\) 9.18038i 0.765032i
\(145\) −11.8702 + 13.8694i −0.985765 + 1.15179i
\(146\) 1.67247 0.138414
\(147\) 11.4475 + 11.4475i 0.944178 + 0.944178i
\(148\) 9.28566i 0.763277i
\(149\) −1.79074 + 1.79074i −0.146703 + 0.146703i −0.776644 0.629940i \(-0.783079\pi\)
0.629940 + 0.776644i \(0.283079\pi\)
\(150\) −1.91389 + 2.62294i −0.156269 + 0.214162i
\(151\) 2.58498 2.58498i 0.210362 0.210362i −0.594059 0.804421i \(-0.702475\pi\)
0.804421 + 0.594059i \(0.202475\pi\)
\(152\) 3.82078 3.82078i 0.309906 0.309906i
\(153\) −3.60423 + 3.60423i −0.291385 + 0.291385i
\(154\) 0.327201 + 0.327201i 0.0263666 + 0.0263666i
\(155\) −0.622463 8.01398i −0.0499974 0.643698i
\(156\) 0 0
\(157\) −2.21767 + 2.21767i −0.176990 + 0.176990i −0.790042 0.613053i \(-0.789941\pi\)
0.613053 + 0.790042i \(0.289941\pi\)
\(158\) 0.920455i 0.0732275i
\(159\) 23.9666i 1.90067i
\(160\) 5.32285 + 4.55558i 0.420809 + 0.360150i
\(161\) −0.0910805 0.0910805i −0.00717815 0.00717815i
\(162\) 2.76860 0.217522
\(163\) 14.8128 1.16023 0.580116 0.814534i \(-0.303007\pi\)
0.580116 + 0.814534i \(0.303007\pi\)
\(164\) 6.33641 + 6.33641i 0.494790 + 0.494790i
\(165\) −17.5075 14.9838i −1.36296 1.16649i
\(166\) 1.42580i 0.110664i
\(167\) 3.46812i 0.268372i −0.990956 0.134186i \(-0.957158\pi\)
0.990956 0.134186i \(-0.0428419\pi\)
\(168\) −0.695792 + 0.695792i −0.0536815 + 0.0536815i
\(169\) 0 0
\(170\) 0.0938613 + 1.20843i 0.00719883 + 0.0926823i
\(171\) −9.15493 9.15493i −0.700095 0.700095i
\(172\) −9.27848 + 9.27848i −0.707477 + 0.707477i
\(173\) 2.76467 2.76467i 0.210194 0.210194i −0.594156 0.804350i \(-0.702514\pi\)
0.804350 + 0.594156i \(0.202514\pi\)
\(174\) −3.74888 + 3.74888i −0.284202 + 0.284202i
\(175\) 1.90736 0.298097i 0.144183 0.0225340i
\(176\) −10.9553 + 10.9553i −0.825787 + 0.825787i
\(177\) 5.73569i 0.431121i
\(178\) 0.971326 + 0.971326i 0.0728040 + 0.0728040i
\(179\) −6.49760 −0.485653 −0.242827 0.970070i \(-0.578075\pi\)
−0.242827 + 0.970070i \(0.578075\pi\)
\(180\) 7.23067 8.44851i 0.538943 0.629715i
\(181\) 11.9845i 0.890802i 0.895331 + 0.445401i \(0.146939\pi\)
−0.895331 + 0.445401i \(0.853061\pi\)
\(182\) 0 0
\(183\) 17.7902 + 17.7902i 1.31509 + 1.31509i
\(184\) −0.254410 + 0.254410i −0.0187553 + 0.0187553i
\(185\) 7.01534 8.19691i 0.515778 0.602649i
\(186\) 2.33441i 0.171167i
\(187\) −8.60214 −0.629051
\(188\) 18.9236i 1.38015i
\(189\) −0.268296 0.268296i −0.0195156 0.0195156i
\(190\) −3.06947 + 0.238412i −0.222683 + 0.0172963i
\(191\) −5.19291 −0.375746 −0.187873 0.982193i \(-0.560159\pi\)
−0.187873 + 0.982193i \(0.560159\pi\)
\(192\) −10.4336 10.4336i −0.752981 0.752981i
\(193\) 6.67413 0.480414 0.240207 0.970722i \(-0.422785\pi\)
0.240207 + 0.970722i \(0.422785\pi\)
\(194\) 4.05289 0.290980
\(195\) 0 0
\(196\) −13.1845 −0.941748
\(197\) 19.5971 1.39624 0.698119 0.715982i \(-0.254021\pi\)
0.698119 + 0.715982i \(0.254021\pi\)
\(198\) −2.18991 2.18991i −0.155630 0.155630i
\(199\) −14.7060 −1.04248 −0.521242 0.853409i \(-0.674531\pi\)
−0.521242 + 0.853409i \(0.674531\pi\)
\(200\) −0.832657 5.32773i −0.0588777 0.376727i
\(201\) −10.6538 10.6538i −0.751463 0.751463i
\(202\) 1.45085i 0.102082i
\(203\) 3.15219 0.221240
\(204\) 8.97023i 0.628042i
\(205\) −0.806286 10.3806i −0.0563135 0.725014i
\(206\) 0.332522 0.332522i 0.0231679 0.0231679i
\(207\) 0.609590 + 0.609590i 0.0423694 + 0.0423694i
\(208\) 0 0
\(209\) 21.8499i 1.51139i
\(210\) 0.558974 0.0434167i 0.0385728 0.00299604i
\(211\) −21.4143 −1.47422 −0.737111 0.675771i \(-0.763811\pi\)
−0.737111 + 0.675771i \(0.763811\pi\)
\(212\) 13.8015 + 13.8015i 0.947892 + 0.947892i
\(213\) 10.2883i 0.704943i
\(214\) 0.787555 0.787555i 0.0538362 0.0538362i
\(215\) 15.2005 1.18065i 1.03666 0.0805199i
\(216\) −0.749414 + 0.749414i −0.0509912 + 0.0509912i
\(217\) −0.981427 + 0.981427i −0.0666236 + 0.0666236i
\(218\) 1.38201 1.38201i 0.0936014 0.0936014i
\(219\) 10.1693 + 10.1693i 0.687176 + 0.687176i
\(220\) 18.7106 1.45329i 1.26147 0.0979809i
\(221\) 0 0
\(222\) 2.21561 2.21561i 0.148702 0.148702i
\(223\) 27.3356i 1.83053i −0.402855 0.915264i \(-0.631982\pi\)
0.402855 0.915264i \(-0.368018\pi\)
\(224\) 1.20976i 0.0808302i
\(225\) −12.7657 + 1.99512i −0.851049 + 0.133008i
\(226\) −0.772287 0.772287i −0.0513718 0.0513718i
\(227\) 6.92738 0.459786 0.229893 0.973216i \(-0.426162\pi\)
0.229893 + 0.973216i \(0.426162\pi\)
\(228\) 22.7848 1.50896
\(229\) −4.56825 4.56825i −0.301879 0.301879i 0.539870 0.841749i \(-0.318473\pi\)
−0.841749 + 0.539870i \(0.818473\pi\)
\(230\) 0.204383 0.0158749i 0.0134766 0.00104676i
\(231\) 3.97903i 0.261801i
\(232\) 8.80482i 0.578065i
\(233\) −5.49074 + 5.49074i −0.359711 + 0.359711i −0.863706 0.503996i \(-0.831863\pi\)
0.503996 + 0.863706i \(0.331863\pi\)
\(234\) 0 0
\(235\) −14.2968 + 16.7048i −0.932622 + 1.08970i
\(236\) −3.30298 3.30298i −0.215006 0.215006i
\(237\) −5.59674 + 5.59674i −0.363548 + 0.363548i
\(238\) 0.147990 0.147990i 0.00959274 0.00959274i
\(239\) −8.33949 + 8.33949i −0.539437 + 0.539437i −0.923363 0.383927i \(-0.874571\pi\)
0.383927 + 0.923363i \(0.374571\pi\)
\(240\) 1.45367 + 18.7155i 0.0938343 + 1.20808i
\(241\) 1.03184 1.03184i 0.0664667 0.0664667i −0.673092 0.739559i \(-0.735034\pi\)
0.739559 + 0.673092i \(0.235034\pi\)
\(242\) 2.20371i 0.141660i
\(243\) 14.7496 + 14.7496i 0.946185 + 0.946185i
\(244\) −20.4895 −1.31171
\(245\) 11.6386 + 9.96089i 0.743561 + 0.636378i
\(246\) 3.02380i 0.192791i
\(247\) 0 0
\(248\) 2.74136 + 2.74136i 0.174077 + 0.174077i
\(249\) −8.66945 + 8.66945i −0.549404 + 0.549404i
\(250\) −1.61339 + 2.61476i −0.102040 + 0.165372i
\(251\) 13.0098i 0.821169i −0.911823 0.410585i \(-0.865325\pi\)
0.911823 0.410585i \(-0.134675\pi\)
\(252\) −1.92014 −0.120958
\(253\) 1.45489i 0.0914684i
\(254\) 2.21600 + 2.21600i 0.139044 + 0.139044i
\(255\) −6.77703 + 7.91846i −0.424394 + 0.495873i
\(256\) 10.2946 0.643413
\(257\) 20.8324 + 20.8324i 1.29949 + 1.29949i 0.928729 + 0.370760i \(0.120903\pi\)
0.370760 + 0.928729i \(0.379097\pi\)
\(258\) 4.42779 0.275662
\(259\) −1.86296 −0.115759
\(260\) 0 0
\(261\) −21.0972 −1.30588
\(262\) 5.73326 0.354202
\(263\) −3.57265 3.57265i −0.220299 0.220299i 0.588325 0.808624i \(-0.299788\pi\)
−0.808624 + 0.588325i \(0.799788\pi\)
\(264\) 11.1144 0.684043
\(265\) −1.75619 22.6103i −0.107882 1.38894i
\(266\) 0.375901 + 0.375901i 0.0230480 + 0.0230480i
\(267\) 11.8121i 0.722890i
\(268\) 12.2703 0.749529
\(269\) 8.64999i 0.527399i −0.964605 0.263699i \(-0.915057\pi\)
0.964605 0.263699i \(-0.0849427\pi\)
\(270\) 0.602052 0.0467627i 0.0366397 0.00284589i
\(271\) 16.2843 16.2843i 0.989201 0.989201i −0.0107409 0.999942i \(-0.503419\pi\)
0.999942 + 0.0107409i \(0.00341900\pi\)
\(272\) 4.95497 + 4.95497i 0.300439 + 0.300439i
\(273\) 0 0
\(274\) 0.0670394i 0.00405000i
\(275\) −17.6147 12.8530i −1.06221 0.775064i
\(276\) −1.51715 −0.0913216
\(277\) −15.3026 15.3026i −0.919444 0.919444i 0.0775451 0.996989i \(-0.475292\pi\)
−0.996989 + 0.0775451i \(0.975292\pi\)
\(278\) 3.21087i 0.192575i
\(279\) 6.56856 6.56856i 0.393250 0.393250i
\(280\) −0.605432 + 0.707403i −0.0361815 + 0.0422754i
\(281\) 8.17717 8.17717i 0.487809 0.487809i −0.419805 0.907614i \(-0.637902\pi\)
0.907614 + 0.419805i \(0.137902\pi\)
\(282\) −4.51527 + 4.51527i −0.268880 + 0.268880i
\(283\) −3.18152 + 3.18152i −0.189122 + 0.189122i −0.795316 0.606195i \(-0.792695\pi\)
0.606195 + 0.795316i \(0.292695\pi\)
\(284\) 5.92467 + 5.92467i 0.351564 + 0.351564i
\(285\) −20.1133 17.2140i −1.19141 1.01967i
\(286\) 0 0
\(287\) −1.27126 + 1.27126i −0.0750400 + 0.0750400i
\(288\) 8.09674i 0.477105i
\(289\) 13.1093i 0.771137i
\(290\) −3.26203 + 3.81144i −0.191553 + 0.223815i
\(291\) 24.6432 + 24.6432i 1.44461 + 1.44461i
\(292\) −11.7123 −0.685408
\(293\) −13.1055 −0.765631 −0.382815 0.923825i \(-0.625045\pi\)
−0.382815 + 0.923825i \(0.625045\pi\)
\(294\) 3.14588 + 3.14588i 0.183472 + 0.183472i
\(295\) 0.420293 + 5.41111i 0.0244704 + 0.315047i
\(296\) 5.20370i 0.302459i
\(297\) 4.28568i 0.248680i
\(298\) −0.492111 + 0.492111i −0.0285072 + 0.0285072i
\(299\) 0 0
\(300\) 13.4030 18.3684i 0.773821 1.06050i
\(301\) −1.86152 1.86152i −0.107296 0.107296i
\(302\) 0.710373 0.710373i 0.0408774 0.0408774i
\(303\) 8.82177 8.82177i 0.506797 0.506797i
\(304\) −12.5859 + 12.5859i −0.721849 + 0.721849i
\(305\) 18.0871 + 15.4799i 1.03566 + 0.886374i
\(306\) −0.990475 + 0.990475i −0.0566217 + 0.0566217i
\(307\) 7.75447i 0.442571i −0.975209 0.221285i \(-0.928975\pi\)
0.975209 0.221285i \(-0.0710252\pi\)
\(308\) −2.29138 2.29138i −0.130564 0.130564i
\(309\) 4.04374 0.230040
\(310\) −0.171058 2.20231i −0.00971546 0.125083i
\(311\) 11.6030i 0.657947i 0.944339 + 0.328974i \(0.106703\pi\)
−0.944339 + 0.328974i \(0.893297\pi\)
\(312\) 0 0
\(313\) −10.1565 10.1565i −0.574078 0.574078i 0.359188 0.933265i \(-0.383054\pi\)
−0.933265 + 0.359188i \(0.883054\pi\)
\(314\) −0.609436 + 0.609436i −0.0343924 + 0.0343924i
\(315\) 1.69500 + 1.45067i 0.0955026 + 0.0817361i
\(316\) 6.44593i 0.362612i
\(317\) 21.7686 1.22265 0.611323 0.791381i \(-0.290638\pi\)
0.611323 + 0.791381i \(0.290638\pi\)
\(318\) 6.58623i 0.369337i
\(319\) −25.1761 25.1761i −1.40959 1.40959i
\(320\) −10.6077 9.07864i −0.592990 0.507512i
\(321\) 9.57732 0.534554
\(322\) −0.0250297 0.0250297i −0.00139485 0.00139485i
\(323\) −9.88248 −0.549876
\(324\) −19.3884 −1.07714
\(325\) 0 0
\(326\) 4.07070 0.225455
\(327\) 16.8064 0.929393
\(328\) 3.55093 + 3.55093i 0.196067 + 0.196067i
\(329\) 3.79659 0.209313
\(330\) −4.81121 4.11768i −0.264848 0.226671i
\(331\) −13.8731 13.8731i −0.762536 0.762536i 0.214244 0.976780i \(-0.431271\pi\)
−0.976780 + 0.214244i \(0.931271\pi\)
\(332\) 9.98485i 0.547990i
\(333\) 12.4685 0.683272
\(334\) 0.953071i 0.0521497i
\(335\) −10.8316 9.27025i −0.591794 0.506488i
\(336\) 2.29198 2.29198i 0.125038 0.125038i
\(337\) 9.35946 + 9.35946i 0.509842 + 0.509842i 0.914478 0.404636i \(-0.132602\pi\)
−0.404636 + 0.914478i \(0.632602\pi\)
\(338\) 0 0
\(339\) 9.39165i 0.510084i
\(340\) −0.657309 8.46261i −0.0356476 0.458949i
\(341\) 15.6770 0.848959
\(342\) −2.51585 2.51585i −0.136042 0.136042i
\(343\) 5.34789i 0.288759i
\(344\) −5.19967 + 5.19967i −0.280347 + 0.280347i
\(345\) 1.33926 + 1.14621i 0.0721034 + 0.0617098i
\(346\) 0.759754 0.759754i 0.0408446 0.0408446i
\(347\) −19.5532 + 19.5532i −1.04967 + 1.04967i −0.0509719 + 0.998700i \(0.516232\pi\)
−0.998700 + 0.0509719i \(0.983768\pi\)
\(348\) 26.2533 26.2533i 1.40733 1.40733i
\(349\) −20.8717 20.8717i −1.11724 1.11724i −0.992145 0.125093i \(-0.960077\pi\)
−0.125093 0.992145i \(-0.539923\pi\)
\(350\) 0.524160 0.0819196i 0.0280175 0.00437878i
\(351\) 0 0
\(352\) −9.66215 + 9.66215i −0.514994 + 0.514994i
\(353\) 15.6355i 0.832195i 0.909320 + 0.416098i \(0.136603\pi\)
−0.909320 + 0.416098i \(0.863397\pi\)
\(354\) 1.57622i 0.0837750i
\(355\) −0.753894 9.70609i −0.0400125 0.515146i
\(356\) −6.80218 6.80218i −0.360515 0.360515i
\(357\) 1.79967 0.0952489
\(358\) −1.78560 −0.0943716
\(359\) −14.0592 14.0592i −0.742017 0.742017i 0.230949 0.972966i \(-0.425817\pi\)
−0.972966 + 0.230949i \(0.925817\pi\)
\(360\) 4.05208 4.73456i 0.213563 0.249533i
\(361\) 6.10198i 0.321157i
\(362\) 3.29345i 0.173100i
\(363\) 13.3995 13.3995i 0.703290 0.703290i
\(364\) 0 0
\(365\) 10.3390 + 8.84863i 0.541167 + 0.463159i
\(366\) 4.88890 + 4.88890i 0.255547 + 0.255547i
\(367\) −15.5741 + 15.5741i −0.812963 + 0.812963i −0.985077 0.172114i \(-0.944940\pi\)
0.172114 + 0.985077i \(0.444940\pi\)
\(368\) 0.838042 0.838042i 0.0436860 0.0436860i
\(369\) 8.50836 8.50836i 0.442928 0.442928i
\(370\) 1.92788 2.25258i 0.100225 0.117106i
\(371\) −2.76896 + 2.76896i −0.143757 + 0.143757i
\(372\) 16.3479i 0.847597i
\(373\) −0.824171 0.824171i −0.0426740 0.0426740i 0.685448 0.728122i \(-0.259606\pi\)
−0.728122 + 0.685448i \(0.759606\pi\)
\(374\) −2.36394 −0.122237
\(375\) −25.7088 + 6.08874i −1.32760 + 0.314421i
\(376\) 10.6048i 0.546901i
\(377\) 0 0
\(378\) −0.0737299 0.0737299i −0.00379226 0.00379226i
\(379\) −18.6501 + 18.6501i −0.957990 + 0.957990i −0.999152 0.0411628i \(-0.986894\pi\)
0.0411628 + 0.999152i \(0.486894\pi\)
\(380\) 21.4954 1.66960i 1.10269 0.0856486i
\(381\) 26.9484i 1.38061i
\(382\) −1.42706 −0.0730146
\(383\) 32.8001i 1.67601i 0.545664 + 0.838004i \(0.316278\pi\)
−0.545664 + 0.838004i \(0.683722\pi\)
\(384\) −13.3382 13.3382i −0.680663 0.680663i
\(385\) 0.291570 + 3.75386i 0.0148598 + 0.191314i
\(386\) 1.83411 0.0933536
\(387\) 12.4589 + 12.4589i 0.633321 + 0.633321i
\(388\) −28.3823 −1.44089
\(389\) −9.36826 −0.474989 −0.237495 0.971389i \(-0.576326\pi\)
−0.237495 + 0.971389i \(0.576326\pi\)
\(390\) 0 0
\(391\) 0.658034 0.0332782
\(392\) −7.38859 −0.373180
\(393\) 34.8606 + 34.8606i 1.75848 + 1.75848i
\(394\) 5.38546 0.271316
\(395\) −4.86992 + 5.69014i −0.245032 + 0.286302i
\(396\) 15.3359 + 15.3359i 0.770658 + 0.770658i
\(397\) 11.6520i 0.584797i 0.956297 + 0.292399i \(0.0944534\pi\)
−0.956297 + 0.292399i \(0.905547\pi\)
\(398\) −4.04135 −0.202574
\(399\) 4.57126i 0.228849i
\(400\) 2.74282 + 17.5499i 0.137141 + 0.877494i
\(401\) −14.5782 + 14.5782i −0.728002 + 0.728002i −0.970221 0.242220i \(-0.922124\pi\)
0.242220 + 0.970221i \(0.422124\pi\)
\(402\) −2.92776 2.92776i −0.146024 0.146024i
\(403\) 0 0
\(404\) 10.1603i 0.505493i
\(405\) 17.1151 + 14.6480i 0.850457 + 0.727866i
\(406\) 0.866248 0.0429912
\(407\) 14.8792 + 14.8792i 0.737534 + 0.737534i
\(408\) 5.02693i 0.248870i
\(409\) 3.22285 3.22285i 0.159360 0.159360i −0.622923 0.782283i \(-0.714055\pi\)
0.782283 + 0.622923i \(0.214055\pi\)
\(410\) −0.221574 2.85269i −0.0109428 0.140884i
\(411\) −0.407627 + 0.407627i −0.0201067 + 0.0201067i
\(412\) −2.32865 + 2.32865i −0.114724 + 0.114724i
\(413\) 0.662669 0.662669i 0.0326078 0.0326078i
\(414\) 0.167521 + 0.167521i 0.00823318 + 0.00823318i
\(415\) −7.54358 + 8.81412i −0.370300 + 0.432668i
\(416\) 0 0
\(417\) 19.5234 19.5234i 0.956067 0.956067i
\(418\) 6.00453i 0.293691i
\(419\) 0.652044i 0.0318545i 0.999873 + 0.0159272i \(0.00507001\pi\)
−0.999873 + 0.0159272i \(0.994930\pi\)
\(420\) −3.91448 + 0.304047i −0.191007 + 0.0148360i
\(421\) −5.58095 5.58095i −0.271999 0.271999i 0.557906 0.829904i \(-0.311605\pi\)
−0.829904 + 0.557906i \(0.811605\pi\)
\(422\) −5.88484 −0.286470
\(423\) −25.4101 −1.23548
\(424\) 7.73438 + 7.73438i 0.375615 + 0.375615i
\(425\) −5.81328 + 7.96695i −0.281985 + 0.386454i
\(426\) 2.82731i 0.136984i
\(427\) 4.11075i 0.198933i
\(428\) −5.51524 + 5.51524i −0.266589 + 0.266589i
\(429\) 0 0
\(430\) 4.17722 0.324454i 0.201443 0.0156466i
\(431\) 25.2795 + 25.2795i 1.21767 + 1.21767i 0.968445 + 0.249227i \(0.0801767\pi\)
0.249227 + 0.968445i \(0.419823\pi\)
\(432\) 2.46862 2.46862i 0.118771 0.118771i
\(433\) −18.6534 + 18.6534i −0.896424 + 0.896424i −0.995118 0.0986941i \(-0.968533\pi\)
0.0986941 + 0.995118i \(0.468533\pi\)
\(434\) −0.269705 + 0.269705i −0.0129462 + 0.0129462i
\(435\) −43.0096 + 3.34065i −2.06215 + 0.160172i
\(436\) −9.67818 + 9.67818i −0.463501 + 0.463501i
\(437\) 1.67144i 0.0799558i
\(438\) 2.79461 + 2.79461i 0.133531 + 0.133531i
\(439\) −1.72935 −0.0825374 −0.0412687 0.999148i \(-0.513140\pi\)
−0.0412687 + 0.999148i \(0.513140\pi\)
\(440\) 10.4854 0.814426i 0.499873 0.0388263i
\(441\) 17.7038i 0.843036i
\(442\) 0 0
\(443\) 2.86737 + 2.86737i 0.136233 + 0.136233i 0.771935 0.635702i \(-0.219289\pi\)
−0.635702 + 0.771935i \(0.719289\pi\)
\(444\) −15.5159 + 15.5159i −0.736350 + 0.736350i
\(445\) 0.865554 + 11.1437i 0.0410312 + 0.528261i
\(446\) 7.51206i 0.355706i
\(447\) −5.98448 −0.283056
\(448\) 2.41088i 0.113903i
\(449\) 14.2752 + 14.2752i 0.673687 + 0.673687i 0.958564 0.284877i \(-0.0919527\pi\)
−0.284877 + 0.958564i \(0.591953\pi\)
\(450\) −3.50813 + 0.548277i −0.165375 + 0.0258460i
\(451\) 20.3067 0.956205
\(452\) 5.40832 + 5.40832i 0.254386 + 0.254386i
\(453\) 8.63872 0.405883
\(454\) 1.90370 0.0893452
\(455\) 0 0
\(456\) 12.7686 0.597946
\(457\) −14.7816 −0.691454 −0.345727 0.938335i \(-0.612368\pi\)
−0.345727 + 0.938335i \(0.612368\pi\)
\(458\) −1.25540 1.25540i −0.0586608 0.0586608i
\(459\) 1.93837 0.0904753
\(460\) −1.43129 + 0.111172i −0.0667344 + 0.00518341i
\(461\) −4.29491 4.29491i −0.200034 0.200034i 0.599981 0.800015i \(-0.295175\pi\)
−0.800015 + 0.599981i \(0.795175\pi\)
\(462\) 1.09347i 0.0508729i
\(463\) −36.0148 −1.67375 −0.836874 0.547396i \(-0.815619\pi\)
−0.836874 + 0.547396i \(0.815619\pi\)
\(464\) 29.0036i 1.34646i
\(465\) 12.3508 14.4310i 0.572757 0.669224i
\(466\) −1.50890 + 1.50890i −0.0698986 + 0.0698986i
\(467\) −7.68952 7.68952i −0.355829 0.355829i 0.506444 0.862273i \(-0.330960\pi\)
−0.862273 + 0.506444i \(0.830960\pi\)
\(468\) 0 0
\(469\) 2.46176i 0.113674i
\(470\) −3.92889 + 4.59062i −0.181226 + 0.211749i
\(471\) −7.41124 −0.341492
\(472\) −1.85099 1.85099i −0.0851989 0.0851989i
\(473\) 29.7353i 1.36723i
\(474\) −1.53803 + 1.53803i −0.0706442 + 0.0706442i
\(475\) −20.2365 14.7660i −0.928512 0.677511i
\(476\) −1.03637 + 1.03637i −0.0475019 + 0.0475019i
\(477\) 18.5323 18.5323i 0.848536 0.848536i
\(478\) −2.29176 + 2.29176i −0.104823 + 0.104823i
\(479\) −6.49399 6.49399i −0.296718 0.296718i 0.543009 0.839727i \(-0.317285\pi\)
−0.839727 + 0.543009i \(0.817285\pi\)
\(480\) 1.28208 + 16.5064i 0.0585189 + 0.753408i
\(481\) 0 0
\(482\) 0.283559 0.283559i 0.0129157 0.0129157i
\(483\) 0.304382i 0.0138498i
\(484\) 15.4326i 0.701480i
\(485\) 25.0544 + 21.4429i 1.13766 + 0.973672i
\(486\) 4.05331 + 4.05331i 0.183862 + 0.183862i
\(487\) 25.7313 1.16600 0.582998 0.812473i \(-0.301879\pi\)
0.582998 + 0.812473i \(0.301879\pi\)
\(488\) −11.4823 −0.519781
\(489\) 24.7515 + 24.7515i 1.11930 + 1.11930i
\(490\) 3.19838 + 2.73734i 0.144488 + 0.123660i
\(491\) 13.1972i 0.595581i −0.954631 0.297790i \(-0.903750\pi\)
0.954631 0.297790i \(-0.0962497\pi\)
\(492\) 21.1756i 0.954671i
\(493\) −11.3869 + 11.3869i −0.512839 + 0.512839i
\(494\) 0 0
\(495\) −1.95144 25.1241i −0.0877108 1.12924i
\(496\) −9.03023 9.03023i −0.405469 0.405469i
\(497\) −1.18865 + 1.18865i −0.0533183 + 0.0533183i
\(498\) −2.38244 + 2.38244i −0.106760 + 0.106760i
\(499\) −16.7683 + 16.7683i −0.750650 + 0.750650i −0.974601 0.223950i \(-0.928105\pi\)
0.223950 + 0.974601i \(0.428105\pi\)
\(500\) 11.2985 18.3111i 0.505285 0.818897i
\(501\) 5.79506 5.79506i 0.258904 0.258904i
\(502\) 3.57520i 0.159569i
\(503\) 5.33090 + 5.33090i 0.237693 + 0.237693i 0.815894 0.578201i \(-0.196245\pi\)
−0.578201 + 0.815894i \(0.696245\pi\)
\(504\) −1.07605 −0.0479311
\(505\) 7.67612 8.96898i 0.341583 0.399114i
\(506\) 0.399817i 0.0177740i
\(507\) 0 0
\(508\) −15.5186 15.5186i −0.688528 0.688528i
\(509\) 21.6741 21.6741i 0.960687 0.960687i −0.0385690 0.999256i \(-0.512280\pi\)
0.999256 + 0.0385690i \(0.0122799\pi\)
\(510\) −1.86239 + 2.17606i −0.0824678 + 0.0963576i
\(511\) 2.34980i 0.103949i
\(512\) 18.7939 0.830581
\(513\) 4.92355i 0.217380i
\(514\) 5.72492 + 5.72492i 0.252515 + 0.252515i
\(515\) 3.81491 0.296312i 0.168105 0.0130571i
\(516\) −31.0077 −1.36504
\(517\) −30.3229 30.3229i −1.33360 1.33360i
\(518\) −0.511957 −0.0224941
\(519\) 9.23923 0.405557
\(520\) 0 0
\(521\) −7.16076 −0.313719 −0.156859 0.987621i \(-0.550137\pi\)
−0.156859 + 0.987621i \(0.550137\pi\)
\(522\) −5.79768 −0.253758
\(523\) 7.60576 + 7.60576i 0.332576 + 0.332576i 0.853564 0.520988i \(-0.174436\pi\)
−0.520988 + 0.853564i \(0.674436\pi\)
\(524\) −40.1499 −1.75396
\(525\) 3.68521 + 2.68900i 0.160836 + 0.117358i
\(526\) −0.981796 0.981796i −0.0428083 0.0428083i
\(527\) 7.09057i 0.308870i
\(528\) −36.6115 −1.59331
\(529\) 22.8887i 0.995161i
\(530\) −0.482617 6.21351i −0.0209636 0.269898i
\(531\) −4.43516 + 4.43516i −0.192469 + 0.192469i
\(532\) −2.63243 2.63243i −0.114130 0.114130i
\(533\) 0 0
\(534\) 3.24607i 0.140471i
\(535\) 9.03534 0.701795i 0.390632 0.0303412i
\(536\) 6.87630 0.297011
\(537\) −10.8572 10.8572i −0.468521 0.468521i
\(538\) 2.37709i 0.102484i
\(539\) −21.1266 + 21.1266i −0.909986 + 0.909986i
\(540\) −4.21616 + 0.327478i −0.181435 + 0.0140924i
\(541\) 11.1986 11.1986i 0.481464 0.481464i −0.424135 0.905599i \(-0.639422\pi\)
0.905599 + 0.424135i \(0.139422\pi\)
\(542\) 4.47507 4.47507i 0.192221 0.192221i
\(543\) −20.0255 + 20.0255i −0.859377 + 0.859377i
\(544\) 4.37009 + 4.37009i 0.187366 + 0.187366i
\(545\) 15.8553 1.23152i 0.679166 0.0527523i
\(546\) 0 0
\(547\) −23.6205 + 23.6205i −1.00994 + 1.00994i −0.00999077 + 0.999950i \(0.503180\pi\)
−0.999950 + 0.00999077i \(0.996820\pi\)
\(548\) 0.469476i 0.0200550i
\(549\) 27.5127i 1.17422i
\(550\) −4.84067 3.53211i −0.206407 0.150610i
\(551\) −28.9232 28.9232i −1.23217 1.23217i
\(552\) −0.850212 −0.0361874
\(553\) 1.29323 0.0549938
\(554\) −4.20528 4.20528i −0.178665 0.178665i
\(555\) 25.4189 1.97434i 1.07897 0.0838061i
\(556\) 22.4857i 0.953606i
\(557\) 31.1464i 1.31972i −0.751390 0.659859i \(-0.770616\pi\)
0.751390 0.659859i \(-0.229384\pi\)
\(558\) 1.80510 1.80510i 0.0764159 0.0764159i
\(559\) 0 0
\(560\) 1.99433 2.33023i 0.0842759 0.0984702i
\(561\) −14.3737 14.3737i −0.606860 0.606860i
\(562\) 2.24716 2.24716i 0.0947906 0.0947906i
\(563\) 14.7397 14.7397i 0.621203 0.621203i −0.324636 0.945839i \(-0.605242\pi\)
0.945839 + 0.324636i \(0.105242\pi\)
\(564\) 31.6204 31.6204i 1.33146 1.33146i
\(565\) −0.688190 8.86018i −0.0289524 0.372751i
\(566\) −0.874308 + 0.874308i −0.0367499 + 0.0367499i
\(567\) 3.88985i 0.163359i
\(568\) 3.32019 + 3.32019i 0.139312 + 0.139312i
\(569\) 41.7455 1.75006 0.875031 0.484066i \(-0.160841\pi\)
0.875031 + 0.484066i \(0.160841\pi\)
\(570\) −5.52730 4.73055i −0.231513 0.198141i
\(571\) 19.2151i 0.804127i −0.915612 0.402064i \(-0.868293\pi\)
0.915612 0.402064i \(-0.131707\pi\)
\(572\) 0 0
\(573\) −8.67709 8.67709i −0.362491 0.362491i
\(574\) −0.349353 + 0.349353i −0.0145817 + 0.0145817i
\(575\) 1.34746 + 0.983209i 0.0561931 + 0.0410027i
\(576\) 16.1357i 0.672321i
\(577\) −21.8168 −0.908243 −0.454122 0.890940i \(-0.650047\pi\)
−0.454122 + 0.890940i \(0.650047\pi\)
\(578\) 3.60256i 0.149847i
\(579\) 11.1521 + 11.1521i 0.463466 + 0.463466i
\(580\) 22.8439 26.6914i 0.948542 1.10830i
\(581\) 2.00324 0.0831082
\(582\) 6.77217 + 6.77217i 0.280715 + 0.280715i
\(583\) 44.2306 1.83184
\(584\) −6.56356 −0.271602
\(585\) 0 0
\(586\) −3.60150 −0.148777
\(587\) −5.85530 −0.241674 −0.120837 0.992672i \(-0.538558\pi\)
−0.120837 + 0.992672i \(0.538558\pi\)
\(588\) −22.0306 22.0306i −0.908525 0.908525i
\(589\) 18.0104 0.742105
\(590\) 0.115500 + 1.48702i 0.00475507 + 0.0612197i
\(591\) 32.7458 + 32.7458i 1.34698 + 1.34698i
\(592\) 17.1413i 0.704503i
\(593\) 45.6277 1.87370 0.936852 0.349727i \(-0.113726\pi\)
0.936852 + 0.349727i \(0.113726\pi\)
\(594\) 1.17774i 0.0483233i
\(595\) 1.69783 0.131874i 0.0696043 0.00540632i
\(596\) 3.44625 3.44625i 0.141164 0.141164i
\(597\) −24.5730 24.5730i −1.00571 1.00571i
\(598\) 0 0
\(599\) 12.7240i 0.519888i 0.965624 + 0.259944i \(0.0837041\pi\)
−0.965624 + 0.259944i \(0.916296\pi\)
\(600\) 7.51104 10.2937i 0.306637 0.420238i
\(601\) −24.7272 −1.00864 −0.504321 0.863516i \(-0.668257\pi\)
−0.504321 + 0.863516i \(0.668257\pi\)
\(602\) −0.511561 0.511561i −0.0208497 0.0208497i
\(603\) 16.4763i 0.670965i
\(604\) −4.97473 + 4.97473i −0.202419 + 0.202419i
\(605\) 11.6593 13.6231i 0.474020 0.553857i
\(606\) 2.42430 2.42430i 0.0984804 0.0984804i
\(607\) 3.11245 3.11245i 0.126331 0.126331i −0.641115 0.767445i \(-0.721528\pi\)
0.767445 + 0.641115i \(0.221528\pi\)
\(608\) −11.1003 + 11.1003i −0.450175 + 0.450175i
\(609\) 5.26714 + 5.26714i 0.213435 + 0.213435i
\(610\) 4.97048 + 4.25400i 0.201249 + 0.172239i
\(611\) 0 0
\(612\) 6.93628 6.93628i 0.280382 0.280382i
\(613\) 1.16058i 0.0468752i 0.999725 + 0.0234376i \(0.00746111\pi\)
−0.999725 + 0.0234376i \(0.992539\pi\)
\(614\) 2.13099i 0.0859999i
\(615\) 15.9982 18.6928i 0.645111 0.753765i
\(616\) −1.28409 1.28409i −0.0517375 0.0517375i
\(617\) −38.4760 −1.54899 −0.774493 0.632583i \(-0.781995\pi\)
−0.774493 + 0.632583i \(0.781995\pi\)
\(618\) 1.11126 0.0447012
\(619\) −24.7229 24.7229i −0.993698 0.993698i 0.00628240 0.999980i \(-0.498000\pi\)
−0.999980 + 0.00628240i \(0.998000\pi\)
\(620\) 1.19792 + 15.4227i 0.0481096 + 0.619392i
\(621\) 0.327839i 0.0131557i
\(622\) 3.18861i 0.127852i
\(623\) 1.36470 1.36470i 0.0546757 0.0546757i
\(624\) 0 0
\(625\) −23.8078 + 7.62804i −0.952313 + 0.305122i
\(626\) −2.79109 2.79109i −0.111554 0.111554i
\(627\) 36.5100 36.5100i 1.45807 1.45807i
\(628\) 4.26787 4.26787i 0.170306 0.170306i
\(629\) 6.72971 6.72971i 0.268331 0.268331i
\(630\) 0.465802 + 0.398657i 0.0185580 + 0.0158829i
\(631\) 5.16604 5.16604i 0.205657 0.205657i −0.596762 0.802419i \(-0.703546\pi\)
0.802419 + 0.596762i \(0.203546\pi\)
\(632\) 3.61231i 0.143690i
\(633\) −35.7822 35.7822i −1.42222 1.42222i
\(634\) 5.98220 0.237583
\(635\) 1.97469 + 25.4234i 0.0783633 + 1.00890i
\(636\) 46.1232i 1.82891i
\(637\) 0 0
\(638\) −6.91860 6.91860i −0.273910 0.273910i
\(639\) 7.95548 7.95548i 0.314714 0.314714i
\(640\) −13.5608 11.6060i −0.536038 0.458769i
\(641\) 8.31220i 0.328312i −0.986434 0.164156i \(-0.947510\pi\)
0.986434 0.164156i \(-0.0524901\pi\)
\(642\) 2.63193 0.103874
\(643\) 11.1556i 0.439933i 0.975507 + 0.219967i \(0.0705948\pi\)
−0.975507 + 0.219967i \(0.929405\pi\)
\(644\) 0.175283 + 0.175283i 0.00690710 + 0.00690710i
\(645\) 27.3720 + 23.4264i 1.07777 + 0.922414i
\(646\) −2.71579 −0.106851
\(647\) −29.7686 29.7686i −1.17033 1.17033i −0.982132 0.188194i \(-0.939736\pi\)
−0.188194 0.982132i \(-0.560264\pi\)
\(648\) −10.8653 −0.426830
\(649\) −10.5853 −0.415509
\(650\) 0 0
\(651\) −3.27983 −0.128547
\(652\) −28.5070 −1.11642
\(653\) −30.2101 30.2101i −1.18221 1.18221i −0.979169 0.203045i \(-0.934916\pi\)
−0.203045 0.979169i \(-0.565084\pi\)
\(654\) 4.61853 0.180599
\(655\) 35.4423 + 30.3334i 1.38485 + 1.18522i
\(656\) −11.6970 11.6970i −0.456691 0.456691i
\(657\) 15.7269i 0.613565i
\(658\) 1.04334 0.0406735
\(659\) 17.6082i 0.685916i −0.939351 0.342958i \(-0.888571\pi\)
0.939351 0.342958i \(-0.111429\pi\)
\(660\) 33.6928 + 28.8360i 1.31149 + 1.12244i
\(661\) 19.7044 19.7044i 0.766413 0.766413i −0.211060 0.977473i \(-0.567692\pi\)
0.977473 + 0.211060i \(0.0676915\pi\)
\(662\) −3.81246 3.81246i −0.148175 0.148175i
\(663\) 0 0
\(664\) 5.59552i 0.217148i
\(665\) 0.334967 + 4.31258i 0.0129895 + 0.167235i
\(666\) 3.42646 0.132773
\(667\) 1.92588 + 1.92588i 0.0745704 + 0.0745704i
\(668\) 6.67434i 0.258238i
\(669\) 45.6764 45.6764i 1.76595 1.76595i
\(670\) −2.97662 2.54754i −0.114997 0.0984202i
\(671\) −32.8320 + 32.8320i −1.26747 + 1.26747i
\(672\) 2.02144 2.02144i 0.0779788 0.0779788i
\(673\) 5.16432 5.16432i 0.199070 0.199070i −0.600531 0.799601i \(-0.705044\pi\)
0.799601 + 0.600531i \(0.205044\pi\)
\(674\) 2.57206 + 2.57206i 0.0990721 + 0.0990721i
\(675\) 3.96922 + 2.89624i 0.152775 + 0.111476i
\(676\) 0 0
\(677\) 3.26988 3.26988i 0.125672 0.125672i −0.641473 0.767145i \(-0.721677\pi\)
0.767145 + 0.641473i \(0.221677\pi\)
\(678\) 2.58091i 0.0991191i
\(679\) 5.69427i 0.218526i
\(680\) −0.368357 4.74245i −0.0141258 0.181865i
\(681\) 11.5753 + 11.5753i 0.443566 + 0.443566i
\(682\) 4.30818 0.164969
\(683\) −27.0952 −1.03677 −0.518384 0.855148i \(-0.673466\pi\)
−0.518384 + 0.855148i \(0.673466\pi\)
\(684\) 17.6185 + 17.6185i 0.673660 + 0.673660i
\(685\) −0.354690 + 0.414429i −0.0135520 + 0.0158345i
\(686\) 1.46965i 0.0561114i
\(687\) 15.2666i 0.582458i
\(688\) 17.1280 17.1280i 0.653000 0.653000i
\(689\) 0 0
\(690\) 0.368040 + 0.314988i 0.0140111 + 0.0119914i
\(691\) 8.88521 + 8.88521i 0.338009 + 0.338009i 0.855618 0.517608i \(-0.173178\pi\)
−0.517608 + 0.855618i \(0.673178\pi\)
\(692\) −5.32055 + 5.32055i −0.202257 + 0.202257i
\(693\) −3.07680 + 3.07680i −0.116878 + 0.116878i
\(694\) −5.37339 + 5.37339i −0.203971 + 0.203971i
\(695\) 16.9880 19.8492i 0.644392 0.752924i
\(696\) 14.7124 14.7124i 0.557672 0.557672i
\(697\) 9.18452i 0.347889i
\(698\) −5.73573 5.73573i −0.217101 0.217101i
\(699\) −18.3495 −0.694042
\(700\) −3.67068 + 0.573681i −0.138739 + 0.0216831i
\(701\) 39.3955i 1.48795i −0.668208 0.743974i \(-0.732938\pi\)
0.668208 0.743974i \(-0.267062\pi\)
\(702\) 0 0
\(703\) 17.0938 + 17.0938i 0.644705 + 0.644705i
\(704\) 19.2554 19.2554i 0.725714 0.725714i
\(705\) −51.8021 + 4.02358i −1.95098 + 0.151537i
\(706\) 4.29678i 0.161711i
\(707\) −2.03843 −0.0766631
\(708\) 11.0382i 0.414842i
\(709\) 18.0945 + 18.0945i 0.679552 + 0.679552i 0.959899 0.280347i \(-0.0904495\pi\)
−0.280347 + 0.959899i \(0.590450\pi\)
\(710\) −0.207176 2.66732i −0.00777519 0.100103i
\(711\) −8.65543 −0.324604
\(712\) −3.81195 3.81195i −0.142859 0.142859i
\(713\) −1.19924 −0.0449118
\(714\) 0.494566 0.0185087
\(715\) 0 0
\(716\) 12.5045 0.467315
\(717\) −27.8697 −1.04081
\(718\) −3.86359 3.86359i −0.144188 0.144188i
\(719\) 8.68536 0.323909 0.161955 0.986798i \(-0.448220\pi\)
0.161955 + 0.986798i \(0.448220\pi\)
\(720\) −13.3478 + 15.5959i −0.497443 + 0.581226i
\(721\) −0.467191 0.467191i −0.0173991 0.0173991i
\(722\) 1.67688i 0.0624069i
\(723\) 3.44830 0.128244
\(724\) 23.0640i 0.857166i
\(725\) −40.3309 + 6.30321i −1.49785 + 0.234095i
\(726\) 3.68229 3.68229i 0.136663 0.136663i
\(727\) 17.4677 + 17.4677i 0.647841 + 0.647841i 0.952471 0.304630i \(-0.0985327\pi\)
−0.304630 + 0.952471i \(0.598533\pi\)
\(728\) 0 0
\(729\) 19.0676i 0.706209i
\(730\) 2.84124 + 2.43168i 0.105159 + 0.0900005i
\(731\) 13.4490 0.497429
\(732\) −34.2369 34.2369i −1.26543 1.26543i
\(733\) 34.2413i 1.26473i −0.774670 0.632365i \(-0.782084\pi\)
0.774670 0.632365i \(-0.217916\pi\)
\(734\) −4.27990 + 4.27990i −0.157974 + 0.157974i
\(735\) 2.80331 + 36.0916i 0.103402 + 1.33126i
\(736\) 0.739121 0.739121i 0.0272444 0.0272444i
\(737\) 19.6617 19.6617i 0.724250 0.724250i
\(738\) 2.33817 2.33817i 0.0860692 0.0860692i
\(739\) −19.9754 19.9754i −0.734807 0.734807i 0.236761 0.971568i \(-0.423914\pi\)
−0.971568 + 0.236761i \(0.923914\pi\)
\(740\) −13.5009 + 15.7748i −0.496302 + 0.579893i
\(741\) 0 0
\(742\) −0.760935 + 0.760935i −0.0279348 + 0.0279348i
\(743\) 31.6768i 1.16211i 0.813864 + 0.581055i \(0.197360\pi\)
−0.813864 + 0.581055i \(0.802640\pi\)
\(744\) 9.16136i 0.335872i
\(745\) −5.64582 + 0.438523i −0.206847 + 0.0160662i
\(746\) −0.226489 0.226489i −0.00829237 0.00829237i
\(747\) −13.4074 −0.490551
\(748\) 16.5547 0.605298
\(749\) −1.10651 1.10651i −0.0404309 0.0404309i
\(750\) −7.06501 + 1.67324i −0.257978 + 0.0610980i
\(751\) 2.44047i 0.0890541i −0.999008 0.0445271i \(-0.985822\pi\)
0.999008 0.0445271i \(-0.0141781\pi\)
\(752\) 34.9329i 1.27387i
\(753\) 21.7387 21.7387i 0.792201 0.792201i
\(754\) 0 0
\(755\) 8.14986 0.633018i 0.296604 0.0230379i
\(756\) 0.516329 + 0.516329i 0.0187787 + 0.0187787i
\(757\) 30.1874 30.1874i 1.09718 1.09718i 0.102439 0.994739i \(-0.467335\pi\)
0.994739 0.102439i \(-0.0326646\pi\)
\(758\) −5.12520 + 5.12520i −0.186156 + 0.186156i
\(759\) −2.43105 + 2.43105i −0.0882416 + 0.0882416i
\(760\) 12.0461 0.935645i 0.436957 0.0339394i
\(761\) 28.2568 28.2568i 1.02431 1.02431i 0.0246125 0.999697i \(-0.492165\pi\)
0.999697 0.0246125i \(-0.00783521\pi\)
\(762\) 7.40565i 0.268279i
\(763\) −1.94171 1.94171i −0.0702946 0.0702946i
\(764\) 9.99366 0.361558
\(765\) −11.3634 + 0.882617i −0.410843 + 0.0319111i
\(766\) 9.01376i 0.325680i
\(767\) 0 0
\(768\) 17.2018 + 17.2018i 0.620716 + 0.620716i
\(769\) 27.1011 27.1011i 0.977291 0.977291i −0.0224570 0.999748i \(-0.507149\pi\)
0.999748 + 0.0224570i \(0.00714888\pi\)
\(770\) 0.0801260 + 1.03159i 0.00288754 + 0.0371760i
\(771\) 69.6197i 2.50729i
\(772\) −12.8442 −0.462274
\(773\) 14.5788i 0.524363i −0.965019 0.262181i \(-0.915558\pi\)
0.965019 0.262181i \(-0.0844419\pi\)
\(774\) 3.42381 + 3.42381i 0.123066 + 0.123066i
\(775\) 10.5945 14.5194i 0.380564 0.521553i
\(776\) −15.9055 −0.570973
\(777\) −3.11291 3.11291i −0.111675 0.111675i
\(778\) −2.57448 −0.0922995
\(779\) 23.3291 0.835853
\(780\) 0 0
\(781\) 18.9872 0.679414
\(782\) 0.180833 0.00646659
\(783\) 5.67306 + 5.67306i 0.202739 + 0.202739i
\(784\) 24.3385 0.869232
\(785\) −6.99184 + 0.543072i −0.249549 + 0.0193831i
\(786\) 9.57999 + 9.57999i 0.341707 + 0.341707i
\(787\) 0.947805i 0.0337856i −0.999857 0.0168928i \(-0.994623\pi\)
0.999857 0.0168928i \(-0.00537740\pi\)
\(788\) −37.7143 −1.34352
\(789\) 11.9394i 0.425056i
\(790\) −1.33829 + 1.56370i −0.0476144 + 0.0556339i
\(791\) −1.08506 + 1.08506i −0.0385802 + 0.0385802i
\(792\) 8.59426 + 8.59426i 0.305384 + 0.305384i
\(793\) 0 0
\(794\) 3.20207i 0.113637i
\(795\) 34.8462 40.7152i 1.23587 1.44402i
\(796\) 28.3015 1.00312
\(797\) −3.30722 3.30722i −0.117148 0.117148i 0.646103 0.763250i \(-0.276398\pi\)
−0.763250 + 0.646103i \(0.776398\pi\)
\(798\) 1.25622i 0.0444698i
\(799\) −13.7147 + 13.7147i −0.485192 + 0.485192i
\(800\) 2.41906 + 15.4783i 0.0855268 + 0.547241i
\(801\) −9.13379 + 9.13379i −0.322726 + 0.322726i
\(802\) −4.00622 + 4.00622i −0.141465 + 0.141465i
\(803\) −18.7675 + 18.7675i −0.662291 + 0.662291i
\(804\) 20.5031 + 20.5031i 0.723088 + 0.723088i
\(805\) −0.0223041 0.287157i −0.000786117 0.0101210i
\(806\) 0 0
\(807\) 14.4537 14.4537i 0.508794 0.508794i
\(808\) 5.69384i 0.200308i
\(809\) 24.4365i 0.859143i 0.903033 + 0.429572i \(0.141335\pi\)
−0.903033 + 0.429572i \(0.858665\pi\)
\(810\) 4.70338 + 4.02540i 0.165260 + 0.141438i
\(811\) −9.34795 9.34795i −0.328251 0.328251i 0.523670 0.851921i \(-0.324562\pi\)
−0.851921 + 0.523670i \(0.824562\pi\)
\(812\) −6.06632 −0.212886
\(813\) 54.4205 1.90861
\(814\) 4.08893 + 4.08893i 0.143317 + 0.143317i
\(815\) 25.1645 + 21.5371i 0.881475 + 0.754412i
\(816\) 16.5590i 0.579681i
\(817\) 34.1611i 1.19515i
\(818\) 0.885667 0.885667i 0.0309666 0.0309666i
\(819\) 0 0
\(820\) 1.55168 + 19.9773i 0.0541871 + 0.697638i
\(821\) 1.38999 + 1.38999i 0.0485110 + 0.0485110i 0.730946 0.682435i \(-0.239079\pi\)
−0.682435 + 0.730946i \(0.739079\pi\)
\(822\) −0.112019 + 0.112019i −0.00390712 + 0.00390712i
\(823\) −11.6284 + 11.6284i −0.405339 + 0.405339i −0.880110 0.474771i \(-0.842531\pi\)
0.474771 + 0.880110i \(0.342531\pi\)
\(824\) −1.30498 + 1.30498i −0.0454610 + 0.0454610i
\(825\) −7.95658 50.9100i −0.277013 1.77246i
\(826\) 0.182107 0.182107i 0.00633632 0.00633632i
\(827\) 27.3262i 0.950225i −0.879925 0.475113i \(-0.842407\pi\)
0.879925 0.475113i \(-0.157593\pi\)
\(828\) −1.17314 1.17314i −0.0407696 0.0407696i
\(829\) 14.5553 0.505526 0.252763 0.967528i \(-0.418661\pi\)
0.252763 + 0.967528i \(0.418661\pi\)
\(830\) −2.07304 + 2.42219i −0.0719563 + 0.0840756i
\(831\) 51.1397i 1.77402i
\(832\) 0 0
\(833\) 9.55534 + 9.55534i 0.331073 + 0.331073i
\(834\) 5.36521 5.36521i 0.185782 0.185782i
\(835\) 5.04248 5.89176i 0.174502 0.203893i
\(836\) 42.0496i 1.45432i
\(837\) −3.53259 −0.122104
\(838\) 0.179187i 0.00618993i
\(839\) 17.2947 + 17.2947i 0.597079 + 0.597079i 0.939534 0.342455i \(-0.111258\pi\)
−0.342455 + 0.939534i \(0.611258\pi\)
\(840\) −2.19368 + 0.170388i −0.0756892 + 0.00587895i
\(841\) −37.6525 −1.29836
\(842\) −1.53369 1.53369i −0.0528545 0.0528545i
\(843\) 27.3273 0.941201
\(844\) 41.2114 1.41856
\(845\) 0 0
\(846\) −6.98292 −0.240078
\(847\) −3.09620 −0.106387
\(848\) −25.4775 25.4775i −0.874902 0.874902i
\(849\) −10.6323 −0.364900
\(850\) −1.59754 + 2.18939i −0.0547951 + 0.0750954i
\(851\) −1.13821 1.13821i −0.0390172 0.0390172i
\(852\) 19.7996i 0.678324i
\(853\) 2.94669 0.100893 0.0504464 0.998727i \(-0.483936\pi\)
0.0504464 + 0.998727i \(0.483936\pi\)
\(854\) 1.12967i 0.0386565i
\(855\) −2.24189 28.8635i −0.0766711 0.987111i
\(856\) −3.09075 + 3.09075i −0.105640 + 0.105640i
\(857\) 13.0632 + 13.0632i 0.446229 + 0.446229i 0.894099 0.447870i \(-0.147817\pi\)
−0.447870 + 0.894099i \(0.647817\pi\)
\(858\) 0 0
\(859\) 3.08382i 0.105219i 0.998615 + 0.0526093i \(0.0167538\pi\)
−0.998615 + 0.0526093i \(0.983246\pi\)
\(860\) −29.2530 + 2.27215i −0.997519 + 0.0774795i
\(861\) −4.24841 −0.144786
\(862\) 6.94703 + 6.94703i 0.236617 + 0.236617i
\(863\) 50.9818i 1.73544i 0.497053 + 0.867720i \(0.334415\pi\)
−0.497053 + 0.867720i \(0.665585\pi\)
\(864\) 2.17723 2.17723i 0.0740708 0.0740708i
\(865\) 8.71639 0.677021i 0.296366 0.0230194i
\(866\) −5.12611 + 5.12611i −0.174192 + 0.174192i
\(867\) 21.9050 21.9050i 0.743934 0.743934i
\(868\) 1.88874 1.88874i 0.0641079 0.0641079i
\(869\) −10.3289 10.3289i −0.350382 0.350382i
\(870\) −11.8194 + 0.918039i −0.400715 + 0.0311244i
\(871\) 0 0
\(872\) −5.42366 + 5.42366i −0.183668 + 0.183668i
\(873\) 38.1110i 1.28986i
\(874\) 0.459326i 0.0155369i
\(875\) 3.67371 + 2.26679i 0.124194 + 0.0766316i
\(876\) −19.5706 19.5706i −0.661228 0.661228i
\(877\) −26.7687 −0.903916 −0.451958 0.892039i \(-0.649274\pi\)
−0.451958 + 0.892039i \(0.649274\pi\)
\(878\) −0.475240 −0.0160386
\(879\) −21.8986 21.8986i −0.738621 0.738621i
\(880\) −34.5397 + 2.68277i −1.16433 + 0.0904362i
\(881\) 31.4805i 1.06061i −0.847808 0.530303i \(-0.822078\pi\)
0.847808 0.530303i \(-0.177922\pi\)
\(882\) 4.86514i 0.163818i
\(883\) −27.3576 + 27.3576i −0.920657 + 0.920657i −0.997076 0.0764191i \(-0.975651\pi\)
0.0764191 + 0.997076i \(0.475651\pi\)
\(884\) 0 0
\(885\) −8.33941 + 9.74398i −0.280326 + 0.327540i
\(886\) 0.787978 + 0.787978i 0.0264726 + 0.0264726i
\(887\) −0.971214 + 0.971214i −0.0326102 + 0.0326102i −0.723224 0.690614i \(-0.757341\pi\)
0.690614 + 0.723224i \(0.257341\pi\)
\(888\) −8.69511 + 8.69511i −0.291789 + 0.291789i
\(889\) 3.11346 3.11346i 0.104422 0.104422i
\(890\) 0.237862 + 3.06238i 0.00797314 + 0.102651i
\(891\) −31.0677 + 31.0677i −1.04081 + 1.04081i
\(892\) 52.6068i 1.76141i
\(893\) −34.8361 34.8361i −1.16575 1.16575i
\(894\) −1.64459 −0.0550032
\(895\) −11.0383 9.44717i −0.368971 0.315784i
\(896\) 3.08204i 0.102964i
\(897\) 0 0
\(898\) 3.92294 + 3.92294i 0.130910 + 0.130910i
\(899\) 20.7521 20.7521i 0.692122 0.692122i
\(900\) 24.5674 3.83957i 0.818914 0.127986i
\(901\) 20.0051i 0.666465i
\(902\) 5.58046 0.185809
\(903\) 6.22100i 0.207022i
\(904\) 3.03083 + 3.03083i 0.100804 + 0.100804i
\(905\) −17.4249 + 20.3597i −0.579223 + 0.676779i
\(906\) 2.37400 0.0788707
\(907\) 16.4640 + 16.4640i 0.546679 + 0.546679i 0.925479 0.378800i \(-0.123663\pi\)
−0.378800 + 0.925479i \(0.623663\pi\)
\(908\) −13.3316 −0.442425
\(909\) 13.6430 0.452508
\(910\) 0 0
\(911\) 2.89704 0.0959832 0.0479916 0.998848i \(-0.484718\pi\)
0.0479916 + 0.998848i \(0.484718\pi\)
\(912\) −42.0607 −1.39277
\(913\) −15.9996 15.9996i −0.529508 0.529508i
\(914\) −4.06211 −0.134363
\(915\) 4.35653 + 56.0886i 0.144022 + 1.85423i
\(916\) 8.79151 + 8.79151i 0.290480 + 0.290480i
\(917\) 8.05518i 0.266006i
\(918\) 0.532680 0.0175811
\(919\) 16.6099i 0.547909i 0.961743 + 0.273955i \(0.0883318\pi\)
−0.961743 + 0.273955i \(0.911668\pi\)
\(920\) −0.802099 + 0.0623008i −0.0264444 + 0.00205400i
\(921\) 12.9573 12.9573i 0.426958 0.426958i
\(922\) −1.18028 1.18028i −0.0388704 0.0388704i
\(923\) 0 0
\(924\) 7.65756i 0.251915i
\(925\) 23.8358 3.72523i 0.783715 0.122485i
\(926\) −9.89717 −0.325241
\(927\) 3.12685 + 3.12685i 0.102699 + 0.102699i
\(928\) 25.5801i 0.839708i
\(929\) 30.2829 30.2829i 0.993548 0.993548i −0.00643095 0.999979i \(-0.502047\pi\)
0.999979 + 0.00643095i \(0.00204705\pi\)
\(930\) 3.39412 3.96578i 0.111297 0.130043i
\(931\) −24.2710 + 24.2710i −0.795451 + 0.795451i
\(932\) 10.5668 10.5668i 0.346128 0.346128i
\(933\) −19.3881 + 19.3881i −0.634737 + 0.634737i
\(934\) −2.11315 2.11315i −0.0691443 0.0691443i
\(935\) −14.6136 12.5071i −0.477916 0.409025i
\(936\) 0 0
\(937\) 27.9881 27.9881i 0.914331 0.914331i −0.0822783 0.996609i \(-0.526220\pi\)
0.996609 + 0.0822783i \(0.0262196\pi\)
\(938\) 0.676514i 0.0220890i
\(939\) 33.9419i 1.10765i
\(940\) 27.5139 32.1480i 0.897406 1.04855i
\(941\) −4.15042 4.15042i −0.135300 0.135300i 0.636213 0.771513i \(-0.280500\pi\)
−0.771513 + 0.636213i \(0.780500\pi\)
\(942\) −2.03667 −0.0663584
\(943\) −1.55339 −0.0505854
\(944\) 6.09729 + 6.09729i 0.198450 + 0.198450i
\(945\) −0.0657011 0.845877i −0.00213726 0.0275164i
\(946\) 8.17153i 0.265679i
\(947\) 24.8598i 0.807836i 0.914795 + 0.403918i \(0.132352\pi\)
−0.914795 + 0.403918i \(0.867648\pi\)
\(948\) 10.7708 10.7708i 0.349820 0.349820i
\(949\) 0 0
\(950\) −5.56115 4.05783i −0.180428 0.131653i
\(951\) 36.3742 + 36.3742i 1.17951 + 1.17951i
\(952\) −0.580782 + 0.580782i −0.0188233 + 0.0188233i
\(953\) −23.1258 + 23.1258i −0.749118 + 0.749118i −0.974314 0.225196i \(-0.927698\pi\)
0.225196 + 0.974314i \(0.427698\pi\)
\(954\) 5.09284 5.09284i 0.164887 0.164887i
\(955\) −8.82189 7.55023i −0.285470 0.244320i
\(956\) 16.0492 16.0492i 0.519068 0.519068i
\(957\) 84.1358i 2.71973i
\(958\) −1.78460 1.78460i −0.0576580 0.0576580i
\(959\) 0.0941897 0.00304154
\(960\) −2.55502 32.8949i −0.0824629 1.06168i
\(961\) 18.0777i 0.583153i
\(962\) 0 0
\(963\) 7.40571 + 7.40571i 0.238646 + 0.238646i
\(964\) −1.98576 + 1.98576i −0.0639569 + 0.0639569i
\(965\) 11.3382 + 9.70384i 0.364990 + 0.312378i
\(966\) 0.0836467i 0.00269129i
\(967\) 30.0090 0.965023 0.482512 0.875890i \(-0.339725\pi\)
0.482512 + 0.875890i \(0.339725\pi\)
\(968\) 8.64843i 0.277971i
\(969\) −16.5131 16.5131i −0.530478 0.530478i
\(970\) 6.88518 + 5.89269i 0.221070 + 0.189203i
\(971\) −6.27318 −0.201316 −0.100658 0.994921i \(-0.532095\pi\)
−0.100658 + 0.994921i \(0.532095\pi\)
\(972\) −28.3853 28.3853i −0.910457 0.910457i
\(973\) −4.51125 −0.144624
\(974\) 7.07119 0.226575
\(975\) 0 0
\(976\) 37.8235 1.21070
\(977\) −15.5621 −0.497876 −0.248938 0.968519i \(-0.580082\pi\)
−0.248938 + 0.968519i \(0.580082\pi\)
\(978\) 6.80193 + 6.80193i 0.217502 + 0.217502i
\(979\) −21.7994 −0.696712
\(980\) −22.3982 19.1695i −0.715484 0.612349i
\(981\) 12.9956 + 12.9956i 0.414918 + 0.414918i
\(982\) 3.62670i 0.115733i
\(983\) 53.4558 1.70498 0.852488 0.522746i \(-0.175093\pi\)
0.852488 + 0.522746i \(0.175093\pi\)
\(984\) 11.8668i 0.378301i
\(985\) 33.2923 + 28.4932i 1.06078 + 0.907870i
\(986\) −3.12921 + 3.12921i −0.0996545 + 0.0996545i
\(987\) 6.34391 + 6.34391i 0.201929 + 0.201929i
\(988\) 0 0
\(989\) 2.27465i 0.0723297i
\(990\) −0.536273 6.90431i −0.0170439 0.219433i
\(991\) −23.6397 −0.750940 −0.375470 0.926835i \(-0.622519\pi\)
−0.375470 + 0.926835i \(0.622519\pi\)
\(992\) −7.96431 7.96431i −0.252867 0.252867i
\(993\) 46.3626i 1.47127i
\(994\) −0.326652 + 0.326652i −0.0103608 + 0.0103608i
\(995\) −24.9831 21.3818i −0.792018 0.677850i
\(996\) 16.6842 16.6842i 0.528658 0.528658i
\(997\) 36.5771 36.5771i 1.15841 1.15841i 0.173591 0.984818i \(-0.444463\pi\)
0.984818 0.173591i \(-0.0555370\pi\)
\(998\) −4.60806 + 4.60806i −0.145866 + 0.145866i
\(999\) −3.35281 3.35281i −0.106078 0.106078i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.k.e.268.5 20
5.2 odd 4 845.2.f.e.437.5 20
13.2 odd 12 845.2.t.f.188.2 20
13.3 even 3 65.2.o.a.33.4 yes 20
13.4 even 6 845.2.o.f.258.2 20
13.5 odd 4 845.2.f.e.408.6 20
13.6 odd 12 65.2.t.a.28.4 yes 20
13.7 odd 12 845.2.t.g.418.2 20
13.8 odd 4 845.2.f.d.408.5 20
13.9 even 3 845.2.o.e.258.4 20
13.10 even 6 845.2.o.g.488.2 20
13.11 odd 12 845.2.t.e.188.4 20
13.12 even 2 845.2.k.d.268.6 20
39.29 odd 6 585.2.cf.a.163.2 20
39.32 even 12 585.2.dp.a.28.2 20
65.2 even 12 845.2.o.e.357.4 20
65.3 odd 12 325.2.x.b.7.2 20
65.7 even 12 845.2.o.g.587.2 20
65.12 odd 4 845.2.f.d.437.6 20
65.17 odd 12 845.2.t.e.427.4 20
65.19 odd 12 325.2.x.b.93.2 20
65.22 odd 12 845.2.t.f.427.2 20
65.29 even 6 325.2.s.b.293.2 20
65.32 even 12 65.2.o.a.2.4 20
65.37 even 12 845.2.o.f.357.2 20
65.42 odd 12 65.2.t.a.7.4 yes 20
65.47 even 4 845.2.k.d.577.6 20
65.57 even 4 inner 845.2.k.e.577.5 20
65.58 even 12 325.2.s.b.132.2 20
65.62 odd 12 845.2.t.g.657.2 20
195.32 odd 12 585.2.cf.a.262.2 20
195.107 even 12 585.2.dp.a.397.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.4 20 65.32 even 12
65.2.o.a.33.4 yes 20 13.3 even 3
65.2.t.a.7.4 yes 20 65.42 odd 12
65.2.t.a.28.4 yes 20 13.6 odd 12
325.2.s.b.132.2 20 65.58 even 12
325.2.s.b.293.2 20 65.29 even 6
325.2.x.b.7.2 20 65.3 odd 12
325.2.x.b.93.2 20 65.19 odd 12
585.2.cf.a.163.2 20 39.29 odd 6
585.2.cf.a.262.2 20 195.32 odd 12
585.2.dp.a.28.2 20 39.32 even 12
585.2.dp.a.397.2 20 195.107 even 12
845.2.f.d.408.5 20 13.8 odd 4
845.2.f.d.437.6 20 65.12 odd 4
845.2.f.e.408.6 20 13.5 odd 4
845.2.f.e.437.5 20 5.2 odd 4
845.2.k.d.268.6 20 13.12 even 2
845.2.k.d.577.6 20 65.47 even 4
845.2.k.e.268.5 20 1.1 even 1 trivial
845.2.k.e.577.5 20 65.57 even 4 inner
845.2.o.e.258.4 20 13.9 even 3
845.2.o.e.357.4 20 65.2 even 12
845.2.o.f.258.2 20 13.4 even 6
845.2.o.f.357.2 20 65.37 even 12
845.2.o.g.488.2 20 13.10 even 6
845.2.o.g.587.2 20 65.7 even 12
845.2.t.e.188.4 20 13.11 odd 12
845.2.t.e.427.4 20 65.17 odd 12
845.2.t.f.188.2 20 13.2 odd 12
845.2.t.f.427.2 20 65.22 odd 12
845.2.t.g.418.2 20 13.7 odd 12
845.2.t.g.657.2 20 65.62 odd 12