Properties

Label 672.2.bd.a.527.27
Level $672$
Weight $2$
Character 672.527
Analytic conductor $5.366$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [672,2,Mod(431,672)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(672, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("672.431");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.bd (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 527.27
Character \(\chi\) \(=\) 672.527
Dual form 672.2.bd.a.431.27

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.71959 - 0.207430i) q^{3} +(-0.692094 + 1.19874i) q^{5} +(-2.08863 + 1.62408i) q^{7} +(2.91395 - 0.713387i) q^{9} +(-3.82316 + 2.20731i) q^{11} +6.43609i q^{13} +(-0.941460 + 2.20490i) q^{15} +(2.52866 - 1.45992i) q^{17} +(-1.58928 + 2.75271i) q^{19} +(-3.25469 + 3.22599i) q^{21} +(1.84696 - 3.19902i) q^{23} +(1.54201 + 2.67084i) q^{25} +(4.86280 - 1.83117i) q^{27} +6.67884 q^{29} +(-2.17580 + 1.25620i) q^{31} +(-6.11640 + 4.58869i) q^{33} +(-0.501330 - 3.62774i) q^{35} +(-5.00149 - 2.88761i) q^{37} +(1.33504 + 11.0674i) q^{39} +0.497427i q^{41} -0.865898 q^{43} +(-1.16156 + 3.98680i) q^{45} +(1.59001 - 2.75398i) q^{47} +(1.72472 - 6.78420i) q^{49} +(4.04541 - 3.03498i) q^{51} +(-4.12906 - 7.15175i) q^{53} -6.11065i q^{55} +(-2.16191 + 5.06319i) q^{57} +(6.62279 - 3.82367i) q^{59} +(2.99321 + 1.72813i) q^{61} +(-4.92754 + 6.22248i) q^{63} +(-7.71521 - 4.45438i) q^{65} +(3.36806 + 5.83364i) q^{67} +(2.51243 - 5.88411i) q^{69} +1.90437 q^{71} +(3.23515 + 5.60345i) q^{73} +(3.20563 + 4.27288i) q^{75} +(4.40032 - 10.8194i) q^{77} +(-1.65073 - 0.953048i) q^{79} +(7.98216 - 4.15754i) q^{81} +7.00064i q^{83} +4.04161i q^{85} +(11.4848 - 1.38539i) q^{87} +(-8.22776 - 4.75030i) q^{89} +(-10.4527 - 13.4426i) q^{91} +(-3.48090 + 2.61147i) q^{93} +(-2.19986 - 3.81027i) q^{95} +1.19214 q^{97} +(-9.56583 + 9.15936i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 2 q^{3} - 2 q^{9} + 4 q^{19} - 16 q^{25} + 8 q^{27} - 14 q^{33} + 16 q^{43} - 16 q^{49} + 34 q^{51} + 4 q^{57} + 36 q^{67} + 4 q^{73} - 10 q^{81} - 72 q^{91} - 32 q^{97} + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.71959 0.207430i 0.992803 0.119760i
\(4\) 0 0
\(5\) −0.692094 + 1.19874i −0.309514 + 0.536094i −0.978256 0.207401i \(-0.933500\pi\)
0.668742 + 0.743494i \(0.266833\pi\)
\(6\) 0 0
\(7\) −2.08863 + 1.62408i −0.789426 + 0.613845i
\(8\) 0 0
\(9\) 2.91395 0.713387i 0.971315 0.237796i
\(10\) 0 0
\(11\) −3.82316 + 2.20731i −1.15273 + 0.665528i −0.949550 0.313614i \(-0.898460\pi\)
−0.203177 + 0.979142i \(0.565127\pi\)
\(12\) 0 0
\(13\) 6.43609i 1.78505i 0.450999 + 0.892525i \(0.351068\pi\)
−0.450999 + 0.892525i \(0.648932\pi\)
\(14\) 0 0
\(15\) −0.941460 + 2.20490i −0.243084 + 0.569303i
\(16\) 0 0
\(17\) 2.52866 1.45992i 0.613289 0.354083i −0.160962 0.986961i \(-0.551460\pi\)
0.774252 + 0.632878i \(0.218126\pi\)
\(18\) 0 0
\(19\) −1.58928 + 2.75271i −0.364606 + 0.631515i −0.988713 0.149823i \(-0.952130\pi\)
0.624107 + 0.781339i \(0.285463\pi\)
\(20\) 0 0
\(21\) −3.25469 + 3.22599i −0.710231 + 0.703969i
\(22\) 0 0
\(23\) 1.84696 3.19902i 0.385117 0.667043i −0.606668 0.794955i \(-0.707494\pi\)
0.991785 + 0.127912i \(0.0408277\pi\)
\(24\) 0 0
\(25\) 1.54201 + 2.67084i 0.308402 + 0.534169i
\(26\) 0 0
\(27\) 4.86280 1.83117i 0.935846 0.352409i
\(28\) 0 0
\(29\) 6.67884 1.24023 0.620115 0.784511i \(-0.287086\pi\)
0.620115 + 0.784511i \(0.287086\pi\)
\(30\) 0 0
\(31\) −2.17580 + 1.25620i −0.390786 + 0.225620i −0.682500 0.730885i \(-0.739107\pi\)
0.291715 + 0.956505i \(0.405774\pi\)
\(32\) 0 0
\(33\) −6.11640 + 4.58869i −1.06473 + 0.798788i
\(34\) 0 0
\(35\) −0.501330 3.62774i −0.0847402 0.613200i
\(36\) 0 0
\(37\) −5.00149 2.88761i −0.822240 0.474720i 0.0289485 0.999581i \(-0.490784\pi\)
−0.851188 + 0.524861i \(0.824117\pi\)
\(38\) 0 0
\(39\) 1.33504 + 11.0674i 0.213777 + 1.77220i
\(40\) 0 0
\(41\) 0.497427i 0.0776850i 0.999245 + 0.0388425i \(0.0123671\pi\)
−0.999245 + 0.0388425i \(0.987633\pi\)
\(42\) 0 0
\(43\) −0.865898 −0.132048 −0.0660241 0.997818i \(-0.521031\pi\)
−0.0660241 + 0.997818i \(0.521031\pi\)
\(44\) 0 0
\(45\) −1.16156 + 3.98680i −0.173155 + 0.594317i
\(46\) 0 0
\(47\) 1.59001 2.75398i 0.231927 0.401710i −0.726448 0.687221i \(-0.758830\pi\)
0.958375 + 0.285512i \(0.0921635\pi\)
\(48\) 0 0
\(49\) 1.72472 6.78420i 0.246388 0.969171i
\(50\) 0 0
\(51\) 4.04541 3.03498i 0.566471 0.424982i
\(52\) 0 0
\(53\) −4.12906 7.15175i −0.567171 0.982368i −0.996844 0.0793841i \(-0.974705\pi\)
0.429673 0.902984i \(-0.358629\pi\)
\(54\) 0 0
\(55\) 6.11065i 0.823960i
\(56\) 0 0
\(57\) −2.16191 + 5.06319i −0.286351 + 0.670635i
\(58\) 0 0
\(59\) 6.62279 3.82367i 0.862214 0.497799i −0.00253919 0.999997i \(-0.500808\pi\)
0.864753 + 0.502197i \(0.167475\pi\)
\(60\) 0 0
\(61\) 2.99321 + 1.72813i 0.383241 + 0.221265i 0.679228 0.733928i \(-0.262315\pi\)
−0.295986 + 0.955192i \(0.595648\pi\)
\(62\) 0 0
\(63\) −4.92754 + 6.22248i −0.620812 + 0.783959i
\(64\) 0 0
\(65\) −7.71521 4.45438i −0.956954 0.552497i
\(66\) 0 0
\(67\) 3.36806 + 5.83364i 0.411473 + 0.712693i 0.995051 0.0993644i \(-0.0316810\pi\)
−0.583578 + 0.812057i \(0.698348\pi\)
\(68\) 0 0
\(69\) 2.51243 5.88411i 0.302461 0.708363i
\(70\) 0 0
\(71\) 1.90437 0.226007 0.113004 0.993595i \(-0.463953\pi\)
0.113004 + 0.993595i \(0.463953\pi\)
\(72\) 0 0
\(73\) 3.23515 + 5.60345i 0.378646 + 0.655834i 0.990866 0.134854i \(-0.0430564\pi\)
−0.612219 + 0.790688i \(0.709723\pi\)
\(74\) 0 0
\(75\) 3.20563 + 4.27288i 0.370155 + 0.493390i
\(76\) 0 0
\(77\) 4.40032 10.8194i 0.501463 1.23298i
\(78\) 0 0
\(79\) −1.65073 0.953048i −0.185721 0.107226i 0.404257 0.914646i \(-0.367530\pi\)
−0.589978 + 0.807419i \(0.700864\pi\)
\(80\) 0 0
\(81\) 7.98216 4.15754i 0.886906 0.461949i
\(82\) 0 0
\(83\) 7.00064i 0.768420i 0.923246 + 0.384210i \(0.125526\pi\)
−0.923246 + 0.384210i \(0.874474\pi\)
\(84\) 0 0
\(85\) 4.04161i 0.438374i
\(86\) 0 0
\(87\) 11.4848 1.38539i 1.23130 0.148530i
\(88\) 0 0
\(89\) −8.22776 4.75030i −0.872141 0.503531i −0.00408165 0.999992i \(-0.501299\pi\)
−0.868059 + 0.496461i \(0.834633\pi\)
\(90\) 0 0
\(91\) −10.4527 13.4426i −1.09574 1.40916i
\(92\) 0 0
\(93\) −3.48090 + 2.61147i −0.360953 + 0.270797i
\(94\) 0 0
\(95\) −2.19986 3.81027i −0.225701 0.390926i
\(96\) 0 0
\(97\) 1.19214 0.121044 0.0605218 0.998167i \(-0.480724\pi\)
0.0605218 + 0.998167i \(0.480724\pi\)
\(98\) 0 0
\(99\) −9.56583 + 9.15936i −0.961402 + 0.920551i
\(100\) 0 0
\(101\) −1.03566 1.79382i −0.103052 0.178491i 0.809889 0.586584i \(-0.199527\pi\)
−0.912941 + 0.408092i \(0.866194\pi\)
\(102\) 0 0
\(103\) 4.80043 + 2.77153i 0.473000 + 0.273087i 0.717495 0.696564i \(-0.245289\pi\)
−0.244495 + 0.969651i \(0.578622\pi\)
\(104\) 0 0
\(105\) −1.61458 6.13422i −0.157567 0.598638i
\(106\) 0 0
\(107\) −5.17522 2.98792i −0.500308 0.288853i 0.228533 0.973536i \(-0.426607\pi\)
−0.728841 + 0.684683i \(0.759940\pi\)
\(108\) 0 0
\(109\) 1.43595 0.829048i 0.137539 0.0794084i −0.429651 0.902995i \(-0.641364\pi\)
0.567191 + 0.823586i \(0.308030\pi\)
\(110\) 0 0
\(111\) −9.19946 3.92803i −0.873174 0.372832i
\(112\) 0 0
\(113\) 16.4545i 1.54791i 0.633241 + 0.773955i \(0.281724\pi\)
−0.633241 + 0.773955i \(0.718276\pi\)
\(114\) 0 0
\(115\) 2.55654 + 4.42805i 0.238398 + 0.412918i
\(116\) 0 0
\(117\) 4.59142 + 18.7544i 0.424477 + 1.73385i
\(118\) 0 0
\(119\) −2.91039 + 7.15597i −0.266795 + 0.655987i
\(120\) 0 0
\(121\) 4.24439 7.35150i 0.385854 0.668318i
\(122\) 0 0
\(123\) 0.103181 + 0.855367i 0.00930353 + 0.0771259i
\(124\) 0 0
\(125\) −11.1898 −1.00085
\(126\) 0 0
\(127\) 2.31360i 0.205299i 0.994718 + 0.102649i \(0.0327319\pi\)
−0.994718 + 0.102649i \(0.967268\pi\)
\(128\) 0 0
\(129\) −1.48898 + 0.179613i −0.131098 + 0.0158141i
\(130\) 0 0
\(131\) −4.11383 2.37512i −0.359427 0.207515i 0.309402 0.950931i \(-0.399871\pi\)
−0.668830 + 0.743416i \(0.733204\pi\)
\(132\) 0 0
\(133\) −1.15122 8.33050i −0.0998234 0.722346i
\(134\) 0 0
\(135\) −1.17042 + 7.09658i −0.100733 + 0.610777i
\(136\) 0 0
\(137\) 0.290760 0.167870i 0.0248413 0.0143421i −0.487528 0.873107i \(-0.662101\pi\)
0.512369 + 0.858765i \(0.328768\pi\)
\(138\) 0 0
\(139\) 9.35410 0.793405 0.396702 0.917947i \(-0.370155\pi\)
0.396702 + 0.917947i \(0.370155\pi\)
\(140\) 0 0
\(141\) 2.16290 5.06553i 0.182149 0.426594i
\(142\) 0 0
\(143\) −14.2064 24.6062i −1.18800 2.05768i
\(144\) 0 0
\(145\) −4.62239 + 8.00621i −0.383868 + 0.664880i
\(146\) 0 0
\(147\) 1.55855 12.0238i 0.128547 0.991703i
\(148\) 0 0
\(149\) −1.03566 + 1.79382i −0.0848446 + 0.146955i −0.905325 0.424720i \(-0.860373\pi\)
0.820480 + 0.571675i \(0.193706\pi\)
\(150\) 0 0
\(151\) 20.2661 11.7007i 1.64923 0.952186i 0.671858 0.740680i \(-0.265496\pi\)
0.977377 0.211506i \(-0.0678369\pi\)
\(152\) 0 0
\(153\) 6.32688 6.05804i 0.511498 0.489763i
\(154\) 0 0
\(155\) 3.47763i 0.279330i
\(156\) 0 0
\(157\) 19.3264 11.1581i 1.54241 0.890511i 0.543725 0.839264i \(-0.317014\pi\)
0.998686 0.0512477i \(-0.0163198\pi\)
\(158\) 0 0
\(159\) −8.58377 11.4416i −0.680737 0.907374i
\(160\) 0 0
\(161\) 1.33787 + 9.68118i 0.105439 + 0.762983i
\(162\) 0 0
\(163\) 8.50029 14.7229i 0.665794 1.15319i −0.313276 0.949662i \(-0.601426\pi\)
0.979069 0.203526i \(-0.0652403\pi\)
\(164\) 0 0
\(165\) −1.26753 10.5078i −0.0986772 0.818030i
\(166\) 0 0
\(167\) 23.9142 1.85054 0.925269 0.379311i \(-0.123839\pi\)
0.925269 + 0.379311i \(0.123839\pi\)
\(168\) 0 0
\(169\) −28.4232 −2.18640
\(170\) 0 0
\(171\) −2.66732 + 9.15502i −0.203975 + 0.700102i
\(172\) 0 0
\(173\) 4.38442 7.59404i 0.333341 0.577364i −0.649824 0.760085i \(-0.725157\pi\)
0.983165 + 0.182721i \(0.0584906\pi\)
\(174\) 0 0
\(175\) −7.55835 3.07404i −0.571358 0.232375i
\(176\) 0 0
\(177\) 10.5953 7.94889i 0.796392 0.597475i
\(178\) 0 0
\(179\) −5.26665 + 3.04070i −0.393648 + 0.227273i −0.683740 0.729726i \(-0.739648\pi\)
0.290092 + 0.956999i \(0.406314\pi\)
\(180\) 0 0
\(181\) 11.5816i 0.860857i −0.902625 0.430429i \(-0.858362\pi\)
0.902625 0.430429i \(-0.141638\pi\)
\(182\) 0 0
\(183\) 5.50555 + 2.35079i 0.406982 + 0.173775i
\(184\) 0 0
\(185\) 6.92300 3.99700i 0.508989 0.293865i
\(186\) 0 0
\(187\) −6.44498 + 11.1630i −0.471304 + 0.816322i
\(188\) 0 0
\(189\) −7.18260 + 11.7222i −0.522457 + 0.852665i
\(190\) 0 0
\(191\) 0.757053 1.31125i 0.0547784 0.0948790i −0.837336 0.546689i \(-0.815888\pi\)
0.892114 + 0.451810i \(0.149221\pi\)
\(192\) 0 0
\(193\) −7.97806 13.8184i −0.574273 0.994670i −0.996120 0.0880034i \(-0.971951\pi\)
0.421847 0.906667i \(-0.361382\pi\)
\(194\) 0 0
\(195\) −14.1909 6.05931i −1.01623 0.433917i
\(196\) 0 0
\(197\) −0.963016 −0.0686121 −0.0343060 0.999411i \(-0.510922\pi\)
−0.0343060 + 0.999411i \(0.510922\pi\)
\(198\) 0 0
\(199\) −1.72593 + 0.996469i −0.122348 + 0.0706378i −0.559925 0.828543i \(-0.689170\pi\)
0.437577 + 0.899181i \(0.355837\pi\)
\(200\) 0 0
\(201\) 7.00173 + 9.33281i 0.493864 + 0.658286i
\(202\) 0 0
\(203\) −13.9496 + 10.8470i −0.979070 + 0.761309i
\(204\) 0 0
\(205\) −0.596286 0.344266i −0.0416464 0.0240446i
\(206\) 0 0
\(207\) 3.09979 10.6394i 0.215450 0.739488i
\(208\) 0 0
\(209\) 14.0321i 0.970620i
\(210\) 0 0
\(211\) −21.4567 −1.47714 −0.738569 0.674178i \(-0.764498\pi\)
−0.738569 + 0.674178i \(0.764498\pi\)
\(212\) 0 0
\(213\) 3.27473 0.395024i 0.224381 0.0270666i
\(214\) 0 0
\(215\) 0.599283 1.03799i 0.0408707 0.0707902i
\(216\) 0 0
\(217\) 2.50427 6.15741i 0.170001 0.417992i
\(218\) 0 0
\(219\) 6.72544 + 8.96454i 0.454463 + 0.605768i
\(220\) 0 0
\(221\) 9.39617 + 16.2747i 0.632055 + 1.09475i
\(222\) 0 0
\(223\) 12.1938i 0.816559i 0.912857 + 0.408279i \(0.133871\pi\)
−0.912857 + 0.408279i \(0.866129\pi\)
\(224\) 0 0
\(225\) 6.39868 + 6.68264i 0.426579 + 0.445509i
\(226\) 0 0
\(227\) 13.5954 7.84932i 0.902360 0.520978i 0.0243951 0.999702i \(-0.492234\pi\)
0.877965 + 0.478724i \(0.158901\pi\)
\(228\) 0 0
\(229\) −10.4894 6.05608i −0.693161 0.400197i 0.111634 0.993749i \(-0.464392\pi\)
−0.804795 + 0.593553i \(0.797725\pi\)
\(230\) 0 0
\(231\) 5.32246 19.5176i 0.350192 1.28416i
\(232\) 0 0
\(233\) −5.05877 2.92068i −0.331411 0.191340i 0.325056 0.945695i \(-0.394617\pi\)
−0.656468 + 0.754354i \(0.727950\pi\)
\(234\) 0 0
\(235\) 2.20088 + 3.81203i 0.143569 + 0.248670i
\(236\) 0 0
\(237\) −3.03626 1.29644i −0.197226 0.0842126i
\(238\) 0 0
\(239\) −22.6171 −1.46298 −0.731490 0.681852i \(-0.761175\pi\)
−0.731490 + 0.681852i \(0.761175\pi\)
\(240\) 0 0
\(241\) 12.7459 + 22.0766i 0.821038 + 1.42208i 0.904910 + 0.425604i \(0.139938\pi\)
−0.0838714 + 0.996477i \(0.526729\pi\)
\(242\) 0 0
\(243\) 12.8636 8.80499i 0.825200 0.564840i
\(244\) 0 0
\(245\) 6.93884 + 6.76279i 0.443306 + 0.432059i
\(246\) 0 0
\(247\) −17.7167 10.2287i −1.12729 0.650839i
\(248\) 0 0
\(249\) 1.45214 + 12.0382i 0.0920258 + 0.762889i
\(250\) 0 0
\(251\) 1.11008i 0.0700675i 0.999386 + 0.0350338i \(0.0111539\pi\)
−0.999386 + 0.0350338i \(0.988846\pi\)
\(252\) 0 0
\(253\) 16.3072i 1.02522i
\(254\) 0 0
\(255\) 0.838351 + 6.94989i 0.0524996 + 0.435219i
\(256\) 0 0
\(257\) 12.0906 + 6.98049i 0.754188 + 0.435431i 0.827205 0.561900i \(-0.189929\pi\)
−0.0730169 + 0.997331i \(0.523263\pi\)
\(258\) 0 0
\(259\) 15.1360 2.09169i 0.940503 0.129971i
\(260\) 0 0
\(261\) 19.4618 4.76460i 1.20465 0.294921i
\(262\) 0 0
\(263\) 7.08483 + 12.2713i 0.436870 + 0.756680i 0.997446 0.0714223i \(-0.0227538\pi\)
−0.560577 + 0.828103i \(0.689420\pi\)
\(264\) 0 0
\(265\) 11.4308 0.702189
\(266\) 0 0
\(267\) −15.1337 6.46186i −0.926166 0.395459i
\(268\) 0 0
\(269\) −9.11023 15.7794i −0.555461 0.962086i −0.997868 0.0652716i \(-0.979209\pi\)
0.442407 0.896814i \(-0.354125\pi\)
\(270\) 0 0
\(271\) 21.9278 + 12.6600i 1.33202 + 0.769041i 0.985609 0.169042i \(-0.0540673\pi\)
0.346410 + 0.938083i \(0.387401\pi\)
\(272\) 0 0
\(273\) −20.7628 20.9474i −1.25662 1.26780i
\(274\) 0 0
\(275\) −11.7907 6.80738i −0.711008 0.410500i
\(276\) 0 0
\(277\) −16.2822 + 9.40051i −0.978300 + 0.564822i −0.901756 0.432245i \(-0.857722\pi\)
−0.0765434 + 0.997066i \(0.524388\pi\)
\(278\) 0 0
\(279\) −5.44401 + 5.21269i −0.325924 + 0.312075i
\(280\) 0 0
\(281\) 25.4910i 1.52067i −0.649533 0.760333i \(-0.725036\pi\)
0.649533 0.760333i \(-0.274964\pi\)
\(282\) 0 0
\(283\) 6.01848 + 10.4243i 0.357761 + 0.619661i 0.987586 0.157076i \(-0.0502068\pi\)
−0.629825 + 0.776737i \(0.716874\pi\)
\(284\) 0 0
\(285\) −4.57321 6.09577i −0.270894 0.361082i
\(286\) 0 0
\(287\) −0.807861 1.03894i −0.0476865 0.0613266i
\(288\) 0 0
\(289\) −4.23726 + 7.33916i −0.249251 + 0.431715i
\(290\) 0 0
\(291\) 2.04999 0.247286i 0.120173 0.0144962i
\(292\) 0 0
\(293\) 3.90464 0.228111 0.114056 0.993474i \(-0.463616\pi\)
0.114056 + 0.993474i \(0.463616\pi\)
\(294\) 0 0
\(295\) 10.5854i 0.616303i
\(296\) 0 0
\(297\) −14.5493 + 17.7345i −0.844238 + 1.02906i
\(298\) 0 0
\(299\) 20.5892 + 11.8872i 1.19070 + 0.687453i
\(300\) 0 0
\(301\) 1.80854 1.40629i 0.104242 0.0810571i
\(302\) 0 0
\(303\) −2.15300 2.86979i −0.123686 0.164865i
\(304\) 0 0
\(305\) −4.14317 + 2.39206i −0.237237 + 0.136969i
\(306\) 0 0
\(307\) 11.0339 0.629740 0.314870 0.949135i \(-0.398039\pi\)
0.314870 + 0.949135i \(0.398039\pi\)
\(308\) 0 0
\(309\) 8.82964 + 3.77013i 0.502301 + 0.214475i
\(310\) 0 0
\(311\) 15.6553 + 27.1158i 0.887732 + 1.53760i 0.842550 + 0.538618i \(0.181053\pi\)
0.0451815 + 0.998979i \(0.485613\pi\)
\(312\) 0 0
\(313\) 6.53063 11.3114i 0.369133 0.639357i −0.620297 0.784367i \(-0.712988\pi\)
0.989430 + 0.145010i \(0.0463213\pi\)
\(314\) 0 0
\(315\) −4.04883 10.2134i −0.228126 0.575460i
\(316\) 0 0
\(317\) −12.2315 + 21.1856i −0.686990 + 1.18990i 0.285817 + 0.958284i \(0.407735\pi\)
−0.972807 + 0.231618i \(0.925598\pi\)
\(318\) 0 0
\(319\) −25.5343 + 14.7422i −1.42965 + 0.825407i
\(320\) 0 0
\(321\) −9.51902 4.06448i −0.531300 0.226857i
\(322\) 0 0
\(323\) 9.28088i 0.516402i
\(324\) 0 0
\(325\) −17.1898 + 9.92452i −0.953517 + 0.550513i
\(326\) 0 0
\(327\) 2.29727 1.72348i 0.127039 0.0953085i
\(328\) 0 0
\(329\) 1.15175 + 8.33435i 0.0634981 + 0.459488i
\(330\) 0 0
\(331\) 7.26267 12.5793i 0.399192 0.691422i −0.594434 0.804144i \(-0.702624\pi\)
0.993626 + 0.112723i \(0.0359572\pi\)
\(332\) 0 0
\(333\) −16.6341 4.84634i −0.911540 0.265578i
\(334\) 0 0
\(335\) −9.32404 −0.509427
\(336\) 0 0
\(337\) −18.7954 −1.02385 −0.511924 0.859030i \(-0.671067\pi\)
−0.511924 + 0.859030i \(0.671067\pi\)
\(338\) 0 0
\(339\) 3.41316 + 28.2949i 0.185377 + 1.53677i
\(340\) 0 0
\(341\) 5.54563 9.60532i 0.300313 0.520157i
\(342\) 0 0
\(343\) 7.41581 + 16.9707i 0.400416 + 0.916334i
\(344\) 0 0
\(345\) 5.31469 + 7.08411i 0.286133 + 0.381396i
\(346\) 0 0
\(347\) 20.7411 11.9749i 1.11344 0.642846i 0.173723 0.984795i \(-0.444420\pi\)
0.939719 + 0.341949i \(0.111087\pi\)
\(348\) 0 0
\(349\) 3.59423i 0.192395i −0.995362 0.0961974i \(-0.969332\pi\)
0.995362 0.0961974i \(-0.0306680\pi\)
\(350\) 0 0
\(351\) 11.7856 + 31.2974i 0.629067 + 1.67053i
\(352\) 0 0
\(353\) 22.4603 12.9675i 1.19544 0.690189i 0.235907 0.971776i \(-0.424194\pi\)
0.959536 + 0.281587i \(0.0908607\pi\)
\(354\) 0 0
\(355\) −1.31800 + 2.28285i −0.0699524 + 0.121161i
\(356\) 0 0
\(357\) −3.52030 + 12.9090i −0.186314 + 0.683217i
\(358\) 0 0
\(359\) −14.1756 + 24.5529i −0.748162 + 1.29585i 0.200541 + 0.979685i \(0.435730\pi\)
−0.948703 + 0.316169i \(0.897603\pi\)
\(360\) 0 0
\(361\) 4.44838 + 7.70483i 0.234126 + 0.405517i
\(362\) 0 0
\(363\) 5.77367 13.5219i 0.303039 0.709718i
\(364\) 0 0
\(365\) −8.95612 −0.468785
\(366\) 0 0
\(367\) 3.10999 1.79556i 0.162340 0.0937272i −0.416629 0.909077i \(-0.636789\pi\)
0.578969 + 0.815349i \(0.303455\pi\)
\(368\) 0 0
\(369\) 0.354858 + 1.44947i 0.0184731 + 0.0754566i
\(370\) 0 0
\(371\) 20.2391 + 8.23139i 1.05076 + 0.427353i
\(372\) 0 0
\(373\) 13.4339 + 7.75604i 0.695579 + 0.401593i 0.805699 0.592326i \(-0.201790\pi\)
−0.110120 + 0.993918i \(0.535123\pi\)
\(374\) 0 0
\(375\) −19.2418 + 2.32110i −0.993644 + 0.119861i
\(376\) 0 0
\(377\) 42.9856i 2.21387i
\(378\) 0 0
\(379\) 14.5848 0.749171 0.374586 0.927192i \(-0.377785\pi\)
0.374586 + 0.927192i \(0.377785\pi\)
\(380\) 0 0
\(381\) 0.479910 + 3.97843i 0.0245865 + 0.203821i
\(382\) 0 0
\(383\) −5.47353 + 9.48043i −0.279684 + 0.484427i −0.971306 0.237832i \(-0.923563\pi\)
0.691622 + 0.722260i \(0.256896\pi\)
\(384\) 0 0
\(385\) 9.92420 + 12.7629i 0.505784 + 0.650456i
\(386\) 0 0
\(387\) −2.52318 + 0.617720i −0.128260 + 0.0314005i
\(388\) 0 0
\(389\) 9.51835 + 16.4863i 0.482600 + 0.835887i 0.999800 0.0199769i \(-0.00635927\pi\)
−0.517201 + 0.855864i \(0.673026\pi\)
\(390\) 0 0
\(391\) 10.7856i 0.545453i
\(392\) 0 0
\(393\) −7.56676 3.23089i −0.381692 0.162977i
\(394\) 0 0
\(395\) 2.28492 1.31920i 0.114967 0.0663760i
\(396\) 0 0
\(397\) −6.49649 3.75075i −0.326050 0.188245i 0.328036 0.944665i \(-0.393613\pi\)
−0.654086 + 0.756420i \(0.726947\pi\)
\(398\) 0 0
\(399\) −3.70762 14.0862i −0.185613 0.705193i
\(400\) 0 0
\(401\) −24.3528 14.0601i −1.21612 0.702128i −0.252035 0.967718i \(-0.581100\pi\)
−0.964086 + 0.265591i \(0.914433\pi\)
\(402\) 0 0
\(403\) −8.08501 14.0036i −0.402743 0.697571i
\(404\) 0 0
\(405\) −0.540584 + 12.4460i −0.0268618 + 0.618445i
\(406\) 0 0
\(407\) 25.4954 1.26376
\(408\) 0 0
\(409\) 6.57782 + 11.3931i 0.325252 + 0.563353i 0.981563 0.191137i \(-0.0612175\pi\)
−0.656311 + 0.754490i \(0.727884\pi\)
\(410\) 0 0
\(411\) 0.465165 0.348980i 0.0229449 0.0172139i
\(412\) 0 0
\(413\) −7.62258 + 18.7422i −0.375083 + 0.922242i
\(414\) 0 0
\(415\) −8.39196 4.84510i −0.411945 0.237837i
\(416\) 0 0
\(417\) 16.0852 1.94032i 0.787694 0.0950179i
\(418\) 0 0
\(419\) 4.42222i 0.216040i 0.994149 + 0.108020i \(0.0344510\pi\)
−0.994149 + 0.108020i \(0.965549\pi\)
\(420\) 0 0
\(421\) 22.2013i 1.08203i 0.841014 + 0.541014i \(0.181959\pi\)
−0.841014 + 0.541014i \(0.818041\pi\)
\(422\) 0 0
\(423\) 2.66856 9.15925i 0.129750 0.445338i
\(424\) 0 0
\(425\) 7.79844 + 4.50243i 0.378280 + 0.218400i
\(426\) 0 0
\(427\) −9.05832 + 1.25180i −0.438363 + 0.0605788i
\(428\) 0 0
\(429\) −29.5332 39.3656i −1.42588 1.90059i
\(430\) 0 0
\(431\) −8.76759 15.1859i −0.422320 0.731479i 0.573846 0.818963i \(-0.305451\pi\)
−0.996166 + 0.0874837i \(0.972117\pi\)
\(432\) 0 0
\(433\) 0.852347 0.0409612 0.0204806 0.999790i \(-0.493480\pi\)
0.0204806 + 0.999790i \(0.493480\pi\)
\(434\) 0 0
\(435\) −6.28786 + 14.7262i −0.301480 + 0.706066i
\(436\) 0 0
\(437\) 5.87066 + 10.1683i 0.280832 + 0.486415i
\(438\) 0 0
\(439\) −14.5943 8.42604i −0.696549 0.402153i 0.109512 0.993986i \(-0.465071\pi\)
−0.806061 + 0.591833i \(0.798405\pi\)
\(440\) 0 0
\(441\) 0.185972 20.9992i 0.00885582 0.999961i
\(442\) 0 0
\(443\) −24.9578 14.4094i −1.18578 0.684611i −0.228436 0.973559i \(-0.573361\pi\)
−0.957345 + 0.288948i \(0.906695\pi\)
\(444\) 0 0
\(445\) 11.3888 6.57531i 0.539879 0.311699i
\(446\) 0 0
\(447\) −1.40881 + 3.29945i −0.0666347 + 0.156058i
\(448\) 0 0
\(449\) 1.27217i 0.0600373i −0.999549 0.0300186i \(-0.990443\pi\)
0.999549 0.0300186i \(-0.00955666\pi\)
\(450\) 0 0
\(451\) −1.09797 1.90174i −0.0517015 0.0895496i
\(452\) 0 0
\(453\) 32.4223 24.3241i 1.52333 1.14285i
\(454\) 0 0
\(455\) 23.3485 3.22660i 1.09459 0.151265i
\(456\) 0 0
\(457\) 7.46471 12.9293i 0.349185 0.604805i −0.636920 0.770930i \(-0.719792\pi\)
0.986105 + 0.166124i \(0.0531253\pi\)
\(458\) 0 0
\(459\) 9.62299 11.7297i 0.449163 0.547495i
\(460\) 0 0
\(461\) 27.1371 1.26390 0.631950 0.775009i \(-0.282255\pi\)
0.631950 + 0.775009i \(0.282255\pi\)
\(462\) 0 0
\(463\) 24.3062i 1.12960i −0.825227 0.564801i \(-0.808953\pi\)
0.825227 0.564801i \(-0.191047\pi\)
\(464\) 0 0
\(465\) −0.721366 5.98009i −0.0334525 0.277320i
\(466\) 0 0
\(467\) −22.2686 12.8568i −1.03047 0.594940i −0.113349 0.993555i \(-0.536158\pi\)
−0.917118 + 0.398615i \(0.869491\pi\)
\(468\) 0 0
\(469\) −16.5089 6.71430i −0.762311 0.310038i
\(470\) 0 0
\(471\) 30.9188 23.1961i 1.42466 1.06882i
\(472\) 0 0
\(473\) 3.31047 1.91130i 0.152216 0.0878817i
\(474\) 0 0
\(475\) −9.80275 −0.449781
\(476\) 0 0
\(477\) −17.1338 17.8942i −0.784504 0.819319i
\(478\) 0 0
\(479\) 4.48448 + 7.76735i 0.204901 + 0.354899i 0.950101 0.311942i \(-0.100979\pi\)
−0.745200 + 0.666841i \(0.767646\pi\)
\(480\) 0 0
\(481\) 18.5849 32.1900i 0.847399 1.46774i
\(482\) 0 0
\(483\) 4.30875 + 16.3701i 0.196055 + 0.744865i
\(484\) 0 0
\(485\) −0.825074 + 1.42907i −0.0374647 + 0.0648908i
\(486\) 0 0
\(487\) 5.02256 2.89978i 0.227594 0.131401i −0.381868 0.924217i \(-0.624719\pi\)
0.609462 + 0.792816i \(0.291386\pi\)
\(488\) 0 0
\(489\) 11.5630 27.0805i 0.522896 1.22462i
\(490\) 0 0
\(491\) 13.5893i 0.613275i −0.951826 0.306637i \(-0.900796\pi\)
0.951826 0.306637i \(-0.0992039\pi\)
\(492\) 0 0
\(493\) 16.8885 9.75058i 0.760620 0.439144i
\(494\) 0 0
\(495\) −4.35926 17.8061i −0.195934 0.800325i
\(496\) 0 0
\(497\) −3.97752 + 3.09286i −0.178416 + 0.138734i
\(498\) 0 0
\(499\) −18.6144 + 32.2411i −0.833294 + 1.44331i 0.0621178 + 0.998069i \(0.480215\pi\)
−0.895412 + 0.445239i \(0.853119\pi\)
\(500\) 0 0
\(501\) 41.1225 4.96053i 1.83722 0.221620i
\(502\) 0 0
\(503\) −24.5224 −1.09340 −0.546699 0.837329i \(-0.684116\pi\)
−0.546699 + 0.837329i \(0.684116\pi\)
\(504\) 0 0
\(505\) 2.86710 0.127584
\(506\) 0 0
\(507\) −48.8761 + 5.89582i −2.17066 + 0.261843i
\(508\) 0 0
\(509\) −21.4381 + 37.1319i −0.950226 + 1.64584i −0.205294 + 0.978700i \(0.565815\pi\)
−0.744932 + 0.667140i \(0.767518\pi\)
\(510\) 0 0
\(511\) −15.8575 6.44936i −0.701494 0.285303i
\(512\) 0 0
\(513\) −2.68766 + 16.2961i −0.118663 + 0.719492i
\(514\) 0 0
\(515\) −6.64470 + 3.83632i −0.292800 + 0.169048i
\(516\) 0 0
\(517\) 14.0386i 0.617416i
\(518\) 0 0
\(519\) 5.96415 13.9681i 0.261797 0.613129i
\(520\) 0 0
\(521\) −1.58214 + 0.913450i −0.0693149 + 0.0400190i −0.534257 0.845322i \(-0.679409\pi\)
0.464942 + 0.885341i \(0.346075\pi\)
\(522\) 0 0
\(523\) −12.7145 + 22.0222i −0.555966 + 0.962962i 0.441861 + 0.897083i \(0.354318\pi\)
−0.997828 + 0.0658788i \(0.979015\pi\)
\(524\) 0 0
\(525\) −13.6349 3.71824i −0.595075 0.162277i
\(526\) 0 0
\(527\) −3.66790 + 6.35300i −0.159776 + 0.276741i
\(528\) 0 0
\(529\) 4.67750 + 8.10166i 0.203369 + 0.352246i
\(530\) 0 0
\(531\) 16.5707 15.8666i 0.719107 0.688551i
\(532\) 0 0
\(533\) −3.20148 −0.138671
\(534\) 0 0
\(535\) 7.16348 4.13584i 0.309704 0.178808i
\(536\) 0 0
\(537\) −8.42572 + 6.32121i −0.363597 + 0.272780i
\(538\) 0 0
\(539\) 8.38092 + 29.7441i 0.360992 + 1.28117i
\(540\) 0 0
\(541\) 16.3531 + 9.44148i 0.703076 + 0.405921i 0.808492 0.588507i \(-0.200284\pi\)
−0.105416 + 0.994428i \(0.533618\pi\)
\(542\) 0 0
\(543\) −2.40238 19.9156i −0.103096 0.854662i
\(544\) 0 0
\(545\) 2.29512i 0.0983119i
\(546\) 0 0
\(547\) −13.0624 −0.558509 −0.279254 0.960217i \(-0.590087\pi\)
−0.279254 + 0.960217i \(0.590087\pi\)
\(548\) 0 0
\(549\) 9.95488 + 2.90036i 0.424864 + 0.123784i
\(550\) 0 0
\(551\) −10.6145 + 18.3849i −0.452195 + 0.783224i
\(552\) 0 0
\(553\) 4.99558 0.690356i 0.212434 0.0293569i
\(554\) 0 0
\(555\) 11.0756 8.30921i 0.470133 0.352706i
\(556\) 0 0
\(557\) −15.9928 27.7003i −0.677635 1.17370i −0.975691 0.219151i \(-0.929671\pi\)
0.298056 0.954549i \(-0.403662\pi\)
\(558\) 0 0
\(559\) 5.57299i 0.235712i
\(560\) 0 0
\(561\) −8.76714 + 20.5327i −0.370149 + 0.866890i
\(562\) 0 0
\(563\) 31.2546 18.0449i 1.31723 0.760501i 0.333944 0.942593i \(-0.391620\pi\)
0.983281 + 0.182092i \(0.0582870\pi\)
\(564\) 0 0
\(565\) −19.7247 11.3881i −0.829825 0.479100i
\(566\) 0 0
\(567\) −9.91956 + 21.6472i −0.416582 + 0.909098i
\(568\) 0 0
\(569\) 23.5336 + 13.5871i 0.986579 + 0.569601i 0.904250 0.427004i \(-0.140431\pi\)
0.0823288 + 0.996605i \(0.473764\pi\)
\(570\) 0 0
\(571\) 7.45448 + 12.9115i 0.311960 + 0.540331i 0.978787 0.204882i \(-0.0656811\pi\)
−0.666826 + 0.745213i \(0.732348\pi\)
\(572\) 0 0
\(573\) 1.02982 2.41185i 0.0430215 0.100756i
\(574\) 0 0
\(575\) 11.3921 0.475084
\(576\) 0 0
\(577\) −19.1659 33.1963i −0.797886 1.38198i −0.920990 0.389585i \(-0.872618\pi\)
0.123104 0.992394i \(-0.460715\pi\)
\(578\) 0 0
\(579\) −16.5853 22.1070i −0.689262 0.918737i
\(580\) 0 0
\(581\) −11.3696 14.6217i −0.471691 0.606611i
\(582\) 0 0
\(583\) 31.5722 + 18.2282i 1.30759 + 0.754935i
\(584\) 0 0
\(585\) −25.6594 7.47588i −1.06089 0.309090i
\(586\) 0 0
\(587\) 0.964880i 0.0398249i 0.999802 + 0.0199124i \(0.00633874\pi\)
−0.999802 + 0.0199124i \(0.993661\pi\)
\(588\) 0 0
\(589\) 7.98581i 0.329050i
\(590\) 0 0
\(591\) −1.65599 + 0.199758i −0.0681182 + 0.00821696i
\(592\) 0 0
\(593\) 14.9519 + 8.63251i 0.614003 + 0.354495i 0.774530 0.632537i \(-0.217986\pi\)
−0.160528 + 0.987031i \(0.551320\pi\)
\(594\) 0 0
\(595\) −6.56390 8.44141i −0.269094 0.346064i
\(596\) 0 0
\(597\) −2.76119 + 2.07152i −0.113008 + 0.0847818i
\(598\) 0 0
\(599\) −6.22127 10.7756i −0.254194 0.440277i 0.710482 0.703715i \(-0.248477\pi\)
−0.964676 + 0.263438i \(0.915144\pi\)
\(600\) 0 0
\(601\) −27.7052 −1.13012 −0.565059 0.825051i \(-0.691147\pi\)
−0.565059 + 0.825051i \(0.691147\pi\)
\(602\) 0 0
\(603\) 13.9760 + 14.5962i 0.569146 + 0.594403i
\(604\) 0 0
\(605\) 5.87504 + 10.1759i 0.238854 + 0.413708i
\(606\) 0 0
\(607\) 5.43950 + 3.14050i 0.220783 + 0.127469i 0.606313 0.795226i \(-0.292648\pi\)
−0.385530 + 0.922695i \(0.625981\pi\)
\(608\) 0 0
\(609\) −21.7375 + 21.5459i −0.880850 + 0.873083i
\(610\) 0 0
\(611\) 17.7249 + 10.2335i 0.717072 + 0.414002i
\(612\) 0 0
\(613\) 17.0190 9.82590i 0.687389 0.396864i −0.115244 0.993337i \(-0.536765\pi\)
0.802633 + 0.596473i \(0.203432\pi\)
\(614\) 0 0
\(615\) −1.09678 0.468307i −0.0442263 0.0188840i
\(616\) 0 0
\(617\) 32.2579i 1.29865i −0.760509 0.649327i \(-0.775051\pi\)
0.760509 0.649327i \(-0.224949\pi\)
\(618\) 0 0
\(619\) −13.3846 23.1828i −0.537973 0.931797i −0.999013 0.0444173i \(-0.985857\pi\)
0.461040 0.887379i \(-0.347476\pi\)
\(620\) 0 0
\(621\) 3.12343 18.9383i 0.125339 0.759968i
\(622\) 0 0
\(623\) 24.8996 3.44096i 0.997581 0.137859i
\(624\) 0 0
\(625\) 0.0343418 0.0594818i 0.00137367 0.00237927i
\(626\) 0 0
\(627\) −2.91068 24.1294i −0.116241 0.963635i
\(628\) 0 0
\(629\) −16.8627 −0.672361
\(630\) 0 0
\(631\) 29.4363i 1.17184i −0.810369 0.585920i \(-0.800733\pi\)
0.810369 0.585920i \(-0.199267\pi\)
\(632\) 0 0
\(633\) −36.8966 + 4.45076i −1.46651 + 0.176902i
\(634\) 0 0
\(635\) −2.77341 1.60123i −0.110059 0.0635428i
\(636\) 0 0
\(637\) 43.6637 + 11.1004i 1.73002 + 0.439815i
\(638\) 0 0
\(639\) 5.54924 1.35855i 0.219524 0.0537436i
\(640\) 0 0
\(641\) −34.2214 + 19.7578i −1.35167 + 0.780384i −0.988483 0.151334i \(-0.951643\pi\)
−0.363183 + 0.931718i \(0.618310\pi\)
\(642\) 0 0
\(643\) −17.3857 −0.685626 −0.342813 0.939404i \(-0.611380\pi\)
−0.342813 + 0.939404i \(0.611380\pi\)
\(644\) 0 0
\(645\) 0.815208 1.90922i 0.0320988 0.0751754i
\(646\) 0 0
\(647\) −23.6414 40.9480i −0.929438 1.60983i −0.784264 0.620427i \(-0.786959\pi\)
−0.145174 0.989406i \(-0.546374\pi\)
\(648\) 0 0
\(649\) −16.8800 + 29.2370i −0.662598 + 1.14765i
\(650\) 0 0
\(651\) 3.02907 11.1077i 0.118718 0.435343i
\(652\) 0 0
\(653\) 14.1939 24.5845i 0.555449 0.962067i −0.442419 0.896808i \(-0.645880\pi\)
0.997868 0.0652581i \(-0.0207871\pi\)
\(654\) 0 0
\(655\) 5.69432 3.28762i 0.222495 0.128458i
\(656\) 0 0
\(657\) 13.4245 + 14.0202i 0.523739 + 0.546981i
\(658\) 0 0
\(659\) 3.58703i 0.139731i −0.997556 0.0698654i \(-0.977743\pi\)
0.997556 0.0698654i \(-0.0222570\pi\)
\(660\) 0 0
\(661\) 1.09189 0.630403i 0.0424696 0.0245198i −0.478615 0.878025i \(-0.658861\pi\)
0.521084 + 0.853505i \(0.325528\pi\)
\(662\) 0 0
\(663\) 19.5334 + 26.0366i 0.758613 + 1.01118i
\(664\) 0 0
\(665\) 10.7829 + 4.38548i 0.418142 + 0.170062i
\(666\) 0 0
\(667\) 12.3355 21.3658i 0.477634 0.827286i
\(668\) 0 0
\(669\) 2.52936 + 20.9683i 0.0977909 + 0.810682i
\(670\) 0 0
\(671\) −15.2581 −0.589031
\(672\) 0 0
\(673\) 34.9662 1.34785 0.673925 0.738800i \(-0.264607\pi\)
0.673925 + 0.738800i \(0.264607\pi\)
\(674\) 0 0
\(675\) 12.3893 + 10.1641i 0.476863 + 0.391216i
\(676\) 0 0
\(677\) 2.84885 4.93435i 0.109490 0.189642i −0.806074 0.591815i \(-0.798412\pi\)
0.915564 + 0.402173i \(0.131745\pi\)
\(678\) 0 0
\(679\) −2.48994 + 1.93614i −0.0955551 + 0.0743021i
\(680\) 0 0
\(681\) 21.7503 16.3177i 0.833474 0.625295i
\(682\) 0 0
\(683\) −19.9548 + 11.5209i −0.763551 + 0.440836i −0.830569 0.556915i \(-0.811985\pi\)
0.0670183 + 0.997752i \(0.478651\pi\)
\(684\) 0 0
\(685\) 0.464729i 0.0177564i
\(686\) 0 0
\(687\) −19.2937 8.23812i −0.736100 0.314304i
\(688\) 0 0
\(689\) 46.0293 26.5750i 1.75358 1.01243i
\(690\) 0 0
\(691\) 18.0614 31.2833i 0.687090 1.19007i −0.285686 0.958323i \(-0.592221\pi\)
0.972775 0.231751i \(-0.0744454\pi\)
\(692\) 0 0
\(693\) 5.10389 34.6662i 0.193881 1.31686i
\(694\) 0 0
\(695\) −6.47392 + 11.2132i −0.245570 + 0.425339i
\(696\) 0 0
\(697\) 0.726203 + 1.25782i 0.0275069 + 0.0476434i
\(698\) 0 0
\(699\) −9.30483 3.97302i −0.351941 0.150274i
\(700\) 0 0
\(701\) −29.8672 −1.12807 −0.564035 0.825751i \(-0.690752\pi\)
−0.564035 + 0.825751i \(0.690752\pi\)
\(702\) 0 0
\(703\) 15.8975 9.17844i 0.599586 0.346171i
\(704\) 0 0
\(705\) 4.57533 + 6.09858i 0.172317 + 0.229686i
\(706\) 0 0
\(707\) 5.07641 + 2.06461i 0.190918 + 0.0776478i
\(708\) 0 0
\(709\) −42.5302 24.5548i −1.59725 0.922175i −0.992013 0.126132i \(-0.959744\pi\)
−0.605240 0.796043i \(-0.706923\pi\)
\(710\) 0 0
\(711\) −5.49002 1.59952i −0.205892 0.0599868i
\(712\) 0 0
\(713\) 9.28059i 0.347561i
\(714\) 0 0
\(715\) 39.3287 1.47081
\(716\) 0 0
\(717\) −38.8921 + 4.69147i −1.45245 + 0.175206i
\(718\) 0 0
\(719\) −8.31324 + 14.3990i −0.310032 + 0.536991i −0.978369 0.206868i \(-0.933673\pi\)
0.668337 + 0.743858i \(0.267006\pi\)
\(720\) 0 0
\(721\) −14.5275 + 2.00760i −0.541032 + 0.0747670i
\(722\) 0 0
\(723\) 26.4971 + 35.3187i 0.985437 + 1.31352i
\(724\) 0 0
\(725\) 10.2989 + 17.8381i 0.382490 + 0.662492i
\(726\) 0 0
\(727\) 6.37182i 0.236318i −0.992995 0.118159i \(-0.962301\pi\)
0.992995 0.118159i \(-0.0376992\pi\)
\(728\) 0 0
\(729\) 20.2936 17.8092i 0.751616 0.659601i
\(730\) 0 0
\(731\) −2.18956 + 1.26414i −0.0809837 + 0.0467560i
\(732\) 0 0
\(733\) 33.2648 + 19.2054i 1.22866 + 0.709369i 0.966750 0.255723i \(-0.0823135\pi\)
0.261912 + 0.965092i \(0.415647\pi\)
\(734\) 0 0
\(735\) 13.3347 + 10.1899i 0.491859 + 0.375859i
\(736\) 0 0
\(737\) −25.7533 14.8687i −0.948634 0.547694i
\(738\) 0 0
\(739\) −0.546366 0.946333i −0.0200984 0.0348114i 0.855801 0.517305i \(-0.173065\pi\)
−0.875900 + 0.482493i \(0.839731\pi\)
\(740\) 0 0
\(741\) −32.5871 13.9142i −1.19712 0.511151i
\(742\) 0 0
\(743\) −26.5914 −0.975545 −0.487772 0.872971i \(-0.662190\pi\)
−0.487772 + 0.872971i \(0.662190\pi\)
\(744\) 0 0
\(745\) −1.43355 2.48298i −0.0525212 0.0909693i
\(746\) 0 0
\(747\) 4.99416 + 20.3995i 0.182727 + 0.746378i
\(748\) 0 0
\(749\) 15.6617 2.16435i 0.572267 0.0790835i
\(750\) 0 0
\(751\) 24.4781 + 14.1324i 0.893217 + 0.515699i 0.874993 0.484135i \(-0.160866\pi\)
0.0182235 + 0.999834i \(0.494199\pi\)
\(752\) 0 0
\(753\) 0.230263 + 1.90887i 0.00839127 + 0.0695632i
\(754\) 0 0
\(755\) 32.3918i 1.17886i
\(756\) 0 0
\(757\) 26.8780i 0.976898i −0.872592 0.488449i \(-0.837563\pi\)
0.872592 0.488449i \(-0.162437\pi\)
\(758\) 0 0
\(759\) 3.38260 + 28.0416i 0.122781 + 1.01785i
\(760\) 0 0
\(761\) −46.8523 27.0502i −1.69840 0.980569i −0.947285 0.320393i \(-0.896185\pi\)
−0.751111 0.660176i \(-0.770482\pi\)
\(762\) 0 0
\(763\) −1.65273 + 4.06367i −0.0598327 + 0.147115i
\(764\) 0 0
\(765\) 2.88323 + 11.7770i 0.104243 + 0.425799i
\(766\) 0 0
\(767\) 24.6095 + 42.6248i 0.888596 + 1.53909i
\(768\) 0 0
\(769\) −9.44304 −0.340525 −0.170262 0.985399i \(-0.554462\pi\)
−0.170262 + 0.985399i \(0.554462\pi\)
\(770\) 0 0
\(771\) 22.2387 + 9.49560i 0.800907 + 0.341976i
\(772\) 0 0
\(773\) −18.7073 32.4020i −0.672856 1.16542i −0.977091 0.212823i \(-0.931734\pi\)
0.304235 0.952597i \(-0.401599\pi\)
\(774\) 0 0
\(775\) −6.71022 3.87415i −0.241038 0.139164i
\(776\) 0 0
\(777\) 25.5937 6.73649i 0.918168 0.241670i
\(778\) 0 0
\(779\) −1.36927 0.790550i −0.0490593 0.0283244i
\(780\) 0 0
\(781\) −7.28073 + 4.20353i −0.260525 + 0.150414i
\(782\) 0 0
\(783\) 32.4779 12.2301i 1.16066 0.437068i
\(784\) 0 0
\(785\) 30.8897i 1.10250i
\(786\) 0 0
\(787\) −6.80641 11.7890i −0.242622 0.420234i 0.718838 0.695178i \(-0.244674\pi\)
−0.961460 + 0.274943i \(0.911341\pi\)
\(788\) 0 0
\(789\) 14.7284 + 19.6319i 0.524345 + 0.698915i
\(790\) 0 0
\(791\) −26.7235 34.3673i −0.950177 1.22196i
\(792\) 0 0
\(793\) −11.1224 + 19.2646i −0.394968 + 0.684105i
\(794\) 0 0
\(795\) 19.6562 2.37109i 0.697135 0.0840939i
\(796\) 0 0
\(797\) 45.9884 1.62899 0.814496 0.580169i \(-0.197013\pi\)
0.814496 + 0.580169i \(0.197013\pi\)
\(798\) 0 0
\(799\) 9.28517i 0.328486i
\(800\) 0 0
\(801\) −27.3640 7.97254i −0.966861 0.281696i
\(802\) 0 0
\(803\) −24.7370 14.2819i −0.872951 0.503999i
\(804\) 0 0
\(805\) −12.5312 5.09652i −0.441666 0.179629i
\(806\) 0 0
\(807\) −18.9389 25.2443i −0.666682 0.888640i
\(808\) 0 0
\(809\) −16.1190 + 9.30630i −0.566713 + 0.327192i −0.755836 0.654762i \(-0.772769\pi\)
0.189122 + 0.981954i \(0.439436\pi\)
\(810\) 0 0
\(811\) −33.9178 −1.19101 −0.595507 0.803350i \(-0.703049\pi\)
−0.595507 + 0.803350i \(0.703049\pi\)
\(812\) 0 0
\(813\) 40.3328 + 17.2215i 1.41453 + 0.603984i
\(814\) 0 0
\(815\) 11.7660 + 20.3793i 0.412145 + 0.713856i
\(816\) 0 0
\(817\) 1.37615 2.38357i 0.0481455 0.0833904i
\(818\) 0 0
\(819\) −40.0484 31.7141i −1.39941 1.10818i
\(820\) 0 0
\(821\) −14.0972 + 24.4171i −0.491996 + 0.852162i −0.999958 0.00921774i \(-0.997066\pi\)
0.507962 + 0.861380i \(0.330399\pi\)
\(822\) 0 0
\(823\) −16.0158 + 9.24672i −0.558275 + 0.322320i −0.752453 0.658646i \(-0.771129\pi\)
0.194178 + 0.980966i \(0.437796\pi\)
\(824\) 0 0
\(825\) −21.6872 9.26012i −0.755052 0.322396i
\(826\) 0 0
\(827\) 14.5655i 0.506491i −0.967402 0.253245i \(-0.918502\pi\)
0.967402 0.253245i \(-0.0814980\pi\)
\(828\) 0 0
\(829\) −17.0346 + 9.83492i −0.591635 + 0.341581i −0.765744 0.643146i \(-0.777629\pi\)
0.174108 + 0.984726i \(0.444296\pi\)
\(830\) 0 0
\(831\) −26.0486 + 19.5424i −0.903616 + 0.677918i
\(832\) 0 0
\(833\) −5.54317 19.6729i −0.192060 0.681624i
\(834\) 0 0
\(835\) −16.5509 + 28.6670i −0.572767 + 0.992062i
\(836\) 0 0
\(837\) −8.28017 + 10.0929i −0.286205 + 0.348862i
\(838\) 0 0
\(839\) 26.2321 0.905631 0.452816 0.891604i \(-0.350420\pi\)
0.452816 + 0.891604i \(0.350420\pi\)
\(840\) 0 0
\(841\) 15.6069 0.538171
\(842\) 0 0
\(843\) −5.28760 43.8340i −0.182115 1.50972i
\(844\) 0 0
\(845\) 19.6715 34.0721i 0.676721 1.17212i
\(846\) 0 0
\(847\) 3.07449 + 22.2478i 0.105641 + 0.764443i
\(848\) 0 0
\(849\) 12.5116 + 16.6771i 0.429397 + 0.572355i
\(850\) 0 0
\(851\) −18.4751 + 10.6666i −0.633317 + 0.365646i
\(852\) 0 0
\(853\) 21.5548i 0.738022i −0.929425 0.369011i \(-0.879696\pi\)
0.929425 0.369011i \(-0.120304\pi\)
\(854\) 0 0
\(855\) −9.12847 9.53357i −0.312187 0.326041i
\(856\) 0 0
\(857\) −15.7399 + 9.08742i −0.537664 + 0.310420i −0.744132 0.668033i \(-0.767136\pi\)
0.206468 + 0.978453i \(0.433803\pi\)
\(858\) 0 0
\(859\) −3.84011 + 6.65127i −0.131023 + 0.226938i −0.924071 0.382220i \(-0.875160\pi\)
0.793048 + 0.609159i \(0.208493\pi\)
\(860\) 0 0
\(861\) −1.60469 1.61897i −0.0546878 0.0551743i
\(862\) 0 0
\(863\) 16.7613 29.0314i 0.570562 0.988242i −0.425947 0.904748i \(-0.640059\pi\)
0.996508 0.0834933i \(-0.0266077\pi\)
\(864\) 0 0
\(865\) 6.06886 + 10.5116i 0.206347 + 0.357404i
\(866\) 0 0
\(867\) −5.76398 + 13.4992i −0.195755 + 0.458458i
\(868\) 0 0
\(869\) 8.41467 0.285448
\(870\) 0 0
\(871\) −37.5458 + 21.6771i −1.27219 + 0.734500i
\(872\) 0 0
\(873\) 3.47384 0.850459i 0.117572 0.0287837i
\(874\) 0 0
\(875\) 23.3713 18.1732i 0.790095 0.614365i
\(876\) 0 0
\(877\) 22.4823 + 12.9802i 0.759174 + 0.438309i 0.828999 0.559250i \(-0.188911\pi\)
−0.0698251 + 0.997559i \(0.522244\pi\)
\(878\) 0 0
\(879\) 6.71436 0.809939i 0.226470 0.0273186i
\(880\) 0 0
\(881\) 0.0231379i 0.000779536i −1.00000 0.000389768i \(-0.999876\pi\)
1.00000 0.000389768i \(-0.000124067\pi\)
\(882\) 0 0
\(883\) 50.1245 1.68682 0.843412 0.537268i \(-0.180543\pi\)
0.843412 + 0.537268i \(0.180543\pi\)
\(884\) 0 0
\(885\) 2.19572 + 18.2024i 0.0738083 + 0.611868i
\(886\) 0 0
\(887\) 23.4706 40.6522i 0.788064 1.36497i −0.139087 0.990280i \(-0.544417\pi\)
0.927151 0.374687i \(-0.122250\pi\)
\(888\) 0 0
\(889\) −3.75747 4.83224i −0.126022 0.162068i
\(890\) 0 0
\(891\) −21.3401 + 33.5140i −0.714922 + 1.12276i
\(892\) 0 0
\(893\) 5.05395 + 8.75370i 0.169124 + 0.292931i
\(894\) 0 0
\(895\) 8.41781i 0.281376i
\(896\) 0 0
\(897\) 37.8706 + 16.1702i 1.26446 + 0.539907i
\(898\) 0 0
\(899\) −14.5318 + 8.38996i −0.484664 + 0.279821i
\(900\) 0 0
\(901\) −20.8820 12.0562i −0.695679 0.401651i
\(902\) 0 0
\(903\) 2.81823 2.79338i 0.0937847 0.0929578i
\(904\) 0 0
\(905\) 13.8834 + 8.01559i 0.461500 + 0.266447i
\(906\) 0 0
\(907\) 7.24598 + 12.5504i 0.240599 + 0.416729i 0.960885 0.276948i \(-0.0893229\pi\)
−0.720286 + 0.693677i \(0.755990\pi\)
\(908\) 0 0
\(909\) −4.29754 4.48826i −0.142541 0.148866i
\(910\) 0 0
\(911\) 28.7559 0.952726 0.476363 0.879249i \(-0.341955\pi\)
0.476363 + 0.879249i \(0.341955\pi\)
\(912\) 0 0
\(913\) −15.4525 26.7646i −0.511404 0.885779i
\(914\) 0 0
\(915\) −6.62834 + 4.97277i −0.219126 + 0.164395i
\(916\) 0 0
\(917\) 12.4497 1.72046i 0.411124 0.0568146i
\(918\) 0 0
\(919\) −14.3049 8.25895i −0.471876 0.272438i 0.245149 0.969485i \(-0.421163\pi\)
−0.717025 + 0.697048i \(0.754497\pi\)
\(920\) 0 0
\(921\) 18.9738 2.28877i 0.625208 0.0754176i
\(922\) 0 0
\(923\) 12.2567i 0.403434i
\(924\) 0 0
\(925\) 17.8109i 0.585619i
\(926\) 0 0
\(927\) 15.9654 + 4.65152i 0.524371 + 0.152776i
\(928\) 0 0
\(929\) 2.55192 + 1.47335i 0.0837258 + 0.0483391i 0.541278 0.840843i \(-0.317941\pi\)
−0.457553 + 0.889183i \(0.651274\pi\)
\(930\) 0 0
\(931\) 15.9339 + 15.5296i 0.522212 + 0.508963i
\(932\) 0 0
\(933\) 32.5453 + 43.3806i 1.06548 + 1.42022i
\(934\) 0 0
\(935\) −8.92106 15.4517i −0.291750 0.505326i
\(936\) 0 0
\(937\) 31.6130 1.03275 0.516375 0.856362i \(-0.327281\pi\)
0.516375 + 0.856362i \(0.327281\pi\)
\(938\) 0 0
\(939\) 8.88366 20.8055i 0.289907 0.678963i
\(940\) 0 0
\(941\) −16.1958 28.0519i −0.527966 0.914465i −0.999468 0.0325998i \(-0.989621\pi\)
0.471502 0.881865i \(-0.343712\pi\)
\(942\) 0 0
\(943\) 1.59128 + 0.918726i 0.0518192 + 0.0299178i
\(944\) 0 0
\(945\) −9.08087 16.7230i −0.295401 0.543998i
\(946\) 0 0
\(947\) −18.1295 10.4671i −0.589129 0.340134i 0.175624 0.984457i \(-0.443806\pi\)
−0.764753 + 0.644324i \(0.777139\pi\)
\(948\) 0 0
\(949\) −36.0643 + 20.8217i −1.17070 + 0.675902i
\(950\) 0 0
\(951\) −16.6386 + 38.9676i −0.539543 + 1.26361i
\(952\) 0 0
\(953\) 34.4190i 1.11494i −0.830197 0.557470i \(-0.811772\pi\)
0.830197 0.557470i \(-0.188228\pi\)
\(954\) 0 0
\(955\) 1.04790 + 1.81502i 0.0339094 + 0.0587328i
\(956\) 0 0
\(957\) −40.8504 + 30.6471i −1.32051 + 0.990681i
\(958\) 0 0
\(959\) −0.334654 + 0.822837i −0.0108065 + 0.0265708i
\(960\) 0 0
\(961\) −12.3439 + 21.3803i −0.398191 + 0.689687i
\(962\) 0 0
\(963\) −17.2119 5.01469i −0.554645 0.161596i
\(964\) 0 0
\(965\) 22.0863 0.710982
\(966\) 0 0
\(967\) 52.5582i 1.69016i 0.534643 + 0.845078i \(0.320446\pi\)
−0.534643 + 0.845078i \(0.679554\pi\)
\(968\) 0 0
\(969\) 1.92513 + 15.9593i 0.0618442 + 0.512686i
\(970\) 0 0
\(971\) −0.310281 0.179141i −0.00995738 0.00574890i 0.495013 0.868886i \(-0.335163\pi\)
−0.504970 + 0.863137i \(0.668497\pi\)
\(972\) 0 0
\(973\) −19.5372 + 15.1918i −0.626335 + 0.487028i
\(974\) 0 0
\(975\) −27.5006 + 20.6317i −0.880725 + 0.660744i
\(976\) 0 0
\(977\) 34.5190 19.9296i 1.10436 0.637603i 0.166998 0.985957i \(-0.446593\pi\)
0.937363 + 0.348354i \(0.113259\pi\)
\(978\) 0 0
\(979\) 41.9414 1.34045
\(980\) 0 0
\(981\) 3.59286 3.44019i 0.114711 0.109837i
\(982\) 0 0
\(983\) −14.8055 25.6439i −0.472223 0.817914i 0.527272 0.849697i \(-0.323215\pi\)
−0.999495 + 0.0317825i \(0.989882\pi\)
\(984\) 0 0
\(985\) 0.666498 1.15441i 0.0212364 0.0367825i
\(986\) 0 0
\(987\) 3.70933 + 14.0927i 0.118069 + 0.448576i
\(988\) 0 0
\(989\) −1.59928 + 2.77003i −0.0508540 + 0.0880818i
\(990\) 0 0
\(991\) 19.2020 11.0863i 0.609970 0.352167i −0.162983 0.986629i \(-0.552112\pi\)
0.772954 + 0.634462i \(0.218778\pi\)
\(992\) 0 0
\(993\) 9.87945 23.1377i 0.313515 0.734253i
\(994\) 0 0
\(995\) 2.75860i 0.0874535i
\(996\) 0 0
\(997\) −19.4291 + 11.2174i −0.615324 + 0.355258i −0.775046 0.631904i \(-0.782274\pi\)
0.159722 + 0.987162i \(0.448940\pi\)
\(998\) 0 0
\(999\) −29.6089 4.88330i −0.936785 0.154501i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.bd.a.527.27 56
3.2 odd 2 inner 672.2.bd.a.527.8 56
4.3 odd 2 168.2.v.a.107.10 yes 56
7.4 even 3 inner 672.2.bd.a.431.7 56
8.3 odd 2 inner 672.2.bd.a.527.28 56
8.5 even 2 168.2.v.a.107.1 yes 56
12.11 even 2 168.2.v.a.107.19 yes 56
21.11 odd 6 inner 672.2.bd.a.431.28 56
24.5 odd 2 168.2.v.a.107.28 yes 56
24.11 even 2 inner 672.2.bd.a.527.7 56
28.11 odd 6 168.2.v.a.11.28 yes 56
56.11 odd 6 inner 672.2.bd.a.431.8 56
56.53 even 6 168.2.v.a.11.19 yes 56
84.11 even 6 168.2.v.a.11.1 56
168.11 even 6 inner 672.2.bd.a.431.27 56
168.53 odd 6 168.2.v.a.11.10 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.v.a.11.1 56 84.11 even 6
168.2.v.a.11.10 yes 56 168.53 odd 6
168.2.v.a.11.19 yes 56 56.53 even 6
168.2.v.a.11.28 yes 56 28.11 odd 6
168.2.v.a.107.1 yes 56 8.5 even 2
168.2.v.a.107.10 yes 56 4.3 odd 2
168.2.v.a.107.19 yes 56 12.11 even 2
168.2.v.a.107.28 yes 56 24.5 odd 2
672.2.bd.a.431.7 56 7.4 even 3 inner
672.2.bd.a.431.8 56 56.11 odd 6 inner
672.2.bd.a.431.27 56 168.11 even 6 inner
672.2.bd.a.431.28 56 21.11 odd 6 inner
672.2.bd.a.527.7 56 24.11 even 2 inner
672.2.bd.a.527.8 56 3.2 odd 2 inner
672.2.bd.a.527.27 56 1.1 even 1 trivial
672.2.bd.a.527.28 56 8.3 odd 2 inner