Properties

Label 672.2.bd.a.527.8
Level $672$
Weight $2$
Character 672.527
Analytic conductor $5.366$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [672,2,Mod(431,672)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(672, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("672.431");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.bd (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 527.8
Character \(\chi\) \(=\) 672.527
Dual form 672.2.bd.a.431.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.03943 + 1.38549i) q^{3} +(0.692094 - 1.19874i) q^{5} +(-2.08863 + 1.62408i) q^{7} +(-0.839162 - 2.88024i) q^{9} +(3.82316 - 2.20731i) q^{11} +6.43609i q^{13} +(0.941460 + 2.20490i) q^{15} +(-2.52866 + 1.45992i) q^{17} +(-1.58928 + 2.75271i) q^{19} +(-0.0791630 - 4.58189i) q^{21} +(-1.84696 + 3.19902i) q^{23} +(1.54201 + 2.67084i) q^{25} +(4.86280 + 1.83117i) q^{27} -6.67884 q^{29} +(-2.17580 + 1.25620i) q^{31} +(-0.915722 + 7.59130i) q^{33} +(0.501330 + 3.62774i) q^{35} +(-5.00149 - 2.88761i) q^{37} +(-8.91713 - 6.68987i) q^{39} -0.497427i q^{41} -0.865898 q^{43} +(-4.03345 - 0.987462i) q^{45} +(-1.59001 + 2.75398i) q^{47} +(1.72472 - 6.78420i) q^{49} +(0.605663 - 5.02092i) q^{51} +(4.12906 + 7.15175i) q^{53} -6.11065i q^{55} +(-2.16191 - 5.06319i) q^{57} +(-6.62279 + 3.82367i) q^{59} +(2.99321 + 1.72813i) q^{61} +(6.43045 + 4.65289i) q^{63} +(7.71521 + 4.45438i) q^{65} +(3.36806 + 5.83364i) q^{67} +(-2.51243 - 5.88411i) q^{69} -1.90437 q^{71} +(3.23515 + 5.60345i) q^{73} +(-5.30324 - 0.639719i) q^{75} +(-4.40032 + 10.8194i) q^{77} +(-1.65073 - 0.953048i) q^{79} +(-7.59162 + 4.83398i) q^{81} -7.00064i q^{83} +4.04161i q^{85} +(6.94220 - 9.25347i) q^{87} +(8.22776 + 4.75030i) q^{89} +(-10.4527 - 13.4426i) q^{91} +(0.521147 - 4.32029i) q^{93} +(2.19986 + 3.81027i) q^{95} +1.19214 q^{97} +(-9.56583 - 9.15936i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 2 q^{3} - 2 q^{9} + 4 q^{19} - 16 q^{25} + 8 q^{27} - 14 q^{33} + 16 q^{43} - 16 q^{49} + 34 q^{51} + 4 q^{57} + 36 q^{67} + 4 q^{73} - 10 q^{81} - 72 q^{91} - 32 q^{97} + 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.03943 + 1.38549i −0.600116 + 0.799913i
\(4\) 0 0
\(5\) 0.692094 1.19874i 0.309514 0.536094i −0.668742 0.743494i \(-0.733167\pi\)
0.978256 + 0.207401i \(0.0665004\pi\)
\(6\) 0 0
\(7\) −2.08863 + 1.62408i −0.789426 + 0.613845i
\(8\) 0 0
\(9\) −0.839162 2.88024i −0.279721 0.960081i
\(10\) 0 0
\(11\) 3.82316 2.20731i 1.15273 0.665528i 0.203177 0.979142i \(-0.434873\pi\)
0.949550 + 0.313614i \(0.101540\pi\)
\(12\) 0 0
\(13\) 6.43609i 1.78505i 0.450999 + 0.892525i \(0.351068\pi\)
−0.450999 + 0.892525i \(0.648932\pi\)
\(14\) 0 0
\(15\) 0.941460 + 2.20490i 0.243084 + 0.569303i
\(16\) 0 0
\(17\) −2.52866 + 1.45992i −0.613289 + 0.354083i −0.774252 0.632878i \(-0.781874\pi\)
0.160962 + 0.986961i \(0.448540\pi\)
\(18\) 0 0
\(19\) −1.58928 + 2.75271i −0.364606 + 0.631515i −0.988713 0.149823i \(-0.952130\pi\)
0.624107 + 0.781339i \(0.285463\pi\)
\(20\) 0 0
\(21\) −0.0791630 4.58189i −0.0172748 0.999851i
\(22\) 0 0
\(23\) −1.84696 + 3.19902i −0.385117 + 0.667043i −0.991785 0.127912i \(-0.959172\pi\)
0.606668 + 0.794955i \(0.292506\pi\)
\(24\) 0 0
\(25\) 1.54201 + 2.67084i 0.308402 + 0.534169i
\(26\) 0 0
\(27\) 4.86280 + 1.83117i 0.935846 + 0.352409i
\(28\) 0 0
\(29\) −6.67884 −1.24023 −0.620115 0.784511i \(-0.712914\pi\)
−0.620115 + 0.784511i \(0.712914\pi\)
\(30\) 0 0
\(31\) −2.17580 + 1.25620i −0.390786 + 0.225620i −0.682500 0.730885i \(-0.739107\pi\)
0.291715 + 0.956505i \(0.405774\pi\)
\(32\) 0 0
\(33\) −0.915722 + 7.59130i −0.159407 + 1.32148i
\(34\) 0 0
\(35\) 0.501330 + 3.62774i 0.0847402 + 0.613200i
\(36\) 0 0
\(37\) −5.00149 2.88761i −0.822240 0.474720i 0.0289485 0.999581i \(-0.490784\pi\)
−0.851188 + 0.524861i \(0.824117\pi\)
\(38\) 0 0
\(39\) −8.91713 6.68987i −1.42788 1.07124i
\(40\) 0 0
\(41\) 0.497427i 0.0776850i −0.999245 0.0388425i \(-0.987633\pi\)
0.999245 0.0388425i \(-0.0123671\pi\)
\(42\) 0 0
\(43\) −0.865898 −0.132048 −0.0660241 0.997818i \(-0.521031\pi\)
−0.0660241 + 0.997818i \(0.521031\pi\)
\(44\) 0 0
\(45\) −4.03345 0.987462i −0.601271 0.147202i
\(46\) 0 0
\(47\) −1.59001 + 2.75398i −0.231927 + 0.401710i −0.958375 0.285512i \(-0.907836\pi\)
0.726448 + 0.687221i \(0.241170\pi\)
\(48\) 0 0
\(49\) 1.72472 6.78420i 0.246388 0.969171i
\(50\) 0 0
\(51\) 0.605663 5.02092i 0.0848097 0.703069i
\(52\) 0 0
\(53\) 4.12906 + 7.15175i 0.567171 + 0.982368i 0.996844 + 0.0793841i \(0.0252954\pi\)
−0.429673 + 0.902984i \(0.641371\pi\)
\(54\) 0 0
\(55\) 6.11065i 0.823960i
\(56\) 0 0
\(57\) −2.16191 5.06319i −0.286351 0.670635i
\(58\) 0 0
\(59\) −6.62279 + 3.82367i −0.862214 + 0.497799i −0.864753 0.502197i \(-0.832525\pi\)
0.00253919 + 0.999997i \(0.499192\pi\)
\(60\) 0 0
\(61\) 2.99321 + 1.72813i 0.383241 + 0.221265i 0.679228 0.733928i \(-0.262315\pi\)
−0.295986 + 0.955192i \(0.595648\pi\)
\(62\) 0 0
\(63\) 6.43045 + 4.65289i 0.810160 + 0.586209i
\(64\) 0 0
\(65\) 7.71521 + 4.45438i 0.956954 + 0.552497i
\(66\) 0 0
\(67\) 3.36806 + 5.83364i 0.411473 + 0.712693i 0.995051 0.0993644i \(-0.0316810\pi\)
−0.583578 + 0.812057i \(0.698348\pi\)
\(68\) 0 0
\(69\) −2.51243 5.88411i −0.302461 0.708363i
\(70\) 0 0
\(71\) −1.90437 −0.226007 −0.113004 0.993595i \(-0.536047\pi\)
−0.113004 + 0.993595i \(0.536047\pi\)
\(72\) 0 0
\(73\) 3.23515 + 5.60345i 0.378646 + 0.655834i 0.990866 0.134854i \(-0.0430564\pi\)
−0.612219 + 0.790688i \(0.709723\pi\)
\(74\) 0 0
\(75\) −5.30324 0.639719i −0.612365 0.0738684i
\(76\) 0 0
\(77\) −4.40032 + 10.8194i −0.501463 + 1.23298i
\(78\) 0 0
\(79\) −1.65073 0.953048i −0.185721 0.107226i 0.404257 0.914646i \(-0.367530\pi\)
−0.589978 + 0.807419i \(0.700864\pi\)
\(80\) 0 0
\(81\) −7.59162 + 4.83398i −0.843513 + 0.537109i
\(82\) 0 0
\(83\) 7.00064i 0.768420i −0.923246 0.384210i \(-0.874474\pi\)
0.923246 0.384210i \(-0.125526\pi\)
\(84\) 0 0
\(85\) 4.04161i 0.438374i
\(86\) 0 0
\(87\) 6.94220 9.25347i 0.744282 0.992076i
\(88\) 0 0
\(89\) 8.22776 + 4.75030i 0.872141 + 0.503531i 0.868059 0.496461i \(-0.165367\pi\)
0.00408165 + 0.999992i \(0.498701\pi\)
\(90\) 0 0
\(91\) −10.4527 13.4426i −1.09574 1.40916i
\(92\) 0 0
\(93\) 0.521147 4.32029i 0.0540404 0.447993i
\(94\) 0 0
\(95\) 2.19986 + 3.81027i 0.225701 + 0.390926i
\(96\) 0 0
\(97\) 1.19214 0.121044 0.0605218 0.998167i \(-0.480724\pi\)
0.0605218 + 0.998167i \(0.480724\pi\)
\(98\) 0 0
\(99\) −9.56583 9.15936i −0.961402 0.920551i
\(100\) 0 0
\(101\) 1.03566 + 1.79382i 0.103052 + 0.178491i 0.912941 0.408092i \(-0.133806\pi\)
−0.809889 + 0.586584i \(0.800473\pi\)
\(102\) 0 0
\(103\) 4.80043 + 2.77153i 0.473000 + 0.273087i 0.717495 0.696564i \(-0.245289\pi\)
−0.244495 + 0.969651i \(0.578622\pi\)
\(104\) 0 0
\(105\) −5.54729 3.07620i −0.541361 0.300207i
\(106\) 0 0
\(107\) 5.17522 + 2.98792i 0.500308 + 0.288853i 0.728841 0.684683i \(-0.240060\pi\)
−0.228533 + 0.973536i \(0.573393\pi\)
\(108\) 0 0
\(109\) 1.43595 0.829048i 0.137539 0.0794084i −0.429651 0.902995i \(-0.641364\pi\)
0.567191 + 0.823586i \(0.308030\pi\)
\(110\) 0 0
\(111\) 9.19946 3.92803i 0.873174 0.372832i
\(112\) 0 0
\(113\) 16.4545i 1.54791i −0.633241 0.773955i \(-0.718276\pi\)
0.633241 0.773955i \(-0.281724\pi\)
\(114\) 0 0
\(115\) 2.55654 + 4.42805i 0.238398 + 0.412918i
\(116\) 0 0
\(117\) 18.5375 5.40092i 1.71379 0.499315i
\(118\) 0 0
\(119\) 2.91039 7.15597i 0.266795 0.655987i
\(120\) 0 0
\(121\) 4.24439 7.35150i 0.385854 0.668318i
\(122\) 0 0
\(123\) 0.689179 + 0.517041i 0.0621412 + 0.0466200i
\(124\) 0 0
\(125\) 11.1898 1.00085
\(126\) 0 0
\(127\) 2.31360i 0.205299i 0.994718 + 0.102649i \(0.0327319\pi\)
−0.994718 + 0.102649i \(0.967268\pi\)
\(128\) 0 0
\(129\) 0.900042 1.19969i 0.0792443 0.105627i
\(130\) 0 0
\(131\) 4.11383 + 2.37512i 0.359427 + 0.207515i 0.668830 0.743416i \(-0.266796\pi\)
−0.309402 + 0.950931i \(0.600129\pi\)
\(132\) 0 0
\(133\) −1.15122 8.33050i −0.0998234 0.722346i
\(134\) 0 0
\(135\) 5.56061 4.56190i 0.478581 0.392626i
\(136\) 0 0
\(137\) −0.290760 + 0.167870i −0.0248413 + 0.0143421i −0.512369 0.858765i \(-0.671232\pi\)
0.487528 + 0.873107i \(0.337899\pi\)
\(138\) 0 0
\(139\) 9.35410 0.793405 0.396702 0.917947i \(-0.370155\pi\)
0.396702 + 0.917947i \(0.370155\pi\)
\(140\) 0 0
\(141\) −2.16290 5.06553i −0.182149 0.426594i
\(142\) 0 0
\(143\) 14.2064 + 24.6062i 1.18800 + 2.05768i
\(144\) 0 0
\(145\) −4.62239 + 8.00621i −0.383868 + 0.664880i
\(146\) 0 0
\(147\) 7.60671 + 9.44129i 0.627391 + 0.778705i
\(148\) 0 0
\(149\) 1.03566 1.79382i 0.0848446 0.146955i −0.820480 0.571675i \(-0.806294\pi\)
0.905325 + 0.424720i \(0.139627\pi\)
\(150\) 0 0
\(151\) 20.2661 11.7007i 1.64923 0.952186i 0.671858 0.740680i \(-0.265496\pi\)
0.977377 0.211506i \(-0.0678369\pi\)
\(152\) 0 0
\(153\) 6.32688 + 6.05804i 0.511498 + 0.489763i
\(154\) 0 0
\(155\) 3.47763i 0.279330i
\(156\) 0 0
\(157\) 19.3264 11.1581i 1.54241 0.890511i 0.543725 0.839264i \(-0.317014\pi\)
0.998686 0.0512477i \(-0.0163198\pi\)
\(158\) 0 0
\(159\) −14.2006 1.71298i −1.12618 0.135848i
\(160\) 0 0
\(161\) −1.33787 9.68118i −0.105439 0.762983i
\(162\) 0 0
\(163\) 8.50029 14.7229i 0.665794 1.15319i −0.313276 0.949662i \(-0.601426\pi\)
0.979069 0.203526i \(-0.0652403\pi\)
\(164\) 0 0
\(165\) 8.46624 + 6.35161i 0.659096 + 0.494472i
\(166\) 0 0
\(167\) −23.9142 −1.85054 −0.925269 0.379311i \(-0.876161\pi\)
−0.925269 + 0.379311i \(0.876161\pi\)
\(168\) 0 0
\(169\) −28.4232 −2.18640
\(170\) 0 0
\(171\) 9.26215 + 2.26754i 0.708294 + 0.173403i
\(172\) 0 0
\(173\) −4.38442 + 7.59404i −0.333341 + 0.577364i −0.983165 0.182721i \(-0.941509\pi\)
0.649824 + 0.760085i \(0.274843\pi\)
\(174\) 0 0
\(175\) −7.55835 3.07404i −0.571358 0.232375i
\(176\) 0 0
\(177\) 1.58629 13.1503i 0.119233 0.988433i
\(178\) 0 0
\(179\) 5.26665 3.04070i 0.393648 0.227273i −0.290092 0.956999i \(-0.593686\pi\)
0.683740 + 0.729726i \(0.260352\pi\)
\(180\) 0 0
\(181\) 11.5816i 0.860857i −0.902625 0.430429i \(-0.858362\pi\)
0.902625 0.430429i \(-0.141638\pi\)
\(182\) 0 0
\(183\) −5.50555 + 2.35079i −0.406982 + 0.173775i
\(184\) 0 0
\(185\) −6.92300 + 3.99700i −0.508989 + 0.293865i
\(186\) 0 0
\(187\) −6.44498 + 11.1630i −0.471304 + 0.816322i
\(188\) 0 0
\(189\) −13.1305 + 4.07296i −0.955106 + 0.296264i
\(190\) 0 0
\(191\) −0.757053 + 1.31125i −0.0547784 + 0.0948790i −0.892114 0.451810i \(-0.850779\pi\)
0.837336 + 0.546689i \(0.184112\pi\)
\(192\) 0 0
\(193\) −7.97806 13.8184i −0.574273 0.994670i −0.996120 0.0880034i \(-0.971951\pi\)
0.421847 0.906667i \(-0.361382\pi\)
\(194\) 0 0
\(195\) −14.1909 + 6.05931i −1.01623 + 0.433917i
\(196\) 0 0
\(197\) 0.963016 0.0686121 0.0343060 0.999411i \(-0.489078\pi\)
0.0343060 + 0.999411i \(0.489078\pi\)
\(198\) 0 0
\(199\) −1.72593 + 0.996469i −0.122348 + 0.0706378i −0.559925 0.828543i \(-0.689170\pi\)
0.437577 + 0.899181i \(0.355837\pi\)
\(200\) 0 0
\(201\) −11.5833 1.39727i −0.817024 0.0985559i
\(202\) 0 0
\(203\) 13.9496 10.8470i 0.979070 0.761309i
\(204\) 0 0
\(205\) −0.596286 0.344266i −0.0416464 0.0240446i
\(206\) 0 0
\(207\) 10.7639 + 2.63519i 0.748141 + 0.183158i
\(208\) 0 0
\(209\) 14.0321i 0.970620i
\(210\) 0 0
\(211\) −21.4567 −1.47714 −0.738569 0.674178i \(-0.764498\pi\)
−0.738569 + 0.674178i \(0.764498\pi\)
\(212\) 0 0
\(213\) 1.97947 2.63849i 0.135631 0.180786i
\(214\) 0 0
\(215\) −0.599283 + 1.03799i −0.0408707 + 0.0707902i
\(216\) 0 0
\(217\) 2.50427 6.15741i 0.170001 0.417992i
\(218\) 0 0
\(219\) −11.1262 1.34214i −0.751842 0.0906931i
\(220\) 0 0
\(221\) −9.39617 16.2747i −0.632055 1.09475i
\(222\) 0 0
\(223\) 12.1938i 0.816559i 0.912857 + 0.408279i \(0.133871\pi\)
−0.912857 + 0.408279i \(0.866129\pi\)
\(224\) 0 0
\(225\) 6.39868 6.68264i 0.426579 0.445509i
\(226\) 0 0
\(227\) −13.5954 + 7.84932i −0.902360 + 0.520978i −0.877965 0.478724i \(-0.841099\pi\)
−0.0243951 + 0.999702i \(0.507766\pi\)
\(228\) 0 0
\(229\) −10.4894 6.05608i −0.693161 0.400197i 0.111634 0.993749i \(-0.464392\pi\)
−0.804795 + 0.593553i \(0.797725\pi\)
\(230\) 0 0
\(231\) −10.4163 17.3426i −0.685341 1.14106i
\(232\) 0 0
\(233\) 5.05877 + 2.92068i 0.331411 + 0.191340i 0.656468 0.754354i \(-0.272050\pi\)
−0.325056 + 0.945695i \(0.605383\pi\)
\(234\) 0 0
\(235\) 2.20088 + 3.81203i 0.143569 + 0.248670i
\(236\) 0 0
\(237\) 3.03626 1.29644i 0.197226 0.0842126i
\(238\) 0 0
\(239\) 22.6171 1.46298 0.731490 0.681852i \(-0.238825\pi\)
0.731490 + 0.681852i \(0.238825\pi\)
\(240\) 0 0
\(241\) 12.7459 + 22.0766i 0.821038 + 1.42208i 0.904910 + 0.425604i \(0.139938\pi\)
−0.0838714 + 0.996477i \(0.526729\pi\)
\(242\) 0 0
\(243\) 1.19354 15.5427i 0.0765656 0.997065i
\(244\) 0 0
\(245\) −6.93884 6.76279i −0.443306 0.432059i
\(246\) 0 0
\(247\) −17.7167 10.2287i −1.12729 0.650839i
\(248\) 0 0
\(249\) 9.69931 + 7.27669i 0.614669 + 0.461141i
\(250\) 0 0
\(251\) 1.11008i 0.0700675i −0.999386 0.0350338i \(-0.988846\pi\)
0.999386 0.0350338i \(-0.0111539\pi\)
\(252\) 0 0
\(253\) 16.3072i 1.02522i
\(254\) 0 0
\(255\) −5.59961 4.20098i −0.350661 0.263075i
\(256\) 0 0
\(257\) −12.0906 6.98049i −0.754188 0.435431i 0.0730169 0.997331i \(-0.476737\pi\)
−0.827205 + 0.561900i \(0.810071\pi\)
\(258\) 0 0
\(259\) 15.1360 2.09169i 0.940503 0.129971i
\(260\) 0 0
\(261\) 5.60463 + 19.2367i 0.346918 + 1.19072i
\(262\) 0 0
\(263\) −7.08483 12.2713i −0.436870 0.756680i 0.560577 0.828103i \(-0.310580\pi\)
−0.997446 + 0.0714223i \(0.977246\pi\)
\(264\) 0 0
\(265\) 11.4308 0.702189
\(266\) 0 0
\(267\) −15.1337 + 6.46186i −0.926166 + 0.395459i
\(268\) 0 0
\(269\) 9.11023 + 15.7794i 0.555461 + 0.962086i 0.997868 + 0.0652716i \(0.0207914\pi\)
−0.442407 + 0.896814i \(0.645875\pi\)
\(270\) 0 0
\(271\) 21.9278 + 12.6600i 1.33202 + 0.769041i 0.985609 0.169042i \(-0.0540673\pi\)
0.346410 + 0.938083i \(0.387401\pi\)
\(272\) 0 0
\(273\) 29.4894 0.509500i 1.78478 0.0308363i
\(274\) 0 0
\(275\) 11.7907 + 6.80738i 0.711008 + 0.410500i
\(276\) 0 0
\(277\) −16.2822 + 9.40051i −0.978300 + 0.564822i −0.901756 0.432245i \(-0.857722\pi\)
−0.0765434 + 0.997066i \(0.524388\pi\)
\(278\) 0 0
\(279\) 5.44401 + 5.21269i 0.325924 + 0.312075i
\(280\) 0 0
\(281\) 25.4910i 1.52067i 0.649533 + 0.760333i \(0.274964\pi\)
−0.649533 + 0.760333i \(0.725036\pi\)
\(282\) 0 0
\(283\) 6.01848 + 10.4243i 0.357761 + 0.619661i 0.987586 0.157076i \(-0.0502068\pi\)
−0.629825 + 0.776737i \(0.716874\pi\)
\(284\) 0 0
\(285\) −7.56570 0.912634i −0.448153 0.0540598i
\(286\) 0 0
\(287\) 0.807861 + 1.03894i 0.0476865 + 0.0613266i
\(288\) 0 0
\(289\) −4.23726 + 7.33916i −0.249251 + 0.431715i
\(290\) 0 0
\(291\) −1.23915 + 1.65170i −0.0726403 + 0.0968244i
\(292\) 0 0
\(293\) −3.90464 −0.228111 −0.114056 0.993474i \(-0.536384\pi\)
−0.114056 + 0.993474i \(0.536384\pi\)
\(294\) 0 0
\(295\) 10.5854i 0.616303i
\(296\) 0 0
\(297\) 22.6332 3.73282i 1.31331 0.216600i
\(298\) 0 0
\(299\) −20.5892 11.8872i −1.19070 0.687453i
\(300\) 0 0
\(301\) 1.80854 1.40629i 0.104242 0.0810571i
\(302\) 0 0
\(303\) −3.56181 0.429654i −0.204621 0.0246830i
\(304\) 0 0
\(305\) 4.14317 2.39206i 0.237237 0.136969i
\(306\) 0 0
\(307\) 11.0339 0.629740 0.314870 0.949135i \(-0.398039\pi\)
0.314870 + 0.949135i \(0.398039\pi\)
\(308\) 0 0
\(309\) −8.82964 + 3.77013i −0.502301 + 0.214475i
\(310\) 0 0
\(311\) −15.6553 27.1158i −0.887732 1.53760i −0.842550 0.538618i \(-0.818947\pi\)
−0.0451815 0.998979i \(-0.514387\pi\)
\(312\) 0 0
\(313\) 6.53063 11.3114i 0.369133 0.639357i −0.620297 0.784367i \(-0.712988\pi\)
0.989430 + 0.145010i \(0.0463213\pi\)
\(314\) 0 0
\(315\) 10.0281 4.48821i 0.565019 0.252882i
\(316\) 0 0
\(317\) 12.2315 21.1856i 0.686990 1.18990i −0.285817 0.958284i \(-0.592265\pi\)
0.972807 0.231618i \(-0.0744018\pi\)
\(318\) 0 0
\(319\) −25.5343 + 14.7422i −1.42965 + 0.825407i
\(320\) 0 0
\(321\) −9.51902 + 4.06448i −0.531300 + 0.226857i
\(322\) 0 0
\(323\) 9.28088i 0.516402i
\(324\) 0 0
\(325\) −17.1898 + 9.92452i −0.953517 + 0.550513i
\(326\) 0 0
\(327\) −0.343939 + 2.85124i −0.0190198 + 0.157674i
\(328\) 0 0
\(329\) −1.15175 8.33435i −0.0634981 0.459488i
\(330\) 0 0
\(331\) 7.26267 12.5793i 0.399192 0.691422i −0.594434 0.804144i \(-0.702624\pi\)
0.993626 + 0.112723i \(0.0359572\pi\)
\(332\) 0 0
\(333\) −4.11997 + 16.8287i −0.225773 + 0.922206i
\(334\) 0 0
\(335\) 9.32404 0.509427
\(336\) 0 0
\(337\) −18.7954 −1.02385 −0.511924 0.859030i \(-0.671067\pi\)
−0.511924 + 0.859030i \(0.671067\pi\)
\(338\) 0 0
\(339\) 22.7975 + 17.1033i 1.23819 + 0.928926i
\(340\) 0 0
\(341\) −5.54563 + 9.60532i −0.300313 + 0.520157i
\(342\) 0 0
\(343\) 7.41581 + 16.9707i 0.400416 + 0.916334i
\(344\) 0 0
\(345\) −8.79236 1.06060i −0.473365 0.0571010i
\(346\) 0 0
\(347\) −20.7411 + 11.9749i −1.11344 + 0.642846i −0.939719 0.341949i \(-0.888913\pi\)
−0.173723 + 0.984795i \(0.555580\pi\)
\(348\) 0 0
\(349\) 3.59423i 0.192395i −0.995362 0.0961974i \(-0.969332\pi\)
0.995362 0.0961974i \(-0.0306680\pi\)
\(350\) 0 0
\(351\) −11.7856 + 31.2974i −0.629067 + 1.67053i
\(352\) 0 0
\(353\) −22.4603 + 12.9675i −1.19544 + 0.690189i −0.959536 0.281587i \(-0.909139\pi\)
−0.235907 + 0.971776i \(0.575806\pi\)
\(354\) 0 0
\(355\) −1.31800 + 2.28285i −0.0699524 + 0.121161i
\(356\) 0 0
\(357\) 6.88937 + 11.4705i 0.364624 + 0.607081i
\(358\) 0 0
\(359\) 14.1756 24.5529i 0.748162 1.29585i −0.200541 0.979685i \(-0.564270\pi\)
0.948703 0.316169i \(-0.102397\pi\)
\(360\) 0 0
\(361\) 4.44838 + 7.70483i 0.234126 + 0.405517i
\(362\) 0 0
\(363\) 5.77367 + 13.5219i 0.303039 + 0.709718i
\(364\) 0 0
\(365\) 8.95612 0.468785
\(366\) 0 0
\(367\) 3.10999 1.79556i 0.162340 0.0937272i −0.416629 0.909077i \(-0.636789\pi\)
0.578969 + 0.815349i \(0.303455\pi\)
\(368\) 0 0
\(369\) −1.43271 + 0.417421i −0.0745839 + 0.0217301i
\(370\) 0 0
\(371\) −20.2391 8.23139i −1.05076 0.427353i
\(372\) 0 0
\(373\) 13.4339 + 7.75604i 0.695579 + 0.401593i 0.805699 0.592326i \(-0.201790\pi\)
−0.110120 + 0.993918i \(0.535123\pi\)
\(374\) 0 0
\(375\) −11.6310 + 15.5034i −0.600625 + 0.800590i
\(376\) 0 0
\(377\) 42.9856i 2.21387i
\(378\) 0 0
\(379\) 14.5848 0.749171 0.374586 0.927192i \(-0.377785\pi\)
0.374586 + 0.927192i \(0.377785\pi\)
\(380\) 0 0
\(381\) −3.20547 2.40483i −0.164221 0.123203i
\(382\) 0 0
\(383\) 5.47353 9.48043i 0.279684 0.484427i −0.691622 0.722260i \(-0.743104\pi\)
0.971306 + 0.237832i \(0.0764369\pi\)
\(384\) 0 0
\(385\) 9.92420 + 12.7629i 0.505784 + 0.650456i
\(386\) 0 0
\(387\) 0.726628 + 2.49400i 0.0369366 + 0.126777i
\(388\) 0 0
\(389\) −9.51835 16.4863i −0.482600 0.835887i 0.517201 0.855864i \(-0.326974\pi\)
−0.999800 + 0.0199769i \(0.993641\pi\)
\(390\) 0 0
\(391\) 10.7856i 0.545453i
\(392\) 0 0
\(393\) −7.56676 + 3.23089i −0.381692 + 0.162977i
\(394\) 0 0
\(395\) −2.28492 + 1.31920i −0.114967 + 0.0663760i
\(396\) 0 0
\(397\) −6.49649 3.75075i −0.326050 0.188245i 0.328036 0.944665i \(-0.393613\pi\)
−0.654086 + 0.756420i \(0.726947\pi\)
\(398\) 0 0
\(399\) 12.7384 + 7.06399i 0.637720 + 0.353642i
\(400\) 0 0
\(401\) 24.3528 + 14.0601i 1.21612 + 0.702128i 0.964086 0.265591i \(-0.0855670\pi\)
0.252035 + 0.967718i \(0.418900\pi\)
\(402\) 0 0
\(403\) −8.08501 14.0036i −0.402743 0.697571i
\(404\) 0 0
\(405\) 0.540584 + 12.4460i 0.0268618 + 0.618445i
\(406\) 0 0
\(407\) −25.4954 −1.26376
\(408\) 0 0
\(409\) 6.57782 + 11.3931i 0.325252 + 0.563353i 0.981563 0.191137i \(-0.0612175\pi\)
−0.656311 + 0.754490i \(0.727884\pi\)
\(410\) 0 0
\(411\) 0.0696427 0.577335i 0.00343522 0.0284778i
\(412\) 0 0
\(413\) 7.62258 18.7422i 0.375083 0.922242i
\(414\) 0 0
\(415\) −8.39196 4.84510i −0.411945 0.237837i
\(416\) 0 0
\(417\) −9.72296 + 12.9600i −0.476135 + 0.634654i
\(418\) 0 0
\(419\) 4.42222i 0.216040i −0.994149 0.108020i \(-0.965549\pi\)
0.994149 0.108020i \(-0.0344510\pi\)
\(420\) 0 0
\(421\) 22.2013i 1.08203i 0.841014 + 0.541014i \(0.181959\pi\)
−0.841014 + 0.541014i \(0.818041\pi\)
\(422\) 0 0
\(423\) 9.26642 + 2.26859i 0.450549 + 0.110303i
\(424\) 0 0
\(425\) −7.79844 4.50243i −0.378280 0.218400i
\(426\) 0 0
\(427\) −9.05832 + 1.25180i −0.438363 + 0.0605788i
\(428\) 0 0
\(429\) −48.8582 5.89367i −2.35890 0.284549i
\(430\) 0 0
\(431\) 8.76759 + 15.1859i 0.422320 + 0.731479i 0.996166 0.0874837i \(-0.0278826\pi\)
−0.573846 + 0.818963i \(0.694549\pi\)
\(432\) 0 0
\(433\) 0.852347 0.0409612 0.0204806 0.999790i \(-0.493480\pi\)
0.0204806 + 0.999790i \(0.493480\pi\)
\(434\) 0 0
\(435\) −6.28786 14.7262i −0.301480 0.706066i
\(436\) 0 0
\(437\) −5.87066 10.1683i −0.280832 0.486415i
\(438\) 0 0
\(439\) −14.5943 8.42604i −0.696549 0.402153i 0.109512 0.993986i \(-0.465071\pi\)
−0.806061 + 0.591833i \(0.798405\pi\)
\(440\) 0 0
\(441\) −20.9875 + 0.725433i −0.999403 + 0.0345444i
\(442\) 0 0
\(443\) 24.9578 + 14.4094i 1.18578 + 0.684611i 0.957345 0.288948i \(-0.0933055\pi\)
0.228436 + 0.973559i \(0.426639\pi\)
\(444\) 0 0
\(445\) 11.3888 6.57531i 0.539879 0.311699i
\(446\) 0 0
\(447\) 1.40881 + 3.29945i 0.0666347 + 0.156058i
\(448\) 0 0
\(449\) 1.27217i 0.0600373i 0.999549 + 0.0300186i \(0.00955666\pi\)
−0.999549 + 0.0300186i \(0.990443\pi\)
\(450\) 0 0
\(451\) −1.09797 1.90174i −0.0517015 0.0895496i
\(452\) 0 0
\(453\) −4.85413 + 40.2406i −0.228067 + 1.89067i
\(454\) 0 0
\(455\) −23.3485 + 3.22660i −1.09459 + 0.151265i
\(456\) 0 0
\(457\) 7.46471 12.9293i 0.349185 0.604805i −0.636920 0.770930i \(-0.719792\pi\)
0.986105 + 0.166124i \(0.0531253\pi\)
\(458\) 0 0
\(459\) −14.9697 + 2.46890i −0.698726 + 0.115239i
\(460\) 0 0
\(461\) −27.1371 −1.26390 −0.631950 0.775009i \(-0.717745\pi\)
−0.631950 + 0.775009i \(0.717745\pi\)
\(462\) 0 0
\(463\) 24.3062i 1.12960i −0.825227 0.564801i \(-0.808953\pi\)
0.825227 0.564801i \(-0.191047\pi\)
\(464\) 0 0
\(465\) −4.81822 3.61476i −0.223440 0.167631i
\(466\) 0 0
\(467\) 22.2686 + 12.8568i 1.03047 + 0.594940i 0.917118 0.398615i \(-0.130509\pi\)
0.113349 + 0.993555i \(0.463842\pi\)
\(468\) 0 0
\(469\) −16.5089 6.71430i −0.762311 0.310038i
\(470\) 0 0
\(471\) −4.62904 + 38.3745i −0.213295 + 1.76820i
\(472\) 0 0
\(473\) −3.31047 + 1.91130i −0.152216 + 0.0878817i
\(474\) 0 0
\(475\) −9.80275 −0.449781
\(476\) 0 0
\(477\) 17.1338 17.8942i 0.784504 0.819319i
\(478\) 0 0
\(479\) −4.48448 7.76735i −0.204901 0.354899i 0.745200 0.666841i \(-0.232354\pi\)
−0.950101 + 0.311942i \(0.899021\pi\)
\(480\) 0 0
\(481\) 18.5849 32.1900i 0.847399 1.46774i
\(482\) 0 0
\(483\) 14.8038 + 8.20932i 0.673596 + 0.373537i
\(484\) 0 0
\(485\) 0.825074 1.42907i 0.0374647 0.0648908i
\(486\) 0 0
\(487\) 5.02256 2.89978i 0.227594 0.131401i −0.381868 0.924217i \(-0.624719\pi\)
0.609462 + 0.792816i \(0.291386\pi\)
\(488\) 0 0
\(489\) 11.5630 + 27.0805i 0.522896 + 1.22462i
\(490\) 0 0
\(491\) 13.5893i 0.613275i 0.951826 + 0.306637i \(0.0992039\pi\)
−0.951826 + 0.306637i \(0.900796\pi\)
\(492\) 0 0
\(493\) 16.8885 9.75058i 0.760620 0.439144i
\(494\) 0 0
\(495\) −17.6002 + 5.12782i −0.791069 + 0.230479i
\(496\) 0 0
\(497\) 3.97752 3.09286i 0.178416 0.138734i
\(498\) 0 0
\(499\) −18.6144 + 32.2411i −0.833294 + 1.44331i 0.0621178 + 0.998069i \(0.480215\pi\)
−0.895412 + 0.445239i \(0.853119\pi\)
\(500\) 0 0
\(501\) 24.8572 33.1329i 1.11054 1.48027i
\(502\) 0 0
\(503\) 24.5224 1.09340 0.546699 0.837329i \(-0.315884\pi\)
0.546699 + 0.837329i \(0.315884\pi\)
\(504\) 0 0
\(505\) 2.86710 0.127584
\(506\) 0 0
\(507\) 29.5440 39.3800i 1.31209 1.74893i
\(508\) 0 0
\(509\) 21.4381 37.1319i 0.950226 1.64584i 0.205294 0.978700i \(-0.434185\pi\)
0.744932 0.667140i \(-0.232482\pi\)
\(510\) 0 0
\(511\) −15.8575 6.44936i −0.701494 0.285303i
\(512\) 0 0
\(513\) −12.7690 + 10.4756i −0.563766 + 0.462511i
\(514\) 0 0
\(515\) 6.64470 3.83632i 0.292800 0.169048i
\(516\) 0 0
\(517\) 14.0386i 0.617416i
\(518\) 0 0
\(519\) −5.96415 13.9681i −0.261797 0.613129i
\(520\) 0 0
\(521\) 1.58214 0.913450i 0.0693149 0.0400190i −0.464942 0.885341i \(-0.653925\pi\)
0.534257 + 0.845322i \(0.320591\pi\)
\(522\) 0 0
\(523\) −12.7145 + 22.0222i −0.555966 + 0.962962i 0.441861 + 0.897083i \(0.354318\pi\)
−0.997828 + 0.0658788i \(0.979015\pi\)
\(524\) 0 0
\(525\) 12.1154 7.27676i 0.528761 0.317584i
\(526\) 0 0
\(527\) 3.66790 6.35300i 0.159776 0.276741i
\(528\) 0 0
\(529\) 4.67750 + 8.10166i 0.203369 + 0.352246i
\(530\) 0 0
\(531\) 16.5707 + 15.8666i 0.719107 + 0.688551i
\(532\) 0 0
\(533\) 3.20148 0.138671
\(534\) 0 0
\(535\) 7.16348 4.13584i 0.309704 0.178808i
\(536\) 0 0
\(537\) −1.26147 + 10.4575i −0.0544362 + 0.451274i
\(538\) 0 0
\(539\) −8.38092 29.7441i −0.360992 1.28117i
\(540\) 0 0
\(541\) 16.3531 + 9.44148i 0.703076 + 0.405921i 0.808492 0.588507i \(-0.200284\pi\)
−0.105416 + 0.994428i \(0.533618\pi\)
\(542\) 0 0
\(543\) 16.0463 + 12.0383i 0.688611 + 0.516615i
\(544\) 0 0
\(545\) 2.29512i 0.0983119i
\(546\) 0 0
\(547\) −13.0624 −0.558509 −0.279254 0.960217i \(-0.590087\pi\)
−0.279254 + 0.960217i \(0.590087\pi\)
\(548\) 0 0
\(549\) 2.46565 10.0714i 0.105231 0.429835i
\(550\) 0 0
\(551\) 10.6145 18.3849i 0.452195 0.783224i
\(552\) 0 0
\(553\) 4.99558 0.690356i 0.212434 0.0293569i
\(554\) 0 0
\(555\) 1.65819 13.7464i 0.0703864 0.583500i
\(556\) 0 0
\(557\) 15.9928 + 27.7003i 0.677635 + 1.17370i 0.975691 + 0.219151i \(0.0703286\pi\)
−0.298056 + 0.954549i \(0.596338\pi\)
\(558\) 0 0
\(559\) 5.57299i 0.235712i
\(560\) 0 0
\(561\) −8.76714 20.5327i −0.370149 0.866890i
\(562\) 0 0
\(563\) −31.2546 + 18.0449i −1.31723 + 0.760501i −0.983281 0.182092i \(-0.941713\pi\)
−0.333944 + 0.942593i \(0.608380\pi\)
\(564\) 0 0
\(565\) −19.7247 11.3881i −0.829825 0.479100i
\(566\) 0 0
\(567\) 8.00527 22.4258i 0.336190 0.941794i
\(568\) 0 0
\(569\) −23.5336 13.5871i −0.986579 0.569601i −0.0823288 0.996605i \(-0.526236\pi\)
−0.904250 + 0.427004i \(0.859569\pi\)
\(570\) 0 0
\(571\) 7.45448 + 12.9115i 0.311960 + 0.540331i 0.978787 0.204882i \(-0.0656811\pi\)
−0.666826 + 0.745213i \(0.732348\pi\)
\(572\) 0 0
\(573\) −1.02982 2.41185i −0.0430215 0.100756i
\(574\) 0 0
\(575\) −11.3921 −0.475084
\(576\) 0 0
\(577\) −19.1659 33.1963i −0.797886 1.38198i −0.920990 0.389585i \(-0.872618\pi\)
0.123104 0.992394i \(-0.460715\pi\)
\(578\) 0 0
\(579\) 27.4379 + 3.30978i 1.14028 + 0.137550i
\(580\) 0 0
\(581\) 11.3696 + 14.6217i 0.471691 + 0.606611i
\(582\) 0 0
\(583\) 31.5722 + 18.2282i 1.30759 + 0.754935i
\(584\) 0 0
\(585\) 6.35539 25.9596i 0.262763 1.07330i
\(586\) 0 0
\(587\) 0.964880i 0.0398249i −0.999802 0.0199124i \(-0.993661\pi\)
0.999802 0.0199124i \(-0.00633874\pi\)
\(588\) 0 0
\(589\) 7.98581i 0.329050i
\(590\) 0 0
\(591\) −1.00099 + 1.33425i −0.0411752 + 0.0548837i
\(592\) 0 0
\(593\) −14.9519 8.63251i −0.614003 0.354495i 0.160528 0.987031i \(-0.448680\pi\)
−0.774530 + 0.632537i \(0.782014\pi\)
\(594\) 0 0
\(595\) −6.56390 8.44141i −0.269094 0.346064i
\(596\) 0 0
\(597\) 0.413395 3.42702i 0.0169191 0.140259i
\(598\) 0 0
\(599\) 6.22127 + 10.7756i 0.254194 + 0.440277i 0.964676 0.263438i \(-0.0848565\pi\)
−0.710482 + 0.703715i \(0.751523\pi\)
\(600\) 0 0
\(601\) −27.7052 −1.13012 −0.565059 0.825051i \(-0.691147\pi\)
−0.565059 + 0.825051i \(0.691147\pi\)
\(602\) 0 0
\(603\) 13.9760 14.5962i 0.569146 0.594403i
\(604\) 0 0
\(605\) −5.87504 10.1759i −0.238854 0.413708i
\(606\) 0 0
\(607\) 5.43950 + 3.14050i 0.220783 + 0.127469i 0.606313 0.795226i \(-0.292648\pi\)
−0.385530 + 0.922695i \(0.625981\pi\)
\(608\) 0 0
\(609\) 0.528717 + 30.6017i 0.0214247 + 1.24004i
\(610\) 0 0
\(611\) −17.7249 10.2335i −0.717072 0.414002i
\(612\) 0 0
\(613\) 17.0190 9.82590i 0.687389 0.396864i −0.115244 0.993337i \(-0.536765\pi\)
0.802633 + 0.596473i \(0.203432\pi\)
\(614\) 0 0
\(615\) 1.09678 0.468307i 0.0442263 0.0188840i
\(616\) 0 0
\(617\) 32.2579i 1.29865i 0.760509 + 0.649327i \(0.224949\pi\)
−0.760509 + 0.649327i \(0.775051\pi\)
\(618\) 0 0
\(619\) −13.3846 23.1828i −0.537973 0.931797i −0.999013 0.0444173i \(-0.985857\pi\)
0.461040 0.887379i \(-0.347476\pi\)
\(620\) 0 0
\(621\) −14.8393 + 12.1741i −0.595482 + 0.488531i
\(622\) 0 0
\(623\) −24.8996 + 3.44096i −0.997581 + 0.137859i
\(624\) 0 0
\(625\) 0.0343418 0.0594818i 0.00137367 0.00237927i
\(626\) 0 0
\(627\) −19.4413 14.5854i −0.776411 0.582485i
\(628\) 0 0
\(629\) 16.8627 0.672361
\(630\) 0 0
\(631\) 29.4363i 1.17184i −0.810369 0.585920i \(-0.800733\pi\)
0.810369 0.585920i \(-0.199267\pi\)
\(632\) 0 0
\(633\) 22.3027 29.7280i 0.886455 1.18158i
\(634\) 0 0
\(635\) 2.77341 + 1.60123i 0.110059 + 0.0635428i
\(636\) 0 0
\(637\) 43.6637 + 11.1004i 1.73002 + 0.439815i
\(638\) 0 0
\(639\) 1.59808 + 5.48506i 0.0632189 + 0.216986i
\(640\) 0 0
\(641\) 34.2214 19.7578i 1.35167 0.780384i 0.363183 0.931718i \(-0.381690\pi\)
0.988483 + 0.151334i \(0.0483568\pi\)
\(642\) 0 0
\(643\) −17.3857 −0.685626 −0.342813 0.939404i \(-0.611380\pi\)
−0.342813 + 0.939404i \(0.611380\pi\)
\(644\) 0 0
\(645\) −0.815208 1.90922i −0.0320988 0.0751754i
\(646\) 0 0
\(647\) 23.6414 + 40.9480i 0.929438 + 1.60983i 0.784264 + 0.620427i \(0.213041\pi\)
0.145174 + 0.989406i \(0.453626\pi\)
\(648\) 0 0
\(649\) −16.8800 + 29.2370i −0.662598 + 1.14765i
\(650\) 0 0
\(651\) 5.92802 + 9.86985i 0.232337 + 0.386830i
\(652\) 0 0
\(653\) −14.1939 + 24.5845i −0.555449 + 0.962067i 0.442419 + 0.896808i \(0.354120\pi\)
−0.997868 + 0.0652581i \(0.979213\pi\)
\(654\) 0 0
\(655\) 5.69432 3.28762i 0.222495 0.128458i
\(656\) 0 0
\(657\) 13.4245 14.0202i 0.523739 0.546981i
\(658\) 0 0
\(659\) 3.58703i 0.139731i 0.997556 + 0.0698654i \(0.0222570\pi\)
−0.997556 + 0.0698654i \(0.977743\pi\)
\(660\) 0 0
\(661\) 1.09189 0.630403i 0.0424696 0.0245198i −0.478615 0.878025i \(-0.658861\pi\)
0.521084 + 0.853505i \(0.325528\pi\)
\(662\) 0 0
\(663\) 32.3150 + 3.89810i 1.25501 + 0.151390i
\(664\) 0 0
\(665\) −10.7829 4.38548i −0.418142 0.170062i
\(666\) 0 0
\(667\) 12.3355 21.3658i 0.477634 0.827286i
\(668\) 0 0
\(669\) −16.8944 12.6747i −0.653176 0.490030i
\(670\) 0 0
\(671\) 15.2581 0.589031
\(672\) 0 0
\(673\) 34.9662 1.34785 0.673925 0.738800i \(-0.264607\pi\)
0.673925 + 0.738800i \(0.264607\pi\)
\(674\) 0 0
\(675\) 2.60773 + 15.8115i 0.100372 + 0.608583i
\(676\) 0 0
\(677\) −2.84885 + 4.93435i −0.109490 + 0.189642i −0.915564 0.402173i \(-0.868255\pi\)
0.806074 + 0.591815i \(0.201588\pi\)
\(678\) 0 0
\(679\) −2.48994 + 1.93614i −0.0955551 + 0.0743021i
\(680\) 0 0
\(681\) 3.25637 26.9952i 0.124784 1.03446i
\(682\) 0 0
\(683\) 19.9548 11.5209i 0.763551 0.440836i −0.0670183 0.997752i \(-0.521349\pi\)
0.830569 + 0.556915i \(0.188015\pi\)
\(684\) 0 0
\(685\) 0.464729i 0.0177564i
\(686\) 0 0
\(687\) 19.2937 8.23812i 0.736100 0.314304i
\(688\) 0 0
\(689\) −46.0293 + 26.5750i −1.75358 + 1.01243i
\(690\) 0 0
\(691\) 18.0614 31.2833i 0.687090 1.19007i −0.285686 0.958323i \(-0.592221\pi\)
0.972775 0.231751i \(-0.0744454\pi\)
\(692\) 0 0
\(693\) 34.8550 + 3.59479i 1.32403 + 0.136555i
\(694\) 0 0
\(695\) 6.47392 11.2132i 0.245570 0.425339i
\(696\) 0 0
\(697\) 0.726203 + 1.25782i 0.0275069 + 0.0476434i
\(698\) 0 0
\(699\) −9.30483 + 3.97302i −0.351941 + 0.150274i
\(700\) 0 0
\(701\) 29.8672 1.12807 0.564035 0.825751i \(-0.309248\pi\)
0.564035 + 0.825751i \(0.309248\pi\)
\(702\) 0 0
\(703\) 15.8975 9.17844i 0.599586 0.346171i
\(704\) 0 0
\(705\) −7.56919 0.913056i −0.285072 0.0343877i
\(706\) 0 0
\(707\) −5.07641 2.06461i −0.190918 0.0776478i
\(708\) 0 0
\(709\) −42.5302 24.5548i −1.59725 0.922175i −0.992013 0.126132i \(-0.959744\pi\)
−0.605240 0.796043i \(-0.706923\pi\)
\(710\) 0 0
\(711\) −1.35978 + 5.55426i −0.0509959 + 0.208301i
\(712\) 0 0
\(713\) 9.28059i 0.347561i
\(714\) 0 0
\(715\) 39.3287 1.47081
\(716\) 0 0
\(717\) −23.5090 + 31.3358i −0.877958 + 1.17026i
\(718\) 0 0
\(719\) 8.31324 14.3990i 0.310032 0.536991i −0.668337 0.743858i \(-0.732994\pi\)
0.978369 + 0.206868i \(0.0663270\pi\)
\(720\) 0 0
\(721\) −14.5275 + 2.00760i −0.541032 + 0.0747670i
\(722\) 0 0
\(723\) −43.8355 5.28778i −1.63026 0.196655i
\(724\) 0 0
\(725\) −10.2989 17.8381i −0.382490 0.662492i
\(726\) 0 0
\(727\) 6.37182i 0.236318i −0.992995 0.118159i \(-0.962301\pi\)
0.992995 0.118159i \(-0.0376992\pi\)
\(728\) 0 0
\(729\) 20.2936 + 17.8092i 0.751616 + 0.659601i
\(730\) 0 0
\(731\) 2.18956 1.26414i 0.0809837 0.0467560i
\(732\) 0 0
\(733\) 33.2648 + 19.2054i 1.22866 + 0.709369i 0.966750 0.255723i \(-0.0823135\pi\)
0.261912 + 0.965092i \(0.415647\pi\)
\(734\) 0 0
\(735\) 16.5822 2.58422i 0.611645 0.0953204i
\(736\) 0 0
\(737\) 25.7533 + 14.8687i 0.948634 + 0.547694i
\(738\) 0 0
\(739\) −0.546366 0.946333i −0.0200984 0.0348114i 0.855801 0.517305i \(-0.173065\pi\)
−0.875900 + 0.482493i \(0.839731\pi\)
\(740\) 0 0
\(741\) 32.5871 13.9142i 1.19712 0.511151i
\(742\) 0 0
\(743\) 26.5914 0.975545 0.487772 0.872971i \(-0.337810\pi\)
0.487772 + 0.872971i \(0.337810\pi\)
\(744\) 0 0
\(745\) −1.43355 2.48298i −0.0525212 0.0909693i
\(746\) 0 0
\(747\) −20.1635 + 5.87467i −0.737746 + 0.214943i
\(748\) 0 0
\(749\) −15.6617 + 2.16435i −0.572267 + 0.0790835i
\(750\) 0 0
\(751\) 24.4781 + 14.1324i 0.893217 + 0.515699i 0.874993 0.484135i \(-0.160866\pi\)
0.0182235 + 0.999834i \(0.494199\pi\)
\(752\) 0 0
\(753\) 1.53800 + 1.15385i 0.0560479 + 0.0420487i
\(754\) 0 0
\(755\) 32.3918i 1.17886i
\(756\) 0 0
\(757\) 26.8780i 0.976898i −0.872592 0.488449i \(-0.837563\pi\)
0.872592 0.488449i \(-0.162437\pi\)
\(758\) 0 0
\(759\) −22.5934 16.9502i −0.820090 0.615254i
\(760\) 0 0
\(761\) 46.8523 + 27.0502i 1.69840 + 0.980569i 0.947285 + 0.320393i \(0.103815\pi\)
0.751111 + 0.660176i \(0.229518\pi\)
\(762\) 0 0
\(763\) −1.65273 + 4.06367i −0.0598327 + 0.147115i
\(764\) 0 0
\(765\) 11.6408 3.39156i 0.420875 0.122622i
\(766\) 0 0
\(767\) −24.6095 42.6248i −0.888596 1.53909i
\(768\) 0 0
\(769\) −9.44304 −0.340525 −0.170262 0.985399i \(-0.554462\pi\)
−0.170262 + 0.985399i \(0.554462\pi\)
\(770\) 0 0
\(771\) 22.2387 9.49560i 0.800907 0.341976i
\(772\) 0 0
\(773\) 18.7073 + 32.4020i 0.672856 + 1.16542i 0.977091 + 0.212823i \(0.0682659\pi\)
−0.304235 + 0.952597i \(0.598401\pi\)
\(774\) 0 0
\(775\) −6.71022 3.87415i −0.241038 0.139164i
\(776\) 0 0
\(777\) −12.8348 + 23.1449i −0.460445 + 0.830318i
\(778\) 0 0
\(779\) 1.36927 + 0.790550i 0.0490593 + 0.0283244i
\(780\) 0 0
\(781\) −7.28073 + 4.20353i −0.260525 + 0.150414i
\(782\) 0 0
\(783\) −32.4779 12.2301i −1.16066 0.437068i
\(784\) 0 0
\(785\) 30.8897i 1.10250i
\(786\) 0 0
\(787\) −6.80641 11.7890i −0.242622 0.420234i 0.718838 0.695178i \(-0.244674\pi\)
−0.961460 + 0.274943i \(0.911341\pi\)
\(788\) 0 0
\(789\) 24.3659 + 2.93921i 0.867451 + 0.104639i
\(790\) 0 0
\(791\) 26.7235 + 34.3673i 0.950177 + 1.22196i
\(792\) 0 0
\(793\) −11.1224 + 19.2646i −0.394968 + 0.684105i
\(794\) 0 0
\(795\) −11.8815 + 15.8373i −0.421395 + 0.561690i
\(796\) 0 0
\(797\) −45.9884 −1.62899 −0.814496 0.580169i \(-0.802987\pi\)
−0.814496 + 0.580169i \(0.802987\pi\)
\(798\) 0 0
\(799\) 9.28517i 0.328486i
\(800\) 0 0
\(801\) 6.77760 27.6842i 0.239475 0.978174i
\(802\) 0 0
\(803\) 24.7370 + 14.2819i 0.872951 + 0.503999i
\(804\) 0 0
\(805\) −12.5312 5.09652i −0.441666 0.179629i
\(806\) 0 0
\(807\) −31.3316 3.77947i −1.10293 0.133044i
\(808\) 0 0
\(809\) 16.1190 9.30630i 0.566713 0.327192i −0.189122 0.981954i \(-0.560564\pi\)
0.755836 + 0.654762i \(0.227231\pi\)
\(810\) 0 0
\(811\) −33.9178 −1.19101 −0.595507 0.803350i \(-0.703049\pi\)
−0.595507 + 0.803350i \(0.703049\pi\)
\(812\) 0 0
\(813\) −40.3328 + 17.2215i −1.41453 + 0.603984i
\(814\) 0 0
\(815\) −11.7660 20.3793i −0.412145 0.713856i
\(816\) 0 0
\(817\) 1.37615 2.38357i 0.0481455 0.0833904i
\(818\) 0 0
\(819\) −29.9464 + 41.3869i −1.04641 + 1.44618i
\(820\) 0 0
\(821\) 14.0972 24.4171i 0.491996 0.852162i −0.507962 0.861380i \(-0.669601\pi\)
0.999958 + 0.00921774i \(0.00293414\pi\)
\(822\) 0 0
\(823\) −16.0158 + 9.24672i −0.558275 + 0.322320i −0.752453 0.658646i \(-0.771129\pi\)
0.194178 + 0.980966i \(0.437796\pi\)
\(824\) 0 0
\(825\) −21.6872 + 9.26012i −0.755052 + 0.322396i
\(826\) 0 0
\(827\) 14.5655i 0.506491i 0.967402 + 0.253245i \(0.0814980\pi\)
−0.967402 + 0.253245i \(0.918502\pi\)
\(828\) 0 0
\(829\) −17.0346 + 9.83492i −0.591635 + 0.341581i −0.765744 0.643146i \(-0.777629\pi\)
0.174108 + 0.984726i \(0.444296\pi\)
\(830\) 0 0
\(831\) 3.89989 32.3299i 0.135286 1.12151i
\(832\) 0 0
\(833\) 5.54317 + 19.6729i 0.192060 + 0.681624i
\(834\) 0 0
\(835\) −16.5509 + 28.6670i −0.572767 + 0.992062i
\(836\) 0 0
\(837\) −12.8808 + 2.12439i −0.445226 + 0.0734295i
\(838\) 0 0
\(839\) −26.2321 −0.905631 −0.452816 0.891604i \(-0.649580\pi\)
−0.452816 + 0.891604i \(0.649580\pi\)
\(840\) 0 0
\(841\) 15.6069 0.538171
\(842\) 0 0
\(843\) −35.3175 26.4962i −1.21640 0.912577i
\(844\) 0 0
\(845\) −19.6715 + 34.0721i −0.676721 + 1.17212i
\(846\) 0 0
\(847\) 3.07449 + 22.2478i 0.105641 + 0.764443i
\(848\) 0 0
\(849\) −20.6986 2.49682i −0.710373 0.0856908i
\(850\) 0 0
\(851\) 18.4751 10.6666i 0.633317 0.365646i
\(852\) 0 0
\(853\) 21.5548i 0.738022i −0.929425 0.369011i \(-0.879696\pi\)
0.929425 0.369011i \(-0.120304\pi\)
\(854\) 0 0
\(855\) 9.12847 9.53357i 0.312187 0.326041i
\(856\) 0 0
\(857\) 15.7399 9.08742i 0.537664 0.310420i −0.206468 0.978453i \(-0.566197\pi\)
0.744132 + 0.668033i \(0.232864\pi\)
\(858\) 0 0
\(859\) −3.84011 + 6.65127i −0.131023 + 0.226938i −0.924071 0.382220i \(-0.875160\pi\)
0.793048 + 0.609159i \(0.208493\pi\)
\(860\) 0 0
\(861\) −2.27915 + 0.0393778i −0.0776734 + 0.00134199i
\(862\) 0 0
\(863\) −16.7613 + 29.0314i −0.570562 + 0.988242i 0.425947 + 0.904748i \(0.359941\pi\)
−0.996508 + 0.0834933i \(0.973392\pi\)
\(864\) 0 0
\(865\) 6.06886 + 10.5116i 0.206347 + 0.357404i
\(866\) 0 0
\(867\) −5.76398 13.4992i −0.195755 0.458458i
\(868\) 0 0
\(869\) −8.41467 −0.285448
\(870\) 0 0
\(871\) −37.5458 + 21.6771i −1.27219 + 0.734500i
\(872\) 0 0
\(873\) −1.00040 3.43366i −0.0338584 0.116212i
\(874\) 0 0
\(875\) −23.3713 + 18.1732i −0.790095 + 0.614365i
\(876\) 0 0
\(877\) 22.4823 + 12.9802i 0.759174 + 0.438309i 0.828999 0.559250i \(-0.188911\pi\)
−0.0698251 + 0.997559i \(0.522244\pi\)
\(878\) 0 0
\(879\) 4.05861 5.40983i 0.136893 0.182469i
\(880\) 0 0
\(881\) 0.0231379i 0.000779536i 1.00000 0.000389768i \(0.000124067\pi\)
−1.00000 0.000389768i \(0.999876\pi\)
\(882\) 0 0
\(883\) 50.1245 1.68682 0.843412 0.537268i \(-0.180543\pi\)
0.843412 + 0.537268i \(0.180543\pi\)
\(884\) 0 0
\(885\) −14.6659 11.0028i −0.492989 0.369854i
\(886\) 0 0
\(887\) −23.4706 + 40.6522i −0.788064 + 1.36497i 0.139087 + 0.990280i \(0.455583\pi\)
−0.927151 + 0.374687i \(0.877750\pi\)
\(888\) 0 0
\(889\) −3.75747 4.83224i −0.126022 0.162068i
\(890\) 0 0
\(891\) −18.3539 + 35.2381i −0.614880 + 1.18052i
\(892\) 0 0
\(893\) −5.05395 8.75370i −0.169124 0.292931i
\(894\) 0 0
\(895\) 8.41781i 0.281376i
\(896\) 0 0
\(897\) 37.8706 16.1702i 1.26446 0.539907i
\(898\) 0 0
\(899\) 14.5318 8.38996i 0.484664 0.279821i
\(900\) 0 0
\(901\) −20.8820 12.0562i −0.695679 0.401651i
\(902\) 0 0
\(903\) 0.0685471 + 3.96745i 0.00228110 + 0.132028i
\(904\) 0 0
\(905\) −13.8834 8.01559i −0.461500 0.266447i
\(906\) 0 0
\(907\) 7.24598 + 12.5504i 0.240599 + 0.416729i 0.960885 0.276948i \(-0.0893229\pi\)
−0.720286 + 0.693677i \(0.755990\pi\)
\(908\) 0 0
\(909\) 4.29754 4.48826i 0.142541 0.148866i
\(910\) 0 0
\(911\) −28.7559 −0.952726 −0.476363 0.879249i \(-0.658045\pi\)
−0.476363 + 0.879249i \(0.658045\pi\)
\(912\) 0 0
\(913\) −15.4525 26.7646i −0.511404 0.885779i
\(914\) 0 0
\(915\) −0.992369 + 8.22670i −0.0328067 + 0.271966i
\(916\) 0 0
\(917\) −12.4497 + 1.72046i −0.411124 + 0.0568146i
\(918\) 0 0
\(919\) −14.3049 8.25895i −0.471876 0.272438i 0.245149 0.969485i \(-0.421163\pi\)
−0.717025 + 0.697048i \(0.754497\pi\)
\(920\) 0 0
\(921\) −11.4690 + 15.2874i −0.377918 + 0.503737i
\(922\) 0 0
\(923\) 12.2567i 0.403434i
\(924\) 0 0
\(925\) 17.8109i 0.585619i
\(926\) 0 0
\(927\) 3.95434 16.1522i 0.129878 0.530507i
\(928\) 0 0
\(929\) −2.55192 1.47335i −0.0837258 0.0483391i 0.457553 0.889183i \(-0.348726\pi\)
−0.541278 + 0.840843i \(0.682059\pi\)
\(930\) 0 0
\(931\) 15.9339 + 15.5296i 0.522212 + 0.508963i
\(932\) 0 0
\(933\) 53.8413 + 6.49476i 1.76269 + 0.212629i
\(934\) 0 0
\(935\) 8.92106 + 15.4517i 0.291750 + 0.505326i
\(936\) 0 0
\(937\) 31.6130 1.03275 0.516375 0.856362i \(-0.327281\pi\)
0.516375 + 0.856362i \(0.327281\pi\)
\(938\) 0 0
\(939\) 8.88366 + 20.8055i 0.289907 + 0.678963i
\(940\) 0 0
\(941\) 16.1958 + 28.0519i 0.527966 + 0.914465i 0.999468 + 0.0325998i \(0.0103787\pi\)
−0.471502 + 0.881865i \(0.656288\pi\)
\(942\) 0 0
\(943\) 1.59128 + 0.918726i 0.0518192 + 0.0299178i
\(944\) 0 0
\(945\) −4.20514 + 18.5590i −0.136793 + 0.603724i
\(946\) 0 0
\(947\) 18.1295 + 10.4671i 0.589129 + 0.340134i 0.764753 0.644324i \(-0.222861\pi\)
−0.175624 + 0.984457i \(0.556194\pi\)
\(948\) 0 0
\(949\) −36.0643 + 20.8217i −1.17070 + 0.675902i
\(950\) 0 0
\(951\) 16.6386 + 38.9676i 0.539543 + 1.26361i
\(952\) 0 0
\(953\) 34.4190i 1.11494i 0.830197 + 0.557470i \(0.188228\pi\)
−0.830197 + 0.557470i \(0.811772\pi\)
\(954\) 0 0
\(955\) 1.04790 + 1.81502i 0.0339094 + 0.0587328i
\(956\) 0 0
\(957\) 6.11597 50.7011i 0.197701 1.63893i
\(958\) 0 0
\(959\) 0.334654 0.822837i 0.0108065 0.0265708i
\(960\) 0 0
\(961\) −12.3439 + 21.3803i −0.398191 + 0.689687i
\(962\) 0 0
\(963\) 4.26308 17.4133i 0.137376 0.561134i
\(964\) 0 0
\(965\) −22.0863 −0.710982
\(966\) 0 0
\(967\) 52.5582i 1.69016i 0.534643 + 0.845078i \(0.320446\pi\)
−0.534643 + 0.845078i \(0.679554\pi\)
\(968\) 0 0
\(969\) 12.8586 + 9.64685i 0.413077 + 0.309901i
\(970\) 0 0
\(971\) 0.310281 + 0.179141i 0.00995738 + 0.00574890i 0.504970 0.863137i \(-0.331503\pi\)
−0.495013 + 0.868886i \(0.664837\pi\)
\(972\) 0 0
\(973\) −19.5372 + 15.1918i −0.626335 + 0.487028i
\(974\) 0 0
\(975\) 4.11729 34.1321i 0.131859 1.09310i
\(976\) 0 0
\(977\) −34.5190 + 19.9296i −1.10436 + 0.637603i −0.937363 0.348354i \(-0.886741\pi\)
−0.166998 + 0.985957i \(0.553407\pi\)
\(978\) 0 0
\(979\) 41.9414 1.34045
\(980\) 0 0
\(981\) −3.59286 3.44019i −0.114711 0.109837i
\(982\) 0 0
\(983\) 14.8055 + 25.6439i 0.472223 + 0.817914i 0.999495 0.0317825i \(-0.0101184\pi\)
−0.527272 + 0.849697i \(0.676785\pi\)
\(984\) 0 0
\(985\) 0.666498 1.15441i 0.0212364 0.0367825i
\(986\) 0 0
\(987\) 12.7443 + 7.06726i 0.405656 + 0.224953i
\(988\) 0 0
\(989\) 1.59928 2.77003i 0.0508540 0.0880818i
\(990\) 0 0
\(991\) 19.2020 11.0863i 0.609970 0.352167i −0.162983 0.986629i \(-0.552112\pi\)
0.772954 + 0.634462i \(0.218778\pi\)
\(992\) 0 0
\(993\) 9.87945 + 23.1377i 0.313515 + 0.734253i
\(994\) 0 0
\(995\) 2.75860i 0.0874535i
\(996\) 0 0
\(997\) −19.4291 + 11.2174i −0.615324 + 0.355258i −0.775046 0.631904i \(-0.782274\pi\)
0.159722 + 0.987162i \(0.448940\pi\)
\(998\) 0 0
\(999\) −19.0335 23.2004i −0.602194 0.734030i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.bd.a.527.8 56
3.2 odd 2 inner 672.2.bd.a.527.27 56
4.3 odd 2 168.2.v.a.107.19 yes 56
7.4 even 3 inner 672.2.bd.a.431.28 56
8.3 odd 2 inner 672.2.bd.a.527.7 56
8.5 even 2 168.2.v.a.107.28 yes 56
12.11 even 2 168.2.v.a.107.10 yes 56
21.11 odd 6 inner 672.2.bd.a.431.7 56
24.5 odd 2 168.2.v.a.107.1 yes 56
24.11 even 2 inner 672.2.bd.a.527.28 56
28.11 odd 6 168.2.v.a.11.1 56
56.11 odd 6 inner 672.2.bd.a.431.27 56
56.53 even 6 168.2.v.a.11.10 yes 56
84.11 even 6 168.2.v.a.11.28 yes 56
168.11 even 6 inner 672.2.bd.a.431.8 56
168.53 odd 6 168.2.v.a.11.19 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.v.a.11.1 56 28.11 odd 6
168.2.v.a.11.10 yes 56 56.53 even 6
168.2.v.a.11.19 yes 56 168.53 odd 6
168.2.v.a.11.28 yes 56 84.11 even 6
168.2.v.a.107.1 yes 56 24.5 odd 2
168.2.v.a.107.10 yes 56 12.11 even 2
168.2.v.a.107.19 yes 56 4.3 odd 2
168.2.v.a.107.28 yes 56 8.5 even 2
672.2.bd.a.431.7 56 21.11 odd 6 inner
672.2.bd.a.431.8 56 168.11 even 6 inner
672.2.bd.a.431.27 56 56.11 odd 6 inner
672.2.bd.a.431.28 56 7.4 even 3 inner
672.2.bd.a.527.7 56 8.3 odd 2 inner
672.2.bd.a.527.8 56 1.1 even 1 trivial
672.2.bd.a.527.27 56 3.2 odd 2 inner
672.2.bd.a.527.28 56 24.11 even 2 inner