Properties

Label 672.4.bb.a.271.10
Level $672$
Weight $4$
Character 672.271
Analytic conductor $39.649$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [672,4,Mod(271,672)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(672, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 0, 5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("672.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.bb (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.10
Character \(\chi\) \(=\) 672.271
Dual form 672.4.bb.a.367.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.59808 + 1.50000i) q^{3} +(2.37912 - 4.12075i) q^{5} +(11.6311 + 14.4124i) q^{7} +(4.50000 - 7.79423i) q^{9} +(-11.1023 - 19.2297i) q^{11} -35.2705 q^{13} +14.2747i q^{15} +(25.4218 - 14.6773i) q^{17} +(-51.7365 - 29.8701i) q^{19} +(-51.8371 - 19.9980i) q^{21} +(-57.0064 - 32.9126i) q^{23} +(51.1796 + 88.6457i) q^{25} +27.0000i q^{27} -5.47499i q^{29} +(8.58171 + 14.8640i) q^{31} +(57.6891 + 33.3068i) q^{33} +(87.0617 - 13.6399i) q^{35} +(-10.7790 - 6.22327i) q^{37} +(91.6354 - 52.9057i) q^{39} -19.7660i q^{41} -297.874 q^{43} +(-21.4120 - 37.0867i) q^{45} +(165.783 - 287.145i) q^{47} +(-72.4363 + 335.264i) q^{49} +(-44.0318 + 76.2653i) q^{51} +(-114.567 + 66.1451i) q^{53} -105.654 q^{55} +179.221 q^{57} +(4.77742 - 2.75824i) q^{59} +(200.724 - 347.665i) q^{61} +(164.674 - 25.7993i) q^{63} +(-83.9126 + 145.341i) q^{65} +(-527.372 - 913.435i) q^{67} +197.476 q^{69} -273.718i q^{71} +(-781.728 + 451.331i) q^{73} +(-265.937 - 153.539i) q^{75} +(148.015 - 383.673i) q^{77} +(-719.113 - 415.180i) q^{79} +(-40.5000 - 70.1481i) q^{81} -208.136i q^{83} -139.676i q^{85} +(8.21248 + 14.2244i) q^{87} +(-1164.39 - 672.259i) q^{89} +(-410.234 - 508.334i) q^{91} +(-44.5919 - 25.7451i) q^{93} +(-246.174 + 142.129i) q^{95} +703.232i q^{97} -199.841 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 432 q^{9} - 40 q^{11} - 1200 q^{25} - 456 q^{35} + 1616 q^{43} - 360 q^{49} - 336 q^{57} - 4128 q^{59} + 1440 q^{67} - 648 q^{73} - 3888 q^{81} + 104 q^{91} - 720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.59808 + 1.50000i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) 2.37912 4.12075i 0.212795 0.368571i −0.739794 0.672834i \(-0.765077\pi\)
0.952588 + 0.304263i \(0.0984102\pi\)
\(6\) 0 0
\(7\) 11.6311 + 14.4124i 0.628019 + 0.778198i
\(8\) 0 0
\(9\) 4.50000 7.79423i 0.166667 0.288675i
\(10\) 0 0
\(11\) −11.1023 19.2297i −0.304315 0.527088i 0.672794 0.739830i \(-0.265094\pi\)
−0.977108 + 0.212742i \(0.931761\pi\)
\(12\) 0 0
\(13\) −35.2705 −0.752483 −0.376241 0.926522i \(-0.622784\pi\)
−0.376241 + 0.926522i \(0.622784\pi\)
\(14\) 0 0
\(15\) 14.2747i 0.245714i
\(16\) 0 0
\(17\) 25.4218 14.6773i 0.362687 0.209398i −0.307572 0.951525i \(-0.599516\pi\)
0.670259 + 0.742127i \(0.266183\pi\)
\(18\) 0 0
\(19\) −51.7365 29.8701i −0.624694 0.360667i 0.154001 0.988071i \(-0.450784\pi\)
−0.778694 + 0.627404i \(0.784118\pi\)
\(20\) 0 0
\(21\) −51.8371 19.9980i −0.538656 0.207806i
\(22\) 0 0
\(23\) −57.0064 32.9126i −0.516811 0.298381i 0.218818 0.975766i \(-0.429780\pi\)
−0.735629 + 0.677385i \(0.763113\pi\)
\(24\) 0 0
\(25\) 51.1796 + 88.6457i 0.409437 + 0.709166i
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) 5.47499i 0.0350579i −0.999846 0.0175290i \(-0.994420\pi\)
0.999846 0.0175290i \(-0.00557993\pi\)
\(30\) 0 0
\(31\) 8.58171 + 14.8640i 0.0497200 + 0.0861176i 0.889814 0.456323i \(-0.150834\pi\)
−0.840094 + 0.542440i \(0.817500\pi\)
\(32\) 0 0
\(33\) 57.6891 + 33.3068i 0.304315 + 0.175696i
\(34\) 0 0
\(35\) 87.0617 13.6399i 0.420460 0.0658732i
\(36\) 0 0
\(37\) −10.7790 6.22327i −0.0478935 0.0276513i 0.475862 0.879520i \(-0.342136\pi\)
−0.523756 + 0.851869i \(0.675469\pi\)
\(38\) 0 0
\(39\) 91.6354 52.9057i 0.376241 0.217223i
\(40\) 0 0
\(41\) 19.7660i 0.0752910i −0.999291 0.0376455i \(-0.988014\pi\)
0.999291 0.0376455i \(-0.0119858\pi\)
\(42\) 0 0
\(43\) −297.874 −1.05640 −0.528202 0.849119i \(-0.677134\pi\)
−0.528202 + 0.849119i \(0.677134\pi\)
\(44\) 0 0
\(45\) −21.4120 37.0867i −0.0709315 0.122857i
\(46\) 0 0
\(47\) 165.783 287.145i 0.514510 0.891157i −0.485348 0.874321i \(-0.661307\pi\)
0.999858 0.0168365i \(-0.00535949\pi\)
\(48\) 0 0
\(49\) −72.4363 + 335.264i −0.211185 + 0.977446i
\(50\) 0 0
\(51\) −44.0318 + 76.2653i −0.120896 + 0.209398i
\(52\) 0 0
\(53\) −114.567 + 66.1451i −0.296923 + 0.171429i −0.641060 0.767491i \(-0.721505\pi\)
0.344137 + 0.938920i \(0.388172\pi\)
\(54\) 0 0
\(55\) −105.654 −0.259026
\(56\) 0 0
\(57\) 179.221 0.416462
\(58\) 0 0
\(59\) 4.77742 2.75824i 0.0105418 0.00608632i −0.494720 0.869053i \(-0.664729\pi\)
0.505262 + 0.862966i \(0.331396\pi\)
\(60\) 0 0
\(61\) 200.724 347.665i 0.421313 0.729736i −0.574755 0.818326i \(-0.694903\pi\)
0.996068 + 0.0885896i \(0.0282360\pi\)
\(62\) 0 0
\(63\) 164.674 25.7993i 0.329316 0.0515937i
\(64\) 0 0
\(65\) −83.9126 + 145.341i −0.160124 + 0.277343i
\(66\) 0 0
\(67\) −527.372 913.435i −0.961623 1.66558i −0.718425 0.695604i \(-0.755137\pi\)
−0.243198 0.969977i \(-0.578197\pi\)
\(68\) 0 0
\(69\) 197.476 0.344541
\(70\) 0 0
\(71\) 273.718i 0.457526i −0.973482 0.228763i \(-0.926532\pi\)
0.973482 0.228763i \(-0.0734681\pi\)
\(72\) 0 0
\(73\) −781.728 + 451.331i −1.25335 + 0.723621i −0.971773 0.235919i \(-0.924190\pi\)
−0.281575 + 0.959539i \(0.590857\pi\)
\(74\) 0 0
\(75\) −265.937 153.539i −0.409437 0.236389i
\(76\) 0 0
\(77\) 148.015 383.673i 0.219064 0.567838i
\(78\) 0 0
\(79\) −719.113 415.180i −1.02413 0.591284i −0.108835 0.994060i \(-0.534712\pi\)
−0.915298 + 0.402776i \(0.868045\pi\)
\(80\) 0 0
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 208.136i 0.275251i −0.990484 0.137626i \(-0.956053\pi\)
0.990484 0.137626i \(-0.0439471\pi\)
\(84\) 0 0
\(85\) 139.676i 0.178235i
\(86\) 0 0
\(87\) 8.21248 + 14.2244i 0.0101204 + 0.0175290i
\(88\) 0 0
\(89\) −1164.39 672.259i −1.38679 0.800666i −0.393842 0.919178i \(-0.628854\pi\)
−0.992953 + 0.118512i \(0.962188\pi\)
\(90\) 0 0
\(91\) −410.234 508.334i −0.472573 0.585581i
\(92\) 0 0
\(93\) −44.5919 25.7451i −0.0497200 0.0287059i
\(94\) 0 0
\(95\) −246.174 + 142.129i −0.265863 + 0.153496i
\(96\) 0 0
\(97\) 703.232i 0.736107i 0.929805 + 0.368054i \(0.119976\pi\)
−0.929805 + 0.368054i \(0.880024\pi\)
\(98\) 0 0
\(99\) −199.841 −0.202876
\(100\) 0 0
\(101\) −875.614 1516.61i −0.862642 1.49414i −0.869370 0.494162i \(-0.835475\pi\)
0.00672809 0.999977i \(-0.497858\pi\)
\(102\) 0 0
\(103\) 798.830 1383.61i 0.764185 1.32361i −0.176492 0.984302i \(-0.556475\pi\)
0.940677 0.339305i \(-0.110192\pi\)
\(104\) 0 0
\(105\) −205.733 + 166.030i −0.191214 + 0.154313i
\(106\) 0 0
\(107\) −533.169 + 923.476i −0.481714 + 0.834353i −0.999780 0.0209879i \(-0.993319\pi\)
0.518066 + 0.855341i \(0.326652\pi\)
\(108\) 0 0
\(109\) 499.543 288.411i 0.438969 0.253439i −0.264191 0.964470i \(-0.585105\pi\)
0.703160 + 0.711032i \(0.251772\pi\)
\(110\) 0 0
\(111\) 37.3396 0.0319290
\(112\) 0 0
\(113\) −383.291 −0.319088 −0.159544 0.987191i \(-0.551002\pi\)
−0.159544 + 0.987191i \(0.551002\pi\)
\(114\) 0 0
\(115\) −271.249 + 156.606i −0.219949 + 0.126988i
\(116\) 0 0
\(117\) −158.717 + 274.906i −0.125414 + 0.217223i
\(118\) 0 0
\(119\) 507.218 + 195.677i 0.390727 + 0.150737i
\(120\) 0 0
\(121\) 418.979 725.693i 0.314785 0.545224i
\(122\) 0 0
\(123\) 29.6490 + 51.3536i 0.0217346 + 0.0376455i
\(124\) 0 0
\(125\) 1081.83 0.774093
\(126\) 0 0
\(127\) 2798.55i 1.95536i −0.210098 0.977680i \(-0.567378\pi\)
0.210098 0.977680i \(-0.432622\pi\)
\(128\) 0 0
\(129\) 773.899 446.811i 0.528202 0.304957i
\(130\) 0 0
\(131\) 1467.12 + 847.041i 0.978494 + 0.564934i 0.901815 0.432122i \(-0.142235\pi\)
0.0766792 + 0.997056i \(0.475568\pi\)
\(132\) 0 0
\(133\) −171.251 1093.07i −0.111649 0.712641i
\(134\) 0 0
\(135\) 111.260 + 64.2361i 0.0709315 + 0.0409523i
\(136\) 0 0
\(137\) −1506.78 2609.83i −0.939658 1.62754i −0.766109 0.642711i \(-0.777810\pi\)
−0.173550 0.984825i \(-0.555524\pi\)
\(138\) 0 0
\(139\) 1912.12i 1.16679i 0.812189 + 0.583394i \(0.198276\pi\)
−0.812189 + 0.583394i \(0.801724\pi\)
\(140\) 0 0
\(141\) 994.699i 0.594105i
\(142\) 0 0
\(143\) 391.583 + 678.241i 0.228991 + 0.396625i
\(144\) 0 0
\(145\) −22.5611 13.0256i −0.0129213 0.00746014i
\(146\) 0 0
\(147\) −314.701 979.696i −0.176572 0.549687i
\(148\) 0 0
\(149\) 942.151 + 543.951i 0.518014 + 0.299075i 0.736122 0.676849i \(-0.236655\pi\)
−0.218108 + 0.975925i \(0.569988\pi\)
\(150\) 0 0
\(151\) −612.435 + 353.589i −0.330061 + 0.190561i −0.655868 0.754875i \(-0.727697\pi\)
0.325807 + 0.945436i \(0.394364\pi\)
\(152\) 0 0
\(153\) 264.191i 0.139598i
\(154\) 0 0
\(155\) 81.6675 0.0423206
\(156\) 0 0
\(157\) −1812.24 3138.90i −0.921227 1.59561i −0.797519 0.603294i \(-0.793854\pi\)
−0.123709 0.992319i \(-0.539479\pi\)
\(158\) 0 0
\(159\) 198.435 343.700i 0.0989744 0.171429i
\(160\) 0 0
\(161\) −188.694 1204.41i −0.0923675 0.589570i
\(162\) 0 0
\(163\) −1322.37 + 2290.41i −0.635434 + 1.10060i 0.350989 + 0.936380i \(0.385845\pi\)
−0.986423 + 0.164224i \(0.947488\pi\)
\(164\) 0 0
\(165\) 274.498 158.482i 0.129513 0.0747744i
\(166\) 0 0
\(167\) −1429.17 −0.662229 −0.331114 0.943591i \(-0.607425\pi\)
−0.331114 + 0.943591i \(0.607425\pi\)
\(168\) 0 0
\(169\) −952.992 −0.433770
\(170\) 0 0
\(171\) −465.629 + 268.831i −0.208231 + 0.120222i
\(172\) 0 0
\(173\) 649.225 1124.49i 0.285316 0.494182i −0.687370 0.726308i \(-0.741235\pi\)
0.972686 + 0.232126i \(0.0745681\pi\)
\(174\) 0 0
\(175\) −682.326 + 1768.67i −0.294737 + 0.763992i
\(176\) 0 0
\(177\) −8.27473 + 14.3322i −0.00351394 + 0.00608632i
\(178\) 0 0
\(179\) 1562.23 + 2705.86i 0.652327 + 1.12986i 0.982557 + 0.185963i \(0.0595406\pi\)
−0.330229 + 0.943901i \(0.607126\pi\)
\(180\) 0 0
\(181\) −871.221 −0.357775 −0.178888 0.983870i \(-0.557250\pi\)
−0.178888 + 0.983870i \(0.557250\pi\)
\(182\) 0 0
\(183\) 1204.35i 0.486491i
\(184\) 0 0
\(185\) −51.2890 + 29.6117i −0.0203829 + 0.0117681i
\(186\) 0 0
\(187\) −564.479 325.902i −0.220742 0.127446i
\(188\) 0 0
\(189\) −389.136 + 314.039i −0.149764 + 0.120862i
\(190\) 0 0
\(191\) 2526.95 + 1458.94i 0.957298 + 0.552696i 0.895340 0.445383i \(-0.146932\pi\)
0.0619573 + 0.998079i \(0.480266\pi\)
\(192\) 0 0
\(193\) −708.867 1227.79i −0.264380 0.457920i 0.703021 0.711169i \(-0.251834\pi\)
−0.967401 + 0.253249i \(0.918501\pi\)
\(194\) 0 0
\(195\) 503.476i 0.184896i
\(196\) 0 0
\(197\) 5186.19i 1.87564i 0.347124 + 0.937819i \(0.387158\pi\)
−0.347124 + 0.937819i \(0.612842\pi\)
\(198\) 0 0
\(199\) 45.8417 + 79.4002i 0.0163298 + 0.0282841i 0.874075 0.485791i \(-0.161468\pi\)
−0.857745 + 0.514075i \(0.828135\pi\)
\(200\) 0 0
\(201\) 2740.31 + 1582.12i 0.961623 + 0.555194i
\(202\) 0 0
\(203\) 78.9079 63.6800i 0.0272820 0.0220170i
\(204\) 0 0
\(205\) −81.4508 47.0256i −0.0277501 0.0160215i
\(206\) 0 0
\(207\) −513.057 + 296.214i −0.172270 + 0.0994603i
\(208\) 0 0
\(209\) 1326.50i 0.439025i
\(210\) 0 0
\(211\) −1708.65 −0.557481 −0.278740 0.960367i \(-0.589917\pi\)
−0.278740 + 0.960367i \(0.589917\pi\)
\(212\) 0 0
\(213\) 410.577 + 711.140i 0.132076 + 0.228763i
\(214\) 0 0
\(215\) −708.677 + 1227.46i −0.224797 + 0.389360i
\(216\) 0 0
\(217\) −114.411 + 296.567i −0.0357915 + 0.0927755i
\(218\) 0 0
\(219\) 1353.99 2345.19i 0.417783 0.723621i
\(220\) 0 0
\(221\) −896.639 + 517.675i −0.272916 + 0.157568i
\(222\) 0 0
\(223\) −3519.46 −1.05686 −0.528432 0.848976i \(-0.677220\pi\)
−0.528432 + 0.848976i \(0.677220\pi\)
\(224\) 0 0
\(225\) 921.233 0.272958
\(226\) 0 0
\(227\) 5683.59 3281.42i 1.66182 0.959452i 0.689975 0.723833i \(-0.257622\pi\)
0.971845 0.235619i \(-0.0757118\pi\)
\(228\) 0 0
\(229\) −1139.81 + 1974.20i −0.328911 + 0.569690i −0.982296 0.187336i \(-0.940015\pi\)
0.653385 + 0.757025i \(0.273348\pi\)
\(230\) 0 0
\(231\) 190.954 + 1218.83i 0.0543889 + 0.347158i
\(232\) 0 0
\(233\) −1943.49 + 3366.22i −0.546448 + 0.946475i 0.452067 + 0.891984i \(0.350687\pi\)
−0.998514 + 0.0544907i \(0.982646\pi\)
\(234\) 0 0
\(235\) −788.835 1366.30i −0.218970 0.379267i
\(236\) 0 0
\(237\) 2491.08 0.682755
\(238\) 0 0
\(239\) 2876.41i 0.778492i −0.921134 0.389246i \(-0.872736\pi\)
0.921134 0.389246i \(-0.127264\pi\)
\(240\) 0 0
\(241\) −436.769 + 252.169i −0.116742 + 0.0674009i −0.557234 0.830356i \(-0.688137\pi\)
0.440492 + 0.897756i \(0.354804\pi\)
\(242\) 0 0
\(243\) 210.444 + 121.500i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 1209.20 + 1096.12i 0.315319 + 0.285832i
\(246\) 0 0
\(247\) 1824.77 + 1053.53i 0.470071 + 0.271396i
\(248\) 0 0
\(249\) 312.204 + 540.752i 0.0794582 + 0.137626i
\(250\) 0 0
\(251\) 2715.27i 0.682815i −0.939915 0.341408i \(-0.889096\pi\)
0.939915 0.341408i \(-0.110904\pi\)
\(252\) 0 0
\(253\) 1461.62i 0.363207i
\(254\) 0 0
\(255\) 209.514 + 362.888i 0.0514519 + 0.0891174i
\(256\) 0 0
\(257\) 3494.82 + 2017.73i 0.848252 + 0.489739i 0.860061 0.510192i \(-0.170426\pi\)
−0.0118086 + 0.999930i \(0.503759\pi\)
\(258\) 0 0
\(259\) −35.6791 227.735i −0.00855981 0.0546362i
\(260\) 0 0
\(261\) −42.6733 24.6374i −0.0101204 0.00584299i
\(262\) 0 0
\(263\) −3983.07 + 2299.63i −0.933866 + 0.539168i −0.888032 0.459781i \(-0.847928\pi\)
−0.0458338 + 0.998949i \(0.514594\pi\)
\(264\) 0 0
\(265\) 629.467i 0.145916i
\(266\) 0 0
\(267\) 4033.55 0.924530
\(268\) 0 0
\(269\) 1157.34 + 2004.56i 0.262320 + 0.454351i 0.966858 0.255315i \(-0.0821792\pi\)
−0.704538 + 0.709666i \(0.748846\pi\)
\(270\) 0 0
\(271\) 3501.99 6065.62i 0.784984 1.35963i −0.144025 0.989574i \(-0.546005\pi\)
0.929009 0.370058i \(-0.120662\pi\)
\(272\) 0 0
\(273\) 1828.32 + 705.339i 0.405329 + 0.156370i
\(274\) 0 0
\(275\) 1136.42 1968.34i 0.249195 0.431619i
\(276\) 0 0
\(277\) −3537.30 + 2042.26i −0.767277 + 0.442987i −0.831902 0.554922i \(-0.812748\pi\)
0.0646255 + 0.997910i \(0.479415\pi\)
\(278\) 0 0
\(279\) 154.471 0.0331467
\(280\) 0 0
\(281\) 6599.02 1.40094 0.700470 0.713682i \(-0.252974\pi\)
0.700470 + 0.713682i \(0.252974\pi\)
\(282\) 0 0
\(283\) −1456.68 + 841.017i −0.305975 + 0.176655i −0.645124 0.764078i \(-0.723194\pi\)
0.339149 + 0.940733i \(0.389861\pi\)
\(284\) 0 0
\(285\) 426.387 738.523i 0.0886209 0.153496i
\(286\) 0 0
\(287\) 284.876 229.900i 0.0585913 0.0472842i
\(288\) 0 0
\(289\) −2025.66 + 3508.54i −0.412305 + 0.714134i
\(290\) 0 0
\(291\) −1054.85 1827.05i −0.212496 0.368054i
\(292\) 0 0
\(293\) 4713.33 0.939780 0.469890 0.882725i \(-0.344294\pi\)
0.469890 + 0.882725i \(0.344294\pi\)
\(294\) 0 0
\(295\) 26.2487i 0.00518054i
\(296\) 0 0
\(297\) 519.202 299.761i 0.101438 0.0585654i
\(298\) 0 0
\(299\) 2010.64 + 1160.85i 0.388891 + 0.224526i
\(300\) 0 0
\(301\) −3464.59 4293.09i −0.663441 0.822091i
\(302\) 0 0
\(303\) 4549.82 + 2626.84i 0.862642 + 0.498046i
\(304\) 0 0
\(305\) −955.092 1654.27i −0.179306 0.310568i
\(306\) 0 0
\(307\) 384.191i 0.0714233i −0.999362 0.0357116i \(-0.988630\pi\)
0.999362 0.0357116i \(-0.0113698\pi\)
\(308\) 0 0
\(309\) 4792.98i 0.882404i
\(310\) 0 0
\(311\) 4891.13 + 8471.69i 0.891803 + 1.54465i 0.837713 + 0.546111i \(0.183892\pi\)
0.0540901 + 0.998536i \(0.482774\pi\)
\(312\) 0 0
\(313\) 6043.10 + 3488.98i 1.09130 + 0.630061i 0.933922 0.357478i \(-0.116363\pi\)
0.157376 + 0.987539i \(0.449697\pi\)
\(314\) 0 0
\(315\) 285.465 739.958i 0.0510608 0.132355i
\(316\) 0 0
\(317\) −3517.20 2030.66i −0.623173 0.359789i 0.154930 0.987925i \(-0.450485\pi\)
−0.778103 + 0.628136i \(0.783818\pi\)
\(318\) 0 0
\(319\) −105.282 + 60.7848i −0.0184786 + 0.0106686i
\(320\) 0 0
\(321\) 3199.01i 0.556235i
\(322\) 0 0
\(323\) −1753.65 −0.302091
\(324\) 0 0
\(325\) −1805.13 3126.58i −0.308094 0.533635i
\(326\) 0 0
\(327\) −865.234 + 1498.63i −0.146323 + 0.253439i
\(328\) 0 0
\(329\) 6066.69 950.464i 1.01662 0.159273i
\(330\) 0 0
\(331\) −3756.03 + 6505.64i −0.623717 + 1.08031i 0.365071 + 0.930980i \(0.381045\pi\)
−0.988787 + 0.149330i \(0.952288\pi\)
\(332\) 0 0
\(333\) −97.0111 + 56.0094i −0.0159645 + 0.00921711i
\(334\) 0 0
\(335\) −5018.72 −0.818513
\(336\) 0 0
\(337\) −5383.56 −0.870212 −0.435106 0.900379i \(-0.643289\pi\)
−0.435106 + 0.900379i \(0.643289\pi\)
\(338\) 0 0
\(339\) 995.819 574.937i 0.159544 0.0921129i
\(340\) 0 0
\(341\) 190.553 330.047i 0.0302611 0.0524137i
\(342\) 0 0
\(343\) −5674.48 + 2855.50i −0.893275 + 0.449511i
\(344\) 0 0
\(345\) 469.818 813.748i 0.0733164 0.126988i
\(346\) 0 0
\(347\) −3326.59 5761.82i −0.514641 0.891385i −0.999856 0.0169898i \(-0.994592\pi\)
0.485214 0.874395i \(-0.338742\pi\)
\(348\) 0 0
\(349\) 8118.51 1.24520 0.622599 0.782541i \(-0.286077\pi\)
0.622599 + 0.782541i \(0.286077\pi\)
\(350\) 0 0
\(351\) 952.303i 0.144815i
\(352\) 0 0
\(353\) 6867.25 3964.81i 1.03543 0.597806i 0.116894 0.993144i \(-0.462706\pi\)
0.918535 + 0.395339i \(0.129373\pi\)
\(354\) 0 0
\(355\) −1127.92 651.207i −0.168631 0.0973591i
\(356\) 0 0
\(357\) −1611.31 + 252.442i −0.238878 + 0.0374248i
\(358\) 0 0
\(359\) 10088.9 + 5824.85i 1.48321 + 0.856334i 0.999818 0.0190675i \(-0.00606975\pi\)
0.483396 + 0.875402i \(0.339403\pi\)
\(360\) 0 0
\(361\) −1645.05 2849.32i −0.239839 0.415413i
\(362\) 0 0
\(363\) 2513.88i 0.363483i
\(364\) 0 0
\(365\) 4295.08i 0.615930i
\(366\) 0 0
\(367\) −2069.11 3583.80i −0.294296 0.509735i 0.680525 0.732725i \(-0.261752\pi\)
−0.974821 + 0.222989i \(0.928418\pi\)
\(368\) 0 0
\(369\) −154.061 88.9470i −0.0217346 0.0125485i
\(370\) 0 0
\(371\) −2285.84 881.845i −0.319879 0.123405i
\(372\) 0 0
\(373\) −78.9240 45.5668i −0.0109559 0.00632536i 0.494512 0.869171i \(-0.335347\pi\)
−0.505468 + 0.862845i \(0.668680\pi\)
\(374\) 0 0
\(375\) −2810.67 + 1622.74i −0.387046 + 0.223461i
\(376\) 0 0
\(377\) 193.106i 0.0263805i
\(378\) 0 0
\(379\) 6565.01 0.889768 0.444884 0.895588i \(-0.353245\pi\)
0.444884 + 0.895588i \(0.353245\pi\)
\(380\) 0 0
\(381\) 4197.82 + 7270.84i 0.564464 + 0.977680i
\(382\) 0 0
\(383\) −70.5241 + 122.151i −0.00940892 + 0.0162967i −0.870692 0.491830i \(-0.836328\pi\)
0.861283 + 0.508126i \(0.169662\pi\)
\(384\) 0 0
\(385\) −1228.87 1522.74i −0.162673 0.201574i
\(386\) 0 0
\(387\) −1340.43 + 2321.70i −0.176067 + 0.304957i
\(388\) 0 0
\(389\) −12363.5 + 7138.09i −1.61146 + 0.930374i −0.622422 + 0.782682i \(0.713851\pi\)
−0.989033 + 0.147692i \(0.952815\pi\)
\(390\) 0 0
\(391\) −1932.27 −0.249921
\(392\) 0 0
\(393\) −5082.25 −0.652330
\(394\) 0 0
\(395\) −3421.71 + 1975.52i −0.435860 + 0.251644i
\(396\) 0 0
\(397\) 968.708 1677.85i 0.122464 0.212113i −0.798275 0.602293i \(-0.794254\pi\)
0.920739 + 0.390180i \(0.127587\pi\)
\(398\) 0 0
\(399\) 2084.53 + 2583.01i 0.261546 + 0.324090i
\(400\) 0 0
\(401\) 1359.48 2354.68i 0.169299 0.293235i −0.768874 0.639400i \(-0.779183\pi\)
0.938174 + 0.346165i \(0.112516\pi\)
\(402\) 0 0
\(403\) −302.681 524.259i −0.0374135 0.0648020i
\(404\) 0 0
\(405\) −385.417 −0.0472877
\(406\) 0 0
\(407\) 276.370i 0.0336588i
\(408\) 0 0
\(409\) −3823.31 + 2207.39i −0.462226 + 0.266866i −0.712980 0.701185i \(-0.752655\pi\)
0.250754 + 0.968051i \(0.419322\pi\)
\(410\) 0 0
\(411\) 7829.48 + 4520.35i 0.939658 + 0.542512i
\(412\) 0 0
\(413\) 95.3195 + 36.7729i 0.0113568 + 0.00438129i
\(414\) 0 0
\(415\) −857.675 495.179i −0.101450 0.0585720i
\(416\) 0 0
\(417\) −2868.18 4967.83i −0.336823 0.583394i
\(418\) 0 0
\(419\) 3196.26i 0.372667i −0.982487 0.186334i \(-0.940339\pi\)
0.982487 0.186334i \(-0.0596605\pi\)
\(420\) 0 0
\(421\) 423.986i 0.0490827i −0.999699 0.0245414i \(-0.992187\pi\)
0.999699 0.0245414i \(-0.00781254\pi\)
\(422\) 0 0
\(423\) −1492.05 2584.30i −0.171503 0.297052i
\(424\) 0 0
\(425\) 2602.15 + 1502.35i 0.296995 + 0.171470i
\(426\) 0 0
\(427\) 7345.33 1150.79i 0.832472 0.130423i
\(428\) 0 0
\(429\) −2034.72 1174.75i −0.228991 0.132208i
\(430\) 0 0
\(431\) 8233.10 4753.38i 0.920126 0.531235i 0.0364510 0.999335i \(-0.488395\pi\)
0.883675 + 0.468100i \(0.155061\pi\)
\(432\) 0 0
\(433\) 7466.57i 0.828684i 0.910121 + 0.414342i \(0.135988\pi\)
−0.910121 + 0.414342i \(0.864012\pi\)
\(434\) 0 0
\(435\) 78.1538 0.00861422
\(436\) 0 0
\(437\) 1966.21 + 3405.57i 0.215232 + 0.372793i
\(438\) 0 0
\(439\) −22.8451 + 39.5689i −0.00248368 + 0.00430187i −0.867265 0.497848i \(-0.834124\pi\)
0.864781 + 0.502149i \(0.167457\pi\)
\(440\) 0 0
\(441\) 2287.16 + 2073.27i 0.246967 + 0.223871i
\(442\) 0 0
\(443\) −1968.74 + 3409.96i −0.211146 + 0.365716i −0.952073 0.305869i \(-0.901053\pi\)
0.740927 + 0.671585i \(0.234386\pi\)
\(444\) 0 0
\(445\) −5540.42 + 3198.76i −0.590205 + 0.340755i
\(446\) 0 0
\(447\) −3263.71 −0.345342
\(448\) 0 0
\(449\) −8972.29 −0.943048 −0.471524 0.881853i \(-0.656296\pi\)
−0.471524 + 0.881853i \(0.656296\pi\)
\(450\) 0 0
\(451\) −380.094 + 219.448i −0.0396850 + 0.0229122i
\(452\) 0 0
\(453\) 1060.77 1837.30i 0.110020 0.190561i
\(454\) 0 0
\(455\) −3070.71 + 481.086i −0.316389 + 0.0495684i
\(456\) 0 0
\(457\) −1162.97 + 2014.32i −0.119040 + 0.206183i −0.919388 0.393353i \(-0.871315\pi\)
0.800347 + 0.599536i \(0.204648\pi\)
\(458\) 0 0
\(459\) 396.286 + 686.388i 0.0402986 + 0.0697992i
\(460\) 0 0
\(461\) 6874.77 0.694555 0.347277 0.937762i \(-0.387106\pi\)
0.347277 + 0.937762i \(0.387106\pi\)
\(462\) 0 0
\(463\) 8509.65i 0.854162i −0.904213 0.427081i \(-0.859542\pi\)
0.904213 0.427081i \(-0.140458\pi\)
\(464\) 0 0
\(465\) −212.179 + 122.501i −0.0211603 + 0.0122169i
\(466\) 0 0
\(467\) 13878.0 + 8012.46i 1.37515 + 0.793945i 0.991571 0.129562i \(-0.0413572\pi\)
0.383581 + 0.923507i \(0.374691\pi\)
\(468\) 0 0
\(469\) 7030.92 18224.9i 0.692234 1.79435i
\(470\) 0 0
\(471\) 9416.69 + 5436.73i 0.921227 + 0.531871i
\(472\) 0 0
\(473\) 3307.08 + 5728.03i 0.321479 + 0.556818i
\(474\) 0 0
\(475\) 6114.96i 0.590682i
\(476\) 0 0
\(477\) 1190.61i 0.114286i
\(478\) 0 0
\(479\) −3665.35 6348.58i −0.349633 0.605582i 0.636551 0.771234i \(-0.280360\pi\)
−0.986184 + 0.165652i \(0.947027\pi\)
\(480\) 0 0
\(481\) 380.181 + 219.498i 0.0360390 + 0.0208071i
\(482\) 0 0
\(483\) 2296.86 + 2846.11i 0.216378 + 0.268121i
\(484\) 0 0
\(485\) 2897.84 + 1673.07i 0.271308 + 0.156640i
\(486\) 0 0
\(487\) −3788.67 + 2187.39i −0.352527 + 0.203532i −0.665798 0.746132i \(-0.731909\pi\)
0.313270 + 0.949664i \(0.398575\pi\)
\(488\) 0 0
\(489\) 7934.20i 0.733736i
\(490\) 0 0
\(491\) −11441.1 −1.05159 −0.525793 0.850613i \(-0.676231\pi\)
−0.525793 + 0.850613i \(0.676231\pi\)
\(492\) 0 0
\(493\) −80.3579 139.184i −0.00734105 0.0127151i
\(494\) 0 0
\(495\) −475.445 + 823.494i −0.0431710 + 0.0747744i
\(496\) 0 0
\(497\) 3944.94 3183.63i 0.356046 0.287335i
\(498\) 0 0
\(499\) −6387.79 + 11064.0i −0.573060 + 0.992569i 0.423189 + 0.906041i \(0.360911\pi\)
−0.996249 + 0.0865279i \(0.972423\pi\)
\(500\) 0 0
\(501\) 3713.08 2143.75i 0.331114 0.191169i
\(502\) 0 0
\(503\) −12314.0 −1.09156 −0.545782 0.837928i \(-0.683767\pi\)
−0.545782 + 0.837928i \(0.683767\pi\)
\(504\) 0 0
\(505\) −8332.74 −0.734262
\(506\) 0 0
\(507\) 2475.95 1429.49i 0.216885 0.125219i
\(508\) 0 0
\(509\) 9821.58 17011.5i 0.855273 1.48138i −0.0211189 0.999777i \(-0.506723\pi\)
0.876392 0.481599i \(-0.159944\pi\)
\(510\) 0 0
\(511\) −15597.1 6017.14i −1.35025 0.520905i
\(512\) 0 0
\(513\) 806.493 1396.89i 0.0694104 0.120222i
\(514\) 0 0
\(515\) −3801.02 6583.55i −0.325229 0.563313i
\(516\) 0 0
\(517\) −7362.28 −0.626292
\(518\) 0 0
\(519\) 3895.35i 0.329455i
\(520\) 0 0
\(521\) −246.886 + 142.540i −0.0207606 + 0.0119862i −0.510344 0.859970i \(-0.670482\pi\)
0.489584 + 0.871956i \(0.337149\pi\)
\(522\) 0 0
\(523\) 10525.9 + 6077.12i 0.880047 + 0.508095i 0.870674 0.491861i \(-0.163683\pi\)
0.00937313 + 0.999956i \(0.497016\pi\)
\(524\) 0 0
\(525\) −880.265 5618.62i −0.0731770 0.467080i
\(526\) 0 0
\(527\) 436.325 + 251.912i 0.0360657 + 0.0208225i
\(528\) 0 0
\(529\) −3917.02 6784.47i −0.321938 0.557612i
\(530\) 0 0
\(531\) 49.6484i 0.00405754i
\(532\) 0 0
\(533\) 697.157i 0.0566552i
\(534\) 0 0
\(535\) 2536.94 + 4394.11i 0.205012 + 0.355092i
\(536\) 0 0
\(537\) −8117.59 4686.69i −0.652327 0.376621i
\(538\) 0 0
\(539\) 7251.23 2329.26i 0.579467 0.186138i
\(540\) 0 0
\(541\) 4080.03 + 2355.61i 0.324241 + 0.187200i 0.653281 0.757115i \(-0.273392\pi\)
−0.329041 + 0.944316i \(0.606725\pi\)
\(542\) 0 0
\(543\) 2263.50 1306.83i 0.178888 0.103281i
\(544\) 0 0
\(545\) 2744.66i 0.215721i
\(546\) 0 0
\(547\) −4883.76 −0.381745 −0.190872 0.981615i \(-0.561132\pi\)
−0.190872 + 0.981615i \(0.561132\pi\)
\(548\) 0 0
\(549\) −1806.52 3128.98i −0.140438 0.243245i
\(550\) 0 0
\(551\) −163.539 + 283.257i −0.0126442 + 0.0219005i
\(552\) 0 0
\(553\) −2380.30 15193.2i −0.183039 1.16832i
\(554\) 0 0
\(555\) 88.8352 153.867i 0.00679432 0.0117681i
\(556\) 0 0
\(557\) −14125.3 + 8155.23i −1.07452 + 0.620374i −0.929412 0.369043i \(-0.879686\pi\)
−0.145106 + 0.989416i \(0.546352\pi\)
\(558\) 0 0
\(559\) 10506.2 0.794925
\(560\) 0 0
\(561\) 1955.41 0.147161
\(562\) 0 0
\(563\) −15216.0 + 8784.98i −1.13904 + 0.657625i −0.946193 0.323604i \(-0.895106\pi\)
−0.192847 + 0.981229i \(0.561772\pi\)
\(564\) 0 0
\(565\) −911.894 + 1579.45i −0.0679003 + 0.117607i
\(566\) 0 0
\(567\) 539.946 1399.60i 0.0399922 0.103664i
\(568\) 0 0
\(569\) −4724.44 + 8182.97i −0.348082 + 0.602896i −0.985909 0.167284i \(-0.946500\pi\)
0.637827 + 0.770180i \(0.279834\pi\)
\(570\) 0 0
\(571\) −7341.50 12715.8i −0.538060 0.931947i −0.999008 0.0445200i \(-0.985824\pi\)
0.460949 0.887427i \(-0.347509\pi\)
\(572\) 0 0
\(573\) −8753.62 −0.638198
\(574\) 0 0
\(575\) 6737.83i 0.488673i
\(576\) 0 0
\(577\) −14695.6 + 8484.48i −1.06028 + 0.612155i −0.925511 0.378721i \(-0.876364\pi\)
−0.134773 + 0.990876i \(0.543031\pi\)
\(578\) 0 0
\(579\) 3683.38 + 2126.60i 0.264380 + 0.152640i
\(580\) 0 0
\(581\) 2999.74 2420.84i 0.214200 0.172863i
\(582\) 0 0
\(583\) 2543.90 + 1468.72i 0.180716 + 0.104337i
\(584\) 0 0
\(585\) 755.213 + 1308.07i 0.0533748 + 0.0924478i
\(586\) 0 0
\(587\) 9958.87i 0.700250i −0.936703 0.350125i \(-0.886139\pi\)
0.936703 0.350125i \(-0.113861\pi\)
\(588\) 0 0
\(589\) 1025.35i 0.0717295i
\(590\) 0 0
\(591\) −7779.29 13474.1i −0.541450 0.937819i
\(592\) 0 0
\(593\) 3833.34 + 2213.18i 0.265458 + 0.153262i 0.626822 0.779163i \(-0.284355\pi\)
−0.361364 + 0.932425i \(0.617689\pi\)
\(594\) 0 0
\(595\) 2013.07 1624.58i 0.138702 0.111935i
\(596\) 0 0
\(597\) −238.200 137.525i −0.0163298 0.00942802i
\(598\) 0 0
\(599\) 11021.3 6363.15i 0.751783 0.434042i −0.0745547 0.997217i \(-0.523754\pi\)
0.826338 + 0.563175i \(0.190420\pi\)
\(600\) 0 0
\(601\) 13278.1i 0.901207i −0.892724 0.450604i \(-0.851209\pi\)
0.892724 0.450604i \(-0.148791\pi\)
\(602\) 0 0
\(603\) −9492.70 −0.641082
\(604\) 0 0
\(605\) −1993.60 3453.02i −0.133969 0.232041i
\(606\) 0 0
\(607\) 12177.6 21092.3i 0.814291 1.41039i −0.0955456 0.995425i \(-0.530460\pi\)
0.909836 0.414968i \(-0.136207\pi\)
\(608\) 0 0
\(609\) −109.489 + 283.807i −0.00728523 + 0.0188842i
\(610\) 0 0
\(611\) −5847.26 + 10127.7i −0.387160 + 0.670581i
\(612\) 0 0
\(613\) 2250.29 1299.21i 0.148268 0.0856028i −0.424030 0.905648i \(-0.639385\pi\)
0.572299 + 0.820045i \(0.306052\pi\)
\(614\) 0 0
\(615\) 282.154 0.0185001
\(616\) 0 0
\(617\) −16812.3 −1.09698 −0.548491 0.836156i \(-0.684798\pi\)
−0.548491 + 0.836156i \(0.684798\pi\)
\(618\) 0 0
\(619\) −16632.8 + 9602.98i −1.08002 + 0.623548i −0.930901 0.365272i \(-0.880976\pi\)
−0.149116 + 0.988820i \(0.547643\pi\)
\(620\) 0 0
\(621\) 888.641 1539.17i 0.0574234 0.0994603i
\(622\) 0 0
\(623\) −3854.18 24600.7i −0.247856 1.58203i
\(624\) 0 0
\(625\) −3823.66 + 6622.77i −0.244714 + 0.423857i
\(626\) 0 0
\(627\) −1989.76 3446.36i −0.126736 0.219512i
\(628\) 0 0
\(629\) −365.362 −0.0231605
\(630\) 0 0
\(631\) 16823.4i 1.06138i 0.847566 + 0.530689i \(0.178067\pi\)
−0.847566 + 0.530689i \(0.821933\pi\)
\(632\) 0 0
\(633\) 4439.21 2562.98i 0.278740 0.160931i
\(634\) 0 0
\(635\) −11532.1 6658.06i −0.720689 0.416090i
\(636\) 0 0
\(637\) 2554.87 11824.9i 0.158913 0.735511i
\(638\) 0 0
\(639\) −2133.42 1231.73i −0.132076 0.0762543i
\(640\) 0 0
\(641\) 2211.00 + 3829.57i 0.136239 + 0.235973i 0.926070 0.377351i \(-0.123165\pi\)
−0.789831 + 0.613325i \(0.789832\pi\)
\(642\) 0 0
\(643\) 1733.83i 0.106338i 0.998586 + 0.0531691i \(0.0169322\pi\)
−0.998586 + 0.0531691i \(0.983068\pi\)
\(644\) 0 0
\(645\) 4252.06i 0.259573i
\(646\) 0 0
\(647\) 6079.33 + 10529.7i 0.369402 + 0.639823i 0.989472 0.144723i \(-0.0462291\pi\)
−0.620070 + 0.784546i \(0.712896\pi\)
\(648\) 0 0
\(649\) −106.080 61.2455i −0.00641605 0.00370431i
\(650\) 0 0
\(651\) −147.601 942.121i −0.00888626 0.0567199i
\(652\) 0 0
\(653\) −2133.27 1231.64i −0.127843 0.0738100i 0.434715 0.900568i \(-0.356849\pi\)
−0.562557 + 0.826758i \(0.690183\pi\)
\(654\) 0 0
\(655\) 6980.89 4030.42i 0.416437 0.240430i
\(656\) 0 0
\(657\) 8123.96i 0.482414i
\(658\) 0 0
\(659\) −15114.9 −0.893461 −0.446731 0.894668i \(-0.647412\pi\)
−0.446731 + 0.894668i \(0.647412\pi\)
\(660\) 0 0
\(661\) 1247.13 + 2160.10i 0.0733856 + 0.127108i 0.900383 0.435098i \(-0.143286\pi\)
−0.826997 + 0.562206i \(0.809953\pi\)
\(662\) 0 0
\(663\) 1553.02 2689.92i 0.0909720 0.157568i
\(664\) 0 0
\(665\) −4911.70 1894.86i −0.286417 0.110496i
\(666\) 0 0
\(667\) −180.196 + 312.109i −0.0104606 + 0.0181183i
\(668\) 0 0
\(669\) 9143.83 5279.19i 0.528432 0.305090i
\(670\) 0 0
\(671\) −8913.98 −0.512847
\(672\) 0 0
\(673\) 13635.0 0.780966 0.390483 0.920610i \(-0.372308\pi\)
0.390483 + 0.920610i \(0.372308\pi\)
\(674\) 0 0
\(675\) −2393.43 + 1381.85i −0.136479 + 0.0787962i
\(676\) 0 0
\(677\) 12701.9 22000.4i 0.721086 1.24896i −0.239479 0.970902i \(-0.576977\pi\)
0.960565 0.278056i \(-0.0896900\pi\)
\(678\) 0 0
\(679\) −10135.3 + 8179.34i −0.572837 + 0.462289i
\(680\) 0 0
\(681\) −9844.27 + 17050.8i −0.553940 + 0.959452i
\(682\) 0 0
\(683\) 3241.96 + 5615.25i 0.181626 + 0.314585i 0.942434 0.334391i \(-0.108531\pi\)
−0.760809 + 0.648976i \(0.775197\pi\)
\(684\) 0 0
\(685\) −14339.2 −0.799817
\(686\) 0 0
\(687\) 6838.84i 0.379793i
\(688\) 0 0
\(689\) 4040.82 2332.97i 0.223430 0.128997i
\(690\) 0 0
\(691\) −12707.4 7336.63i −0.699585 0.403905i 0.107608 0.994193i \(-0.465681\pi\)
−0.807193 + 0.590288i \(0.799014\pi\)
\(692\) 0 0
\(693\) −2324.36 2880.19i −0.127410 0.157878i
\(694\) 0 0
\(695\) 7879.36 + 4549.15i 0.430045 + 0.248286i
\(696\) 0 0
\(697\) −290.111 502.487i −0.0157658 0.0273071i
\(698\) 0 0
\(699\) 11660.9i 0.630983i
\(700\) 0 0
\(701\) 16778.4i 0.904012i −0.892015 0.452006i \(-0.850708\pi\)
0.892015 0.452006i \(-0.149292\pi\)
\(702\) 0 0
\(703\) 371.779 + 643.941i 0.0199458 + 0.0345472i
\(704\) 0 0
\(705\) 4098.91 + 2366.50i 0.218970 + 0.126422i
\(706\) 0 0
\(707\) 11673.7 30259.5i 0.620981 1.60965i
\(708\) 0 0
\(709\) 17892.0 + 10329.9i 0.947738 + 0.547177i 0.892378 0.451289i \(-0.149036\pi\)
0.0553607 + 0.998466i \(0.482369\pi\)
\(710\) 0 0
\(711\) −6472.02 + 3736.62i −0.341378 + 0.197095i
\(712\) 0 0
\(713\) 1129.79i 0.0593420i
\(714\) 0 0
\(715\) 3726.48 0.194913
\(716\) 0 0
\(717\) 4314.62 + 7473.13i 0.224731 + 0.389246i
\(718\) 0 0
\(719\) 14614.9 25313.8i 0.758060 1.31300i −0.185779 0.982592i \(-0.559481\pi\)
0.943839 0.330406i \(-0.107186\pi\)
\(720\) 0 0
\(721\) 29232.5 4579.83i 1.50995 0.236563i
\(722\) 0 0
\(723\) 756.506 1310.31i 0.0389139 0.0674009i
\(724\) 0 0
\(725\) 485.334 280.208i 0.0248619 0.0143540i
\(726\) 0 0
\(727\) 19075.5 0.973136 0.486568 0.873643i \(-0.338249\pi\)
0.486568 + 0.873643i \(0.338249\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −7572.48 + 4371.98i −0.383144 + 0.221208i
\(732\) 0 0
\(733\) −9651.80 + 16717.4i −0.486354 + 0.842390i −0.999877 0.0156862i \(-0.995007\pi\)
0.513523 + 0.858076i \(0.328340\pi\)
\(734\) 0 0
\(735\) −4785.79 1034.01i −0.240172 0.0518910i
\(736\) 0 0
\(737\) −11710.1 + 20282.4i −0.585272 + 1.01372i
\(738\) 0 0
\(739\) −4366.02 7562.17i −0.217330 0.376426i 0.736661 0.676262i \(-0.236401\pi\)
−0.953991 + 0.299836i \(0.903068\pi\)
\(740\) 0 0
\(741\) −6321.20 −0.313381
\(742\) 0 0
\(743\) 31267.9i 1.54389i 0.635691 + 0.771944i \(0.280715\pi\)
−0.635691 + 0.771944i \(0.719285\pi\)
\(744\) 0 0
\(745\) 4482.97 2588.25i 0.220461 0.127283i
\(746\) 0 0
\(747\) −1622.26 936.611i −0.0794582 0.0458752i
\(748\) 0 0
\(749\) −19510.9 + 3056.75i −0.951817 + 0.149120i
\(750\) 0 0
\(751\) 5725.84 + 3305.82i 0.278214 + 0.160627i 0.632615 0.774467i \(-0.281982\pi\)
−0.354400 + 0.935094i \(0.615315\pi\)
\(752\) 0 0
\(753\) 4072.91 + 7054.49i 0.197112 + 0.341408i
\(754\) 0 0
\(755\) 3364.92i 0.162201i
\(756\) 0 0
\(757\) 1294.17i 0.0621366i −0.999517 0.0310683i \(-0.990109\pi\)
0.999517 0.0310683i \(-0.00989095\pi\)
\(758\) 0 0
\(759\) −2192.43 3797.40i −0.104849 0.181603i
\(760\) 0 0
\(761\) 25496.9 + 14720.6i 1.21454 + 0.701213i 0.963744 0.266828i \(-0.0859756\pi\)
0.250792 + 0.968041i \(0.419309\pi\)
\(762\) 0 0
\(763\) 9966.94 + 3845.10i 0.472906 + 0.182440i
\(764\) 0 0
\(765\) −1088.66 628.541i −0.0514519 0.0297058i
\(766\) 0 0
\(767\) −168.502 + 97.2846i −0.00793253 + 0.00457985i
\(768\) 0 0
\(769\) 1870.38i 0.0877084i −0.999038 0.0438542i \(-0.986036\pi\)
0.999038 0.0438542i \(-0.0139637\pi\)
\(770\) 0 0
\(771\) −12106.4 −0.565501
\(772\) 0 0
\(773\) −5789.10 10027.0i −0.269365 0.466555i 0.699333 0.714796i \(-0.253481\pi\)
−0.968698 + 0.248242i \(0.920147\pi\)
\(774\) 0 0
\(775\) −878.418 + 1521.46i −0.0407144 + 0.0705195i
\(776\) 0 0
\(777\) 434.300 + 538.154i 0.0200520 + 0.0248471i
\(778\) 0 0
\(779\) −590.413 + 1022.62i −0.0271550 + 0.0470338i
\(780\) 0 0
\(781\) −5263.51 + 3038.89i −0.241157 + 0.139232i
\(782\) 0 0
\(783\) 147.825 0.00674690
\(784\) 0 0
\(785\) −17246.1 −0.784129
\(786\) 0 0
\(787\) 29107.9 16805.4i 1.31840 0.761181i 0.334932 0.942242i \(-0.391287\pi\)
0.983472 + 0.181061i \(0.0579533\pi\)
\(788\) 0 0
\(789\) 6898.88 11949.2i 0.311289 0.539168i
\(790\) 0 0
\(791\) −4458.09 5524.16i −0.200394 0.248314i
\(792\) 0 0
\(793\) −7079.64 + 12262.3i −0.317031 + 0.549114i
\(794\) 0 0
\(795\) −944.201 1635.40i −0.0421224 0.0729582i
\(796\) 0 0
\(797\) 1179.48 0.0524206 0.0262103 0.999656i \(-0.491656\pi\)
0.0262103 + 0.999656i \(0.491656\pi\)
\(798\) 0 0
\(799\) 9732.98i 0.430949i
\(800\) 0 0
\(801\) −10479.5 + 6050.33i −0.462265 + 0.266889i
\(802\) 0 0
\(803\) 17357.9 + 10021.6i 0.762824 + 0.440417i
\(804\) 0 0
\(805\) −5412.00 2087.87i −0.236954 0.0914133i
\(806\) 0 0
\(807\) −6013.69 3472.01i −0.262320 0.151450i
\(808\) 0 0
\(809\) −21036.3 36436.0i −0.914212 1.58346i −0.808051 0.589112i \(-0.799477\pi\)
−0.106161 0.994349i \(-0.533856\pi\)
\(810\) 0 0
\(811\) 5872.04i 0.254248i −0.991887 0.127124i \(-0.959425\pi\)
0.991887 0.127124i \(-0.0405746\pi\)
\(812\) 0 0
\(813\) 21011.9i 0.906421i
\(814\) 0 0
\(815\) 6292.12 + 10898.3i 0.270434 + 0.468405i
\(816\) 0 0
\(817\) 15411.0 + 8897.53i 0.659928 + 0.381010i
\(818\) 0 0
\(819\) −5808.12 + 909.954i −0.247805 + 0.0388234i
\(820\) 0 0
\(821\) 18927.6 + 10927.9i 0.804603 + 0.464538i 0.845078 0.534643i \(-0.179554\pi\)
−0.0404753 + 0.999181i \(0.512887\pi\)
\(822\) 0 0
\(823\) −33335.2 + 19246.1i −1.41190 + 0.815160i −0.995567 0.0940531i \(-0.970018\pi\)
−0.416331 + 0.909213i \(0.636684\pi\)
\(824\) 0 0
\(825\) 6818.52i 0.287746i
\(826\) 0 0
\(827\) 28978.4 1.21848 0.609238 0.792988i \(-0.291476\pi\)
0.609238 + 0.792988i \(0.291476\pi\)
\(828\) 0 0
\(829\) 20169.2 + 34934.1i 0.845002 + 1.46359i 0.885619 + 0.464412i \(0.153734\pi\)
−0.0406174 + 0.999175i \(0.512932\pi\)
\(830\) 0 0
\(831\) 6126.78 10611.9i 0.255759 0.442987i
\(832\) 0 0
\(833\) 3079.30 + 9586.17i 0.128081 + 0.398729i
\(834\) 0 0
\(835\) −3400.15 + 5889.23i −0.140919 + 0.244078i
\(836\) 0 0
\(837\) −401.327 + 231.706i −0.0165733 + 0.00956863i
\(838\) 0 0
\(839\) −46007.4 −1.89315 −0.946575 0.322485i \(-0.895482\pi\)
−0.946575 + 0.322485i \(0.895482\pi\)
\(840\) 0 0
\(841\) 24359.0 0.998771
\(842\) 0 0
\(843\) −17144.7 + 9898.52i −0.700470 + 0.404417i
\(844\) 0 0
\(845\) −2267.28 + 3927.04i −0.0923038 + 0.159875i
\(846\) 0 0
\(847\) 15332.2 2402.08i 0.621983 0.0974457i
\(848\) 0 0
\(849\) 2523.05 4370.05i 0.101992 0.176655i
\(850\) 0 0
\(851\) 409.648 + 709.532i 0.0165012 + 0.0285810i
\(852\) 0 0
\(853\) −23484.4 −0.942663 −0.471331 0.881956i \(-0.656226\pi\)
−0.471331 + 0.881956i \(0.656226\pi\)
\(854\) 0 0
\(855\) 2558.32i 0.102331i
\(856\) 0 0
\(857\) −18212.2 + 10514.8i −0.725924 + 0.419112i −0.816929 0.576738i \(-0.804325\pi\)
0.0910052 + 0.995850i \(0.470992\pi\)
\(858\) 0 0
\(859\) 2265.82 + 1308.17i 0.0899987 + 0.0519608i 0.544324 0.838875i \(-0.316786\pi\)
−0.454325 + 0.890836i \(0.650120\pi\)
\(860\) 0 0
\(861\) −395.280 + 1024.61i −0.0156459 + 0.0405559i
\(862\) 0 0
\(863\) −33326.5 19241.1i −1.31454 0.758949i −0.331695 0.943387i \(-0.607620\pi\)
−0.982844 + 0.184437i \(0.940954\pi\)
\(864\) 0 0
\(865\) −3089.17 5350.59i −0.121427 0.210319i
\(866\) 0 0
\(867\) 12153.9i 0.476089i
\(868\) 0 0
\(869\) 18437.8i 0.719745i
\(870\) 0 0
\(871\) 18600.7 + 32217.3i 0.723605 + 1.25332i
\(872\) 0 0
\(873\) 5481.15 + 3164.54i 0.212496 + 0.122685i
\(874\) 0 0
\(875\) 12582.8 + 15591.8i 0.486145 + 0.602398i
\(876\) 0 0
\(877\) 39737.4 + 22942.4i 1.53003 + 0.883363i 0.999360 + 0.0357843i \(0.0113929\pi\)
0.530670 + 0.847579i \(0.321940\pi\)
\(878\) 0 0
\(879\) −12245.6 + 7069.99i −0.469890 + 0.271291i
\(880\) 0 0
\(881\) 32993.4i 1.26172i −0.775896 0.630860i \(-0.782702\pi\)
0.775896 0.630860i \(-0.217298\pi\)
\(882\) 0 0
\(883\) 42541.9 1.62135 0.810674 0.585498i \(-0.199101\pi\)
0.810674 + 0.585498i \(0.199101\pi\)
\(884\) 0 0
\(885\) 39.3731 + 68.1962i 0.00149549 + 0.00259027i
\(886\) 0 0
\(887\) −8772.25 + 15194.0i −0.332067 + 0.575156i −0.982917 0.184050i \(-0.941079\pi\)
0.650850 + 0.759206i \(0.274413\pi\)
\(888\) 0 0
\(889\) 40333.8 32550.1i 1.52166 1.22800i
\(890\) 0 0
\(891\) −899.284 + 1557.61i −0.0338127 + 0.0585654i
\(892\) 0 0
\(893\) −17154.1 + 9903.93i −0.642822 + 0.371134i
\(894\) 0 0
\(895\) 14866.9 0.555247
\(896\) 0 0
\(897\) −6965.07 −0.259261
\(898\) 0 0
\(899\) 81.3800 46.9848i 0.00301911 0.00174308i
\(900\) 0 0
\(901\) −1941.66 + 3363.05i −0.0717936 + 0.124350i
\(902\) 0 0
\(903\) 15440.9 + 5956.88i 0.569038 + 0.219527i
\(904\) 0 0
\(905\) −2072.73 + 3590.08i −0.0761326 + 0.131866i
\(906\) 0 0
\(907\) 1398.50 + 2422.27i 0.0511977 + 0.0886770i 0.890488 0.455006i \(-0.150363\pi\)
−0.839291 + 0.543683i \(0.817029\pi\)
\(908\) 0 0
\(909\) −15761.0 −0.575095
\(910\) 0 0
\(911\) 31110.0i 1.13142i 0.824605 + 0.565709i \(0.191397\pi\)
−0.824605 + 0.565709i \(0.808603\pi\)
\(912\) 0 0
\(913\) −4002.39 + 2310.78i −0.145082 + 0.0837630i
\(914\) 0 0
\(915\) 4962.81 + 2865.28i 0.179306 + 0.103523i
\(916\) 0 0
\(917\) 4856.24 + 30996.8i 0.174882 + 1.11625i
\(918\) 0 0
\(919\) 25609.3 + 14785.5i 0.919231 + 0.530718i 0.883390 0.468639i \(-0.155256\pi\)
0.0358415 + 0.999357i \(0.488589\pi\)
\(920\) 0 0
\(921\) 576.287 + 998.158i 0.0206181 + 0.0357116i
\(922\) 0 0
\(923\) 9654.17i 0.344280i
\(924\) 0 0
\(925\) 1274.02i 0.0452859i
\(926\) 0 0
\(927\) −7189.47 12452.5i −0.254728 0.441202i
\(928\) 0 0
\(929\) −2107.56 1216.80i −0.0744315 0.0429731i 0.462322 0.886712i \(-0.347016\pi\)
−0.536754 + 0.843739i \(0.680350\pi\)
\(930\) 0 0
\(931\) 13762.0 15181.7i 0.484458 0.534437i
\(932\) 0 0
\(933\) −25415.1 14673.4i −0.891803 0.514882i
\(934\) 0 0
\(935\) −2685.92 + 1550.72i −0.0939455 + 0.0542394i
\(936\) 0 0
\(937\) 23660.5i 0.824925i 0.910975 + 0.412462i \(0.135331\pi\)
−0.910975 + 0.412462i \(0.864669\pi\)
\(938\) 0 0
\(939\) −20933.9 −0.727532
\(940\) 0 0
\(941\) −17396.1 30130.9i −0.602652 1.04382i −0.992418 0.122910i \(-0.960777\pi\)
0.389766 0.920914i \(-0.372556\pi\)
\(942\) 0 0
\(943\) −650.552 + 1126.79i −0.0224654 + 0.0389112i
\(944\) 0 0
\(945\) 368.277 + 2350.67i 0.0126773 + 0.0809176i
\(946\) 0 0
\(947\) −4163.32 + 7211.07i −0.142861 + 0.247443i −0.928573 0.371150i \(-0.878964\pi\)
0.785712 + 0.618593i \(0.212297\pi\)
\(948\) 0 0
\(949\) 27572.0 15918.7i 0.943123 0.544512i
\(950\) 0 0
\(951\) 12184.0 0.415449
\(952\) 0 0
\(953\) −5396.93 −0.183446 −0.0917228 0.995785i \(-0.529237\pi\)
−0.0917228 + 0.995785i \(0.529237\pi\)
\(954\) 0 0
\(955\) 12023.8 6941.96i 0.407415 0.235221i
\(956\) 0 0
\(957\) 182.354 315.847i 0.00615954 0.0106686i
\(958\) 0 0
\(959\) 20088.4 52071.5i 0.676422 1.75336i
\(960\) 0 0
\(961\) 14748.2 25544.6i 0.495056 0.857462i
\(962\) 0 0
\(963\) 4798.52 + 8311.28i 0.160571 + 0.278118i
\(964\) 0 0
\(965\) −6745.91 −0.225035
\(966\) 0 0
\(967\) 46588.0i 1.54930i 0.632393 + 0.774648i \(0.282073\pi\)
−0.632393 + 0.774648i \(0.717927\pi\)
\(968\) 0 0
\(969\) 4556.11 2630.47i 0.151046 0.0872063i
\(970\) 0 0
\(971\) 32953.1 + 19025.5i 1.08910 + 0.628792i 0.933336 0.359003i \(-0.116883\pi\)
0.155763 + 0.987795i \(0.450216\pi\)
\(972\) 0 0
\(973\) −27558.3 + 22240.0i −0.907993 + 0.732765i
\(974\) 0 0
\(975\) 9379.73 + 5415.39i 0.308094 + 0.177878i
\(976\) 0 0
\(977\) −9751.93 16890.8i −0.319337 0.553107i 0.661013 0.750374i \(-0.270127\pi\)
−0.980350 + 0.197267i \(0.936793\pi\)
\(978\) 0 0
\(979\) 29854.4i 0.974618i
\(980\) 0 0
\(981\) 5191.41i 0.168959i
\(982\) 0 0
\(983\) 17188.4 + 29771.1i 0.557705 + 0.965973i 0.997688 + 0.0679667i \(0.0216512\pi\)
−0.439983 + 0.898006i \(0.645016\pi\)
\(984\) 0 0
\(985\) 21371.0 + 12338.5i 0.691306 + 0.399126i
\(986\) 0 0
\(987\) −14336.0 + 11569.4i −0.462331 + 0.373109i
\(988\) 0 0
\(989\) 16980.7 + 9803.82i 0.545961 + 0.315211i
\(990\) 0 0
\(991\) −37834.0 + 21843.5i −1.21275 + 0.700183i −0.963358 0.268219i \(-0.913565\pi\)
−0.249395 + 0.968402i \(0.580232\pi\)
\(992\) 0 0
\(993\) 22536.2i 0.720206i
\(994\) 0 0
\(995\) 436.251 0.0138996
\(996\) 0 0
\(997\) 16669.7 + 28872.8i 0.529523 + 0.917161i 0.999407 + 0.0344327i \(0.0109624\pi\)
−0.469884 + 0.882728i \(0.655704\pi\)
\(998\) 0 0
\(999\) 168.028 291.033i 0.00532150 0.00921711i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.bb.a.271.10 96
4.3 odd 2 168.4.t.a.19.45 yes 96
7.3 odd 6 inner 672.4.bb.a.367.9 96
8.3 odd 2 inner 672.4.bb.a.271.9 96
8.5 even 2 168.4.t.a.19.20 96
28.3 even 6 168.4.t.a.115.20 yes 96
56.3 even 6 inner 672.4.bb.a.367.10 96
56.45 odd 6 168.4.t.a.115.45 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.t.a.19.20 96 8.5 even 2
168.4.t.a.19.45 yes 96 4.3 odd 2
168.4.t.a.115.20 yes 96 28.3 even 6
168.4.t.a.115.45 yes 96 56.45 odd 6
672.4.bb.a.271.9 96 8.3 odd 2 inner
672.4.bb.a.271.10 96 1.1 even 1 trivial
672.4.bb.a.367.9 96 7.3 odd 6 inner
672.4.bb.a.367.10 96 56.3 even 6 inner