Properties

Label 672.4.bb.a.271.18
Level $672$
Weight $4$
Character 672.271
Analytic conductor $39.649$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [672,4,Mod(271,672)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(672, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 0, 5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("672.271");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 672.bb (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.6492835239\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.18
Character \(\chi\) \(=\) 672.271
Dual form 672.4.bb.a.367.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.59808 + 1.50000i) q^{3} +(7.16825 - 12.4158i) q^{5} +(-12.0691 - 14.0477i) q^{7} +(4.50000 - 7.79423i) q^{9} +(8.72655 + 15.1148i) q^{11} -0.0135980 q^{13} +43.0095i q^{15} +(97.8487 - 56.4930i) q^{17} +(141.172 + 81.5059i) q^{19} +(52.4279 + 18.3934i) q^{21} +(-108.849 - 62.8441i) q^{23} +(-40.2675 - 69.7454i) q^{25} +27.0000i q^{27} -79.0227i q^{29} +(-57.5343 - 99.6523i) q^{31} +(-45.3445 - 26.1796i) q^{33} +(-260.927 + 49.1495i) q^{35} +(34.8737 + 20.1343i) q^{37} +(0.0353286 - 0.0203970i) q^{39} -387.430i q^{41} -59.4461 q^{43} +(-64.5142 - 111.742i) q^{45} +(-202.646 + 350.993i) q^{47} +(-51.6750 + 339.085i) q^{49} +(-169.479 + 293.546i) q^{51} +(-96.1083 + 55.4882i) q^{53} +250.216 q^{55} -489.036 q^{57} +(192.766 - 111.294i) q^{59} +(314.523 - 544.771i) q^{61} +(-163.802 + 30.8545i) q^{63} +(-0.0974736 + 0.168829i) q^{65} +(-132.525 - 229.540i) q^{67} +377.065 q^{69} -1023.16i q^{71} +(-952.975 + 550.200i) q^{73} +(209.236 + 120.803i) q^{75} +(107.007 - 305.010i) q^{77} +(-536.973 - 310.022i) q^{79} +(-40.5000 - 70.1481i) q^{81} +57.1755i q^{83} -1619.82i q^{85} +(118.534 + 205.307i) q^{87} +(-458.297 - 264.598i) q^{89} +(0.164115 + 0.191020i) q^{91} +(298.957 + 172.603i) q^{93} +(2023.92 - 1168.51i) q^{95} +106.812i q^{97} +157.078 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 432 q^{9} - 40 q^{11} - 1200 q^{25} - 456 q^{35} + 1616 q^{43} - 360 q^{49} - 336 q^{57} - 4128 q^{59} + 1440 q^{67} - 648 q^{73} - 3888 q^{81} + 104 q^{91} - 720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.59808 + 1.50000i −0.500000 + 0.288675i
\(4\) 0 0
\(5\) 7.16825 12.4158i 0.641148 1.11050i −0.344029 0.938959i \(-0.611792\pi\)
0.985177 0.171541i \(-0.0548747\pi\)
\(6\) 0 0
\(7\) −12.0691 14.0477i −0.651669 0.758504i
\(8\) 0 0
\(9\) 4.50000 7.79423i 0.166667 0.288675i
\(10\) 0 0
\(11\) 8.72655 + 15.1148i 0.239196 + 0.414299i 0.960484 0.278336i \(-0.0897829\pi\)
−0.721288 + 0.692635i \(0.756450\pi\)
\(12\) 0 0
\(13\) −0.0135980 −0.000290108 −0.000145054 1.00000i \(-0.500046\pi\)
−0.000145054 1.00000i \(0.500046\pi\)
\(14\) 0 0
\(15\) 43.0095i 0.740333i
\(16\) 0 0
\(17\) 97.8487 56.4930i 1.39599 0.805974i 0.402019 0.915631i \(-0.368309\pi\)
0.993970 + 0.109657i \(0.0349752\pi\)
\(18\) 0 0
\(19\) 141.172 + 81.5059i 1.70459 + 0.984144i 0.940979 + 0.338465i \(0.109908\pi\)
0.763609 + 0.645679i \(0.223426\pi\)
\(20\) 0 0
\(21\) 52.4279 + 18.3934i 0.544796 + 0.191131i
\(22\) 0 0
\(23\) −108.849 62.8441i −0.986810 0.569735i −0.0824906 0.996592i \(-0.526287\pi\)
−0.904319 + 0.426857i \(0.859621\pi\)
\(24\) 0 0
\(25\) −40.2675 69.7454i −0.322140 0.557963i
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) 79.0227i 0.506005i −0.967466 0.253002i \(-0.918582\pi\)
0.967466 0.253002i \(-0.0814181\pi\)
\(30\) 0 0
\(31\) −57.5343 99.6523i −0.333337 0.577357i 0.649827 0.760082i \(-0.274841\pi\)
−0.983164 + 0.182725i \(0.941508\pi\)
\(32\) 0 0
\(33\) −45.3445 26.1796i −0.239196 0.138100i
\(34\) 0 0
\(35\) −260.927 + 49.1495i −1.26013 + 0.237365i
\(36\) 0 0
\(37\) 34.8737 + 20.1343i 0.154951 + 0.0894611i 0.575471 0.817822i \(-0.304819\pi\)
−0.420520 + 0.907283i \(0.638152\pi\)
\(38\) 0 0
\(39\) 0.0353286 0.0203970i 0.000145054 8.37468e-5i
\(40\) 0 0
\(41\) 387.430i 1.47577i −0.674928 0.737883i \(-0.735825\pi\)
0.674928 0.737883i \(-0.264175\pi\)
\(42\) 0 0
\(43\) −59.4461 −0.210824 −0.105412 0.994429i \(-0.533616\pi\)
−0.105412 + 0.994429i \(0.533616\pi\)
\(44\) 0 0
\(45\) −64.5142 111.742i −0.213716 0.370167i
\(46\) 0 0
\(47\) −202.646 + 350.993i −0.628914 + 1.08931i 0.358856 + 0.933393i \(0.383167\pi\)
−0.987770 + 0.155918i \(0.950167\pi\)
\(48\) 0 0
\(49\) −51.6750 + 339.085i −0.150656 + 0.988586i
\(50\) 0 0
\(51\) −169.479 + 293.546i −0.465330 + 0.805974i
\(52\) 0 0
\(53\) −96.1083 + 55.4882i −0.249085 + 0.143809i −0.619345 0.785119i \(-0.712602\pi\)
0.370260 + 0.928928i \(0.379268\pi\)
\(54\) 0 0
\(55\) 250.216 0.613439
\(56\) 0 0
\(57\) −489.036 −1.13639
\(58\) 0 0
\(59\) 192.766 111.294i 0.425356 0.245579i −0.272010 0.962294i \(-0.587688\pi\)
0.697366 + 0.716715i \(0.254355\pi\)
\(60\) 0 0
\(61\) 314.523 544.771i 0.660174 1.14345i −0.320396 0.947284i \(-0.603816\pi\)
0.980570 0.196171i \(-0.0628507\pi\)
\(62\) 0 0
\(63\) −163.802 + 30.8545i −0.327573 + 0.0617032i
\(64\) 0 0
\(65\) −0.0974736 + 0.168829i −0.000186002 + 0.000322164i
\(66\) 0 0
\(67\) −132.525 229.540i −0.241649 0.418549i 0.719535 0.694456i \(-0.244355\pi\)
−0.961184 + 0.275907i \(0.911022\pi\)
\(68\) 0 0
\(69\) 377.065 0.657873
\(70\) 0 0
\(71\) 1023.16i 1.71023i −0.518440 0.855114i \(-0.673487\pi\)
0.518440 0.855114i \(-0.326513\pi\)
\(72\) 0 0
\(73\) −952.975 + 550.200i −1.52791 + 0.882138i −0.528459 + 0.848959i \(0.677230\pi\)
−0.999449 + 0.0331792i \(0.989437\pi\)
\(74\) 0 0
\(75\) 209.236 + 120.803i 0.322140 + 0.185988i
\(76\) 0 0
\(77\) 107.007 305.010i 0.158371 0.451417i
\(78\) 0 0
\(79\) −536.973 310.022i −0.764737 0.441521i 0.0662572 0.997803i \(-0.478894\pi\)
−0.830994 + 0.556282i \(0.812228\pi\)
\(80\) 0 0
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 57.1755i 0.0756124i 0.999285 + 0.0378062i \(0.0120370\pi\)
−0.999285 + 0.0378062i \(0.987963\pi\)
\(84\) 0 0
\(85\) 1619.82i 2.06699i
\(86\) 0 0
\(87\) 118.534 + 205.307i 0.146071 + 0.253002i
\(88\) 0 0
\(89\) −458.297 264.598i −0.545835 0.315138i 0.201605 0.979467i \(-0.435384\pi\)
−0.747441 + 0.664329i \(0.768718\pi\)
\(90\) 0 0
\(91\) 0.164115 + 0.191020i 0.000189054 + 0.000220048i
\(92\) 0 0
\(93\) 298.957 + 172.603i 0.333337 + 0.192452i
\(94\) 0 0
\(95\) 2023.92 1168.51i 2.18578 1.26196i
\(96\) 0 0
\(97\) 106.812i 0.111805i 0.998436 + 0.0559026i \(0.0178036\pi\)
−0.998436 + 0.0559026i \(0.982196\pi\)
\(98\) 0 0
\(99\) 157.078 0.159464
\(100\) 0 0
\(101\) −144.912 250.995i −0.142765 0.247277i 0.785772 0.618517i \(-0.212266\pi\)
−0.928537 + 0.371240i \(0.878933\pi\)
\(102\) 0 0
\(103\) 69.8537 120.990i 0.0668241 0.115743i −0.830678 0.556754i \(-0.812047\pi\)
0.897502 + 0.441011i \(0.145380\pi\)
\(104\) 0 0
\(105\) 604.184 519.085i 0.561546 0.482452i
\(106\) 0 0
\(107\) 514.157 890.546i 0.464537 0.804602i −0.534644 0.845078i \(-0.679554\pi\)
0.999181 + 0.0404761i \(0.0128875\pi\)
\(108\) 0 0
\(109\) −1136.39 + 656.098i −0.998595 + 0.576539i −0.907832 0.419333i \(-0.862264\pi\)
−0.0907629 + 0.995873i \(0.528931\pi\)
\(110\) 0 0
\(111\) −120.806 −0.103301
\(112\) 0 0
\(113\) 763.883 0.635929 0.317965 0.948103i \(-0.397001\pi\)
0.317965 + 0.948103i \(0.397001\pi\)
\(114\) 0 0
\(115\) −1560.52 + 900.964i −1.26538 + 0.730568i
\(116\) 0 0
\(117\) −0.0611909 + 0.105986i −4.83513e−5 + 8.37468e-5i
\(118\) 0 0
\(119\) −1974.54 692.730i −1.52106 0.533634i
\(120\) 0 0
\(121\) 513.195 888.879i 0.385571 0.667828i
\(122\) 0 0
\(123\) 581.145 + 1006.57i 0.426017 + 0.737883i
\(124\) 0 0
\(125\) 637.471 0.456137
\(126\) 0 0
\(127\) 2297.90i 1.60555i −0.596279 0.802777i \(-0.703355\pi\)
0.596279 0.802777i \(-0.296645\pi\)
\(128\) 0 0
\(129\) 154.445 89.1691i 0.105412 0.0608597i
\(130\) 0 0
\(131\) −2206.31 1273.81i −1.47150 0.849570i −0.472012 0.881592i \(-0.656472\pi\)
−0.999487 + 0.0320218i \(0.989805\pi\)
\(132\) 0 0
\(133\) −558.850 2966.85i −0.364349 1.93427i
\(134\) 0 0
\(135\) 335.226 + 193.543i 0.213716 + 0.123389i
\(136\) 0 0
\(137\) 985.764 + 1707.39i 0.614741 + 1.06476i 0.990430 + 0.138016i \(0.0440726\pi\)
−0.375689 + 0.926746i \(0.622594\pi\)
\(138\) 0 0
\(139\) 2423.81i 1.47903i −0.673141 0.739514i \(-0.735056\pi\)
0.673141 0.739514i \(-0.264944\pi\)
\(140\) 0 0
\(141\) 1215.88i 0.726207i
\(142\) 0 0
\(143\) −0.118663 0.205531i −6.93925e−5 0.000120191i
\(144\) 0 0
\(145\) −981.127 566.454i −0.561919 0.324424i
\(146\) 0 0
\(147\) −374.372 958.481i −0.210052 0.537784i
\(148\) 0 0
\(149\) −517.719 298.905i −0.284652 0.164344i 0.350875 0.936422i \(-0.385884\pi\)
−0.635528 + 0.772078i \(0.719217\pi\)
\(150\) 0 0
\(151\) 687.580 396.974i 0.370559 0.213943i −0.303143 0.952945i \(-0.598036\pi\)
0.673703 + 0.739002i \(0.264703\pi\)
\(152\) 0 0
\(153\) 1016.87i 0.537316i
\(154\) 0 0
\(155\) −1649.68 −0.854874
\(156\) 0 0
\(157\) 1088.93 + 1886.09i 0.553544 + 0.958766i 0.998015 + 0.0629729i \(0.0200582\pi\)
−0.444472 + 0.895793i \(0.646609\pi\)
\(158\) 0 0
\(159\) 166.465 288.325i 0.0830283 0.143809i
\(160\) 0 0
\(161\) 430.894 + 2287.55i 0.210927 + 1.11978i
\(162\) 0 0
\(163\) −698.201 + 1209.32i −0.335505 + 0.581112i −0.983582 0.180463i \(-0.942240\pi\)
0.648077 + 0.761575i \(0.275574\pi\)
\(164\) 0 0
\(165\) −650.081 + 375.324i −0.306719 + 0.177085i
\(166\) 0 0
\(167\) 2709.12 1.25532 0.627658 0.778490i \(-0.284014\pi\)
0.627658 + 0.778490i \(0.284014\pi\)
\(168\) 0 0
\(169\) −2197.00 −1.00000
\(170\) 0 0
\(171\) 1270.55 733.553i 0.568196 0.328048i
\(172\) 0 0
\(173\) −2134.57 + 3697.18i −0.938081 + 1.62480i −0.169036 + 0.985610i \(0.554065\pi\)
−0.769045 + 0.639194i \(0.779268\pi\)
\(174\) 0 0
\(175\) −493.770 + 1407.43i −0.213289 + 0.607952i
\(176\) 0 0
\(177\) −333.881 + 578.298i −0.141785 + 0.245579i
\(178\) 0 0
\(179\) 1236.00 + 2140.81i 0.516104 + 0.893918i 0.999825 + 0.0186963i \(0.00595155\pi\)
−0.483721 + 0.875222i \(0.660715\pi\)
\(180\) 0 0
\(181\) 1085.09 0.445601 0.222801 0.974864i \(-0.428480\pi\)
0.222801 + 0.974864i \(0.428480\pi\)
\(182\) 0 0
\(183\) 1887.14i 0.762303i
\(184\) 0 0
\(185\) 499.966 288.656i 0.198693 0.114716i
\(186\) 0 0
\(187\) 1707.76 + 985.977i 0.667829 + 0.385571i
\(188\) 0 0
\(189\) 379.288 325.865i 0.145974 0.125414i
\(190\) 0 0
\(191\) 3251.48 + 1877.25i 1.23178 + 0.711166i 0.967400 0.253254i \(-0.0815007\pi\)
0.264376 + 0.964420i \(0.414834\pi\)
\(192\) 0 0
\(193\) −258.194 447.204i −0.0962963 0.166790i 0.813853 0.581071i \(-0.197366\pi\)
−0.910149 + 0.414281i \(0.864033\pi\)
\(194\) 0 0
\(195\) 0.584842i 0.000214776i
\(196\) 0 0
\(197\) 2723.54i 0.984995i 0.870314 + 0.492497i \(0.163916\pi\)
−0.870314 + 0.492497i \(0.836084\pi\)
\(198\) 0 0
\(199\) −2259.07 3912.82i −0.804729 1.39383i −0.916474 0.400095i \(-0.868977\pi\)
0.111744 0.993737i \(-0.464356\pi\)
\(200\) 0 0
\(201\) 688.620 + 397.575i 0.241649 + 0.139516i
\(202\) 0 0
\(203\) −1110.09 + 953.730i −0.383807 + 0.329748i
\(204\) 0 0
\(205\) −4810.24 2777.20i −1.63884 0.946184i
\(206\) 0 0
\(207\) −979.643 + 565.597i −0.328937 + 0.189912i
\(208\) 0 0
\(209\) 2845.06i 0.941612i
\(210\) 0 0
\(211\) −693.490 −0.226265 −0.113132 0.993580i \(-0.536088\pi\)
−0.113132 + 0.993580i \(0.536088\pi\)
\(212\) 0 0
\(213\) 1534.73 + 2658.24i 0.493700 + 0.855114i
\(214\) 0 0
\(215\) −426.124 + 738.069i −0.135169 + 0.234120i
\(216\) 0 0
\(217\) −705.499 + 2010.93i −0.220702 + 0.629083i
\(218\) 0 0
\(219\) 1650.60 2858.93i 0.509303 0.882138i
\(220\) 0 0
\(221\) −1.33054 + 0.768190i −0.000404987 + 0.000233819i
\(222\) 0 0
\(223\) −3875.20 −1.16369 −0.581844 0.813300i \(-0.697669\pi\)
−0.581844 + 0.813300i \(0.697669\pi\)
\(224\) 0 0
\(225\) −724.816 −0.214760
\(226\) 0 0
\(227\) −1611.42 + 930.351i −0.471160 + 0.272024i −0.716725 0.697356i \(-0.754360\pi\)
0.245565 + 0.969380i \(0.421027\pi\)
\(228\) 0 0
\(229\) 665.716 1153.05i 0.192104 0.332733i −0.753844 0.657054i \(-0.771802\pi\)
0.945947 + 0.324321i \(0.105136\pi\)
\(230\) 0 0
\(231\) 179.502 + 952.949i 0.0511272 + 0.271426i
\(232\) 0 0
\(233\) 1454.66 2519.54i 0.409004 0.708415i −0.585775 0.810474i \(-0.699210\pi\)
0.994778 + 0.102059i \(0.0325430\pi\)
\(234\) 0 0
\(235\) 2905.23 + 5032.01i 0.806453 + 1.39682i
\(236\) 0 0
\(237\) 1860.13 0.509824
\(238\) 0 0
\(239\) 2878.18i 0.778971i 0.921033 + 0.389486i \(0.127347\pi\)
−0.921033 + 0.389486i \(0.872653\pi\)
\(240\) 0 0
\(241\) 2620.03 1512.68i 0.700296 0.404316i −0.107162 0.994242i \(-0.534176\pi\)
0.807458 + 0.589926i \(0.200843\pi\)
\(242\) 0 0
\(243\) 210.444 + 121.500i 0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 3839.58 + 3072.23i 1.00123 + 0.801133i
\(246\) 0 0
\(247\) −1.91966 1.10831i −0.000494514 0.000285508i
\(248\) 0 0
\(249\) −85.7633 148.546i −0.0218274 0.0378062i
\(250\) 0 0
\(251\) 6545.00i 1.64588i −0.568126 0.822942i \(-0.692331\pi\)
0.568126 0.822942i \(-0.307669\pi\)
\(252\) 0 0
\(253\) 2193.65i 0.545112i
\(254\) 0 0
\(255\) 2429.73 + 4208.42i 0.596690 + 1.03350i
\(256\) 0 0
\(257\) 1072.74 + 619.345i 0.260372 + 0.150326i 0.624504 0.781022i \(-0.285301\pi\)
−0.364132 + 0.931347i \(0.618634\pi\)
\(258\) 0 0
\(259\) −138.052 732.897i −0.0331202 0.175830i
\(260\) 0 0
\(261\) −615.921 355.602i −0.146071 0.0843342i
\(262\) 0 0
\(263\) 809.679 467.468i 0.189836 0.109602i −0.402070 0.915609i \(-0.631709\pi\)
0.591906 + 0.806007i \(0.298376\pi\)
\(264\) 0 0
\(265\) 1591.01i 0.368812i
\(266\) 0 0
\(267\) 1587.59 0.363890
\(268\) 0 0
\(269\) −556.221 963.402i −0.126072 0.218363i 0.796079 0.605192i \(-0.206904\pi\)
−0.922151 + 0.386829i \(0.873570\pi\)
\(270\) 0 0
\(271\) −2696.04 + 4669.69i −0.604329 + 1.04673i 0.387829 + 0.921731i \(0.373225\pi\)
−0.992157 + 0.124996i \(0.960108\pi\)
\(272\) 0 0
\(273\) −0.712913 0.250112i −0.000158049 5.54486e-5i
\(274\) 0 0
\(275\) 702.793 1217.27i 0.154109 0.266925i
\(276\) 0 0
\(277\) 1478.86 853.823i 0.320781 0.185203i −0.330960 0.943645i \(-0.607372\pi\)
0.651741 + 0.758442i \(0.274039\pi\)
\(278\) 0 0
\(279\) −1035.62 −0.222225
\(280\) 0 0
\(281\) 214.055 0.0454429 0.0227214 0.999742i \(-0.492767\pi\)
0.0227214 + 0.999742i \(0.492767\pi\)
\(282\) 0 0
\(283\) 3145.91 1816.29i 0.660795 0.381510i −0.131785 0.991278i \(-0.542071\pi\)
0.792580 + 0.609768i \(0.208738\pi\)
\(284\) 0 0
\(285\) −3505.53 + 6071.75i −0.728595 + 1.26196i
\(286\) 0 0
\(287\) −5442.50 + 4675.92i −1.11937 + 0.961711i
\(288\) 0 0
\(289\) 3926.42 6800.76i 0.799189 1.38424i
\(290\) 0 0
\(291\) −160.218 277.505i −0.0322754 0.0559026i
\(292\) 0 0
\(293\) 620.515 0.123723 0.0618615 0.998085i \(-0.480296\pi\)
0.0618615 + 0.998085i \(0.480296\pi\)
\(294\) 0 0
\(295\) 3191.12i 0.629811i
\(296\) 0 0
\(297\) −408.100 + 235.617i −0.0797319 + 0.0460332i
\(298\) 0 0
\(299\) 1.48013 + 0.854552i 0.000286281 + 0.000165284i
\(300\) 0 0
\(301\) 717.459 + 835.080i 0.137388 + 0.159911i
\(302\) 0 0
\(303\) 752.985 + 434.736i 0.142765 + 0.0824255i
\(304\) 0 0
\(305\) −4509.16 7810.10i −0.846538 1.46625i
\(306\) 0 0
\(307\) 5779.18i 1.07438i 0.843461 + 0.537191i \(0.180514\pi\)
−0.843461 + 0.537191i \(0.819486\pi\)
\(308\) 0 0
\(309\) 419.122i 0.0771619i
\(310\) 0 0
\(311\) 1260.47 + 2183.20i 0.229823 + 0.398065i 0.957755 0.287584i \(-0.0928520\pi\)
−0.727933 + 0.685649i \(0.759519\pi\)
\(312\) 0 0
\(313\) −6168.58 3561.43i −1.11396 0.643144i −0.174106 0.984727i \(-0.555703\pi\)
−0.939851 + 0.341583i \(0.889037\pi\)
\(314\) 0 0
\(315\) −791.089 + 2254.90i −0.141501 + 0.403330i
\(316\) 0 0
\(317\) 1901.44 + 1097.79i 0.336894 + 0.194506i 0.658898 0.752233i \(-0.271023\pi\)
−0.322004 + 0.946738i \(0.604356\pi\)
\(318\) 0 0
\(319\) 1194.41 689.595i 0.209637 0.121034i
\(320\) 0 0
\(321\) 3084.94i 0.536401i
\(322\) 0 0
\(323\) 18418.1 3.17278
\(324\) 0 0
\(325\) 0.547557 + 0.948396i 9.34553e−5 + 0.000161869i
\(326\) 0 0
\(327\) 1968.29 3409.18i 0.332865 0.576539i
\(328\) 0 0
\(329\) 7376.39 1389.45i 1.23609 0.232836i
\(330\) 0 0
\(331\) −3370.28 + 5837.50i −0.559660 + 0.969360i 0.437864 + 0.899041i \(0.355735\pi\)
−0.997525 + 0.0703191i \(0.977598\pi\)
\(332\) 0 0
\(333\) 313.863 181.209i 0.0516504 0.0298204i
\(334\) 0 0
\(335\) −3799.89 −0.619732
\(336\) 0 0
\(337\) −3202.38 −0.517641 −0.258820 0.965925i \(-0.583334\pi\)
−0.258820 + 0.965925i \(0.583334\pi\)
\(338\) 0 0
\(339\) −1984.63 + 1145.82i −0.317965 + 0.183577i
\(340\) 0 0
\(341\) 1004.15 1739.24i 0.159466 0.276203i
\(342\) 0 0
\(343\) 5387.03 3366.53i 0.848024 0.529958i
\(344\) 0 0
\(345\) 2702.89 4681.55i 0.421794 0.730568i
\(346\) 0 0
\(347\) 2395.49 + 4149.10i 0.370595 + 0.641889i 0.989657 0.143453i \(-0.0458205\pi\)
−0.619062 + 0.785342i \(0.712487\pi\)
\(348\) 0 0
\(349\) 2226.98 0.341568 0.170784 0.985308i \(-0.445370\pi\)
0.170784 + 0.985308i \(0.445370\pi\)
\(350\) 0 0
\(351\) 0.367145i 5.58312e-5i
\(352\) 0 0
\(353\) −2615.57 + 1510.10i −0.394371 + 0.227690i −0.684052 0.729433i \(-0.739784\pi\)
0.289682 + 0.957123i \(0.406451\pi\)
\(354\) 0 0
\(355\) −12703.3 7334.23i −1.89921 1.09651i
\(356\) 0 0
\(357\) 6169.10 1162.04i 0.914575 0.172274i
\(358\) 0 0
\(359\) 3403.84 + 1965.21i 0.500411 + 0.288913i 0.728883 0.684638i \(-0.240040\pi\)
−0.228472 + 0.973550i \(0.573373\pi\)
\(360\) 0 0
\(361\) 9856.93 + 17072.7i 1.43708 + 2.48910i
\(362\) 0 0
\(363\) 3079.17i 0.445219i
\(364\) 0 0
\(365\) 15775.9i 2.26232i
\(366\) 0 0
\(367\) 695.065 + 1203.89i 0.0988613 + 0.171233i 0.911214 0.411934i \(-0.135147\pi\)
−0.812352 + 0.583167i \(0.801813\pi\)
\(368\) 0 0
\(369\) −3019.72 1743.44i −0.426017 0.245961i
\(370\) 0 0
\(371\) 1939.42 + 680.409i 0.271401 + 0.0952158i
\(372\) 0 0
\(373\) −10511.1 6068.57i −1.45910 0.842409i −0.460128 0.887852i \(-0.652197\pi\)
−0.998967 + 0.0454434i \(0.985530\pi\)
\(374\) 0 0
\(375\) −1656.20 + 956.206i −0.228069 + 0.131675i
\(376\) 0 0
\(377\) 1.07455i 0.000146796i
\(378\) 0 0
\(379\) −321.051 −0.0435127 −0.0217563 0.999763i \(-0.506926\pi\)
−0.0217563 + 0.999763i \(0.506926\pi\)
\(380\) 0 0
\(381\) 3446.85 + 5970.11i 0.463484 + 0.802777i
\(382\) 0 0
\(383\) −5584.09 + 9671.92i −0.744996 + 1.29037i 0.205200 + 0.978720i \(0.434215\pi\)
−0.950197 + 0.311651i \(0.899118\pi\)
\(384\) 0 0
\(385\) −3019.88 3514.96i −0.399759 0.465296i
\(386\) 0 0
\(387\) −267.507 + 463.336i −0.0351374 + 0.0608597i
\(388\) 0 0
\(389\) 5487.56 3168.25i 0.715246 0.412947i −0.0977547 0.995211i \(-0.531166\pi\)
0.813000 + 0.582263i \(0.197833\pi\)
\(390\) 0 0
\(391\) −14201.0 −1.83677
\(392\) 0 0
\(393\) 7642.89 0.980999
\(394\) 0 0
\(395\) −7698.31 + 4444.62i −0.980618 + 0.566160i
\(396\) 0 0
\(397\) 2394.19 4146.85i 0.302672 0.524243i −0.674068 0.738669i \(-0.735455\pi\)
0.976740 + 0.214426i \(0.0687880\pi\)
\(398\) 0 0
\(399\) 5902.21 + 6869.82i 0.740551 + 0.861958i
\(400\) 0 0
\(401\) 4608.04 7981.36i 0.573852 0.993940i −0.422314 0.906450i \(-0.638782\pi\)
0.996165 0.0874903i \(-0.0278847\pi\)
\(402\) 0 0
\(403\) 0.782349 + 1.35507i 9.67037e−5 + 0.000167496i
\(404\) 0 0
\(405\) −1161.26 −0.142477
\(406\) 0 0
\(407\) 702.812i 0.0855948i
\(408\) 0 0
\(409\) −10106.2 + 5834.81i −1.22181 + 0.705411i −0.965303 0.261132i \(-0.915904\pi\)
−0.256504 + 0.966543i \(0.582571\pi\)
\(410\) 0 0
\(411\) −5122.18 2957.29i −0.614741 0.354921i
\(412\) 0 0
\(413\) −3889.92 1364.71i −0.463464 0.162598i
\(414\) 0 0
\(415\) 709.878 + 409.848i 0.0839676 + 0.0484787i
\(416\) 0 0
\(417\) 3635.71 + 6297.24i 0.426958 + 0.739514i
\(418\) 0 0
\(419\) 1594.55i 0.185916i −0.995670 0.0929582i \(-0.970368\pi\)
0.995670 0.0929582i \(-0.0296323\pi\)
\(420\) 0 0
\(421\) 14519.0i 1.68079i 0.541975 + 0.840394i \(0.317677\pi\)
−0.541975 + 0.840394i \(0.682323\pi\)
\(422\) 0 0
\(423\) 1823.81 + 3158.94i 0.209638 + 0.363104i
\(424\) 0 0
\(425\) −7880.26 4549.67i −0.899409 0.519274i
\(426\) 0 0
\(427\) −11448.8 + 2156.55i −1.29753 + 0.244409i
\(428\) 0 0
\(429\) 0.616593 + 0.355990i 6.93925e−5 + 4.00638e-5i
\(430\) 0 0
\(431\) 8079.55 4664.73i 0.902966 0.521328i 0.0248046 0.999692i \(-0.492104\pi\)
0.878161 + 0.478365i \(0.158770\pi\)
\(432\) 0 0
\(433\) 7452.02i 0.827069i 0.910488 + 0.413535i \(0.135706\pi\)
−0.910488 + 0.413535i \(0.864294\pi\)
\(434\) 0 0
\(435\) 3398.72 0.374612
\(436\) 0 0
\(437\) −10244.3 17743.7i −1.12140 1.94233i
\(438\) 0 0
\(439\) 4973.45 8614.28i 0.540706 0.936531i −0.458157 0.888871i \(-0.651490\pi\)
0.998864 0.0476596i \(-0.0151763\pi\)
\(440\) 0 0
\(441\) 2410.37 + 1928.65i 0.260271 + 0.208255i
\(442\) 0 0
\(443\) 3025.34 5240.04i 0.324466 0.561991i −0.656939 0.753944i \(-0.728149\pi\)
0.981404 + 0.191953i \(0.0614822\pi\)
\(444\) 0 0
\(445\) −6570.37 + 3793.40i −0.699922 + 0.404100i
\(446\) 0 0
\(447\) 1793.43 0.189768
\(448\) 0 0
\(449\) 4126.16 0.433687 0.216844 0.976206i \(-0.430424\pi\)
0.216844 + 0.976206i \(0.430424\pi\)
\(450\) 0 0
\(451\) 5855.94 3380.93i 0.611409 0.352997i
\(452\) 0 0
\(453\) −1190.92 + 2062.74i −0.123520 + 0.213943i
\(454\) 0 0
\(455\) 3.54808 0.668334i 0.000365574 6.88615e-5i
\(456\) 0 0
\(457\) −55.1701 + 95.5574i −0.00564715 + 0.00978116i −0.868835 0.495101i \(-0.835131\pi\)
0.863188 + 0.504883i \(0.168464\pi\)
\(458\) 0 0
\(459\) 1525.31 + 2641.92i 0.155110 + 0.268658i
\(460\) 0 0
\(461\) 9429.10 0.952618 0.476309 0.879278i \(-0.341974\pi\)
0.476309 + 0.879278i \(0.341974\pi\)
\(462\) 0 0
\(463\) 9382.12i 0.941737i −0.882203 0.470868i \(-0.843941\pi\)
0.882203 0.470868i \(-0.156059\pi\)
\(464\) 0 0
\(465\) 4285.99 2474.52i 0.427437 0.246781i
\(466\) 0 0
\(467\) 6270.05 + 3620.01i 0.621292 + 0.358703i 0.777372 0.629042i \(-0.216552\pi\)
−0.156080 + 0.987744i \(0.549886\pi\)
\(468\) 0 0
\(469\) −1625.05 + 4632.01i −0.159996 + 0.456047i
\(470\) 0 0
\(471\) −5658.27 3266.80i −0.553544 0.319589i
\(472\) 0 0
\(473\) −518.759 898.517i −0.0504283 0.0873443i
\(474\) 0 0
\(475\) 13128.2i 1.26813i
\(476\) 0 0
\(477\) 998.787i 0.0958728i
\(478\) 0 0
\(479\) 4352.19 + 7538.22i 0.415150 + 0.719060i 0.995444 0.0953464i \(-0.0303959\pi\)
−0.580294 + 0.814407i \(0.697063\pi\)
\(480\) 0 0
\(481\) −0.474211 0.273786i −4.49525e−5 2.59533e-5i
\(482\) 0 0
\(483\) −4550.82 5296.89i −0.428715 0.498999i
\(484\) 0 0
\(485\) 1326.15 + 765.654i 0.124160 + 0.0716836i
\(486\) 0 0
\(487\) 5116.57 2954.05i 0.476086 0.274868i −0.242698 0.970102i \(-0.578032\pi\)
0.718784 + 0.695234i \(0.244699\pi\)
\(488\) 0 0
\(489\) 4189.21i 0.387408i
\(490\) 0 0
\(491\) −2879.70 −0.264682 −0.132341 0.991204i \(-0.542249\pi\)
−0.132341 + 0.991204i \(0.542249\pi\)
\(492\) 0 0
\(493\) −4464.23 7732.27i −0.407827 0.706377i
\(494\) 0 0
\(495\) 1125.97 1950.24i 0.102240 0.177085i
\(496\) 0 0
\(497\) −14373.0 + 12348.5i −1.29721 + 1.11450i
\(498\) 0 0
\(499\) 10301.7 17843.1i 0.924186 1.60074i 0.131320 0.991340i \(-0.458078\pi\)
0.792865 0.609397i \(-0.208588\pi\)
\(500\) 0 0
\(501\) −7038.49 + 4063.67i −0.627658 + 0.362378i
\(502\) 0 0
\(503\) −10122.2 −0.897274 −0.448637 0.893714i \(-0.648090\pi\)
−0.448637 + 0.893714i \(0.648090\pi\)
\(504\) 0 0
\(505\) −4155.06 −0.366134
\(506\) 0 0
\(507\) 5707.97 3295.50i 0.500000 0.288675i
\(508\) 0 0
\(509\) −452.319 + 783.440i −0.0393884 + 0.0682227i −0.885048 0.465501i \(-0.845874\pi\)
0.845659 + 0.533723i \(0.179208\pi\)
\(510\) 0 0
\(511\) 19230.6 + 6746.69i 1.66479 + 0.584062i
\(512\) 0 0
\(513\) −2200.66 + 3811.65i −0.189399 + 0.328048i
\(514\) 0 0
\(515\) −1001.46 1734.57i −0.0856883 0.148416i
\(516\) 0 0
\(517\) −7073.60 −0.601734
\(518\) 0 0
\(519\) 12807.4i 1.08320i
\(520\) 0 0
\(521\) 10554.3 6093.53i 0.887510 0.512404i 0.0143826 0.999897i \(-0.495422\pi\)
0.873127 + 0.487493i \(0.162088\pi\)
\(522\) 0 0
\(523\) −4054.18 2340.68i −0.338962 0.195700i 0.320851 0.947130i \(-0.396031\pi\)
−0.659813 + 0.751430i \(0.729364\pi\)
\(524\) 0 0
\(525\) −828.290 4397.26i −0.0688563 0.365547i
\(526\) 0 0
\(527\) −11259.3 6500.57i −0.930671 0.537323i
\(528\) 0 0
\(529\) 1815.26 + 3144.13i 0.149196 + 0.258414i
\(530\) 0 0
\(531\) 2003.28i 0.163720i
\(532\) 0 0
\(533\) 5.26826i 0.000428131i
\(534\) 0 0
\(535\) −7371.21 12767.3i −0.595673 1.03174i
\(536\) 0 0
\(537\) −6422.42 3707.99i −0.516104 0.297973i
\(538\) 0 0
\(539\) −5576.15 + 2177.98i −0.445607 + 0.174049i
\(540\) 0 0
\(541\) −11836.3 6833.70i −0.940634 0.543075i −0.0504750 0.998725i \(-0.516074\pi\)
−0.890159 + 0.455650i \(0.849407\pi\)
\(542\) 0 0
\(543\) −2819.14 + 1627.63i −0.222801 + 0.128634i
\(544\) 0 0
\(545\) 18812.3i 1.47859i
\(546\) 0 0
\(547\) 14251.9 1.11402 0.557009 0.830506i \(-0.311949\pi\)
0.557009 + 0.830506i \(0.311949\pi\)
\(548\) 0 0
\(549\) −2830.71 4902.94i −0.220058 0.381151i
\(550\) 0 0
\(551\) 6440.82 11155.8i 0.497982 0.862530i
\(552\) 0 0
\(553\) 2125.68 + 11284.9i 0.163460 + 0.867781i
\(554\) 0 0
\(555\) −865.967 + 1499.90i −0.0662310 + 0.114716i
\(556\) 0 0
\(557\) 9512.61 5492.11i 0.723631 0.417788i −0.0924567 0.995717i \(-0.529472\pi\)
0.816088 + 0.577928i \(0.196139\pi\)
\(558\) 0 0
\(559\) 0.808346 6.11617e−5
\(560\) 0 0
\(561\) −5915.86 −0.445219
\(562\) 0 0
\(563\) −1766.78 + 1020.05i −0.132257 + 0.0763588i −0.564669 0.825318i \(-0.690996\pi\)
0.432412 + 0.901676i \(0.357663\pi\)
\(564\) 0 0
\(565\) 5475.70 9484.19i 0.407725 0.706200i
\(566\) 0 0
\(567\) −496.621 + 1415.55i −0.0367832 + 0.104846i
\(568\) 0 0
\(569\) 910.229 1576.56i 0.0670629 0.116156i −0.830544 0.556953i \(-0.811971\pi\)
0.897607 + 0.440796i \(0.145304\pi\)
\(570\) 0 0
\(571\) −632.042 1094.73i −0.0463225 0.0802329i 0.841935 0.539580i \(-0.181417\pi\)
−0.888257 + 0.459347i \(0.848084\pi\)
\(572\) 0 0
\(573\) −11263.5 −0.821184
\(574\) 0 0
\(575\) 10122.3i 0.734138i
\(576\) 0 0
\(577\) 19613.3 11323.7i 1.41510 0.817008i 0.419236 0.907877i \(-0.362298\pi\)
0.995863 + 0.0908695i \(0.0289646\pi\)
\(578\) 0 0
\(579\) 1341.61 + 774.581i 0.0962963 + 0.0555967i
\(580\) 0 0
\(581\) 803.184 690.056i 0.0573523 0.0492742i
\(582\) 0 0
\(583\) −1677.39 968.440i −0.119160 0.0687971i
\(584\) 0 0
\(585\) 0.877262 + 1.51946i 6.20006e−5 + 0.000107388i
\(586\) 0 0
\(587\) 22223.9i 1.56265i 0.624122 + 0.781327i \(0.285457\pi\)
−0.624122 + 0.781327i \(0.714543\pi\)
\(588\) 0 0
\(589\) 18757.5i 1.31221i
\(590\) 0 0
\(591\) −4085.31 7075.96i −0.284344 0.492497i
\(592\) 0 0
\(593\) −15704.3 9066.88i −1.08752 0.627879i −0.154603 0.987977i \(-0.549410\pi\)
−0.932915 + 0.360098i \(0.882743\pi\)
\(594\) 0 0
\(595\) −22754.8 + 19549.8i −1.56782 + 1.34700i
\(596\) 0 0
\(597\) 11738.5 + 6777.21i 0.804729 + 0.464611i
\(598\) 0 0
\(599\) 23274.1 13437.3i 1.58757 0.916584i 0.593864 0.804566i \(-0.297602\pi\)
0.993706 0.112018i \(-0.0357316\pi\)
\(600\) 0 0
\(601\) 2069.10i 0.140433i 0.997532 + 0.0702167i \(0.0223691\pi\)
−0.997532 + 0.0702167i \(0.977631\pi\)
\(602\) 0 0
\(603\) −2385.45 −0.161100
\(604\) 0 0
\(605\) −7357.41 12743.4i −0.494416 0.856353i
\(606\) 0 0
\(607\) −3262.04 + 5650.02i −0.218126 + 0.377804i −0.954235 0.299058i \(-0.903328\pi\)
0.736109 + 0.676863i \(0.236661\pi\)
\(608\) 0 0
\(609\) 1453.49 4142.99i 0.0967134 0.275669i
\(610\) 0 0
\(611\) 2.75557 4.77279i 0.000182453 0.000316017i
\(612\) 0 0
\(613\) 24391.0 14082.2i 1.60709 0.927852i 0.617069 0.786909i \(-0.288320\pi\)
0.990018 0.140943i \(-0.0450133\pi\)
\(614\) 0 0
\(615\) 16663.2 1.09256
\(616\) 0 0
\(617\) 2680.20 0.174880 0.0874398 0.996170i \(-0.472131\pi\)
0.0874398 + 0.996170i \(0.472131\pi\)
\(618\) 0 0
\(619\) −3985.34 + 2300.94i −0.258780 + 0.149406i −0.623778 0.781602i \(-0.714403\pi\)
0.364998 + 0.931008i \(0.381070\pi\)
\(620\) 0 0
\(621\) 1696.79 2938.93i 0.109646 0.189912i
\(622\) 0 0
\(623\) 1814.23 + 9631.45i 0.116670 + 0.619384i
\(624\) 0 0
\(625\) 9602.99 16632.9i 0.614592 1.06450i
\(626\) 0 0
\(627\) −4267.59 7391.68i −0.271820 0.470806i
\(628\) 0 0
\(629\) 4549.79 0.288413
\(630\) 0 0
\(631\) 28417.5i 1.79284i −0.443206 0.896420i \(-0.646159\pi\)
0.443206 0.896420i \(-0.353841\pi\)
\(632\) 0 0
\(633\) 1801.74 1040.23i 0.113132 0.0653169i
\(634\) 0 0
\(635\) −28530.2 16471.9i −1.78297 1.02940i
\(636\) 0 0
\(637\) 0.702675 4.61087i 4.37064e−5 0.000286796i
\(638\) 0 0
\(639\) −7974.71 4604.20i −0.493700 0.285038i
\(640\) 0 0
\(641\) 857.499 + 1485.23i 0.0528380 + 0.0915181i 0.891235 0.453543i \(-0.149840\pi\)
−0.838397 + 0.545061i \(0.816507\pi\)
\(642\) 0 0
\(643\) 5665.36i 0.347465i 0.984793 + 0.173733i \(0.0555828\pi\)
−0.984793 + 0.173733i \(0.944417\pi\)
\(644\) 0 0
\(645\) 2556.75i 0.156080i
\(646\) 0 0
\(647\) −5809.92 10063.1i −0.353032 0.611469i 0.633747 0.773540i \(-0.281516\pi\)
−0.986779 + 0.162071i \(0.948183\pi\)
\(648\) 0 0
\(649\) 3364.36 + 1942.42i 0.203487 + 0.117483i
\(650\) 0 0
\(651\) −1183.46 6282.81i −0.0712496 0.378253i
\(652\) 0 0
\(653\) 16057.9 + 9271.01i 0.962317 + 0.555594i 0.896885 0.442263i \(-0.145824\pi\)
0.0654313 + 0.997857i \(0.479158\pi\)
\(654\) 0 0
\(655\) −31630.8 + 18262.0i −1.88690 + 1.08940i
\(656\) 0 0
\(657\) 9903.61i 0.588092i
\(658\) 0 0
\(659\) −7570.77 −0.447519 −0.223760 0.974644i \(-0.571833\pi\)
−0.223760 + 0.974644i \(0.571833\pi\)
\(660\) 0 0
\(661\) 9925.25 + 17191.0i 0.584036 + 1.01158i 0.994995 + 0.0999258i \(0.0318605\pi\)
−0.410959 + 0.911654i \(0.634806\pi\)
\(662\) 0 0
\(663\) 2.30457 3.99163i 0.000134996 0.000233819i
\(664\) 0 0
\(665\) −40841.7 14328.5i −2.38161 0.835544i
\(666\) 0 0
\(667\) −4966.11 + 8601.55i −0.288289 + 0.499331i
\(668\) 0 0
\(669\) 10068.1 5812.80i 0.581844 0.335928i
\(670\) 0 0
\(671\) 10978.8 0.631643
\(672\) 0 0
\(673\) −6328.13 −0.362454 −0.181227 0.983441i \(-0.558007\pi\)
−0.181227 + 0.983441i \(0.558007\pi\)
\(674\) 0 0
\(675\) 1883.13 1087.22i 0.107380 0.0619959i
\(676\) 0 0
\(677\) −7175.39 + 12428.1i −0.407345 + 0.705542i −0.994591 0.103866i \(-0.966879\pi\)
0.587246 + 0.809408i \(0.300212\pi\)
\(678\) 0 0
\(679\) 1500.46 1289.12i 0.0848046 0.0728599i
\(680\) 0 0
\(681\) 2791.05 4834.25i 0.157053 0.272024i
\(682\) 0 0
\(683\) 14738.8 + 25528.3i 0.825716 + 1.43018i 0.901371 + 0.433048i \(0.142562\pi\)
−0.0756553 + 0.997134i \(0.524105\pi\)
\(684\) 0 0
\(685\) 28264.8 1.57656
\(686\) 0 0
\(687\) 3994.30i 0.221822i
\(688\) 0 0
\(689\) 1.30688 0.754527i 7.22614e−5 4.17201e-5i
\(690\) 0 0
\(691\) 1274.09 + 735.599i 0.0701430 + 0.0404971i 0.534661 0.845066i \(-0.320439\pi\)
−0.464518 + 0.885564i \(0.653773\pi\)
\(692\) 0 0
\(693\) −1895.78 2206.58i −0.103918 0.120954i
\(694\) 0 0
\(695\) −30093.5 17374.5i −1.64246 0.948275i
\(696\) 0 0
\(697\) −21887.1 37909.6i −1.18943 2.06015i
\(698\) 0 0
\(699\) 8727.95i 0.472277i
\(700\) 0 0
\(701\) 36181.3i 1.94943i −0.223460 0.974713i \(-0.571735\pi\)
0.223460 0.974713i \(-0.428265\pi\)
\(702\) 0 0
\(703\) 3282.13 + 5684.82i 0.176085 + 0.304989i
\(704\) 0 0
\(705\) −15096.0 8715.70i −0.806453 0.465606i
\(706\) 0 0
\(707\) −1776.95 + 5064.96i −0.0945246 + 0.269430i
\(708\) 0 0
\(709\) −13668.1 7891.26i −0.723998 0.418001i 0.0922242 0.995738i \(-0.470602\pi\)
−0.816223 + 0.577738i \(0.803936\pi\)
\(710\) 0 0
\(711\) −4832.76 + 2790.19i −0.254912 + 0.147174i
\(712\) 0 0
\(713\) 14462.8i 0.759656i
\(714\) 0 0
\(715\) −3.40243 −0.000177963
\(716\) 0 0
\(717\) −4317.27 7477.74i −0.224870 0.389486i
\(718\) 0 0
\(719\) −7498.23 + 12987.3i −0.388925 + 0.673638i −0.992305 0.123816i \(-0.960487\pi\)
0.603380 + 0.797454i \(0.293820\pi\)
\(720\) 0 0
\(721\) −2542.70 + 478.956i −0.131339 + 0.0247396i
\(722\) 0 0
\(723\) −4538.03 + 7860.10i −0.233432 + 0.404316i
\(724\) 0 0
\(725\) −5511.47 + 3182.05i −0.282332 + 0.163005i
\(726\) 0 0
\(727\) 23460.4 1.19684 0.598418 0.801184i \(-0.295796\pi\)
0.598418 + 0.801184i \(0.295796\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −5816.73 + 3358.29i −0.294308 + 0.169919i
\(732\) 0 0
\(733\) −15323.6 + 26541.3i −0.772157 + 1.33742i 0.164221 + 0.986424i \(0.447489\pi\)
−0.936378 + 0.350992i \(0.885844\pi\)
\(734\) 0 0
\(735\) −14583.9 2222.51i −0.731883 0.111536i
\(736\) 0 0
\(737\) 2312.97 4006.18i 0.115603 0.200230i
\(738\) 0 0
\(739\) 12993.6 + 22505.6i 0.646791 + 1.12028i 0.983885 + 0.178804i \(0.0572229\pi\)
−0.337093 + 0.941471i \(0.609444\pi\)
\(740\) 0 0
\(741\) 6.64989 0.000329676
\(742\) 0 0
\(743\) 31662.8i 1.56339i −0.623664 0.781693i \(-0.714357\pi\)
0.623664 0.781693i \(-0.285643\pi\)
\(744\) 0 0
\(745\) −7422.27 + 4285.25i −0.365008 + 0.210738i
\(746\) 0 0
\(747\) 445.639 + 257.290i 0.0218274 + 0.0126021i
\(748\) 0 0
\(749\) −18715.5 + 3525.35i −0.913017 + 0.171981i
\(750\) 0 0
\(751\) 20071.7 + 11588.4i 0.975267 + 0.563070i 0.900838 0.434156i \(-0.142953\pi\)
0.0744288 + 0.997226i \(0.476287\pi\)
\(752\) 0 0
\(753\) 9817.50 + 17004.4i 0.475125 + 0.822942i
\(754\) 0 0
\(755\) 11382.4i 0.548675i
\(756\) 0 0
\(757\) 21080.0i 1.01211i 0.862501 + 0.506055i \(0.168897\pi\)
−0.862501 + 0.506055i \(0.831103\pi\)
\(758\) 0 0
\(759\) 3290.47 + 5699.26i 0.157360 + 0.272556i
\(760\) 0 0
\(761\) −5731.49 3309.08i −0.273017 0.157627i 0.357241 0.934012i \(-0.383718\pi\)
−0.630258 + 0.776386i \(0.717051\pi\)
\(762\) 0 0
\(763\) 22931.9 + 8045.23i 1.08806 + 0.381726i
\(764\) 0 0
\(765\) −12625.3 7289.20i −0.596690 0.344499i
\(766\) 0 0
\(767\) −2.62123 + 1.51337i −0.000123399 + 7.12444e-5i
\(768\) 0 0
\(769\) 30464.7i 1.42859i −0.699844 0.714296i \(-0.746747\pi\)
0.699844 0.714296i \(-0.253253\pi\)
\(770\) 0 0
\(771\) −3716.07 −0.173581
\(772\) 0 0
\(773\) −13374.8 23165.8i −0.622325 1.07790i −0.989052 0.147570i \(-0.952855\pi\)
0.366727 0.930329i \(-0.380478\pi\)
\(774\) 0 0
\(775\) −4633.53 + 8025.51i −0.214763 + 0.371980i
\(776\) 0 0
\(777\) 1458.01 + 1697.04i 0.0673179 + 0.0783540i
\(778\) 0 0
\(779\) 31577.9 54694.5i 1.45237 2.51557i
\(780\) 0 0
\(781\) 15464.8 8928.61i 0.708546 0.409079i
\(782\) 0 0
\(783\) 2133.61 0.0973807
\(784\) 0 0
\(785\) 31223.0 1.41961
\(786\) 0 0
\(787\) 19932.1 11507.8i 0.902798 0.521231i 0.0246914 0.999695i \(-0.492140\pi\)
0.878107 + 0.478464i \(0.158806\pi\)
\(788\) 0 0
\(789\) −1402.40 + 2429.04i −0.0632787 + 0.109602i
\(790\) 0 0
\(791\) −9219.35 10730.8i −0.414415 0.482355i
\(792\) 0 0
\(793\) −4.27688 + 7.40777i −0.000191521 + 0.000331725i
\(794\) 0 0
\(795\) −2386.52 4133.57i −0.106467 0.184406i
\(796\) 0 0
\(797\) 36331.6 1.61472 0.807359 0.590060i \(-0.200896\pi\)
0.807359 + 0.590060i \(0.200896\pi\)
\(798\) 0 0
\(799\) 45792.3i 2.02755i
\(800\) 0 0
\(801\) −4124.67 + 2381.38i −0.181945 + 0.105046i
\(802\) 0 0
\(803\) −16632.4 9602.70i −0.730938 0.422007i
\(804\) 0 0
\(805\) 31490.4 + 11047.8i 1.37875 + 0.483708i
\(806\) 0 0
\(807\) 2890.21 + 1668.66i 0.126072 + 0.0727877i
\(808\) 0 0
\(809\) 16290.8 + 28216.4i 0.707976 + 1.22625i 0.965607 + 0.260007i \(0.0837250\pi\)
−0.257630 + 0.966244i \(0.582942\pi\)
\(810\) 0 0
\(811\) 13370.1i 0.578898i 0.957193 + 0.289449i \(0.0934720\pi\)
−0.957193 + 0.289449i \(0.906528\pi\)
\(812\) 0 0
\(813\) 16176.3i 0.697818i
\(814\) 0 0
\(815\) 10009.8 + 17337.4i 0.430216 + 0.745157i
\(816\) 0 0
\(817\) −8392.15 4845.21i −0.359369 0.207482i
\(818\) 0 0
\(819\) 2.22737 0.419559i 9.50313e−5 1.79006e-5i
\(820\) 0 0
\(821\) −22344.3 12900.5i −0.949845 0.548393i −0.0568122 0.998385i \(-0.518094\pi\)
−0.893033 + 0.449992i \(0.851427\pi\)
\(822\) 0 0
\(823\) −15322.0 + 8846.18i −0.648958 + 0.374676i −0.788057 0.615602i \(-0.788913\pi\)
0.139099 + 0.990279i \(0.455579\pi\)
\(824\) 0 0
\(825\) 4216.76i 0.177950i
\(826\) 0 0
\(827\) 32331.0 1.35944 0.679722 0.733470i \(-0.262100\pi\)
0.679722 + 0.733470i \(0.262100\pi\)
\(828\) 0 0
\(829\) 17484.5 + 30284.1i 0.732524 + 1.26877i 0.955801 + 0.294014i \(0.0949911\pi\)
−0.223277 + 0.974755i \(0.571676\pi\)
\(830\) 0 0
\(831\) −2561.47 + 4436.59i −0.106927 + 0.185203i
\(832\) 0 0
\(833\) 14099.6 + 36098.3i 0.586461 + 1.50148i
\(834\) 0 0
\(835\) 19419.6 33635.7i 0.804842 1.39403i
\(836\) 0 0
\(837\) 2690.61 1553.43i 0.111112 0.0641508i
\(838\) 0 0
\(839\) −620.863 −0.0255478 −0.0127739 0.999918i \(-0.504066\pi\)
−0.0127739 + 0.999918i \(0.504066\pi\)
\(840\) 0 0
\(841\) 18144.4 0.743959
\(842\) 0 0
\(843\) −556.131 + 321.082i −0.0227214 + 0.0131182i
\(844\) 0 0
\(845\) −15748.6 + 27277.4i −0.641147 + 1.11050i
\(846\) 0 0
\(847\) −18680.5 + 3518.75i −0.757815 + 0.142746i
\(848\) 0 0
\(849\) −5448.87 + 9437.73i −0.220265 + 0.381510i
\(850\) 0 0
\(851\) −2530.65 4383.21i −0.101938 0.176562i
\(852\) 0 0
\(853\) −48976.5 −1.96591 −0.982955 0.183844i \(-0.941146\pi\)
−0.982955 + 0.183844i \(0.941146\pi\)
\(854\) 0 0
\(855\) 21033.2i 0.841309i
\(856\) 0 0
\(857\) 41178.0 23774.1i 1.64132 0.947618i 0.660959 0.750422i \(-0.270150\pi\)
0.980364 0.197196i \(-0.0631836\pi\)
\(858\) 0 0
\(859\) 5907.86 + 3410.90i 0.234661 + 0.135481i 0.612720 0.790300i \(-0.290075\pi\)
−0.378060 + 0.925781i \(0.623409\pi\)
\(860\) 0 0
\(861\) 7126.14 20312.2i 0.282065 0.803991i
\(862\) 0 0
\(863\) 3901.64 + 2252.61i 0.153897 + 0.0888526i 0.574971 0.818174i \(-0.305013\pi\)
−0.421074 + 0.907026i \(0.638347\pi\)
\(864\) 0 0
\(865\) 30602.2 + 53004.6i 1.20290 + 2.08348i
\(866\) 0 0
\(867\) 23558.5i 0.922825i
\(868\) 0 0
\(869\) 10821.7i 0.422440i
\(870\) 0 0
\(871\) 1.80207 + 3.12128i 7.01043e−5 + 0.000121424i
\(872\) 0 0
\(873\) 832.516 + 480.653i 0.0322754 + 0.0186342i
\(874\) 0 0
\(875\) −7693.68 8954.99i −0.297250 0.345982i
\(876\) 0 0
\(877\) 19331.7 + 11161.2i 0.744339 + 0.429745i 0.823645 0.567106i \(-0.191937\pi\)
−0.0793055 + 0.996850i \(0.525270\pi\)
\(878\) 0 0
\(879\) −1612.14 + 930.772i −0.0618615 + 0.0357158i
\(880\) 0 0
\(881\) 10311.4i 0.394325i −0.980371 0.197162i \(-0.936827\pi\)
0.980371 0.197162i \(-0.0631726\pi\)
\(882\) 0 0
\(883\) −30437.2 −1.16002 −0.580008 0.814611i \(-0.696951\pi\)
−0.580008 + 0.814611i \(0.696951\pi\)
\(884\) 0 0
\(885\) 4786.68 + 8290.77i 0.181811 + 0.314905i
\(886\) 0 0
\(887\) 76.5737 132.629i 0.00289864 0.00502059i −0.864572 0.502508i \(-0.832411\pi\)
0.867471 + 0.497488i \(0.165744\pi\)
\(888\) 0 0
\(889\) −32280.1 + 27733.5i −1.21782 + 1.04629i
\(890\) 0 0
\(891\) 706.850 1224.30i 0.0265773 0.0460332i
\(892\) 0 0
\(893\) −57216.0 + 33033.7i −2.14408 + 1.23788i
\(894\) 0 0
\(895\) 35439.7 1.32360
\(896\) 0 0
\(897\) −5.12731 −0.000190854
\(898\) 0 0
\(899\) −7874.79 + 4546.51i −0.292146 + 0.168670i
\(900\) 0 0
\(901\) −6269.39 + 10858.9i −0.231813 + 0.401512i
\(902\) 0 0
\(903\) −3116.63 1093.41i −0.114856 0.0402951i
\(904\) 0 0
\(905\) 7778.17 13472.2i 0.285696 0.494840i
\(906\) 0 0
\(907\) −8377.82 14510.8i −0.306705 0.531228i 0.670935 0.741516i \(-0.265893\pi\)
−0.977639 + 0.210288i \(0.932560\pi\)
\(908\) 0 0
\(909\) −2608.42 −0.0951768
\(910\) 0 0
\(911\) 30395.6i 1.10543i 0.833369 + 0.552717i \(0.186409\pi\)
−0.833369 + 0.552717i \(0.813591\pi\)
\(912\) 0 0
\(913\) −864.198 + 498.945i −0.0313262 + 0.0180862i
\(914\) 0 0
\(915\) 23430.3 + 13527.5i 0.846538 + 0.488749i
\(916\) 0 0
\(917\) 8733.99 + 46367.3i 0.314527 + 1.66978i
\(918\) 0 0
\(919\) 22204.2 + 12819.6i 0.797005 + 0.460151i 0.842423 0.538817i \(-0.181129\pi\)
−0.0454180 + 0.998968i \(0.514462\pi\)
\(920\) 0 0
\(921\) −8668.77 15014.7i −0.310147 0.537191i
\(922\) 0 0
\(923\) 13.9128i 0.000496150i
\(924\) 0 0
\(925\) 3243.04i 0.115276i
\(926\) 0 0
\(927\) −628.683 1088.91i −0.0222747 0.0385809i
\(928\) 0 0
\(929\) 4081.79 + 2356.63i 0.144154 + 0.0832275i 0.570342 0.821407i \(-0.306811\pi\)
−0.426188 + 0.904635i \(0.640144\pi\)
\(930\) 0 0
\(931\) −34932.5 + 43657.6i −1.22972 + 1.53686i
\(932\) 0 0
\(933\) −6549.61 3781.42i −0.229823 0.132688i
\(934\) 0 0
\(935\) 24483.3 14135.5i 0.856354 0.494416i
\(936\) 0 0
\(937\) 36696.5i 1.27943i −0.768614 0.639713i \(-0.779053\pi\)
0.768614 0.639713i \(-0.220947\pi\)
\(938\) 0 0
\(939\) 21368.6 0.742638
\(940\) 0 0
\(941\) 22166.4 + 38393.3i 0.767910 + 1.33006i 0.938694 + 0.344751i \(0.112037\pi\)
−0.170784 + 0.985309i \(0.554630\pi\)
\(942\) 0 0
\(943\) −24347.7 + 42171.5i −0.840796 + 1.45630i
\(944\) 0 0
\(945\) −1327.04 7045.03i −0.0456810 0.242513i
\(946\) 0 0
\(947\) −4439.42 + 7689.30i −0.152335 + 0.263853i −0.932086 0.362238i \(-0.882013\pi\)
0.779750 + 0.626091i \(0.215346\pi\)
\(948\) 0 0
\(949\) 12.9585 7.48161i 0.000443258 0.000255915i
\(950\) 0 0
\(951\) −6586.77 −0.224596
\(952\) 0 0
\(953\) 9873.81 0.335618 0.167809 0.985820i \(-0.446331\pi\)
0.167809 + 0.985820i \(0.446331\pi\)
\(954\) 0 0
\(955\) 46614.9 26913.1i 1.57950 0.911925i
\(956\) 0 0
\(957\) −2068.79 + 3583.24i −0.0698791 + 0.121034i
\(958\) 0 0
\(959\) 12087.7 34454.3i 0.407019 1.16016i
\(960\) 0 0
\(961\) 8275.12 14332.9i 0.277772 0.481116i
\(962\) 0 0
\(963\) −4627.41 8014.92i −0.154846 0.268201i
\(964\) 0 0
\(965\) −7403.18 −0.246960
\(966\) 0 0
\(967\) 37987.8i 1.26329i 0.775256 + 0.631647i \(0.217621\pi\)
−0.775256 + 0.631647i \(0.782379\pi\)
\(968\) 0 0
\(969\) −47851.5 + 27627.1i −1.58639 + 0.915903i
\(970\) 0 0
\(971\) −15678.8 9052.15i −0.518184 0.299173i 0.218008 0.975947i \(-0.430044\pi\)
−0.736191 + 0.676774i \(0.763378\pi\)
\(972\) 0 0
\(973\) −34048.9 + 29253.1i −1.12185 + 0.963836i
\(974\) 0 0
\(975\) −2.84519 1.64267i −9.34553e−5 5.39565e-5i
\(976\) 0 0
\(977\) −17975.5 31134.4i −0.588624 1.01953i −0.994413 0.105560i \(-0.966336\pi\)
0.405789 0.913967i \(-0.366997\pi\)
\(978\) 0 0
\(979\) 9236.09i 0.301519i
\(980\) 0 0
\(981\) 11809.8i 0.384359i
\(982\) 0 0
\(983\) −8106.45 14040.8i −0.263027 0.455576i 0.704018 0.710182i \(-0.251387\pi\)
−0.967045 + 0.254606i \(0.918054\pi\)
\(984\) 0 0
\(985\) 33814.8 + 19523.0i 1.09384 + 0.631527i
\(986\) 0 0
\(987\) −17080.2 + 14674.5i −0.550831 + 0.473246i
\(988\) 0 0
\(989\) 6470.66 + 3735.84i 0.208043 + 0.120114i
\(990\) 0 0
\(991\) 15142.2 8742.34i 0.485375 0.280232i −0.237278 0.971442i \(-0.576255\pi\)
0.722654 + 0.691210i \(0.242922\pi\)
\(992\) 0 0
\(993\) 20221.7i 0.646240i
\(994\) 0 0
\(995\) −64774.3 −2.06380
\(996\) 0 0
\(997\) 12042.3 + 20857.9i 0.382531 + 0.662562i 0.991423 0.130690i \(-0.0417193\pi\)
−0.608893 + 0.793253i \(0.708386\pi\)
\(998\) 0 0
\(999\) −543.627 + 941.589i −0.0172168 + 0.0298204i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.4.bb.a.271.18 96
4.3 odd 2 168.4.t.a.19.10 96
7.3 odd 6 inner 672.4.bb.a.367.17 96
8.3 odd 2 inner 672.4.bb.a.271.17 96
8.5 even 2 168.4.t.a.19.22 yes 96
28.3 even 6 168.4.t.a.115.22 yes 96
56.3 even 6 inner 672.4.bb.a.367.18 96
56.45 odd 6 168.4.t.a.115.10 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.t.a.19.10 96 4.3 odd 2
168.4.t.a.19.22 yes 96 8.5 even 2
168.4.t.a.115.10 yes 96 56.45 odd 6
168.4.t.a.115.22 yes 96 28.3 even 6
672.4.bb.a.271.17 96 8.3 odd 2 inner
672.4.bb.a.271.18 96 1.1 even 1 trivial
672.4.bb.a.367.17 96 7.3 odd 6 inner
672.4.bb.a.367.18 96 56.3 even 6 inner