Properties

Label 675.2.u.e.49.18
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(49,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.18
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.e.124.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03778 + 1.23677i) q^{2} +(1.23848 + 1.21085i) q^{3} +(-0.105334 + 0.597379i) q^{4} +(-0.212279 + 2.78832i) q^{6} +(1.71440 - 0.302296i) q^{7} +(1.94825 - 1.12482i) q^{8} +(0.0676836 + 2.99924i) q^{9} +(2.93339 + 1.06767i) q^{11} +(-0.853791 + 0.612300i) q^{12} +(1.21663 - 1.44992i) q^{13} +(2.15304 + 1.80662i) q^{14} +(4.55303 + 1.65717i) q^{16} +(-5.56291 - 3.21175i) q^{17} +(-3.63914 + 3.19625i) q^{18} +(-2.43505 - 4.21762i) q^{19} +(2.48930 + 1.70150i) q^{21} +(1.72374 + 4.73595i) q^{22} +(-2.73355 - 0.481999i) q^{23} +(3.77487 + 0.965965i) q^{24} +3.05582 q^{26} +(-3.54780 + 3.79646i) q^{27} +1.05599i q^{28} +(-5.94510 + 4.98853i) q^{29} +(-0.687222 + 3.89743i) q^{31} +(1.13664 + 3.12289i) q^{32} +(2.34017 + 4.87419i) q^{33} +(-1.80085 - 10.2132i) q^{34} +(-1.79881 - 0.275489i) q^{36} +(-0.704120 - 0.406524i) q^{37} +(2.68922 - 7.38856i) q^{38} +(3.26242 - 0.322550i) q^{39} +(5.80103 + 4.86764i) q^{41} +(0.478965 + 4.84447i) q^{42} +(-0.901745 + 2.47752i) q^{43} +(-0.946788 + 1.63988i) q^{44} +(-2.24069 - 3.88100i) q^{46} +(-7.03326 + 1.24015i) q^{47} +(3.63227 + 7.56541i) q^{48} +(-3.73005 + 1.35763i) q^{49} +(-3.00063 - 10.7136i) q^{51} +(0.738001 + 0.879516i) q^{52} +1.86813i q^{53} +(-8.37719 - 0.447951i) q^{54} +(3.00006 - 2.51735i) q^{56} +(2.09115 - 8.17194i) q^{57} +(-12.3394 - 2.17576i) q^{58} +(-0.971077 + 0.353443i) q^{59} +(-1.78476 - 10.1219i) q^{61} +(-5.53342 + 3.19472i) q^{62} +(1.02269 + 5.12144i) q^{63} +(2.16250 - 3.74556i) q^{64} +(-3.59969 + 7.95259i) q^{66} +(8.76411 - 10.4447i) q^{67} +(2.50460 - 2.98486i) q^{68} +(-2.80183 - 3.90687i) q^{69} +(4.06389 - 7.03886i) q^{71} +(3.50548 + 5.76713i) q^{72} +(-8.53538 + 4.92790i) q^{73} +(-0.227941 - 1.29272i) q^{74} +(2.77601 - 1.01039i) q^{76} +(5.35177 + 0.943662i) q^{77} +(3.78459 + 3.70014i) q^{78} +(11.3969 - 9.56310i) q^{79} +(-8.99084 + 0.405998i) q^{81} +12.2261i q^{82} +(-5.92935 - 7.06632i) q^{83} +(-1.27865 + 1.30783i) q^{84} +(-3.99995 + 1.45586i) q^{86} +(-13.4033 - 1.02041i) q^{87} +(6.91592 - 1.21946i) q^{88} +(6.28136 + 10.8796i) q^{89} +(1.64749 - 2.85354i) q^{91} +(0.575872 - 1.58220i) q^{92} +(-5.57031 + 3.99478i) q^{93} +(-8.83274 - 7.41155i) q^{94} +(-2.37364 + 5.24395i) q^{96} +(5.39248 - 14.8157i) q^{97} +(-5.55004 - 3.20432i) q^{98} +(-3.00365 + 8.87020i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 12 q^{6} + 12 q^{9} + 30 q^{11} - 30 q^{14} + 36 q^{16} - 24 q^{19} + 24 q^{21} + 78 q^{24} + 12 q^{26} + 30 q^{29} + 6 q^{31} + 60 q^{36} + 30 q^{39} + 78 q^{41} - 102 q^{44} + 18 q^{46} + 12 q^{49}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.03778 + 1.23677i 0.733819 + 0.874532i 0.995895 0.0905154i \(-0.0288514\pi\)
−0.262076 + 0.965047i \(0.584407\pi\)
\(3\) 1.23848 + 1.21085i 0.715039 + 0.699085i
\(4\) −0.105334 + 0.597379i −0.0526670 + 0.298689i
\(5\) 0 0
\(6\) −0.212279 + 2.78832i −0.0866625 + 1.13833i
\(7\) 1.71440 0.302296i 0.647984 0.114257i 0.160010 0.987115i \(-0.448847\pi\)
0.487974 + 0.872858i \(0.337736\pi\)
\(8\) 1.94825 1.12482i 0.688811 0.397685i
\(9\) 0.0676836 + 2.99924i 0.0225612 + 0.999745i
\(10\) 0 0
\(11\) 2.93339 + 1.06767i 0.884451 + 0.321914i 0.744005 0.668174i \(-0.232924\pi\)
0.140447 + 0.990088i \(0.455146\pi\)
\(12\) −0.853791 + 0.612300i −0.246468 + 0.176756i
\(13\) 1.21663 1.44992i 0.337433 0.402137i −0.570469 0.821319i \(-0.693239\pi\)
0.907902 + 0.419182i \(0.137683\pi\)
\(14\) 2.15304 + 1.80662i 0.575424 + 0.482838i
\(15\) 0 0
\(16\) 4.55303 + 1.65717i 1.13826 + 0.414292i
\(17\) −5.56291 3.21175i −1.34921 0.778964i −0.361068 0.932539i \(-0.617588\pi\)
−0.988137 + 0.153576i \(0.950921\pi\)
\(18\) −3.63914 + 3.19625i −0.857754 + 0.753363i
\(19\) −2.43505 4.21762i −0.558638 0.967590i −0.997611 0.0690890i \(-0.977991\pi\)
0.438972 0.898501i \(-0.355343\pi\)
\(20\) 0 0
\(21\) 2.48930 + 1.70150i 0.543209 + 0.371297i
\(22\) 1.72374 + 4.73595i 0.367504 + 1.00971i
\(23\) −2.73355 0.481999i −0.569985 0.100504i −0.118774 0.992921i \(-0.537897\pi\)
−0.451211 + 0.892418i \(0.649008\pi\)
\(24\) 3.77487 + 0.965965i 0.770542 + 0.197177i
\(25\) 0 0
\(26\) 3.05582 0.599296
\(27\) −3.54780 + 3.79646i −0.682775 + 0.730629i
\(28\) 1.05599i 0.199563i
\(29\) −5.94510 + 4.98853i −1.10398 + 0.926346i −0.997686 0.0679886i \(-0.978342\pi\)
−0.106291 + 0.994335i \(0.533897\pi\)
\(30\) 0 0
\(31\) −0.687222 + 3.89743i −0.123429 + 0.699999i 0.858800 + 0.512311i \(0.171210\pi\)
−0.982229 + 0.187688i \(0.939901\pi\)
\(32\) 1.13664 + 3.12289i 0.200931 + 0.552054i
\(33\) 2.34017 + 4.87419i 0.407372 + 0.848487i
\(34\) −1.80085 10.2132i −0.308844 1.75154i
\(35\) 0 0
\(36\) −1.79881 0.275489i −0.299802 0.0459148i
\(37\) −0.704120 0.406524i −0.115757 0.0668321i 0.441004 0.897505i \(-0.354623\pi\)
−0.556760 + 0.830673i \(0.687956\pi\)
\(38\) 2.68922 7.38856i 0.436248 1.19858i
\(39\) 3.26242 0.322550i 0.522405 0.0516493i
\(40\) 0 0
\(41\) 5.80103 + 4.86764i 0.905969 + 0.760198i 0.971348 0.237662i \(-0.0763811\pi\)
−0.0653788 + 0.997861i \(0.520826\pi\)
\(42\) 0.478965 + 4.84447i 0.0739059 + 0.747519i
\(43\) −0.901745 + 2.47752i −0.137515 + 0.377819i −0.989266 0.146128i \(-0.953319\pi\)
0.851751 + 0.523947i \(0.175541\pi\)
\(44\) −0.946788 + 1.63988i −0.142734 + 0.247222i
\(45\) 0 0
\(46\) −2.24069 3.88100i −0.330372 0.572222i
\(47\) −7.03326 + 1.24015i −1.02591 + 0.180895i −0.661186 0.750222i \(-0.729946\pi\)
−0.364720 + 0.931117i \(0.618835\pi\)
\(48\) 3.63227 + 7.56541i 0.524273 + 1.09197i
\(49\) −3.73005 + 1.35763i −0.532864 + 0.193947i
\(50\) 0 0
\(51\) −3.00063 10.7136i −0.420172 1.50020i
\(52\) 0.738001 + 0.879516i 0.102342 + 0.121967i
\(53\) 1.86813i 0.256608i 0.991735 + 0.128304i \(0.0409533\pi\)
−0.991735 + 0.128304i \(0.959047\pi\)
\(54\) −8.37719 0.447951i −1.13999 0.0609584i
\(55\) 0 0
\(56\) 3.00006 2.51735i 0.400900 0.336395i
\(57\) 2.09115 8.17194i 0.276979 1.08240i
\(58\) −12.3394 2.17576i −1.62024 0.285692i
\(59\) −0.971077 + 0.353443i −0.126423 + 0.0460144i −0.404457 0.914557i \(-0.632540\pi\)
0.278034 + 0.960571i \(0.410317\pi\)
\(60\) 0 0
\(61\) −1.78476 10.1219i −0.228515 1.29597i −0.855850 0.517224i \(-0.826966\pi\)
0.627335 0.778749i \(-0.284146\pi\)
\(62\) −5.53342 + 3.19472i −0.702746 + 0.405730i
\(63\) 1.02269 + 5.12144i 0.128847 + 0.645241i
\(64\) 2.16250 3.74556i 0.270312 0.468195i
\(65\) 0 0
\(66\) −3.59969 + 7.95259i −0.443092 + 0.978896i
\(67\) 8.76411 10.4447i 1.07071 1.27602i 0.111363 0.993780i \(-0.464479\pi\)
0.959344 0.282239i \(-0.0910770\pi\)
\(68\) 2.50460 2.98486i 0.303727 0.361967i
\(69\) −2.80183 3.90687i −0.337301 0.470332i
\(70\) 0 0
\(71\) 4.06389 7.03886i 0.482294 0.835359i −0.517499 0.855684i \(-0.673137\pi\)
0.999793 + 0.0203253i \(0.00647020\pi\)
\(72\) 3.50548 + 5.76713i 0.413124 + 0.679663i
\(73\) −8.53538 + 4.92790i −0.998991 + 0.576768i −0.907950 0.419080i \(-0.862353\pi\)
−0.0910412 + 0.995847i \(0.529020\pi\)
\(74\) −0.227941 1.29272i −0.0264976 0.150276i
\(75\) 0 0
\(76\) 2.77601 1.01039i 0.318430 0.115899i
\(77\) 5.35177 + 0.943662i 0.609891 + 0.107540i
\(78\) 3.78459 + 3.70014i 0.428520 + 0.418959i
\(79\) 11.3969 9.56310i 1.28225 1.07593i 0.289317 0.957233i \(-0.406572\pi\)
0.992930 0.118700i \(-0.0378726\pi\)
\(80\) 0 0
\(81\) −8.99084 + 0.405998i −0.998982 + 0.0451109i
\(82\) 12.2261i 1.35015i
\(83\) −5.92935 7.06632i −0.650830 0.775630i 0.335209 0.942144i \(-0.391193\pi\)
−0.986039 + 0.166514i \(0.946749\pi\)
\(84\) −1.27865 + 1.30783i −0.139512 + 0.142696i
\(85\) 0 0
\(86\) −3.99995 + 1.45586i −0.431326 + 0.156990i
\(87\) −13.4033 1.02041i −1.43698 0.109399i
\(88\) 6.91592 1.21946i 0.737240 0.129995i
\(89\) 6.28136 + 10.8796i 0.665823 + 1.15324i 0.979061 + 0.203565i \(0.0652529\pi\)
−0.313238 + 0.949675i \(0.601414\pi\)
\(90\) 0 0
\(91\) 1.64749 2.85354i 0.172704 0.299132i
\(92\) 0.575872 1.58220i 0.0600388 0.164955i
\(93\) −5.57031 + 3.99478i −0.577615 + 0.414239i
\(94\) −8.83274 7.41155i −0.911028 0.764443i
\(95\) 0 0
\(96\) −2.37364 + 5.24395i −0.242259 + 0.535208i
\(97\) 5.39248 14.8157i 0.547523 1.50431i −0.289521 0.957172i \(-0.593496\pi\)
0.837044 0.547136i \(-0.184282\pi\)
\(98\) −5.55004 3.20432i −0.560639 0.323685i
\(99\) −3.00365 + 8.87020i −0.301878 + 0.891489i
\(100\) 0 0
\(101\) 1.11330 + 6.31385i 0.110778 + 0.628251i 0.988754 + 0.149548i \(0.0477818\pi\)
−0.877977 + 0.478703i \(0.841107\pi\)
\(102\) 10.1363 14.8294i 1.00364 1.46833i
\(103\) −2.47454 6.79875i −0.243824 0.669901i −0.999881 0.0153956i \(-0.995099\pi\)
0.756058 0.654505i \(-0.227123\pi\)
\(104\) 0.739394 4.19331i 0.0725035 0.411188i
\(105\) 0 0
\(106\) −2.31046 + 1.93871i −0.224412 + 0.188304i
\(107\) 4.53705i 0.438613i −0.975656 0.219307i \(-0.929620\pi\)
0.975656 0.219307i \(-0.0703795\pi\)
\(108\) −1.89422 2.51928i −0.182271 0.242418i
\(109\) 7.64924 0.732665 0.366332 0.930484i \(-0.380613\pi\)
0.366332 + 0.930484i \(0.380613\pi\)
\(110\) 0 0
\(111\) −0.379802 1.35606i −0.0360492 0.128711i
\(112\) 8.30668 + 1.46469i 0.784908 + 0.138400i
\(113\) −1.15121 3.16293i −0.108297 0.297544i 0.873693 0.486478i \(-0.161719\pi\)
−0.981990 + 0.188935i \(0.939497\pi\)
\(114\) 12.2770 5.89437i 1.14985 0.552059i
\(115\) 0 0
\(116\) −2.35382 4.07694i −0.218547 0.378534i
\(117\) 4.43101 + 3.55083i 0.409647 + 0.328274i
\(118\) −1.44489 0.834208i −0.133013 0.0767951i
\(119\) −10.5080 3.82459i −0.963265 0.350600i
\(120\) 0 0
\(121\) −0.961609 0.806886i −0.0874190 0.0733532i
\(122\) 10.6663 12.7116i 0.965681 1.15085i
\(123\) 1.29050 + 13.0527i 0.116360 + 1.17692i
\(124\) −2.25585 0.821063i −0.202582 0.0737336i
\(125\) 0 0
\(126\) −5.27274 + 6.57976i −0.469733 + 0.586171i
\(127\) −15.4617 + 8.92679i −1.37200 + 0.792125i −0.991180 0.132524i \(-0.957692\pi\)
−0.380820 + 0.924649i \(0.624358\pi\)
\(128\) 13.4222 2.36670i 1.18637 0.209189i
\(129\) −4.11671 + 1.97649i −0.362456 + 0.174021i
\(130\) 0 0
\(131\) −2.37367 + 13.4617i −0.207388 + 1.17616i 0.686249 + 0.727367i \(0.259256\pi\)
−0.893637 + 0.448790i \(0.851855\pi\)
\(132\) −3.15824 + 0.884552i −0.274889 + 0.0769904i
\(133\) −5.44962 6.49461i −0.472542 0.563154i
\(134\) 22.0129 1.90162
\(135\) 0 0
\(136\) −14.4506 −1.23913
\(137\) 8.95490 + 10.6720i 0.765069 + 0.911773i 0.998157 0.0606822i \(-0.0193276\pi\)
−0.233089 + 0.972456i \(0.574883\pi\)
\(138\) 1.92424 7.51970i 0.163802 0.640119i
\(139\) −3.10046 + 17.5836i −0.262977 + 1.49142i 0.511756 + 0.859131i \(0.328995\pi\)
−0.774734 + 0.632288i \(0.782116\pi\)
\(140\) 0 0
\(141\) −10.2122 6.98031i −0.860023 0.587848i
\(142\) 12.9229 2.27865i 1.08446 0.191220i
\(143\) 5.11689 2.95424i 0.427896 0.247046i
\(144\) −4.66207 + 13.7678i −0.388506 + 1.14731i
\(145\) 0 0
\(146\) −14.9525 5.44228i −1.23748 0.450406i
\(147\) −6.26349 2.83513i −0.516604 0.233838i
\(148\) 0.317017 0.377806i 0.0260586 0.0310554i
\(149\) 13.7598 + 11.5458i 1.12725 + 0.945872i 0.998948 0.0458641i \(-0.0146041\pi\)
0.128298 + 0.991736i \(0.459049\pi\)
\(150\) 0 0
\(151\) 18.3678 + 6.68534i 1.49475 + 0.544045i 0.954696 0.297583i \(-0.0961806\pi\)
0.540057 + 0.841629i \(0.318403\pi\)
\(152\) −9.48817 5.47800i −0.769592 0.444324i
\(153\) 9.25628 16.9019i 0.748326 1.36644i
\(154\) 4.38685 + 7.59825i 0.353502 + 0.612284i
\(155\) 0 0
\(156\) −0.150959 + 1.98287i −0.0120864 + 0.158757i
\(157\) −2.75155 7.55982i −0.219598 0.603339i 0.780155 0.625586i \(-0.215140\pi\)
−0.999753 + 0.0222470i \(0.992918\pi\)
\(158\) 23.6548 + 4.17098i 1.88188 + 0.331825i
\(159\) −2.26203 + 2.31365i −0.179391 + 0.183485i
\(160\) 0 0
\(161\) −4.83212 −0.380824
\(162\) −9.83262 10.6983i −0.772523 0.840538i
\(163\) 5.27505i 0.413174i −0.978428 0.206587i \(-0.933764\pi\)
0.978428 0.206587i \(-0.0662356\pi\)
\(164\) −3.51887 + 2.95269i −0.274778 + 0.230566i
\(165\) 0 0
\(166\) 2.58611 14.6665i 0.200721 1.13834i
\(167\) 5.65972 + 15.5499i 0.437962 + 1.20329i 0.940816 + 0.338919i \(0.110061\pi\)
−0.502854 + 0.864372i \(0.667716\pi\)
\(168\) 6.76366 + 0.514927i 0.521828 + 0.0397275i
\(169\) 1.63534 + 9.27446i 0.125795 + 0.713420i
\(170\) 0 0
\(171\) 12.4848 7.58875i 0.954740 0.580326i
\(172\) −1.38504 0.799651i −0.105608 0.0609728i
\(173\) 6.69046 18.3819i 0.508666 1.39755i −0.373948 0.927450i \(-0.621996\pi\)
0.882614 0.470099i \(-0.155782\pi\)
\(174\) −12.6476 17.6358i −0.958811 1.33697i
\(175\) 0 0
\(176\) 11.5865 + 9.72224i 0.873367 + 0.732842i
\(177\) −1.63063 0.738095i −0.122566 0.0554786i
\(178\) −6.93701 + 19.0593i −0.519951 + 1.42855i
\(179\) 0.604142 1.04640i 0.0451557 0.0782119i −0.842564 0.538596i \(-0.818955\pi\)
0.887720 + 0.460384i \(0.152288\pi\)
\(180\) 0 0
\(181\) −10.2446 17.7442i −0.761474 1.31891i −0.942090 0.335359i \(-0.891142\pi\)
0.180616 0.983554i \(-0.442191\pi\)
\(182\) 5.23891 0.923761i 0.388334 0.0684738i
\(183\) 10.0457 14.6969i 0.742598 1.08642i
\(184\) −5.86781 + 2.13571i −0.432581 + 0.157447i
\(185\) 0 0
\(186\) −10.7214 2.74353i −0.786130 0.201166i
\(187\) −12.8891 15.3607i −0.942547 1.12328i
\(188\) 4.33215i 0.315954i
\(189\) −4.93471 + 7.58115i −0.358947 + 0.551447i
\(190\) 0 0
\(191\) −1.41048 + 1.18353i −0.102059 + 0.0856373i −0.692389 0.721524i \(-0.743442\pi\)
0.590331 + 0.807162i \(0.298997\pi\)
\(192\) 7.21353 2.02035i 0.520592 0.145806i
\(193\) −13.0401 2.29931i −0.938643 0.165508i −0.316660 0.948539i \(-0.602562\pi\)
−0.621983 + 0.783031i \(0.713673\pi\)
\(194\) 23.9199 8.70613i 1.71735 0.625064i
\(195\) 0 0
\(196\) −0.418117 2.37126i −0.0298655 0.169376i
\(197\) −16.2191 + 9.36409i −1.15556 + 0.667164i −0.950236 0.311530i \(-0.899159\pi\)
−0.205325 + 0.978694i \(0.565825\pi\)
\(198\) −14.0876 + 5.49046i −1.00116 + 0.390190i
\(199\) 3.20552 5.55213i 0.227233 0.393580i −0.729754 0.683710i \(-0.760365\pi\)
0.956987 + 0.290130i \(0.0936987\pi\)
\(200\) 0 0
\(201\) 23.5011 2.32352i 1.65764 0.163888i
\(202\) −6.65345 + 7.92927i −0.468135 + 0.557901i
\(203\) −8.68429 + 10.3495i −0.609517 + 0.726394i
\(204\) 6.71612 0.664011i 0.470222 0.0464901i
\(205\) 0 0
\(206\) 5.84050 10.1160i 0.406927 0.704818i
\(207\) 1.26061 8.23119i 0.0876186 0.572107i
\(208\) 7.94212 4.58539i 0.550687 0.317939i
\(209\) −2.63993 14.9718i −0.182608 1.03562i
\(210\) 0 0
\(211\) −15.3119 + 5.57306i −1.05411 + 0.383665i −0.810213 0.586135i \(-0.800649\pi\)
−0.243899 + 0.969801i \(0.578426\pi\)
\(212\) −1.11598 0.196778i −0.0766461 0.0135148i
\(213\) 13.5561 3.79675i 0.928846 0.260149i
\(214\) 5.61131 4.70845i 0.383581 0.321863i
\(215\) 0 0
\(216\) −2.64166 + 11.3871i −0.179742 + 0.774794i
\(217\) 6.88951i 0.467690i
\(218\) 7.93821 + 9.46039i 0.537643 + 0.640739i
\(219\) −16.5379 4.23194i −1.11753 0.285968i
\(220\) 0 0
\(221\) −11.4248 + 4.15829i −0.768516 + 0.279717i
\(222\) 1.28299 1.87701i 0.0861085 0.125977i
\(223\) 18.4332 3.25026i 1.23438 0.217654i 0.481872 0.876242i \(-0.339957\pi\)
0.752504 + 0.658588i \(0.228846\pi\)
\(224\) 2.89269 + 5.01029i 0.193276 + 0.334764i
\(225\) 0 0
\(226\) 2.71713 4.70621i 0.180741 0.313053i
\(227\) −6.00696 + 16.5040i −0.398696 + 1.09541i 0.564224 + 0.825622i \(0.309175\pi\)
−0.962920 + 0.269787i \(0.913047\pi\)
\(228\) 4.66147 + 2.10999i 0.308714 + 0.139737i
\(229\) 5.79494 + 4.86253i 0.382940 + 0.321325i 0.813855 0.581067i \(-0.197365\pi\)
−0.430915 + 0.902392i \(0.641809\pi\)
\(230\) 0 0
\(231\) 5.48545 + 7.64890i 0.360916 + 0.503261i
\(232\) −5.97133 + 16.4061i −0.392037 + 1.07711i
\(233\) 6.01595 + 3.47331i 0.394118 + 0.227544i 0.683943 0.729536i \(-0.260264\pi\)
−0.289825 + 0.957080i \(0.593597\pi\)
\(234\) 0.206829 + 9.16513i 0.0135208 + 0.599143i
\(235\) 0 0
\(236\) −0.108852 0.617330i −0.00708566 0.0401848i
\(237\) 25.6943 + 1.95615i 1.66902 + 0.127065i
\(238\) −6.17478 16.9651i −0.400252 1.09968i
\(239\) 3.56006 20.1901i 0.230281 1.30599i −0.622046 0.782981i \(-0.713698\pi\)
0.852327 0.523009i \(-0.175191\pi\)
\(240\) 0 0
\(241\) −17.8973 + 15.0176i −1.15287 + 0.967369i −0.999783 0.0208438i \(-0.993365\pi\)
−0.153083 + 0.988213i \(0.548920\pi\)
\(242\) 2.02666i 0.130279i
\(243\) −11.6266 10.3837i −0.745847 0.666117i
\(244\) 6.23459 0.399129
\(245\) 0 0
\(246\) −14.8040 + 15.1418i −0.943867 + 0.965408i
\(247\) −9.07779 1.60066i −0.577606 0.101847i
\(248\) 3.04504 + 8.36617i 0.193360 + 0.531252i
\(249\) 1.21286 15.9311i 0.0768616 1.00959i
\(250\) 0 0
\(251\) 4.60669 + 7.97903i 0.290772 + 0.503632i 0.973992 0.226580i \(-0.0727546\pi\)
−0.683221 + 0.730212i \(0.739421\pi\)
\(252\) −3.16716 + 0.0714732i −0.199513 + 0.00450239i
\(253\) −7.50397 4.33242i −0.471770 0.272377i
\(254\) −27.0862 9.85857i −1.69954 0.618581i
\(255\) 0 0
\(256\) 10.2301 + 8.58408i 0.639381 + 0.536505i
\(257\) 16.5773 19.7561i 1.03406 1.23235i 0.0618912 0.998083i \(-0.480287\pi\)
0.972172 0.234266i \(-0.0752687\pi\)
\(258\) −6.71670 3.04028i −0.418164 0.189279i
\(259\) −1.33004 0.484094i −0.0826445 0.0300801i
\(260\) 0 0
\(261\) −15.3642 17.4931i −0.951018 1.08280i
\(262\) −19.1125 + 11.0346i −1.18077 + 0.681719i
\(263\) −22.5375 + 3.97396i −1.38972 + 0.245045i −0.817912 0.575343i \(-0.804869\pi\)
−0.571807 + 0.820388i \(0.693758\pi\)
\(264\) 10.0418 + 6.86386i 0.618033 + 0.422441i
\(265\) 0 0
\(266\) 2.37687 13.4799i 0.145735 0.826507i
\(267\) −5.39425 + 21.0801i −0.330123 + 1.29008i
\(268\) 5.31626 + 6.33567i 0.324742 + 0.387013i
\(269\) −18.4780 −1.12662 −0.563311 0.826245i \(-0.690473\pi\)
−0.563311 + 0.826245i \(0.690473\pi\)
\(270\) 0 0
\(271\) 4.64576 0.282210 0.141105 0.989995i \(-0.454935\pi\)
0.141105 + 0.989995i \(0.454935\pi\)
\(272\) −20.0057 23.8419i −1.21302 1.44563i
\(273\) 5.49560 1.53920i 0.332609 0.0931563i
\(274\) −3.90571 + 22.1504i −0.235953 + 1.33815i
\(275\) 0 0
\(276\) 2.62901 1.26223i 0.158248 0.0759772i
\(277\) 25.4825 4.49325i 1.53109 0.269973i 0.656311 0.754490i \(-0.272116\pi\)
0.874782 + 0.484517i \(0.161005\pi\)
\(278\) −24.9645 + 14.4133i −1.49727 + 0.864450i
\(279\) −11.7358 1.79735i −0.702605 0.107604i
\(280\) 0 0
\(281\) 10.1177 + 3.68254i 0.603572 + 0.219682i 0.625688 0.780073i \(-0.284818\pi\)
−0.0221165 + 0.999755i \(0.507040\pi\)
\(282\) −1.96493 19.8742i −0.117010 1.18349i
\(283\) −10.1924 + 12.1469i −0.605877 + 0.722056i −0.978574 0.205897i \(-0.933989\pi\)
0.372697 + 0.927953i \(0.378433\pi\)
\(284\) 3.77680 + 3.16911i 0.224112 + 0.188052i
\(285\) 0 0
\(286\) 8.96393 + 3.26260i 0.530048 + 0.192922i
\(287\) 11.4168 + 6.59148i 0.673911 + 0.389083i
\(288\) −9.28935 + 3.62042i −0.547380 + 0.213335i
\(289\) 12.1307 + 21.0110i 0.713569 + 1.23594i
\(290\) 0 0
\(291\) 24.6181 11.8195i 1.44314 0.692873i
\(292\) −2.04476 5.61793i −0.119661 0.328765i
\(293\) 3.27620 + 0.577683i 0.191398 + 0.0337486i 0.268525 0.963273i \(-0.413464\pi\)
−0.0771274 + 0.997021i \(0.524575\pi\)
\(294\) −2.99369 10.6888i −0.174595 0.623382i
\(295\) 0 0
\(296\) −1.82907 −0.106313
\(297\) −14.4605 + 7.34864i −0.839081 + 0.426411i
\(298\) 28.9998i 1.67991i
\(299\) −4.02459 + 3.37703i −0.232748 + 0.195299i
\(300\) 0 0
\(301\) −0.797010 + 4.52007i −0.0459389 + 0.260532i
\(302\) 10.7935 + 29.6548i 0.621093 + 1.70644i
\(303\) −6.26632 + 9.16764i −0.359990 + 0.526667i
\(304\) −4.09753 23.2382i −0.235009 1.33280i
\(305\) 0 0
\(306\) 30.5098 6.09245i 1.74413 0.348282i
\(307\) 3.80928 + 2.19929i 0.217407 + 0.125520i 0.604749 0.796416i \(-0.293273\pi\)
−0.387342 + 0.921936i \(0.626607\pi\)
\(308\) −1.12745 + 3.09763i −0.0642422 + 0.176504i
\(309\) 5.16759 11.4164i 0.293974 0.649459i
\(310\) 0 0
\(311\) −11.8600 9.95173i −0.672519 0.564311i 0.241290 0.970453i \(-0.422429\pi\)
−0.913810 + 0.406142i \(0.866874\pi\)
\(312\) 5.99320 4.29805i 0.339298 0.243329i
\(313\) 3.70561 10.1811i 0.209454 0.575469i −0.789829 0.613327i \(-0.789831\pi\)
0.999283 + 0.0378572i \(0.0120532\pi\)
\(314\) 6.49430 11.2485i 0.366495 0.634787i
\(315\) 0 0
\(316\) 4.51232 + 7.81556i 0.253838 + 0.439660i
\(317\) 10.4118 1.83589i 0.584787 0.103114i 0.126576 0.991957i \(-0.459601\pi\)
0.458212 + 0.888843i \(0.348490\pi\)
\(318\) −5.20895 0.396565i −0.292104 0.0222383i
\(319\) −22.7654 + 8.28593i −1.27462 + 0.463923i
\(320\) 0 0
\(321\) 5.49369 5.61906i 0.306628 0.313626i
\(322\) −5.01466 5.97624i −0.279456 0.333043i
\(323\) 31.2831i 1.74064i
\(324\) 0.704506 5.41370i 0.0391392 0.300761i
\(325\) 0 0
\(326\) 6.52405 5.47433i 0.361334 0.303195i
\(327\) 9.47346 + 9.26209i 0.523884 + 0.512195i
\(328\) 16.7771 + 2.95826i 0.926361 + 0.163342i
\(329\) −11.6829 + 4.25225i −0.644102 + 0.234434i
\(330\) 0 0
\(331\) −1.83100 10.3841i −0.100641 0.570762i −0.992872 0.119184i \(-0.961972\pi\)
0.892231 0.451578i \(-0.149139\pi\)
\(332\) 4.84583 2.79774i 0.265950 0.153546i
\(333\) 1.17160 2.13934i 0.0642035 0.117235i
\(334\) −13.3583 + 23.1372i −0.730931 + 1.26601i
\(335\) 0 0
\(336\) 8.51417 + 11.8721i 0.464486 + 0.647679i
\(337\) −0.783347 + 0.933557i −0.0426717 + 0.0508541i −0.786958 0.617006i \(-0.788345\pi\)
0.744287 + 0.667860i \(0.232790\pi\)
\(338\) −9.77330 + 11.6474i −0.531597 + 0.633533i
\(339\) 2.40408 5.31119i 0.130572 0.288464i
\(340\) 0 0
\(341\) −6.17705 + 10.6990i −0.334506 + 0.579381i
\(342\) 22.3421 + 7.56551i 1.20812 + 0.409096i
\(343\) −16.5378 + 9.54808i −0.892955 + 0.515548i
\(344\) 1.02995 + 5.84114i 0.0555312 + 0.314933i
\(345\) 0 0
\(346\) 29.6775 10.8017i 1.59547 0.580703i
\(347\) −1.00408 0.177046i −0.0539016 0.00950431i 0.146632 0.989191i \(-0.453157\pi\)
−0.200534 + 0.979687i \(0.564268\pi\)
\(348\) 2.02139 7.89934i 0.108358 0.423449i
\(349\) 19.3802 16.2620i 1.03740 0.870483i 0.0456879 0.998956i \(-0.485452\pi\)
0.991713 + 0.128473i \(0.0410076\pi\)
\(350\) 0 0
\(351\) 1.18821 + 9.76293i 0.0634222 + 0.521107i
\(352\) 10.3742i 0.552947i
\(353\) −9.43633 11.2458i −0.502245 0.598552i 0.454043 0.890980i \(-0.349981\pi\)
−0.956288 + 0.292428i \(0.905537\pi\)
\(354\) −0.779373 2.78270i −0.0414232 0.147899i
\(355\) 0 0
\(356\) −7.16091 + 2.60636i −0.379527 + 0.138137i
\(357\) −8.38295 17.4603i −0.443673 0.924096i
\(358\) 1.92113 0.338747i 0.101535 0.0179033i
\(359\) 11.7675 + 20.3820i 0.621067 + 1.07572i 0.989287 + 0.145981i \(0.0466337\pi\)
−0.368221 + 0.929738i \(0.620033\pi\)
\(360\) 0 0
\(361\) −2.35891 + 4.08575i −0.124153 + 0.215039i
\(362\) 11.3139 31.0847i 0.594646 1.63378i
\(363\) −0.213919 2.16368i −0.0112278 0.113564i
\(364\) 1.53111 + 1.28475i 0.0802517 + 0.0673392i
\(365\) 0 0
\(366\) 28.6019 2.82782i 1.49504 0.147812i
\(367\) −8.52841 + 23.4316i −0.445180 + 1.22312i 0.490864 + 0.871236i \(0.336681\pi\)
−0.936043 + 0.351884i \(0.885541\pi\)
\(368\) −11.6472 6.72451i −0.607152 0.350539i
\(369\) −14.2066 + 17.7281i −0.739565 + 0.922890i
\(370\) 0 0
\(371\) 0.564729 + 3.20274i 0.0293193 + 0.166278i
\(372\) −1.79965 3.74837i −0.0933076 0.194344i
\(373\) 4.39750 + 12.0820i 0.227694 + 0.625584i 0.999953 0.00972404i \(-0.00309531\pi\)
−0.772259 + 0.635308i \(0.780873\pi\)
\(374\) 5.62164 31.8819i 0.290688 1.64857i
\(375\) 0 0
\(376\) −12.3076 + 10.3273i −0.634716 + 0.532590i
\(377\) 14.6891i 0.756529i
\(378\) −14.4973 + 1.76442i −0.745661 + 0.0907520i
\(379\) −3.07162 −0.157779 −0.0788894 0.996883i \(-0.525137\pi\)
−0.0788894 + 0.996883i \(0.525137\pi\)
\(380\) 0 0
\(381\) −29.9580 7.66606i −1.53480 0.392744i
\(382\) −2.92752 0.516201i −0.149785 0.0264112i
\(383\) 2.47718 + 6.80599i 0.126578 + 0.347770i 0.986753 0.162229i \(-0.0518682\pi\)
−0.860175 + 0.509998i \(0.829646\pi\)
\(384\) 19.4890 + 13.3212i 0.994542 + 0.679795i
\(385\) 0 0
\(386\) −10.6889 18.5138i −0.544053 0.942327i
\(387\) −7.49171 2.53686i −0.380825 0.128956i
\(388\) 8.28258 + 4.78195i 0.420484 + 0.242767i
\(389\) 6.63847 + 2.41621i 0.336584 + 0.122507i 0.504782 0.863247i \(-0.331573\pi\)
−0.168198 + 0.985753i \(0.553795\pi\)
\(390\) 0 0
\(391\) 13.6585 + 11.4608i 0.690738 + 0.579598i
\(392\) −5.73999 + 6.84065i −0.289913 + 0.345505i
\(393\) −19.2399 + 13.7980i −0.970524 + 0.696016i
\(394\) −28.4131 10.3415i −1.43143 0.520998i
\(395\) 0 0
\(396\) −4.98248 2.72865i −0.250379 0.137120i
\(397\) 22.4696 12.9728i 1.12772 0.651088i 0.184358 0.982859i \(-0.440979\pi\)
0.943360 + 0.331771i \(0.107646\pi\)
\(398\) 10.1933 1.79736i 0.510946 0.0900936i
\(399\) 1.11473 14.6421i 0.0558062 0.733024i
\(400\) 0 0
\(401\) 2.29238 13.0007i 0.114476 0.649226i −0.872532 0.488557i \(-0.837524\pi\)
0.987008 0.160670i \(-0.0513654\pi\)
\(402\) 27.2626 + 26.6543i 1.35974 + 1.32940i
\(403\) 4.81488 + 5.73815i 0.239846 + 0.285838i
\(404\) −3.88903 −0.193486
\(405\) 0 0
\(406\) −21.8124 −1.08253
\(407\) −1.63143 1.94426i −0.0808669 0.0963734i
\(408\) −17.8968 17.4975i −0.886026 0.866256i
\(409\) 2.60351 14.7653i 0.128735 0.730095i −0.850283 0.526325i \(-0.823570\pi\)
0.979019 0.203770i \(-0.0653194\pi\)
\(410\) 0 0
\(411\) −1.83174 + 24.0602i −0.0903529 + 1.18680i
\(412\) 4.32208 0.762100i 0.212934 0.0375460i
\(413\) −1.55797 + 0.899496i −0.0766628 + 0.0442613i
\(414\) 11.4884 6.98305i 0.564623 0.343198i
\(415\) 0 0
\(416\) 5.91082 + 2.15136i 0.289802 + 0.105479i
\(417\) −25.1309 + 18.0228i −1.23067 + 0.882579i
\(418\) 15.7771 18.8024i 0.771681 0.919654i
\(419\) −21.5326 18.0680i −1.05194 0.882681i −0.0586424 0.998279i \(-0.518677\pi\)
−0.993296 + 0.115598i \(0.963122\pi\)
\(420\) 0 0
\(421\) 26.6729 + 9.70814i 1.29996 + 0.473146i 0.896983 0.442066i \(-0.145754\pi\)
0.402974 + 0.915211i \(0.367976\pi\)
\(422\) −22.7829 13.1537i −1.10906 0.640313i
\(423\) −4.19555 21.0105i −0.203995 1.02156i
\(424\) 2.10132 + 3.63959i 0.102049 + 0.176754i
\(425\) 0 0
\(426\) 18.7639 + 12.8256i 0.909114 + 0.621403i
\(427\) −6.11960 16.8135i −0.296148 0.813660i
\(428\) 2.71034 + 0.477906i 0.131009 + 0.0231004i
\(429\) 9.91433 + 2.53701i 0.478668 + 0.122488i
\(430\) 0 0
\(431\) 8.66843 0.417543 0.208772 0.977964i \(-0.433053\pi\)
0.208772 + 0.977964i \(0.433053\pi\)
\(432\) −22.4446 + 11.4061i −1.07987 + 0.548776i
\(433\) 8.61185i 0.413859i 0.978356 + 0.206929i \(0.0663471\pi\)
−0.978356 + 0.206929i \(0.933653\pi\)
\(434\) −8.52077 + 7.14978i −0.409010 + 0.343200i
\(435\) 0 0
\(436\) −0.805725 + 4.56949i −0.0385872 + 0.218839i
\(437\) 4.62344 + 12.7028i 0.221169 + 0.607657i
\(438\) −11.9287 24.8455i −0.569975 1.18716i
\(439\) 2.79044 + 15.8254i 0.133181 + 0.755305i 0.976109 + 0.217280i \(0.0697183\pi\)
−0.842929 + 0.538025i \(0.819171\pi\)
\(440\) 0 0
\(441\) −4.32431 11.0954i −0.205919 0.528353i
\(442\) −16.9993 9.81454i −0.808573 0.466830i
\(443\) −3.16082 + 8.68429i −0.150175 + 0.412603i −0.991855 0.127374i \(-0.959345\pi\)
0.841679 + 0.539977i \(0.181567\pi\)
\(444\) 0.850086 0.0840465i 0.0403433 0.00398867i
\(445\) 0 0
\(446\) 23.1494 + 19.4246i 1.09615 + 0.919782i
\(447\) 3.06100 + 30.9604i 0.144780 + 1.46438i
\(448\) 2.57513 7.07511i 0.121663 0.334268i
\(449\) −18.5220 + 32.0810i −0.874106 + 1.51400i −0.0163930 + 0.999866i \(0.505218\pi\)
−0.857713 + 0.514130i \(0.828115\pi\)
\(450\) 0 0
\(451\) 11.8197 + 20.4723i 0.556567 + 0.964002i
\(452\) 2.01073 0.354546i 0.0945768 0.0166764i
\(453\) 14.6533 + 30.5204i 0.688472 + 1.43397i
\(454\) −26.6456 + 9.69821i −1.25054 + 0.455160i
\(455\) 0 0
\(456\) −5.11791 18.2732i −0.239668 0.855719i
\(457\) 0.875976 + 1.04395i 0.0409764 + 0.0488338i 0.786143 0.618044i \(-0.212075\pi\)
−0.745167 + 0.666878i \(0.767630\pi\)
\(458\) 12.2133i 0.570688i
\(459\) 31.9294 9.72473i 1.49034 0.453912i
\(460\) 0 0
\(461\) −6.41944 + 5.38655i −0.298983 + 0.250876i −0.779921 0.625878i \(-0.784741\pi\)
0.480938 + 0.876755i \(0.340296\pi\)
\(462\) −3.76730 + 14.7221i −0.175271 + 0.684935i
\(463\) 28.1832 + 4.96946i 1.30978 + 0.230950i 0.784581 0.620027i \(-0.212878\pi\)
0.525203 + 0.850977i \(0.323989\pi\)
\(464\) −35.3350 + 12.8609i −1.64039 + 0.597052i
\(465\) 0 0
\(466\) 1.94751 + 11.0449i 0.0902168 + 0.511645i
\(467\) −1.99894 + 1.15409i −0.0925000 + 0.0534049i −0.545536 0.838087i \(-0.683674\pi\)
0.453036 + 0.891492i \(0.350341\pi\)
\(468\) −2.58792 + 2.27297i −0.119627 + 0.105068i
\(469\) 11.8679 20.5557i 0.548006 0.949175i
\(470\) 0 0
\(471\) 5.74606 12.6944i 0.264765 0.584928i
\(472\) −1.49434 + 1.78089i −0.0687826 + 0.0819719i
\(473\) −5.29034 + 6.30479i −0.243250 + 0.289894i
\(474\) 24.2457 + 33.8081i 1.11364 + 1.55286i
\(475\) 0 0
\(476\) 3.39158 5.87438i 0.155453 0.269252i
\(477\) −5.60298 + 0.126442i −0.256543 + 0.00578938i
\(478\) 28.6652 16.5498i 1.31111 0.756972i
\(479\) 0.150408 + 0.853009i 0.00687234 + 0.0389750i 0.988051 0.154127i \(-0.0492564\pi\)
−0.981179 + 0.193102i \(0.938145\pi\)
\(480\) 0 0
\(481\) −1.44608 + 0.526331i −0.0659357 + 0.0239986i
\(482\) −37.1468 6.54999i −1.69199 0.298344i
\(483\) −5.98450 5.85097i −0.272304 0.266228i
\(484\) 0.583306 0.489452i 0.0265139 0.0222478i
\(485\) 0 0
\(486\) 0.776512 25.1555i 0.0352233 1.14108i
\(487\) 20.4700i 0.927584i −0.885944 0.463792i \(-0.846488\pi\)
0.885944 0.463792i \(-0.153512\pi\)
\(488\) −14.8625 17.7124i −0.672793 0.801803i
\(489\) 6.38730 6.53307i 0.288844 0.295435i
\(490\) 0 0
\(491\) −40.3022 + 14.6688i −1.81881 + 0.661993i −0.823272 + 0.567647i \(0.807854\pi\)
−0.995539 + 0.0943459i \(0.969924\pi\)
\(492\) −7.93333 0.603976i −0.357662 0.0272293i
\(493\) 49.0940 8.65659i 2.21108 0.389873i
\(494\) −7.44107 12.8883i −0.334790 0.579872i
\(495\) 0 0
\(496\) −9.58763 + 16.6063i −0.430497 + 0.745643i
\(497\) 4.83932 13.2959i 0.217073 0.596404i
\(498\) 20.9618 15.0329i 0.939322 0.673639i
\(499\) −4.70186 3.94533i −0.210484 0.176617i 0.531451 0.847089i \(-0.321647\pi\)
−0.741935 + 0.670472i \(0.766092\pi\)
\(500\) 0 0
\(501\) −11.8192 + 26.1114i −0.528042 + 1.16657i
\(502\) −5.08754 + 13.9779i −0.227068 + 0.623864i
\(503\) −5.95329 3.43713i −0.265444 0.153254i 0.361371 0.932422i \(-0.382309\pi\)
−0.626815 + 0.779168i \(0.715642\pi\)
\(504\) 7.75318 + 8.82751i 0.345354 + 0.393208i
\(505\) 0 0
\(506\) −2.42922 13.7768i −0.107992 0.612454i
\(507\) −9.20464 + 13.4664i −0.408792 + 0.598064i
\(508\) −3.70404 10.1768i −0.164340 0.451521i
\(509\) 2.31722 13.1416i 0.102709 0.582493i −0.889401 0.457127i \(-0.848878\pi\)
0.992111 0.125366i \(-0.0400104\pi\)
\(510\) 0 0
\(511\) −13.1434 + 11.0286i −0.581430 + 0.487878i
\(512\) 5.69791i 0.251815i
\(513\) 24.6511 + 5.71874i 1.08837 + 0.252488i
\(514\) 41.6373 1.83654
\(515\) 0 0
\(516\) −0.747087 2.66743i −0.0328887 0.117427i
\(517\) −21.9554 3.87133i −0.965596 0.170261i
\(518\) −0.781567 2.14734i −0.0343401 0.0943486i
\(519\) 30.5437 14.6645i 1.34072 0.643701i
\(520\) 0 0
\(521\) −12.2664 21.2461i −0.537401 0.930807i −0.999043 0.0437400i \(-0.986073\pi\)
0.461642 0.887067i \(-0.347261\pi\)
\(522\) 5.69046 37.1560i 0.249065 1.62627i
\(523\) 34.2687 + 19.7850i 1.49847 + 0.865140i 0.999998 0.00176851i \(-0.000562935\pi\)
0.498468 + 0.866908i \(0.333896\pi\)
\(524\) −7.79172 2.83595i −0.340383 0.123889i
\(525\) 0 0
\(526\) −28.3038 23.7497i −1.23410 1.03554i
\(527\) 16.3405 19.4739i 0.711804 0.848295i
\(528\) 2.57753 + 26.0704i 0.112173 + 1.13457i
\(529\) −14.3729 5.23132i −0.624911 0.227449i
\(530\) 0 0
\(531\) −1.12578 2.88857i −0.0488549 0.125353i
\(532\) 4.45377 2.57139i 0.193095 0.111484i
\(533\) 14.1154 2.48893i 0.611407 0.107808i
\(534\) −31.6693 + 15.2049i −1.37047 + 0.657982i
\(535\) 0 0
\(536\) 5.32629 30.2069i 0.230061 1.30474i
\(537\) 2.01526 0.564429i 0.0869648 0.0243569i
\(538\) −19.1760 22.8531i −0.826737 0.985267i
\(539\) −12.3912 −0.533727
\(540\) 0 0
\(541\) 32.1065 1.38036 0.690182 0.723635i \(-0.257530\pi\)
0.690182 + 0.723635i \(0.257530\pi\)
\(542\) 4.82126 + 5.74576i 0.207091 + 0.246801i
\(543\) 8.79775 34.3805i 0.377548 1.47541i
\(544\) 3.70692 21.0230i 0.158933 0.901352i
\(545\) 0 0
\(546\) 7.60684 + 5.19947i 0.325543 + 0.222517i
\(547\) 21.6885 3.82427i 0.927333 0.163514i 0.310469 0.950583i \(-0.399514\pi\)
0.616864 + 0.787070i \(0.288403\pi\)
\(548\) −7.31850 + 4.22534i −0.312631 + 0.180497i
\(549\) 30.2371 6.03800i 1.29049 0.257696i
\(550\) 0 0
\(551\) 35.5163 + 12.9269i 1.51305 + 0.550704i
\(552\) −9.85321 4.46000i −0.419380 0.189830i
\(553\) 16.6479 19.8402i 0.707942 0.843693i
\(554\) 32.0023 + 26.8531i 1.35965 + 1.14088i
\(555\) 0 0
\(556\) −10.1775 3.70429i −0.431621 0.157097i
\(557\) 19.2621 + 11.1210i 0.816163 + 0.471212i 0.849092 0.528246i \(-0.177150\pi\)
−0.0329284 + 0.999458i \(0.510483\pi\)
\(558\) −9.95625 16.3798i −0.421482 0.693413i
\(559\) 2.49513 + 4.32169i 0.105533 + 0.182788i
\(560\) 0 0
\(561\) 2.63649 34.6307i 0.111313 1.46211i
\(562\) 5.94545 + 16.3350i 0.250794 + 0.689050i
\(563\) −13.9452 2.45892i −0.587721 0.103631i −0.128123 0.991758i \(-0.540895\pi\)
−0.459598 + 0.888127i \(0.652006\pi\)
\(564\) 5.24558 5.36529i 0.220879 0.225920i
\(565\) 0 0
\(566\) −25.6004 −1.07607
\(567\) −15.2912 + 3.41394i −0.642170 + 0.143372i
\(568\) 18.2846i 0.767205i
\(569\) 4.81198 4.03773i 0.201729 0.169270i −0.536327 0.844010i \(-0.680189\pi\)
0.738056 + 0.674740i \(0.235744\pi\)
\(570\) 0 0
\(571\) −5.42129 + 30.7457i −0.226874 + 1.28667i 0.632196 + 0.774809i \(0.282154\pi\)
−0.859070 + 0.511858i \(0.828957\pi\)
\(572\) 1.22582 + 3.36790i 0.0512540 + 0.140819i
\(573\) −3.17993 0.242093i −0.132844 0.0101136i
\(574\) 3.69590 + 20.9605i 0.154264 + 0.874873i
\(575\) 0 0
\(576\) 11.3802 + 6.23233i 0.474174 + 0.259680i
\(577\) 15.8293 + 9.13906i 0.658983 + 0.380464i 0.791889 0.610664i \(-0.209098\pi\)
−0.132906 + 0.991129i \(0.542431\pi\)
\(578\) −13.3969 + 36.8076i −0.557237 + 1.53100i
\(579\) −13.3658 18.6372i −0.555462 0.774536i
\(580\) 0 0
\(581\) −12.3014 10.3221i −0.510349 0.428233i
\(582\) 40.1662 + 18.1810i 1.66494 + 0.753627i
\(583\) −1.99455 + 5.47997i −0.0826057 + 0.226957i
\(584\) −11.0860 + 19.2016i −0.458744 + 0.794568i
\(585\) 0 0
\(586\) 2.68551 + 4.65143i 0.110937 + 0.192149i
\(587\) 8.10900 1.42984i 0.334694 0.0590156i −0.00377558 0.999993i \(-0.501202\pi\)
0.338470 + 0.940977i \(0.390091\pi\)
\(588\) 2.35341 3.44304i 0.0970529 0.141989i
\(589\) 18.1113 6.59198i 0.746263 0.271618i
\(590\) 0 0
\(591\) −31.4256 8.04160i −1.29268 0.330787i
\(592\) −2.53220 3.01776i −0.104073 0.124029i
\(593\) 38.8812i 1.59666i −0.602222 0.798329i \(-0.705718\pi\)
0.602222 0.798329i \(-0.294282\pi\)
\(594\) −24.0953 10.2581i −0.988644 0.420894i
\(595\) 0 0
\(596\) −8.34661 + 7.00364i −0.341890 + 0.286880i
\(597\) 10.6928 2.99481i 0.437626 0.122569i
\(598\) −8.35325 1.47290i −0.341590 0.0602315i
\(599\) −0.729650 + 0.265571i −0.0298127 + 0.0108509i −0.356883 0.934149i \(-0.616161\pi\)
0.327071 + 0.945000i \(0.393938\pi\)
\(600\) 0 0
\(601\) −4.46708 25.3341i −0.182216 1.03340i −0.929481 0.368871i \(-0.879744\pi\)
0.747265 0.664527i \(-0.231367\pi\)
\(602\) −6.41743 + 3.70510i −0.261555 + 0.151009i
\(603\) 31.9192 + 25.5787i 1.29985 + 1.04165i
\(604\) −5.92844 + 10.2684i −0.241225 + 0.417813i
\(605\) 0 0
\(606\) −17.8413 + 1.76394i −0.724755 + 0.0716553i
\(607\) 4.27987 5.10054i 0.173714 0.207025i −0.672161 0.740405i \(-0.734634\pi\)
0.845876 + 0.533380i \(0.179078\pi\)
\(608\) 10.4034 12.3983i 0.421914 0.502817i
\(609\) −23.2871 + 2.30235i −0.943640 + 0.0932961i
\(610\) 0 0
\(611\) −6.75875 + 11.7065i −0.273430 + 0.473594i
\(612\) 9.12182 + 7.30985i 0.368728 + 0.295483i
\(613\) −28.5617 + 16.4901i −1.15360 + 0.666030i −0.949761 0.312975i \(-0.898674\pi\)
−0.203837 + 0.979005i \(0.565341\pi\)
\(614\) 1.23316 + 6.99359i 0.0497662 + 0.282238i
\(615\) 0 0
\(616\) 11.4880 4.18131i 0.462867 0.168470i
\(617\) −36.0737 6.36077i −1.45227 0.256075i −0.608834 0.793298i \(-0.708362\pi\)
−0.843440 + 0.537223i \(0.819473\pi\)
\(618\) 19.4824 5.45658i 0.783696 0.219496i
\(619\) −10.7534 + 9.02320i −0.432217 + 0.362673i −0.832787 0.553593i \(-0.813256\pi\)
0.400571 + 0.916266i \(0.368812\pi\)
\(620\) 0 0
\(621\) 11.5280 8.66779i 0.462602 0.347826i
\(622\) 24.9958i 1.00224i
\(623\) 14.0577 + 16.7533i 0.563208 + 0.671206i
\(624\) 15.3884 + 3.93779i 0.616029 + 0.157638i
\(625\) 0 0
\(626\) 16.4373 5.98270i 0.656967 0.239117i
\(627\) 14.8591 21.7389i 0.593414 0.868166i
\(628\) 4.80591 0.847411i 0.191777 0.0338154i
\(629\) 2.61131 + 4.52292i 0.104120 + 0.180340i
\(630\) 0 0
\(631\) 1.61405 2.79562i 0.0642543 0.111292i −0.832109 0.554613i \(-0.812866\pi\)
0.896363 + 0.443321i \(0.146200\pi\)
\(632\) 11.4471 31.4508i 0.455343 1.25104i
\(633\) −25.7116 11.6382i −1.02195 0.462578i
\(634\) 13.0758 + 10.9719i 0.519305 + 0.435748i
\(635\) 0 0
\(636\) −1.14386 1.59500i −0.0453569 0.0632457i
\(637\) −2.56964 + 7.06002i −0.101813 + 0.279728i
\(638\) −33.8732 19.5567i −1.34105 0.774258i
\(639\) 21.3863 + 11.7121i 0.846027 + 0.463325i
\(640\) 0 0
\(641\) −1.01704 5.76795i −0.0401709 0.227820i 0.958112 0.286393i \(-0.0924562\pi\)
−0.998283 + 0.0585725i \(0.981345\pi\)
\(642\) 12.6507 + 0.963120i 0.499285 + 0.0380113i
\(643\) 5.68345 + 15.6152i 0.224134 + 0.615802i 0.999884 0.0152381i \(-0.00485063\pi\)
−0.775750 + 0.631040i \(0.782628\pi\)
\(644\) 0.508986 2.88660i 0.0200569 0.113748i
\(645\) 0 0
\(646\) −38.6901 + 32.4648i −1.52224 + 1.27731i
\(647\) 5.31018i 0.208765i −0.994537 0.104382i \(-0.966713\pi\)
0.994537 0.104382i \(-0.0332865\pi\)
\(648\) −17.0597 + 10.9041i −0.670170 + 0.428353i
\(649\) −3.22591 −0.126628
\(650\) 0 0
\(651\) −8.34216 + 8.53254i −0.326955 + 0.334417i
\(652\) 3.15120 + 0.555642i 0.123411 + 0.0217606i
\(653\) −8.60359 23.6382i −0.336685 0.925034i −0.986328 0.164794i \(-0.947304\pi\)
0.649643 0.760239i \(-0.274918\pi\)
\(654\) −1.62377 + 21.3285i −0.0634945 + 0.834011i
\(655\) 0 0
\(656\) 18.3458 + 31.7758i 0.716282 + 1.24064i
\(657\) −15.3577 25.2661i −0.599159 0.985724i
\(658\) −17.3834 10.0363i −0.677674 0.391255i
\(659\) −0.253053 0.0921038i −0.00985755 0.00358786i 0.337087 0.941474i \(-0.390558\pi\)
−0.346944 + 0.937886i \(0.612781\pi\)
\(660\) 0 0
\(661\) −17.1827 14.4180i −0.668329 0.560795i 0.244241 0.969714i \(-0.421461\pi\)
−0.912570 + 0.408920i \(0.865906\pi\)
\(662\) 10.9426 13.0409i 0.425298 0.506850i
\(663\) −19.1845 8.68376i −0.745064 0.337249i
\(664\) −19.5002 7.09750i −0.756755 0.275436i
\(665\) 0 0
\(666\) 3.86174 0.771146i 0.149640 0.0298813i
\(667\) 18.6557 10.7709i 0.722352 0.417050i
\(668\) −9.88537 + 1.74306i −0.382476 + 0.0674409i
\(669\) 26.7647 + 18.2944i 1.03478 + 0.707302i
\(670\) 0 0
\(671\) 5.57140 31.5970i 0.215081 1.21979i
\(672\) −2.48416 + 9.70778i −0.0958285 + 0.374486i
\(673\) −10.7270 12.7839i −0.413494 0.492784i 0.518591 0.855023i \(-0.326457\pi\)
−0.932085 + 0.362239i \(0.882012\pi\)
\(674\) −1.96754 −0.0757868
\(675\) 0 0
\(676\) −5.71262 −0.219716
\(677\) −19.0984 22.7606i −0.734012 0.874762i 0.261899 0.965095i \(-0.415651\pi\)
−0.995912 + 0.0903336i \(0.971207\pi\)
\(678\) 9.06364 2.53853i 0.348087 0.0974915i
\(679\) 4.76616 27.0302i 0.182908 1.03733i
\(680\) 0 0
\(681\) −27.4234 + 13.1664i −1.05087 + 0.504537i
\(682\) −19.6426 + 3.46352i −0.752154 + 0.132625i
\(683\) −10.8573 + 6.26849i −0.415445 + 0.239857i −0.693126 0.720816i \(-0.743767\pi\)
0.277682 + 0.960673i \(0.410434\pi\)
\(684\) 3.21828 + 8.25753i 0.123054 + 0.315735i
\(685\) 0 0
\(686\) −28.9713 10.5447i −1.10613 0.402599i
\(687\) 1.28914 + 13.0390i 0.0491838 + 0.497467i
\(688\) −8.21134 + 9.78590i −0.313054 + 0.373084i
\(689\) 2.70865 + 2.27283i 0.103191 + 0.0865879i
\(690\) 0 0
\(691\) −6.85438 2.49479i −0.260753 0.0949064i 0.208336 0.978057i \(-0.433195\pi\)
−0.469089 + 0.883151i \(0.655418\pi\)
\(692\) 10.2762 + 5.93297i 0.390643 + 0.225538i
\(693\) −2.46804 + 16.1151i −0.0937530 + 0.612162i
\(694\) −0.823042 1.42555i −0.0312422 0.0541131i
\(695\) 0 0
\(696\) −27.2607 + 13.0883i −1.03331 + 0.496110i
\(697\) −16.6370 45.7098i −0.630171 1.73138i
\(698\) 40.2248 + 7.09271i 1.52253 + 0.268463i
\(699\) 3.24500 + 11.5860i 0.122737 + 0.438225i
\(700\) 0 0
\(701\) −10.1934 −0.384998 −0.192499 0.981297i \(-0.561659\pi\)
−0.192499 + 0.981297i \(0.561659\pi\)
\(702\) −10.8414 + 11.6013i −0.409184 + 0.437863i
\(703\) 3.95962i 0.149340i
\(704\) 10.3425 8.67836i 0.389796 0.327078i
\(705\) 0 0
\(706\) 4.11569 23.3412i 0.154896 0.878459i
\(707\) 3.81730 + 10.4879i 0.143564 + 0.394439i
\(708\) 0.612683 0.896357i 0.0230260 0.0336871i
\(709\) −3.06522 17.3837i −0.115117 0.652860i −0.986692 0.162599i \(-0.948012\pi\)
0.871575 0.490261i \(-0.163099\pi\)
\(710\) 0 0
\(711\) 29.4534 + 33.5346i 1.10459 + 1.25765i
\(712\) 24.4754 + 14.1309i 0.917253 + 0.529576i
\(713\) 3.75711 10.3226i 0.140705 0.386584i
\(714\) 12.8948 28.4877i 0.482576 1.06613i
\(715\) 0 0
\(716\) 0.561463 + 0.471123i 0.0209828 + 0.0176067i
\(717\) 28.8563 20.6944i 1.07766 0.772847i
\(718\) −12.9958 + 35.7057i −0.485000 + 1.33253i
\(719\) −1.57416 + 2.72652i −0.0587062 + 0.101682i −0.893885 0.448297i \(-0.852031\pi\)
0.835179 + 0.549979i \(0.185364\pi\)
\(720\) 0 0
\(721\) −6.29760 10.9078i −0.234535 0.406226i
\(722\) −7.50117 + 1.32266i −0.279165 + 0.0492242i
\(723\) −40.3496 3.07187i −1.50062 0.114244i
\(724\) 11.6791 4.25084i 0.434050 0.157981i
\(725\) 0 0
\(726\) 2.45398 2.50999i 0.0910759 0.0931544i
\(727\) 21.1284 + 25.1799i 0.783609 + 0.933869i 0.999091 0.0426388i \(-0.0135765\pi\)
−0.215481 + 0.976508i \(0.569132\pi\)
\(728\) 7.41254i 0.274727i
\(729\) −1.82622 26.9382i −0.0676377 0.997710i
\(730\) 0 0
\(731\) 12.9735 10.8861i 0.479843 0.402636i
\(732\) 7.72143 + 7.54915i 0.285392 + 0.279025i
\(733\) −6.85262 1.20830i −0.253107 0.0446297i 0.0456547 0.998957i \(-0.485463\pi\)
−0.298762 + 0.954328i \(0.596574\pi\)
\(734\) −37.8302 + 13.7691i −1.39634 + 0.508226i
\(735\) 0 0
\(736\) −1.60183 9.08444i −0.0590443 0.334857i
\(737\) 36.8600 21.2811i 1.35776 0.783901i
\(738\) −36.6690 + 0.827507i −1.34980 + 0.0304609i
\(739\) −3.80631 + 6.59273i −0.140017 + 0.242517i −0.927503 0.373816i \(-0.878049\pi\)
0.787485 + 0.616333i \(0.211383\pi\)
\(740\) 0 0
\(741\) −9.30453 12.9742i −0.341811 0.476620i
\(742\) −3.37500 + 4.02217i −0.123900 + 0.147658i
\(743\) −2.02092 + 2.40844i −0.0741404 + 0.0883571i −0.801840 0.597539i \(-0.796145\pi\)
0.727699 + 0.685896i \(0.240590\pi\)
\(744\) −6.35895 + 14.0485i −0.233130 + 0.515041i
\(745\) 0 0
\(746\) −10.3791 + 17.9772i −0.380007 + 0.658191i
\(747\) 20.7922 18.2618i 0.760749 0.668164i
\(748\) 10.5338 6.08169i 0.385154 0.222369i
\(749\) −1.37153 7.77834i −0.0501146 0.284214i
\(750\) 0 0
\(751\) 4.55689 1.65857i 0.166283 0.0605222i −0.257537 0.966268i \(-0.582911\pi\)
0.423821 + 0.905746i \(0.360689\pi\)
\(752\) −34.0778 6.00883i −1.24269 0.219119i
\(753\) −3.95609 + 15.4599i −0.144168 + 0.563390i
\(754\) −18.1672 + 15.2441i −0.661609 + 0.555156i
\(755\) 0 0
\(756\) −4.00902 3.74644i −0.145807 0.136257i
\(757\) 16.2063i 0.589028i 0.955647 + 0.294514i \(0.0951578\pi\)
−0.955647 + 0.294514i \(0.904842\pi\)
\(758\) −3.18766 3.79891i −0.115781 0.137983i
\(759\) −4.04763 14.4518i −0.146920 0.524567i
\(760\) 0 0
\(761\) −37.9046 + 13.7961i −1.37404 + 0.500110i −0.920366 0.391058i \(-0.872109\pi\)
−0.453674 + 0.891168i \(0.649887\pi\)
\(762\) −21.6086 45.0070i −0.782795 1.63043i
\(763\) 13.1139 2.31233i 0.474755 0.0837121i
\(764\) −0.558445 0.967255i −0.0202038 0.0349941i
\(765\) 0 0
\(766\) −5.84672 + 10.1268i −0.211250 + 0.365896i
\(767\) −0.668976 + 1.83800i −0.0241553 + 0.0663662i
\(768\) 2.27579 + 23.0184i 0.0821204 + 0.830604i
\(769\) −8.23144 6.90700i −0.296833 0.249073i 0.482191 0.876066i \(-0.339841\pi\)
−0.779025 + 0.626993i \(0.784285\pi\)
\(770\) 0 0
\(771\) 44.4523 4.39493i 1.60091 0.158279i
\(772\) 2.74712 7.54765i 0.0988711 0.271646i
\(773\) 47.2189 + 27.2618i 1.69835 + 0.980540i 0.947332 + 0.320254i \(0.103768\pi\)
0.751014 + 0.660286i \(0.229565\pi\)
\(774\) −4.63721 11.8983i −0.166681 0.427674i
\(775\) 0 0
\(776\) −6.15916 34.9303i −0.221101 1.25393i
\(777\) −1.06106 2.21002i −0.0380654 0.0792839i
\(778\) 3.90095 + 10.7178i 0.139856 + 0.384251i
\(779\) 6.40411 36.3195i 0.229451 1.30128i
\(780\) 0 0
\(781\) 19.4361 16.3089i 0.695479 0.583577i
\(782\) 28.7862i 1.02939i
\(783\) 2.15327 40.2686i 0.0769516 1.43908i
\(784\) −19.2328 −0.686887
\(785\) 0 0
\(786\) −37.0317 9.47617i −1.32088 0.338004i
\(787\) −19.5354 3.44462i −0.696363 0.122788i −0.185748 0.982597i \(-0.559471\pi\)
−0.510614 + 0.859810i \(0.670582\pi\)
\(788\) −3.88549 10.6753i −0.138415 0.380291i
\(789\) −32.7242 22.3678i −1.16501 0.796315i
\(790\) 0 0
\(791\) −2.92979 5.07454i −0.104171 0.180430i
\(792\) 4.12556 + 20.6600i 0.146595 + 0.734119i
\(793\) −16.8473 9.72682i −0.598267 0.345409i
\(794\) 39.3630 + 14.3269i 1.39694 + 0.508444i
\(795\) 0 0
\(796\) 2.97907 + 2.49974i 0.105590 + 0.0886008i
\(797\) −7.38501 + 8.80112i −0.261591 + 0.311752i −0.880813 0.473464i \(-0.843003\pi\)
0.619223 + 0.785216i \(0.287448\pi\)
\(798\) 19.2659 13.8166i 0.682005 0.489103i
\(799\) 43.1085 + 15.6902i 1.52507 + 0.555079i
\(800\) 0 0
\(801\) −32.2055 + 19.5757i −1.13792 + 0.691672i
\(802\) 18.4580 10.6567i 0.651774 0.376302i
\(803\) −30.2990 + 5.34253i −1.06923 + 0.188534i
\(804\) −1.08745 + 14.2838i −0.0383513 + 0.503752i
\(805\) 0 0
\(806\) −2.10003 + 11.9098i −0.0739703 + 0.419506i
\(807\) −22.8847 22.3741i −0.805579 0.787604i
\(808\) 9.27095 + 11.0487i 0.326151 + 0.388692i
\(809\) 37.5291 1.31945 0.659727 0.751506i \(-0.270672\pi\)
0.659727 + 0.751506i \(0.270672\pi\)
\(810\) 0 0
\(811\) 31.9363 1.12143 0.560717 0.828008i \(-0.310526\pi\)
0.560717 + 0.828008i \(0.310526\pi\)
\(812\) −5.26784 6.27796i −0.184865 0.220313i
\(813\) 5.75369 + 5.62532i 0.201791 + 0.197288i
\(814\) 0.711553 4.03542i 0.0249399 0.141441i
\(815\) 0 0
\(816\) 4.09219 53.7517i 0.143255 1.88169i
\(817\) 12.6451 2.22966i 0.442395 0.0780061i
\(818\) 20.9632 12.1031i 0.732960 0.423174i
\(819\) 8.66994 + 4.74808i 0.302952 + 0.165911i
\(820\) 0 0
\(821\) 34.2903 + 12.4806i 1.19674 + 0.435577i 0.862085 0.506764i \(-0.169158\pi\)
0.334654 + 0.942341i \(0.391381\pi\)
\(822\) −31.6580 + 22.7037i −1.10420 + 0.791881i
\(823\) −20.8016 + 24.7904i −0.725100 + 0.864140i −0.995116 0.0987156i \(-0.968527\pi\)
0.270016 + 0.962856i \(0.412971\pi\)
\(824\) −12.4684 10.4622i −0.434358 0.364470i
\(825\) 0 0
\(826\) −2.72930 0.993385i −0.0949646 0.0345643i
\(827\) 44.7028 + 25.8092i 1.55447 + 0.897473i 0.997769 + 0.0667595i \(0.0212660\pi\)
0.556700 + 0.830714i \(0.312067\pi\)
\(828\) 4.78435 + 1.62009i 0.166268 + 0.0563019i
\(829\) 0.662012 + 1.14664i 0.0229926 + 0.0398244i 0.877293 0.479956i \(-0.159347\pi\)
−0.854300 + 0.519780i \(0.826014\pi\)
\(830\) 0 0
\(831\) 37.0003 + 25.2906i 1.28352 + 0.877322i
\(832\) −2.79981 7.69242i −0.0970660 0.266687i
\(833\) 25.1103 + 4.42763i 0.870021 + 0.153408i
\(834\) −48.3704 12.3777i −1.67493 0.428604i
\(835\) 0 0
\(836\) 9.22189 0.318946
\(837\) −12.3583 16.4363i −0.427165 0.568122i
\(838\) 45.3816i 1.56768i
\(839\) −6.77496 + 5.68487i −0.233898 + 0.196263i −0.752202 0.658933i \(-0.771008\pi\)
0.518304 + 0.855196i \(0.326564\pi\)
\(840\) 0 0
\(841\) 5.42296 30.7551i 0.186999 1.06052i
\(842\) 15.6737 + 43.0632i 0.540153 + 1.48406i
\(843\) 8.07160 + 16.8118i 0.278001 + 0.579029i
\(844\) −1.71637 9.73401i −0.0590799 0.335059i
\(845\) 0 0
\(846\) 21.6312 26.9931i 0.743695 0.928043i
\(847\) −1.89250 1.09264i −0.0650272 0.0375435i
\(848\) −3.09581 + 8.50567i −0.106311 + 0.292086i
\(849\) −27.3312 + 2.70219i −0.938004 + 0.0927388i
\(850\) 0 0
\(851\) 1.72881 + 1.45064i 0.0592627 + 0.0497273i
\(852\) 0.840185 + 8.49803i 0.0287843 + 0.291138i
\(853\) 7.74759 21.2863i 0.265272 0.728830i −0.733518 0.679670i \(-0.762123\pi\)
0.998791 0.0491605i \(-0.0156546\pi\)
\(854\) 14.4437 25.0172i 0.494252 0.856070i
\(855\) 0 0
\(856\) −5.10338 8.83931i −0.174430 0.302122i
\(857\) 7.37341 1.30013i 0.251871 0.0444116i −0.0462871 0.998928i \(-0.514739\pi\)
0.298158 + 0.954517i \(0.403628\pi\)
\(858\) 7.15115 + 14.8947i 0.244136 + 0.508495i
\(859\) 38.2228 13.9119i 1.30414 0.474669i 0.405800 0.913962i \(-0.366993\pi\)
0.898344 + 0.439293i \(0.144771\pi\)
\(860\) 0 0
\(861\) 6.15820 + 21.9875i 0.209871 + 0.749330i
\(862\) 8.99590 + 10.7209i 0.306401 + 0.365155i
\(863\) 8.68298i 0.295572i −0.989019 0.147786i \(-0.952785\pi\)
0.989019 0.147786i \(-0.0472147\pi\)
\(864\) −15.8885 6.76419i −0.540538 0.230122i
\(865\) 0 0
\(866\) −10.6509 + 8.93718i −0.361933 + 0.303698i
\(867\) −10.4175 + 40.7102i −0.353796 + 1.38259i
\(868\) −4.11565 0.725699i −0.139694 0.0246318i
\(869\) 43.6417 15.8843i 1.48044 0.538837i
\(870\) 0 0
\(871\) −4.48128 25.4146i −0.151842 0.861141i
\(872\) 14.9026 8.60405i 0.504667 0.291370i
\(873\) 44.8008 + 15.1705i 1.51628 + 0.513445i
\(874\) −10.9124 + 18.9008i −0.369117 + 0.639330i
\(875\) 0 0
\(876\) 4.27007 9.43361i 0.144272 0.318732i
\(877\) −18.8985 + 22.5224i −0.638157 + 0.760526i −0.984078 0.177737i \(-0.943122\pi\)
0.345920 + 0.938264i \(0.387567\pi\)
\(878\) −16.6766 + 19.8744i −0.562808 + 0.670728i
\(879\) 3.35804 + 4.68244i 0.113264 + 0.157935i
\(880\) 0 0
\(881\) 12.3020 21.3077i 0.414466 0.717876i −0.580906 0.813970i \(-0.697302\pi\)
0.995372 + 0.0960945i \(0.0306351\pi\)
\(882\) 9.23486 16.8628i 0.310954 0.567799i
\(883\) −40.6122 + 23.4475i −1.36671 + 0.789070i −0.990506 0.137468i \(-0.956104\pi\)
−0.376203 + 0.926537i \(0.622770\pi\)
\(884\) −1.28065 7.26295i −0.0430730 0.244279i
\(885\) 0 0
\(886\) −14.0207 + 5.10313i −0.471036 + 0.171443i
\(887\) −46.3007 8.16406i −1.55462 0.274122i −0.670692 0.741736i \(-0.734003\pi\)
−0.883933 + 0.467614i \(0.845114\pi\)
\(888\) −2.26527 2.21473i −0.0760176 0.0743215i
\(889\) −23.8090 + 19.9781i −0.798528 + 0.670044i
\(890\) 0 0
\(891\) −26.8071 8.40827i −0.898073 0.281688i
\(892\) 11.3539i 0.380158i
\(893\) 22.3568 + 26.6438i 0.748142 + 0.891601i
\(894\) −35.1144 + 35.9157i −1.17440 + 1.20120i
\(895\) 0 0
\(896\) 22.2957 8.11497i 0.744847 0.271102i
\(897\) −9.07346 0.690776i −0.302954 0.0230643i
\(898\) −58.8986 + 10.3854i −1.96547 + 0.346566i
\(899\) −15.3568 26.5988i −0.512179 0.887120i
\(900\) 0 0
\(901\) 5.99998 10.3923i 0.199888 0.346217i
\(902\) −13.0534 + 35.8640i −0.434631 + 1.19414i
\(903\) −6.46021 + 4.63297i −0.214982 + 0.154176i
\(904\) −5.80060 4.86728i −0.192925 0.161883i
\(905\) 0 0
\(906\) −22.5400 + 49.7962i −0.748840 + 1.65437i
\(907\) −12.9206 + 35.4991i −0.429022 + 1.17873i 0.517386 + 0.855752i \(0.326905\pi\)
−0.946408 + 0.322975i \(0.895317\pi\)
\(908\) −9.22640 5.32686i −0.306189 0.176778i
\(909\) −18.8614 + 3.76640i −0.625592 + 0.124924i
\(910\) 0 0
\(911\) 3.66733 + 20.7985i 0.121504 + 0.689084i 0.983323 + 0.181868i \(0.0582142\pi\)
−0.861819 + 0.507216i \(0.830675\pi\)
\(912\) 23.0633 33.7417i 0.763703 1.11730i
\(913\) −9.84862 27.0589i −0.325942 0.895518i
\(914\) −0.382060 + 2.16677i −0.0126374 + 0.0716704i
\(915\) 0 0
\(916\) −3.51517 + 2.94958i −0.116145 + 0.0974569i
\(917\) 23.7964i 0.785826i
\(918\) 45.1629 + 29.3974i 1.49060 + 0.970258i
\(919\) −46.4789 −1.53320 −0.766599 0.642126i \(-0.778053\pi\)
−0.766599 + 0.642126i \(0.778053\pi\)
\(920\) 0 0
\(921\) 2.05472 + 7.33624i 0.0677053 + 0.241737i
\(922\) −13.3239 2.34936i −0.438799 0.0773721i
\(923\) −5.26156 14.4560i −0.173186 0.475825i
\(924\) −5.14710 + 2.47120i −0.169327 + 0.0812965i
\(925\) 0 0
\(926\) 23.1018 + 40.0135i 0.759171 + 1.31492i
\(927\) 20.2236 7.88190i 0.664229 0.258876i
\(928\) −22.3361 12.8957i −0.733217 0.423323i
\(929\) 39.5960 + 14.4118i 1.29910 + 0.472834i 0.896704 0.442630i \(-0.145955\pi\)
0.402398 + 0.915465i \(0.368177\pi\)
\(930\) 0 0
\(931\) 14.8088 + 12.4261i 0.485339 + 0.407248i
\(932\) −2.70856 + 3.22794i −0.0887220 + 0.105735i
\(933\) −2.63837 26.6857i −0.0863765 0.873652i
\(934\) −3.50181 1.27455i −0.114583 0.0417047i
\(935\) 0 0
\(936\) 12.6268 + 1.93380i 0.412719 + 0.0632082i
\(937\) −35.5924 + 20.5493i −1.16275 + 0.671316i −0.951962 0.306215i \(-0.900937\pi\)
−0.210791 + 0.977531i \(0.567604\pi\)
\(938\) 37.7390 6.65440i 1.23222 0.217274i
\(939\) 16.9171 8.12217i 0.552069 0.265057i
\(940\) 0 0
\(941\) −0.695320 + 3.94336i −0.0226668 + 0.128550i −0.994041 0.109003i \(-0.965234\pi\)
0.971375 + 0.237553i \(0.0763453\pi\)
\(942\) 21.6633 6.06741i 0.705828 0.197687i
\(943\) −13.5112 16.1021i −0.439986 0.524355i
\(944\) −5.00705 −0.162966
\(945\) 0 0
\(946\) −13.2878 −0.432024
\(947\) 11.1686 + 13.3102i 0.362931 + 0.432524i 0.916350 0.400379i \(-0.131121\pi\)
−0.553419 + 0.832903i \(0.686677\pi\)
\(948\) −3.87504 + 15.1432i −0.125856 + 0.491828i
\(949\) −3.23932 + 18.3711i −0.105153 + 0.596351i
\(950\) 0 0
\(951\) 15.1179 + 10.3335i 0.490231 + 0.335086i
\(952\) −24.7742 + 4.36836i −0.802936 + 0.141579i
\(953\) 41.4931 23.9561i 1.34409 0.776013i 0.356688 0.934223i \(-0.383906\pi\)
0.987405 + 0.158211i \(0.0505725\pi\)
\(954\) −5.97102 6.79840i −0.193319 0.220106i
\(955\) 0 0
\(956\) 11.6861 + 4.25341i 0.377957 + 0.137565i
\(957\) −38.2276 17.3035i −1.23572 0.559343i
\(958\) −0.898889 + 1.07125i −0.0290418 + 0.0346107i
\(959\) 18.5784 + 15.5891i 0.599928 + 0.503400i
\(960\) 0 0
\(961\) 14.4128 + 5.24583i 0.464929 + 0.169220i
\(962\) −2.15167 1.24226i −0.0693725 0.0400522i
\(963\) 13.6077 0.307084i 0.438502 0.00989564i
\(964\) −7.08601 12.2733i −0.228225 0.395297i
\(965\) 0 0
\(966\) 1.02576 13.4735i 0.0330032 0.433502i
\(967\) 13.1922 + 36.2453i 0.424233 + 1.16557i 0.949262 + 0.314486i \(0.101832\pi\)
−0.525029 + 0.851084i \(0.675946\pi\)
\(968\) −2.78106 0.490376i −0.0893866 0.0157613i
\(969\) −37.8791 + 38.7435i −1.21685 + 1.24462i
\(970\) 0 0
\(971\) −14.6886 −0.471379 −0.235689 0.971828i \(-0.575735\pi\)
−0.235689 + 0.971828i \(0.575735\pi\)
\(972\) 7.42770 5.85173i 0.238244 0.187694i
\(973\) 31.0826i 0.996462i
\(974\) 25.3168 21.2433i 0.811202 0.680679i
\(975\) 0 0
\(976\) 8.64757 49.0428i 0.276802 1.56982i
\(977\) −1.90462 5.23291i −0.0609343 0.167416i 0.905490 0.424368i \(-0.139504\pi\)
−0.966424 + 0.256953i \(0.917282\pi\)
\(978\) 14.7085 + 1.11978i 0.470327 + 0.0358067i
\(979\) 6.80987 + 38.6207i 0.217644 + 1.23432i
\(980\) 0 0
\(981\) 0.517728 + 22.9419i 0.0165298 + 0.732478i
\(982\) −59.9667 34.6218i −1.91361 1.10483i
\(983\) 10.2816 28.2485i 0.327932 0.900987i −0.660702 0.750648i \(-0.729741\pi\)
0.988635 0.150339i \(-0.0480364\pi\)
\(984\) 17.1962 + 23.9783i 0.548194 + 0.764401i
\(985\) 0 0
\(986\) 61.6549 + 51.7346i 1.96349 + 1.64756i
\(987\) −19.6180 8.87996i −0.624447 0.282652i
\(988\) 1.91240 5.25427i 0.0608415 0.167161i
\(989\) 3.65913 6.33780i 0.116354 0.201530i
\(990\) 0 0
\(991\) 28.1316 + 48.7254i 0.893631 + 1.54781i 0.835490 + 0.549506i \(0.185184\pi\)
0.0581407 + 0.998308i \(0.481483\pi\)
\(992\) −12.9524 + 2.28385i −0.411238 + 0.0725123i
\(993\) 10.3059 15.0776i 0.327049 0.478474i
\(994\) 21.4662 7.81307i 0.680867 0.247815i
\(995\) 0 0
\(996\) 9.38913 + 2.40262i 0.297506 + 0.0761299i
\(997\) −1.23074 1.46674i −0.0389779 0.0464520i 0.746203 0.665718i \(-0.231875\pi\)
−0.785181 + 0.619266i \(0.787430\pi\)
\(998\) 9.90951i 0.313680i
\(999\) 4.04143 1.23090i 0.127865 0.0389439i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.e.49.18 132
5.2 odd 4 675.2.l.f.76.3 66
5.3 odd 4 675.2.l.g.76.9 yes 66
5.4 even 2 inner 675.2.u.e.49.5 132
27.16 even 9 inner 675.2.u.e.124.5 132
135.43 odd 36 675.2.l.g.151.9 yes 66
135.97 odd 36 675.2.l.f.151.3 yes 66
135.124 even 18 inner 675.2.u.e.124.18 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.3 66 5.2 odd 4
675.2.l.f.151.3 yes 66 135.97 odd 36
675.2.l.g.76.9 yes 66 5.3 odd 4
675.2.l.g.151.9 yes 66 135.43 odd 36
675.2.u.e.49.5 132 5.4 even 2 inner
675.2.u.e.49.18 132 1.1 even 1 trivial
675.2.u.e.124.5 132 27.16 even 9 inner
675.2.u.e.124.18 132 135.124 even 18 inner