Properties

Label 700.2.t.c.199.9
Level $700$
Weight $2$
Character 700.199
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(199,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.9
Character \(\chi\) \(=\) 700.199
Dual form 700.2.t.c.299.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.299797 + 1.38207i) q^{2} +(2.37047 + 1.36859i) q^{3} +(-1.82024 + 0.828682i) q^{4} +(-1.18083 + 3.68646i) q^{6} +(-2.43939 + 1.02440i) q^{7} +(-1.69100 - 2.26727i) q^{8} +(2.24609 + 3.89033i) q^{9} +(-0.0868131 - 0.0501216i) q^{11} +(-5.44896 - 0.526805i) q^{12} -4.11735 q^{13} +(-2.14711 - 3.06430i) q^{14} +(2.62657 - 3.01680i) q^{16} +(-2.69867 + 4.67424i) q^{17} +(-4.70335 + 4.27056i) q^{18} +(3.72967 + 6.45997i) q^{19} +(-7.18448 - 0.910218i) q^{21} +(0.0432453 - 0.135008i) q^{22} +(0.754151 + 1.30623i) q^{23} +(-0.905498 - 7.68879i) q^{24} +(-1.23437 - 5.69048i) q^{26} +4.08434i q^{27} +(3.59138 - 3.88613i) q^{28} +2.37688 q^{29} +(2.72129 - 4.71341i) q^{31} +(4.95688 + 2.72568i) q^{32} +(-0.137192 - 0.237623i) q^{33} +(-7.26919 - 2.32844i) q^{34} +(-7.31227 - 5.22007i) q^{36} +(0.899386 - 0.519260i) q^{37} +(-7.81000 + 7.09135i) q^{38} +(-9.76007 - 5.63498i) q^{39} +7.99125i q^{41} +(-0.895897 - 10.2023i) q^{42} +7.04778 q^{43} +(0.199556 + 0.0192930i) q^{44} +(-1.57921 + 1.43389i) q^{46} +(3.84841 - 2.22188i) q^{47} +(10.3550 - 3.55654i) q^{48} +(4.90122 - 4.99781i) q^{49} +(-12.7943 + 7.38677i) q^{51} +(7.49459 - 3.41198i) q^{52} +(5.31966 + 3.07131i) q^{53} +(-5.64485 + 1.22447i) q^{54} +(6.44759 + 3.79849i) q^{56} +20.4176i q^{57} +(0.712582 + 3.28502i) q^{58} +(4.26148 - 7.38111i) q^{59} +(6.84408 - 3.95143i) q^{61} +(7.33010 + 2.34795i) q^{62} +(-9.46432 - 7.18914i) q^{63} +(-2.28103 + 7.66791i) q^{64} +(0.287283 - 0.260848i) q^{66} +(-0.0549000 + 0.0950895i) q^{67} +(1.03879 - 10.7446i) q^{68} +4.12850i q^{69} -6.73221i q^{71} +(5.02231 - 11.6710i) q^{72} +(-3.07349 + 5.32344i) q^{73} +(0.987288 + 1.08734i) q^{74} +(-12.1422 - 8.66802i) q^{76} +(0.263115 + 0.0333347i) q^{77} +(4.86190 - 15.1785i) q^{78} +(3.70178 - 2.13723i) q^{79} +(1.14846 - 1.98919i) q^{81} +(-11.0445 + 2.39575i) q^{82} -6.50159i q^{83} +(13.8318 - 4.29682i) q^{84} +(2.11290 + 9.74053i) q^{86} +(5.63433 + 3.25298i) q^{87} +(0.0331618 + 0.281584i) q^{88} +(2.76417 - 1.59589i) q^{89} +(10.0438 - 4.21781i) q^{91} +(-2.45519 - 1.75270i) q^{92} +(12.9015 - 7.44866i) q^{93} +(4.22454 + 4.65267i) q^{94} +(8.01978 + 13.2451i) q^{96} -11.0691 q^{97} +(8.37670 + 5.27550i) q^{98} -0.450309i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{4} + 16 q^{9} - 14 q^{12} - 8 q^{13} - 2 q^{14} - 14 q^{16} + 54 q^{18} - 12 q^{21} - 36 q^{24} + 30 q^{26} + 32 q^{28} + 40 q^{29} + 60 q^{32} - 24 q^{33} + 60 q^{36} - 60 q^{37} - 46 q^{38}+ \cdots - 124 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.299797 + 1.38207i 0.211988 + 0.977272i
\(3\) 2.37047 + 1.36859i 1.36859 + 0.790157i 0.990748 0.135713i \(-0.0433325\pi\)
0.377843 + 0.925870i \(0.376666\pi\)
\(4\) −1.82024 + 0.828682i −0.910122 + 0.414341i
\(5\) 0 0
\(6\) −1.18083 + 3.68646i −0.482073 + 1.50499i
\(7\) −2.43939 + 1.02440i −0.922002 + 0.387186i
\(8\) −1.69100 2.26727i −0.597859 0.801601i
\(9\) 2.24609 + 3.89033i 0.748695 + 1.29678i
\(10\) 0 0
\(11\) −0.0868131 0.0501216i −0.0261751 0.0151122i 0.486855 0.873483i \(-0.338144\pi\)
−0.513030 + 0.858370i \(0.671477\pi\)
\(12\) −5.44896 0.526805i −1.57298 0.152076i
\(13\) −4.11735 −1.14195 −0.570974 0.820968i \(-0.693434\pi\)
−0.570974 + 0.820968i \(0.693434\pi\)
\(14\) −2.14711 3.06430i −0.573840 0.818967i
\(15\) 0 0
\(16\) 2.62657 3.01680i 0.656643 0.754201i
\(17\) −2.69867 + 4.67424i −0.654525 + 1.13367i 0.327488 + 0.944855i \(0.393798\pi\)
−0.982013 + 0.188815i \(0.939535\pi\)
\(18\) −4.70335 + 4.27056i −1.10859 + 1.00658i
\(19\) 3.72967 + 6.45997i 0.855645 + 1.48202i 0.876046 + 0.482228i \(0.160172\pi\)
−0.0204012 + 0.999792i \(0.506494\pi\)
\(20\) 0 0
\(21\) −7.18448 0.910218i −1.56778 0.198626i
\(22\) 0.0432453 0.135008i 0.00921993 0.0287838i
\(23\) 0.754151 + 1.30623i 0.157251 + 0.272367i 0.933877 0.357596i \(-0.116403\pi\)
−0.776625 + 0.629963i \(0.783070\pi\)
\(24\) −0.905498 7.68879i −0.184834 1.56947i
\(25\) 0 0
\(26\) −1.23437 5.69048i −0.242080 1.11599i
\(27\) 4.08434i 0.786032i
\(28\) 3.59138 3.88613i 0.678707 0.734409i
\(29\) 2.37688 0.441376 0.220688 0.975344i \(-0.429170\pi\)
0.220688 + 0.975344i \(0.429170\pi\)
\(30\) 0 0
\(31\) 2.72129 4.71341i 0.488758 0.846553i −0.511159 0.859486i \(-0.670783\pi\)
0.999916 + 0.0129330i \(0.00411682\pi\)
\(32\) 4.95688 + 2.72568i 0.876261 + 0.481837i
\(33\) −0.137192 0.237623i −0.0238820 0.0413649i
\(34\) −7.26919 2.32844i −1.24666 0.399324i
\(35\) 0 0
\(36\) −7.31227 5.22007i −1.21871 0.870011i
\(37\) 0.899386 0.519260i 0.147858 0.0853659i −0.424246 0.905547i \(-0.639461\pi\)
0.572104 + 0.820181i \(0.306127\pi\)
\(38\) −7.81000 + 7.09135i −1.26695 + 1.15037i
\(39\) −9.76007 5.63498i −1.56286 0.902318i
\(40\) 0 0
\(41\) 7.99125i 1.24802i 0.781415 + 0.624012i \(0.214498\pi\)
−0.781415 + 0.624012i \(0.785502\pi\)
\(42\) −0.895897 10.2023i −0.138240 1.57426i
\(43\) 7.04778 1.07478 0.537388 0.843335i \(-0.319411\pi\)
0.537388 + 0.843335i \(0.319411\pi\)
\(44\) 0.199556 + 0.0192930i 0.0300842 + 0.00290854i
\(45\) 0 0
\(46\) −1.57921 + 1.43389i −0.232842 + 0.211416i
\(47\) 3.84841 2.22188i 0.561348 0.324095i −0.192338 0.981329i \(-0.561607\pi\)
0.753686 + 0.657234i \(0.228274\pi\)
\(48\) 10.3550 3.55654i 1.49461 0.513342i
\(49\) 4.90122 4.99781i 0.700174 0.713973i
\(50\) 0 0
\(51\) −12.7943 + 7.38677i −1.79155 + 1.03435i
\(52\) 7.49459 3.41198i 1.03931 0.473156i
\(53\) 5.31966 + 3.07131i 0.730711 + 0.421876i 0.818682 0.574247i \(-0.194705\pi\)
−0.0879710 + 0.996123i \(0.528038\pi\)
\(54\) −5.64485 + 1.22447i −0.768167 + 0.166630i
\(55\) 0 0
\(56\) 6.44759 + 3.79849i 0.861596 + 0.507595i
\(57\) 20.4176i 2.70437i
\(58\) 0.712582 + 3.28502i 0.0935666 + 0.431344i
\(59\) 4.26148 7.38111i 0.554798 0.960938i −0.443121 0.896462i \(-0.646129\pi\)
0.997919 0.0644767i \(-0.0205378\pi\)
\(60\) 0 0
\(61\) 6.84408 3.95143i 0.876295 0.505929i 0.00685975 0.999976i \(-0.497816\pi\)
0.869435 + 0.494048i \(0.164483\pi\)
\(62\) 7.33010 + 2.34795i 0.930924 + 0.298190i
\(63\) −9.46432 7.18914i −1.19239 0.905747i
\(64\) −2.28103 + 7.66791i −0.285129 + 0.958489i
\(65\) 0 0
\(66\) 0.287283 0.260848i 0.0353621 0.0321081i
\(67\) −0.0549000 + 0.0950895i −0.00670710 + 0.0116170i −0.869359 0.494180i \(-0.835468\pi\)
0.862652 + 0.505797i \(0.168802\pi\)
\(68\) 1.03879 10.7446i 0.125972 1.30297i
\(69\) 4.12850i 0.497013i
\(70\) 0 0
\(71\) 6.73221i 0.798967i −0.916740 0.399483i \(-0.869190\pi\)
0.916740 0.399483i \(-0.130810\pi\)
\(72\) 5.02231 11.6710i 0.591885 1.37545i
\(73\) −3.07349 + 5.32344i −0.359725 + 0.623062i −0.987915 0.154998i \(-0.950463\pi\)
0.628190 + 0.778060i \(0.283796\pi\)
\(74\) 0.987288 + 1.08734i 0.114770 + 0.126401i
\(75\) 0 0
\(76\) −12.1422 8.66802i −1.39280 0.994290i
\(77\) 0.263115 + 0.0333347i 0.0299848 + 0.00379884i
\(78\) 4.86190 15.1785i 0.550502 1.71862i
\(79\) 3.70178 2.13723i 0.416483 0.240457i −0.277088 0.960844i \(-0.589369\pi\)
0.693572 + 0.720388i \(0.256036\pi\)
\(80\) 0 0
\(81\) 1.14846 1.98919i 0.127607 0.221021i
\(82\) −11.0445 + 2.39575i −1.21966 + 0.264566i
\(83\) 6.50159i 0.713642i −0.934173 0.356821i \(-0.883861\pi\)
0.934173 0.356821i \(-0.116139\pi\)
\(84\) 13.8318 4.29682i 1.50917 0.468822i
\(85\) 0 0
\(86\) 2.11290 + 9.74053i 0.227840 + 1.05035i
\(87\) 5.63433 + 3.25298i 0.604063 + 0.348756i
\(88\) 0.0331618 + 0.281584i 0.00353506 + 0.0300170i
\(89\) 2.76417 1.59589i 0.293001 0.169164i −0.346293 0.938126i \(-0.612560\pi\)
0.639294 + 0.768962i \(0.279226\pi\)
\(90\) 0 0
\(91\) 10.0438 4.21781i 1.05288 0.442147i
\(92\) −2.45519 1.75270i −0.255971 0.182732i
\(93\) 12.9015 7.44866i 1.33782 0.772391i
\(94\) 4.22454 + 4.65267i 0.435728 + 0.479886i
\(95\) 0 0
\(96\) 8.01978 + 13.2451i 0.818516 + 1.35182i
\(97\) −11.0691 −1.12390 −0.561948 0.827173i \(-0.689948\pi\)
−0.561948 + 0.827173i \(0.689948\pi\)
\(98\) 8.37670 + 5.27550i 0.846174 + 0.532906i
\(99\) 0.450309i 0.0452578i
\(100\) 0 0
\(101\) −6.20412 3.58195i −0.617333 0.356418i 0.158497 0.987359i \(-0.449335\pi\)
−0.775830 + 0.630942i \(0.782669\pi\)
\(102\) −14.0447 15.4680i −1.39063 1.53156i
\(103\) −4.23147 + 2.44304i −0.416939 + 0.240720i −0.693767 0.720200i \(-0.744050\pi\)
0.276828 + 0.960920i \(0.410717\pi\)
\(104\) 6.96245 + 9.33516i 0.682724 + 0.915388i
\(105\) 0 0
\(106\) −2.64995 + 8.27292i −0.257386 + 0.803537i
\(107\) −3.78436 6.55470i −0.365848 0.633667i 0.623064 0.782171i \(-0.285888\pi\)
−0.988912 + 0.148504i \(0.952554\pi\)
\(108\) −3.38462 7.43450i −0.325685 0.715385i
\(109\) −9.02662 + 15.6346i −0.864593 + 1.49752i 0.00285729 + 0.999996i \(0.499090\pi\)
−0.867451 + 0.497523i \(0.834243\pi\)
\(110\) 0 0
\(111\) 2.84262 0.269810
\(112\) −3.31682 + 10.0498i −0.313410 + 0.949618i
\(113\) 18.1432i 1.70677i 0.521283 + 0.853384i \(0.325453\pi\)
−0.521283 + 0.853384i \(0.674547\pi\)
\(114\) −28.2185 + 6.12112i −2.64291 + 0.573296i
\(115\) 0 0
\(116\) −4.32651 + 1.96968i −0.401706 + 0.182880i
\(117\) −9.24793 16.0179i −0.854971 1.48085i
\(118\) 11.4788 + 3.67684i 1.05671 + 0.338481i
\(119\) 1.79483 14.1668i 0.164531 1.29867i
\(120\) 0 0
\(121\) −5.49498 9.51758i −0.499543 0.865234i
\(122\) 7.51299 + 8.27438i 0.680195 + 0.749127i
\(123\) −10.9368 + 18.9430i −0.986134 + 1.70803i
\(124\) −1.04749 + 10.8346i −0.0940676 + 0.972979i
\(125\) 0 0
\(126\) 7.09853 15.2357i 0.632388 1.35730i
\(127\) −4.37573 −0.388283 −0.194141 0.980974i \(-0.562192\pi\)
−0.194141 + 0.980974i \(0.562192\pi\)
\(128\) −11.2815 0.853736i −0.997149 0.0754603i
\(129\) 16.7065 + 9.64553i 1.47093 + 0.849241i
\(130\) 0 0
\(131\) 1.49073 + 2.58201i 0.130245 + 0.225592i 0.923771 0.382945i \(-0.125090\pi\)
−0.793526 + 0.608537i \(0.791757\pi\)
\(132\) 0.446637 + 0.318844i 0.0388747 + 0.0277518i
\(133\) −15.7157 11.9377i −1.36272 1.03513i
\(134\) −0.147879 0.0473681i −0.0127748 0.00409198i
\(135\) 0 0
\(136\) 15.1612 1.78552i 1.30007 0.153107i
\(137\) 1.32048 + 0.762377i 0.112816 + 0.0651342i 0.555346 0.831619i \(-0.312586\pi\)
−0.442530 + 0.896754i \(0.645919\pi\)
\(138\) −5.70588 + 1.23771i −0.485717 + 0.105361i
\(139\) 7.16082 0.607373 0.303686 0.952772i \(-0.401783\pi\)
0.303686 + 0.952772i \(0.401783\pi\)
\(140\) 0 0
\(141\) 12.1634 1.02434
\(142\) 9.30440 2.01830i 0.780808 0.169372i
\(143\) 0.357440 + 0.206368i 0.0298907 + 0.0172574i
\(144\) 17.6359 + 3.44225i 1.46966 + 0.286854i
\(145\) 0 0
\(146\) −8.27880 2.65183i −0.685158 0.219467i
\(147\) 18.4581 5.13939i 1.52240 0.423890i
\(148\) −1.20680 + 1.69048i −0.0991983 + 0.138957i
\(149\) −10.5236 18.2275i −0.862129 1.49325i −0.869870 0.493282i \(-0.835797\pi\)
0.00774027 0.999970i \(-0.497536\pi\)
\(150\) 0 0
\(151\) 3.31081 + 1.91150i 0.269430 + 0.155555i 0.628628 0.777706i \(-0.283617\pi\)
−0.359199 + 0.933261i \(0.616950\pi\)
\(152\) 8.33964 19.3800i 0.676434 1.57192i
\(153\) −24.2458 −1.96016
\(154\) 0.0328102 + 0.373638i 0.00264392 + 0.0301086i
\(155\) 0 0
\(156\) 22.4353 + 2.16904i 1.79626 + 0.173663i
\(157\) 0.642065 1.11209i 0.0512423 0.0887543i −0.839266 0.543720i \(-0.817015\pi\)
0.890509 + 0.454966i \(0.150349\pi\)
\(158\) 4.06358 + 4.47540i 0.323281 + 0.356044i
\(159\) 8.40673 + 14.5609i 0.666697 + 1.15475i
\(160\) 0 0
\(161\) −3.17776 2.41384i −0.250443 0.190238i
\(162\) 3.09351 + 0.990900i 0.243049 + 0.0778525i
\(163\) −4.30054 7.44875i −0.336844 0.583431i 0.646993 0.762496i \(-0.276026\pi\)
−0.983837 + 0.179064i \(0.942693\pi\)
\(164\) −6.62220 14.5460i −0.517107 1.13585i
\(165\) 0 0
\(166\) 8.98566 1.94916i 0.697422 0.151284i
\(167\) 8.10448i 0.627144i 0.949565 + 0.313572i \(0.101526\pi\)
−0.949565 + 0.313572i \(0.898474\pi\)
\(168\) 10.0852 + 17.8283i 0.778093 + 1.37549i
\(169\) 3.95261 0.304047
\(170\) 0 0
\(171\) −16.7543 + 29.0193i −1.28123 + 2.21916i
\(172\) −12.8287 + 5.84036i −0.978177 + 0.445323i
\(173\) 4.01688 + 6.95744i 0.305398 + 0.528964i 0.977350 0.211630i \(-0.0678773\pi\)
−0.671952 + 0.740595i \(0.734544\pi\)
\(174\) −2.80670 + 8.76228i −0.212775 + 0.664267i
\(175\) 0 0
\(176\) −0.379228 + 0.130250i −0.0285854 + 0.00981797i
\(177\) 20.2034 11.6645i 1.51858 0.876755i
\(178\) 3.03433 + 3.34183i 0.227432 + 0.250481i
\(179\) −7.66309 4.42429i −0.572766 0.330687i 0.185487 0.982647i \(-0.440614\pi\)
−0.758253 + 0.651960i \(0.773947\pi\)
\(180\) 0 0
\(181\) 21.3610i 1.58775i 0.608082 + 0.793874i \(0.291939\pi\)
−0.608082 + 0.793874i \(0.708061\pi\)
\(182\) 8.84042 + 12.6168i 0.655296 + 0.935219i
\(183\) 21.6316 1.59905
\(184\) 1.68630 3.91870i 0.124316 0.288890i
\(185\) 0 0
\(186\) 14.1624 + 15.5977i 1.03844 + 1.14368i
\(187\) 0.468561 0.270524i 0.0342645 0.0197826i
\(188\) −5.16381 + 7.23347i −0.376610 + 0.527555i
\(189\) −4.18399 9.96329i −0.304341 0.724723i
\(190\) 0 0
\(191\) 21.6710 12.5117i 1.56806 0.905317i 0.571660 0.820491i \(-0.306300\pi\)
0.996396 0.0848269i \(-0.0270337\pi\)
\(192\) −15.9014 + 15.0548i −1.14758 + 1.08648i
\(193\) 7.06813 + 4.08078i 0.508775 + 0.293741i 0.732330 0.680950i \(-0.238433\pi\)
−0.223555 + 0.974691i \(0.571766\pi\)
\(194\) −3.31848 15.2983i −0.238253 1.09835i
\(195\) 0 0
\(196\) −4.77982 + 13.1588i −0.341415 + 0.939913i
\(197\) 12.4517i 0.887149i −0.896238 0.443574i \(-0.853710\pi\)
0.896238 0.443574i \(-0.146290\pi\)
\(198\) 0.622359 0.135001i 0.0442292 0.00959412i
\(199\) −11.5867 + 20.0687i −0.821358 + 1.42263i 0.0833132 + 0.996523i \(0.473450\pi\)
−0.904671 + 0.426110i \(0.859884\pi\)
\(200\) 0 0
\(201\) −0.260277 + 0.150271i −0.0183586 + 0.0105993i
\(202\) 3.09054 9.64840i 0.217449 0.678859i
\(203\) −5.79814 + 2.43487i −0.406949 + 0.170895i
\(204\) 17.1674 24.0481i 1.20196 1.68370i
\(205\) 0 0
\(206\) −4.64504 5.11578i −0.323635 0.356433i
\(207\) −3.38778 + 5.86780i −0.235467 + 0.407840i
\(208\) −10.8145 + 12.4213i −0.749853 + 0.861259i
\(209\) 0.747747i 0.0517228i
\(210\) 0 0
\(211\) 10.9759i 0.755613i 0.925885 + 0.377807i \(0.123322\pi\)
−0.925885 + 0.377807i \(0.876678\pi\)
\(212\) −12.2282 1.18222i −0.839837 0.0811954i
\(213\) 9.21365 15.9585i 0.631309 1.09346i
\(214\) 7.92453 7.19533i 0.541710 0.491863i
\(215\) 0 0
\(216\) 9.26031 6.90663i 0.630084 0.469936i
\(217\) −1.80987 + 14.2855i −0.122862 + 0.969764i
\(218\) −24.3142 7.78824i −1.64677 0.527486i
\(219\) −14.5712 + 8.41270i −0.984633 + 0.568478i
\(220\) 0 0
\(221\) 11.1114 19.2455i 0.747434 1.29459i
\(222\) 0.852209 + 3.92871i 0.0571965 + 0.263678i
\(223\) 14.9798i 1.00312i 0.865123 + 0.501559i \(0.167240\pi\)
−0.865123 + 0.501559i \(0.832760\pi\)
\(224\) −14.8839 1.57118i −0.994474 0.104979i
\(225\) 0 0
\(226\) −25.0752 + 5.43927i −1.66798 + 0.361815i
\(227\) 1.30546 + 0.753708i 0.0866465 + 0.0500254i 0.542697 0.839928i \(-0.317403\pi\)
−0.456051 + 0.889954i \(0.650736\pi\)
\(228\) −16.9197 37.1649i −1.12053 2.46131i
\(229\) −7.38329 + 4.26274i −0.487901 + 0.281690i −0.723703 0.690111i \(-0.757562\pi\)
0.235802 + 0.971801i \(0.424228\pi\)
\(230\) 0 0
\(231\) 0.578085 + 0.439116i 0.0380352 + 0.0288917i
\(232\) −4.01931 5.38904i −0.263881 0.353808i
\(233\) 18.3799 10.6117i 1.20411 0.695193i 0.242644 0.970115i \(-0.421985\pi\)
0.961467 + 0.274922i \(0.0886520\pi\)
\(234\) 19.3654 17.5834i 1.26595 1.14946i
\(235\) 0 0
\(236\) −1.64035 + 16.9668i −0.106778 + 1.10445i
\(237\) 11.7000 0.759994
\(238\) 20.1176 1.76659i 1.30403 0.114511i
\(239\) 10.1532i 0.656754i 0.944547 + 0.328377i \(0.106502\pi\)
−0.944547 + 0.328377i \(0.893498\pi\)
\(240\) 0 0
\(241\) 16.4985 + 9.52539i 1.06276 + 0.613584i 0.926194 0.377047i \(-0.123060\pi\)
0.136565 + 0.990631i \(0.456394\pi\)
\(242\) 11.5066 10.4478i 0.739672 0.671609i
\(243\) 16.0562 9.27006i 1.03001 0.594674i
\(244\) −9.18342 + 12.8641i −0.587908 + 0.823542i
\(245\) 0 0
\(246\) −29.4594 9.43632i −1.87826 0.601638i
\(247\) −15.3564 26.5980i −0.977102 1.69239i
\(248\) −15.2883 + 1.80048i −0.970807 + 0.114331i
\(249\) 8.89801 15.4118i 0.563889 0.976684i
\(250\) 0 0
\(251\) 9.46184 0.597226 0.298613 0.954374i \(-0.403476\pi\)
0.298613 + 0.954374i \(0.403476\pi\)
\(252\) 23.1849 + 5.24308i 1.46051 + 0.330283i
\(253\) 0.151197i 0.00950567i
\(254\) −1.31183 6.04757i −0.0823115 0.379458i
\(255\) 0 0
\(256\) −2.20222 15.8477i −0.137639 0.990483i
\(257\) 1.37271 + 2.37760i 0.0856270 + 0.148310i 0.905658 0.424008i \(-0.139377\pi\)
−0.820031 + 0.572319i \(0.806044\pi\)
\(258\) −8.32224 + 25.9813i −0.518120 + 1.61753i
\(259\) −1.66202 + 2.18801i −0.103273 + 0.135956i
\(260\) 0 0
\(261\) 5.33868 + 9.24686i 0.330456 + 0.572367i
\(262\) −3.12161 + 2.83437i −0.192854 + 0.175108i
\(263\) 12.8384 22.2367i 0.791648 1.37117i −0.133298 0.991076i \(-0.542557\pi\)
0.924946 0.380098i \(-0.124110\pi\)
\(264\) −0.306765 + 0.712872i −0.0188801 + 0.0438743i
\(265\) 0 0
\(266\) 11.7873 25.2991i 0.722723 1.55119i
\(267\) 8.73650 0.534665
\(268\) 0.0211324 0.218581i 0.00129087 0.0133519i
\(269\) −7.10140 4.10000i −0.432980 0.249981i 0.267635 0.963520i \(-0.413758\pi\)
−0.700615 + 0.713539i \(0.747091\pi\)
\(270\) 0 0
\(271\) −3.20364 5.54886i −0.194607 0.337069i 0.752165 0.658975i \(-0.229010\pi\)
−0.946772 + 0.321906i \(0.895676\pi\)
\(272\) 7.01301 + 20.4186i 0.425226 + 1.23806i
\(273\) 29.5810 + 3.74769i 1.79033 + 0.226821i
\(274\) −0.657785 + 2.05355i −0.0397382 + 0.124059i
\(275\) 0 0
\(276\) −3.42121 7.51488i −0.205933 0.452342i
\(277\) −13.8297 7.98456i −0.830944 0.479746i 0.0232316 0.999730i \(-0.492604\pi\)
−0.854176 + 0.519984i \(0.825938\pi\)
\(278\) 2.14679 + 9.89676i 0.128756 + 0.593568i
\(279\) 24.4490 1.46372
\(280\) 0 0
\(281\) −9.68409 −0.577704 −0.288852 0.957374i \(-0.593274\pi\)
−0.288852 + 0.957374i \(0.593274\pi\)
\(282\) 3.64655 + 16.8107i 0.217149 + 1.00106i
\(283\) 22.6264 + 13.0633i 1.34500 + 0.776535i 0.987536 0.157393i \(-0.0503088\pi\)
0.357462 + 0.933928i \(0.383642\pi\)
\(284\) 5.57886 + 12.2543i 0.331044 + 0.727157i
\(285\) 0 0
\(286\) −0.178056 + 0.555877i −0.0105287 + 0.0328697i
\(287\) −8.18622 19.4937i −0.483217 1.15068i
\(288\) 0.529749 + 25.4060i 0.0312158 + 1.49706i
\(289\) −6.06569 10.5061i −0.356805 0.618005i
\(290\) 0 0
\(291\) −26.2389 15.1491i −1.53815 0.888053i
\(292\) 1.18306 12.2369i 0.0692336 0.716111i
\(293\) −16.2389 −0.948684 −0.474342 0.880341i \(-0.657314\pi\)
−0.474342 + 0.880341i \(0.657314\pi\)
\(294\) 12.6367 + 23.9697i 0.736987 + 1.39794i
\(295\) 0 0
\(296\) −2.69817 1.16108i −0.156828 0.0674865i
\(297\) 0.204714 0.354574i 0.0118787 0.0205745i
\(298\) 22.0367 20.0089i 1.27655 1.15909i
\(299\) −3.10511 5.37821i −0.179573 0.311030i
\(300\) 0 0
\(301\) −17.1923 + 7.21973i −0.990945 + 0.416138i
\(302\) −1.64925 + 5.14883i −0.0949039 + 0.296282i
\(303\) −9.80446 16.9818i −0.563251 0.975580i
\(304\) 29.2847 + 5.71592i 1.67959 + 0.327831i
\(305\) 0 0
\(306\) −7.26882 33.5094i −0.415531 1.91561i
\(307\) 23.5437i 1.34371i 0.740684 + 0.671854i \(0.234502\pi\)
−0.740684 + 0.671854i \(0.765498\pi\)
\(308\) −0.506557 + 0.157361i −0.0288638 + 0.00896650i
\(309\) −13.3741 −0.760825
\(310\) 0 0
\(311\) 2.69773 4.67261i 0.152974 0.264959i −0.779345 0.626595i \(-0.784448\pi\)
0.932320 + 0.361635i \(0.117781\pi\)
\(312\) 3.72826 + 31.6575i 0.211071 + 1.79225i
\(313\) −16.2807 28.1990i −0.920240 1.59390i −0.799043 0.601274i \(-0.794660\pi\)
−0.121197 0.992629i \(-0.538673\pi\)
\(314\) 1.72948 + 0.553979i 0.0975999 + 0.0312628i
\(315\) 0 0
\(316\) −4.96707 + 6.95787i −0.279420 + 0.391411i
\(317\) 11.8747 6.85587i 0.666951 0.385064i −0.127970 0.991778i \(-0.540846\pi\)
0.794920 + 0.606714i \(0.207513\pi\)
\(318\) −17.6039 + 15.9840i −0.987176 + 0.896338i
\(319\) −0.206344 0.119133i −0.0115531 0.00667017i
\(320\) 0 0
\(321\) 20.7170i 1.15631i
\(322\) 2.38342 5.11556i 0.132823 0.285079i
\(323\) −40.2606 −2.24016
\(324\) −0.442071 + 4.57252i −0.0245595 + 0.254029i
\(325\) 0 0
\(326\) 9.00542 8.17677i 0.498764 0.452869i
\(327\) −42.7947 + 24.7075i −2.36655 + 1.36633i
\(328\) 18.1183 13.5132i 1.00042 0.746142i
\(329\) −7.11167 + 9.36233i −0.392079 + 0.516162i
\(330\) 0 0
\(331\) 4.92495 2.84342i 0.270700 0.156289i −0.358506 0.933527i \(-0.616714\pi\)
0.629206 + 0.777239i \(0.283380\pi\)
\(332\) 5.38774 + 11.8345i 0.295691 + 0.649501i
\(333\) 4.04019 + 2.33261i 0.221401 + 0.127826i
\(334\) −11.2010 + 2.42970i −0.612890 + 0.132947i
\(335\) 0 0
\(336\) −21.6165 + 19.2834i −1.17928 + 1.05200i
\(337\) 14.7219i 0.801955i −0.916088 0.400978i \(-0.868670\pi\)
0.916088 0.400978i \(-0.131330\pi\)
\(338\) 1.18498 + 5.46279i 0.0644544 + 0.297137i
\(339\) −24.8306 + 43.0079i −1.34861 + 2.33587i
\(340\) 0 0
\(341\) −0.472487 + 0.272790i −0.0255866 + 0.0147724i
\(342\) −45.1296 14.4557i −2.44033 0.781677i
\(343\) −6.83621 + 17.2124i −0.369121 + 0.929381i
\(344\) −11.9178 15.9792i −0.642564 0.861542i
\(345\) 0 0
\(346\) −8.41143 + 7.63743i −0.452201 + 0.410591i
\(347\) 7.73454 13.3966i 0.415212 0.719168i −0.580239 0.814446i \(-0.697041\pi\)
0.995451 + 0.0952784i \(0.0303741\pi\)
\(348\) −12.9515 1.25215i −0.694275 0.0671225i
\(349\) 11.5290i 0.617132i −0.951203 0.308566i \(-0.900151\pi\)
0.951203 0.308566i \(-0.0998491\pi\)
\(350\) 0 0
\(351\) 16.8167i 0.897608i
\(352\) −0.293706 0.485072i −0.0156546 0.0258544i
\(353\) 10.2181 17.6983i 0.543855 0.941985i −0.454823 0.890582i \(-0.650297\pi\)
0.998678 0.0514030i \(-0.0163693\pi\)
\(354\) 22.1781 + 24.4256i 1.17875 + 1.29821i
\(355\) 0 0
\(356\) −3.70897 + 5.19553i −0.196575 + 0.275362i
\(357\) 23.6431 31.1256i 1.25133 1.64734i
\(358\) 3.81731 11.9173i 0.201751 0.629850i
\(359\) 18.3761 10.6095i 0.969856 0.559946i 0.0706634 0.997500i \(-0.477488\pi\)
0.899192 + 0.437554i \(0.144155\pi\)
\(360\) 0 0
\(361\) −18.3208 + 31.7326i −0.964255 + 1.67014i
\(362\) −29.5224 + 6.40395i −1.55166 + 0.336584i
\(363\) 30.0815i 1.57887i
\(364\) −14.7870 + 16.0006i −0.775048 + 0.838658i
\(365\) 0 0
\(366\) 6.48508 + 29.8964i 0.338981 + 1.56271i
\(367\) −6.62637 3.82574i −0.345894 0.199702i 0.316982 0.948432i \(-0.397331\pi\)
−0.662875 + 0.748730i \(0.730664\pi\)
\(368\) 5.92147 + 1.15578i 0.308678 + 0.0602491i
\(369\) −31.0886 + 17.9490i −1.61841 + 0.934389i
\(370\) 0 0
\(371\) −16.1229 2.04265i −0.837062 0.106049i
\(372\) −17.3112 + 24.2496i −0.897546 + 1.25728i
\(373\) −22.2000 + 12.8172i −1.14947 + 0.663647i −0.948758 0.316003i \(-0.897659\pi\)
−0.200713 + 0.979650i \(0.564326\pi\)
\(374\) 0.514356 + 0.566482i 0.0265967 + 0.0292921i
\(375\) 0 0
\(376\) −11.5453 4.96819i −0.595402 0.256215i
\(377\) −9.78647 −0.504029
\(378\) 12.5156 8.76954i 0.643735 0.451057i
\(379\) 29.1039i 1.49497i −0.664279 0.747485i \(-0.731261\pi\)
0.664279 0.747485i \(-0.268739\pi\)
\(380\) 0 0
\(381\) −10.3725 5.98858i −0.531401 0.306804i
\(382\) 23.7890 + 26.1998i 1.21715 + 1.34050i
\(383\) −7.48525 + 4.32161i −0.382478 + 0.220824i −0.678896 0.734234i \(-0.737541\pi\)
0.296418 + 0.955058i \(0.404208\pi\)
\(384\) −25.5739 17.4635i −1.30506 0.891178i
\(385\) 0 0
\(386\) −3.52093 + 10.9921i −0.179211 + 0.559481i
\(387\) 15.8299 + 27.4182i 0.804679 + 1.39375i
\(388\) 20.1484 9.17274i 1.02288 0.465676i
\(389\) −7.08846 + 12.2776i −0.359399 + 0.622498i −0.987861 0.155343i \(-0.950352\pi\)
0.628461 + 0.777841i \(0.283685\pi\)
\(390\) 0 0
\(391\) −8.14084 −0.411700
\(392\) −19.6193 2.66109i −0.990926 0.134405i
\(393\) 8.16078i 0.411657i
\(394\) 17.2092 3.73299i 0.866986 0.188065i
\(395\) 0 0
\(396\) 0.373163 + 0.819672i 0.0187521 + 0.0411901i
\(397\) 0.0875029 + 0.151559i 0.00439164 + 0.00760655i 0.868213 0.496192i \(-0.165269\pi\)
−0.863821 + 0.503798i \(0.831935\pi\)
\(398\) −31.2101 9.99708i −1.56442 0.501108i
\(399\) −20.9157 49.8063i −1.04710 2.49344i
\(400\) 0 0
\(401\) −12.0285 20.8339i −0.600674 1.04040i −0.992719 0.120452i \(-0.961566\pi\)
0.392046 0.919946i \(-0.371768\pi\)
\(402\) −0.285716 0.314671i −0.0142502 0.0156944i
\(403\) −11.2045 + 19.4068i −0.558136 + 0.966721i
\(404\) 14.2613 + 1.37878i 0.709527 + 0.0685970i
\(405\) 0 0
\(406\) −5.10343 7.28347i −0.253279 0.361473i
\(407\) −0.104105 −0.00516027
\(408\) 38.3829 + 16.5170i 1.90024 + 0.817714i
\(409\) 10.3372 + 5.96818i 0.511141 + 0.295108i 0.733303 0.679902i \(-0.237978\pi\)
−0.222161 + 0.975010i \(0.571311\pi\)
\(410\) 0 0
\(411\) 2.08676 + 3.61438i 0.102932 + 0.178284i
\(412\) 5.67780 7.95347i 0.279725 0.391839i
\(413\) −2.83421 + 22.3708i −0.139463 + 1.10080i
\(414\) −9.12536 2.92300i −0.448487 0.143658i
\(415\) 0 0
\(416\) −20.4092 11.2226i −1.00064 0.550234i
\(417\) 16.9745 + 9.80023i 0.831245 + 0.479919i
\(418\) 1.03344 0.224172i 0.0505472 0.0109646i
\(419\) 30.1003 1.47050 0.735249 0.677798i \(-0.237065\pi\)
0.735249 + 0.677798i \(0.237065\pi\)
\(420\) 0 0
\(421\) 6.78256 0.330562 0.165281 0.986247i \(-0.447147\pi\)
0.165281 + 0.986247i \(0.447147\pi\)
\(422\) −15.1695 + 3.29055i −0.738440 + 0.160181i
\(423\) 17.2877 + 9.98107i 0.840557 + 0.485296i
\(424\) −2.03206 17.2547i −0.0986857 0.837962i
\(425\) 0 0
\(426\) 24.8180 + 7.94961i 1.20244 + 0.385160i
\(427\) −12.6475 + 16.6501i −0.612056 + 0.805756i
\(428\) 12.3202 + 8.79513i 0.595520 + 0.425128i
\(429\) 0.564868 + 0.978379i 0.0272721 + 0.0472366i
\(430\) 0 0
\(431\) −13.8010 7.96802i −0.664772 0.383806i 0.129321 0.991603i \(-0.458720\pi\)
−0.794093 + 0.607797i \(0.792054\pi\)
\(432\) 12.3217 + 10.7278i 0.592826 + 0.516143i
\(433\) 15.1291 0.727057 0.363529 0.931583i \(-0.381572\pi\)
0.363529 + 0.931583i \(0.381572\pi\)
\(434\) −20.2862 + 1.78139i −0.973769 + 0.0855094i
\(435\) 0 0
\(436\) 3.47457 35.9389i 0.166402 1.72116i
\(437\) −5.62547 + 9.74360i −0.269103 + 0.466099i
\(438\) −15.9954 17.6164i −0.764288 0.841743i
\(439\) −2.18337 3.78171i −0.104207 0.180491i 0.809207 0.587523i \(-0.199897\pi\)
−0.913414 + 0.407032i \(0.866564\pi\)
\(440\) 0 0
\(441\) 30.4517 + 7.84186i 1.45008 + 0.373422i
\(442\) 29.9298 + 9.58701i 1.42362 + 0.456007i
\(443\) −7.04909 12.2094i −0.334913 0.580086i 0.648555 0.761167i \(-0.275373\pi\)
−0.983468 + 0.181082i \(0.942040\pi\)
\(444\) −5.17426 + 2.35563i −0.245560 + 0.111793i
\(445\) 0 0
\(446\) −20.7031 + 4.49088i −0.980320 + 0.212650i
\(447\) 57.6102i 2.72487i
\(448\) −2.29067 21.0417i −0.108224 0.994127i
\(449\) −17.0120 −0.802848 −0.401424 0.915892i \(-0.631485\pi\)
−0.401424 + 0.915892i \(0.631485\pi\)
\(450\) 0 0
\(451\) 0.400534 0.693745i 0.0188604 0.0326672i
\(452\) −15.0349 33.0250i −0.707183 1.55337i
\(453\) 5.23211 + 9.06228i 0.245826 + 0.425783i
\(454\) −0.650306 + 2.03020i −0.0305204 + 0.0952820i
\(455\) 0 0
\(456\) 46.2922 34.5261i 2.16783 1.61683i
\(457\) 10.1019 5.83234i 0.472548 0.272825i −0.244758 0.969584i \(-0.578709\pi\)
0.717306 + 0.696759i \(0.245375\pi\)
\(458\) −8.10490 8.92627i −0.378717 0.417097i
\(459\) −19.0912 11.0223i −0.891101 0.514477i
\(460\) 0 0
\(461\) 26.4488i 1.23184i −0.787808 0.615921i \(-0.788784\pi\)
0.787808 0.615921i \(-0.211216\pi\)
\(462\) −0.433582 + 0.930600i −0.0201720 + 0.0432954i
\(463\) 3.13685 0.145782 0.0728909 0.997340i \(-0.476778\pi\)
0.0728909 + 0.997340i \(0.476778\pi\)
\(464\) 6.24306 7.17059i 0.289827 0.332886i
\(465\) 0 0
\(466\) 20.1763 + 22.2211i 0.934651 + 1.02937i
\(467\) −7.05043 + 4.07057i −0.326255 + 0.188363i −0.654177 0.756341i \(-0.726985\pi\)
0.327922 + 0.944705i \(0.393652\pi\)
\(468\) 30.1072 + 21.4929i 1.39171 + 0.993508i
\(469\) 0.0365127 0.288200i 0.00168600 0.0133078i
\(470\) 0 0
\(471\) 3.04399 1.75745i 0.140260 0.0809789i
\(472\) −23.9411 + 2.81952i −1.10198 + 0.129779i
\(473\) −0.611839 0.353246i −0.0281324 0.0162422i
\(474\) 3.50761 + 16.1702i 0.161110 + 0.742721i
\(475\) 0 0
\(476\) 8.47275 + 27.2744i 0.388348 + 1.25012i
\(477\) 27.5937i 1.26343i
\(478\) −14.0324 + 3.04389i −0.641827 + 0.139224i
\(479\) 12.3904 21.4608i 0.566131 0.980567i −0.430813 0.902441i \(-0.641773\pi\)
0.996944 0.0781258i \(-0.0248936\pi\)
\(480\) 0 0
\(481\) −3.70309 + 2.13798i −0.168846 + 0.0974835i
\(482\) −8.21858 + 25.6577i −0.374346 + 1.16868i
\(483\) −4.22923 10.0710i −0.192437 0.458247i
\(484\) 17.8892 + 12.7707i 0.813147 + 0.580487i
\(485\) 0 0
\(486\) 17.6255 + 19.4117i 0.799508 + 0.880532i
\(487\) 6.34726 10.9938i 0.287622 0.498175i −0.685620 0.727960i \(-0.740469\pi\)
0.973242 + 0.229784i \(0.0738021\pi\)
\(488\) −20.5323 8.83551i −0.929454 0.399965i
\(489\) 23.5427i 1.06464i
\(490\) 0 0
\(491\) 9.51192i 0.429267i 0.976695 + 0.214633i \(0.0688557\pi\)
−0.976695 + 0.214633i \(0.931144\pi\)
\(492\) 4.20983 43.5440i 0.189794 1.96311i
\(493\) −6.41443 + 11.1101i −0.288892 + 0.500375i
\(494\) 32.1566 29.1976i 1.44679 1.31366i
\(495\) 0 0
\(496\) −7.07177 20.5897i −0.317532 0.924506i
\(497\) 6.89647 + 16.4225i 0.309349 + 0.736649i
\(498\) 23.9678 + 7.67728i 1.07402 + 0.344027i
\(499\) −7.35497 + 4.24639i −0.329254 + 0.190095i −0.655510 0.755187i \(-0.727546\pi\)
0.326256 + 0.945281i \(0.394213\pi\)
\(500\) 0 0
\(501\) −11.0917 + 19.2114i −0.495542 + 0.858303i
\(502\) 2.83663 + 13.0769i 0.126605 + 0.583653i
\(503\) 10.4796i 0.467261i −0.972325 0.233630i \(-0.924939\pi\)
0.972325 0.233630i \(-0.0750606\pi\)
\(504\) −0.295559 + 33.6150i −0.0131652 + 1.49733i
\(505\) 0 0
\(506\) 0.208965 0.0453284i 0.00928963 0.00201509i
\(507\) 9.36955 + 5.40951i 0.416116 + 0.240245i
\(508\) 7.96489 3.62608i 0.353385 0.160881i
\(509\) 19.7483 11.4017i 0.875329 0.505371i 0.00621337 0.999981i \(-0.498022\pi\)
0.869115 + 0.494609i \(0.164689\pi\)
\(510\) 0 0
\(511\) 2.04411 16.1344i 0.0904259 0.713744i
\(512\) 21.2425 7.79472i 0.938793 0.344481i
\(513\) −26.3847 + 15.2332i −1.16492 + 0.672564i
\(514\) −2.87447 + 2.60997i −0.126788 + 0.115121i
\(515\) 0 0
\(516\) −38.4031 3.71281i −1.69060 0.163447i
\(517\) −0.445456 −0.0195912
\(518\) −3.52225 1.64107i −0.154759 0.0721046i
\(519\) 21.9899i 0.965248i
\(520\) 0 0
\(521\) −7.88048 4.54980i −0.345250 0.199330i 0.317341 0.948311i \(-0.397210\pi\)
−0.662591 + 0.748981i \(0.730543\pi\)
\(522\) −11.1793 + 10.1506i −0.489305 + 0.444281i
\(523\) −4.12311 + 2.38048i −0.180291 + 0.104091i −0.587429 0.809275i \(-0.699860\pi\)
0.407138 + 0.913366i \(0.366527\pi\)
\(524\) −4.85315 3.46456i −0.212011 0.151350i
\(525\) 0 0
\(526\) 34.5816 + 11.0771i 1.50783 + 0.482982i
\(527\) 14.6877 + 25.4399i 0.639808 + 1.10818i
\(528\) −1.07721 0.210254i −0.0468794 0.00915013i
\(529\) 10.3625 17.9484i 0.450544 0.780365i
\(530\) 0 0
\(531\) 38.2866 1.66150
\(532\) 38.4989 + 8.70624i 1.66914 + 0.377463i
\(533\) 32.9028i 1.42518i
\(534\) 2.61918 + 12.0745i 0.113343 + 0.522513i
\(535\) 0 0
\(536\) 0.308430 0.0363234i 0.0133221 0.00156893i
\(537\) −12.1101 20.9753i −0.522588 0.905150i
\(538\) 3.53751 11.0438i 0.152513 0.476133i
\(539\) −0.675988 + 0.188219i −0.0291168 + 0.00810715i
\(540\) 0 0
\(541\) 11.2312 + 19.4530i 0.482867 + 0.836350i 0.999806 0.0196717i \(-0.00626211\pi\)
−0.516939 + 0.856022i \(0.672929\pi\)
\(542\) 6.70848 6.09118i 0.288154 0.261639i
\(543\) −29.2344 + 50.6355i −1.25457 + 2.17298i
\(544\) −26.1175 + 15.8139i −1.11978 + 0.678016i
\(545\) 0 0
\(546\) 3.68872 + 42.0067i 0.157863 + 1.79772i
\(547\) 24.4644 1.04602 0.523012 0.852326i \(-0.324808\pi\)
0.523012 + 0.852326i \(0.324808\pi\)
\(548\) −3.03535 0.293458i −0.129664 0.0125359i
\(549\) 30.7448 + 17.7505i 1.31215 + 0.757573i
\(550\) 0 0
\(551\) 8.86498 + 15.3546i 0.377661 + 0.654128i
\(552\) 9.36043 6.98130i 0.398406 0.297144i
\(553\) −6.84071 + 9.00562i −0.290897 + 0.382958i
\(554\) 6.88915 21.5073i 0.292692 0.913759i
\(555\) 0 0
\(556\) −13.0344 + 5.93404i −0.552783 + 0.251659i
\(557\) 7.30280 + 4.21627i 0.309430 + 0.178649i 0.646671 0.762769i \(-0.276161\pi\)
−0.337242 + 0.941418i \(0.609494\pi\)
\(558\) 7.32973 + 33.7902i 0.310292 + 1.43046i
\(559\) −29.0182 −1.22734
\(560\) 0 0
\(561\) 1.48095 0.0625255
\(562\) −2.90326 13.3841i −0.122467 0.564574i
\(563\) 23.5269 + 13.5833i 0.991541 + 0.572467i 0.905735 0.423845i \(-0.139320\pi\)
0.0858067 + 0.996312i \(0.472653\pi\)
\(564\) −22.1403 + 10.0796i −0.932276 + 0.424427i
\(565\) 0 0
\(566\) −11.2712 + 35.1876i −0.473762 + 1.47905i
\(567\) −0.763813 + 6.02888i −0.0320771 + 0.253189i
\(568\) −15.2638 + 11.3842i −0.640453 + 0.477669i
\(569\) 7.11643 + 12.3260i 0.298336 + 0.516733i 0.975755 0.218864i \(-0.0702350\pi\)
−0.677419 + 0.735597i \(0.736902\pi\)
\(570\) 0 0
\(571\) 14.5870 + 8.42181i 0.610447 + 0.352442i 0.773140 0.634235i \(-0.218685\pi\)
−0.162693 + 0.986677i \(0.552018\pi\)
\(572\) −0.821642 0.0794363i −0.0343546 0.00332140i
\(573\) 68.4938 2.86137
\(574\) 24.4875 17.1581i 1.02209 0.716166i
\(575\) 0 0
\(576\) −34.9541 + 8.34880i −1.45642 + 0.347867i
\(577\) −1.07668 + 1.86487i −0.0448230 + 0.0776356i −0.887566 0.460680i \(-0.847606\pi\)
0.842744 + 0.538315i \(0.180939\pi\)
\(578\) 12.7017 11.5329i 0.528321 0.479706i
\(579\) 11.1699 + 19.3468i 0.464203 + 0.804024i
\(580\) 0 0
\(581\) 6.66021 + 15.8599i 0.276312 + 0.657979i
\(582\) 13.0707 40.8057i 0.541799 1.69145i
\(583\) −0.307877 0.533259i −0.0127510 0.0220853i
\(584\) 17.2670 2.03351i 0.714512 0.0841471i
\(585\) 0 0
\(586\) −4.86836 22.4433i −0.201110 0.927123i
\(587\) 11.3061i 0.466652i 0.972399 + 0.233326i \(0.0749609\pi\)
−0.972399 + 0.233326i \(0.925039\pi\)
\(588\) −29.3394 + 24.6509i −1.20994 + 1.01658i
\(589\) 40.5980 1.67281
\(590\) 0 0
\(591\) 17.0413 29.5164i 0.700986 1.21414i
\(592\) 0.795795 4.07715i 0.0327070 0.167570i
\(593\) −8.51993 14.7570i −0.349872 0.605996i 0.636355 0.771397i \(-0.280442\pi\)
−0.986226 + 0.165401i \(0.947108\pi\)
\(594\) 0.551420 + 0.176629i 0.0226250 + 0.00724716i
\(595\) 0 0
\(596\) 34.2603 + 24.4577i 1.40336 + 1.00183i
\(597\) −54.9318 + 31.7149i −2.24821 + 1.29800i
\(598\) 6.50216 5.90385i 0.265893 0.241426i
\(599\) 3.39864 + 1.96221i 0.138865 + 0.0801736i 0.567823 0.823151i \(-0.307786\pi\)
−0.428958 + 0.903324i \(0.641119\pi\)
\(600\) 0 0
\(601\) 8.98026i 0.366312i 0.983084 + 0.183156i \(0.0586314\pi\)
−0.983084 + 0.183156i \(0.941369\pi\)
\(602\) −15.1324 21.5965i −0.616749 0.880207i
\(603\) −0.493240 −0.0200863
\(604\) −7.61050 0.735783i −0.309667 0.0299386i
\(605\) 0 0
\(606\) 20.5307 18.6416i 0.834004 0.757262i
\(607\) 32.5444 18.7895i 1.32094 0.762644i 0.337059 0.941483i \(-0.390568\pi\)
0.983878 + 0.178840i \(0.0572344\pi\)
\(608\) 0.879659 + 42.1872i 0.0356749 + 1.71092i
\(609\) −17.0767 2.16348i −0.691981 0.0876687i
\(610\) 0 0
\(611\) −15.8453 + 9.14827i −0.641031 + 0.370099i
\(612\) 44.1333 20.0921i 1.78398 0.812173i
\(613\) −40.0621 23.1299i −1.61809 0.934207i −0.987413 0.158165i \(-0.949442\pi\)
−0.630681 0.776042i \(-0.717224\pi\)
\(614\) −32.5390 + 7.05832i −1.31317 + 0.284850i
\(615\) 0 0
\(616\) −0.369349 0.652922i −0.0148815 0.0263070i
\(617\) 42.8844i 1.72646i −0.504809 0.863231i \(-0.668437\pi\)
0.504809 0.863231i \(-0.331563\pi\)
\(618\) −4.00951 18.4840i −0.161286 0.743534i
\(619\) −14.7503 + 25.5483i −0.592865 + 1.02687i 0.400980 + 0.916087i \(0.368670\pi\)
−0.993844 + 0.110785i \(0.964664\pi\)
\(620\) 0 0
\(621\) −5.33508 + 3.08021i −0.214090 + 0.123605i
\(622\) 7.26665 + 2.32762i 0.291366 + 0.0933293i
\(623\) −5.10804 + 6.72461i −0.204649 + 0.269416i
\(624\) −42.6352 + 14.6435i −1.70677 + 0.586210i
\(625\) 0 0
\(626\) 34.0921 30.9551i 1.36260 1.23721i
\(627\) 1.02336 1.77251i 0.0408691 0.0707873i
\(628\) −0.247147 + 2.55634i −0.00986223 + 0.102009i
\(629\) 5.60526i 0.223496i
\(630\) 0 0
\(631\) 20.5872i 0.819563i 0.912184 + 0.409781i \(0.134395\pi\)
−0.912184 + 0.409781i \(0.865605\pi\)
\(632\) −11.1054 4.77890i −0.441749 0.190094i
\(633\) −15.0215 + 26.0181i −0.597053 + 1.03413i
\(634\) 13.0353 + 14.3563i 0.517698 + 0.570163i
\(635\) 0 0
\(636\) −27.3686 19.5378i −1.08524 0.774726i
\(637\) −20.1800 + 20.5777i −0.799562 + 0.815320i
\(638\) 0.102789 0.320899i 0.00406945 0.0127045i
\(639\) 26.1906 15.1211i 1.03608 0.598182i
\(640\) 0 0
\(641\) 18.4263 31.9153i 0.727795 1.26058i −0.230018 0.973186i \(-0.573878\pi\)
0.957813 0.287392i \(-0.0927883\pi\)
\(642\) 28.6323 6.21088i 1.13003 0.245124i
\(643\) 48.4719i 1.91154i −0.294108 0.955772i \(-0.595023\pi\)
0.294108 0.955772i \(-0.404977\pi\)
\(644\) 7.78461 + 1.76043i 0.306757 + 0.0693707i
\(645\) 0 0
\(646\) −12.0700 55.6431i −0.474888 2.18925i
\(647\) −33.9366 19.5933i −1.33418 0.770292i −0.348247 0.937403i \(-0.613223\pi\)
−0.985938 + 0.167111i \(0.946556\pi\)
\(648\) −6.45208 + 0.759853i −0.253462 + 0.0298498i
\(649\) −0.739905 + 0.427185i −0.0290438 + 0.0167685i
\(650\) 0 0
\(651\) −23.8413 + 31.3864i −0.934413 + 1.23013i
\(652\) 14.0007 + 9.99477i 0.548309 + 0.391425i
\(653\) −5.96105 + 3.44161i −0.233274 + 0.134681i −0.612082 0.790795i \(-0.709668\pi\)
0.378808 + 0.925475i \(0.376334\pi\)
\(654\) −46.9772 51.7380i −1.83696 2.02312i
\(655\) 0 0
\(656\) 24.1080 + 20.9896i 0.941261 + 0.819506i
\(657\) −27.6133 −1.07730
\(658\) −15.0715 7.02204i −0.587547 0.273748i
\(659\) 40.9792i 1.59632i 0.602444 + 0.798161i \(0.294194\pi\)
−0.602444 + 0.798161i \(0.705806\pi\)
\(660\) 0 0
\(661\) 10.4696 + 6.04460i 0.407219 + 0.235108i 0.689594 0.724196i \(-0.257789\pi\)
−0.282375 + 0.959304i \(0.591122\pi\)
\(662\) 5.40630 + 5.95418i 0.210122 + 0.231416i
\(663\) 52.6785 30.4139i 2.04586 1.18118i
\(664\) −14.7409 + 10.9942i −0.572056 + 0.426657i
\(665\) 0 0
\(666\) −2.01259 + 6.28314i −0.0779863 + 0.243467i
\(667\) 1.79253 + 3.10475i 0.0694070 + 0.120216i
\(668\) −6.71603 14.7521i −0.259851 0.570777i
\(669\) −20.5012 + 35.5091i −0.792621 + 1.37286i
\(670\) 0 0
\(671\) −0.792208 −0.0305828
\(672\) −33.1316 24.0945i −1.27808 0.929464i
\(673\) 29.0006i 1.11789i −0.829205 0.558945i \(-0.811206\pi\)
0.829205 0.558945i \(-0.188794\pi\)
\(674\) 20.3468 4.41359i 0.783729 0.170005i
\(675\) 0 0
\(676\) −7.19472 + 3.27546i −0.276720 + 0.125979i
\(677\) 24.1541 + 41.8361i 0.928317 + 1.60789i 0.786138 + 0.618051i \(0.212077\pi\)
0.142178 + 0.989841i \(0.454589\pi\)
\(678\) −66.8841 21.4240i −2.56867 0.822786i
\(679\) 27.0018 11.3392i 1.03623 0.435157i
\(680\) 0 0
\(681\) 2.06304 + 3.57329i 0.0790558 + 0.136929i
\(682\) −0.518666 0.571229i −0.0198607 0.0218735i
\(683\) −6.61231 + 11.4528i −0.253013 + 0.438231i −0.964354 0.264616i \(-0.914755\pi\)
0.711341 + 0.702847i \(0.248088\pi\)
\(684\) 6.44915 66.7062i 0.246590 2.55057i
\(685\) 0 0
\(686\) −25.8382 4.28792i −0.986508 0.163713i
\(687\) −23.3358 −0.890317
\(688\) 18.5115 21.2618i 0.705745 0.810597i
\(689\) −21.9029 12.6457i −0.834435 0.481761i
\(690\) 0 0
\(691\) 19.9447 + 34.5453i 0.758733 + 1.31416i 0.943497 + 0.331382i \(0.107515\pi\)
−0.184763 + 0.982783i \(0.559152\pi\)
\(692\) −13.0772 9.33552i −0.497121 0.354883i
\(693\) 0.461296 + 1.09848i 0.0175232 + 0.0417277i
\(694\) 20.8339 + 6.67342i 0.790843 + 0.253320i
\(695\) 0 0
\(696\) −2.15226 18.2753i −0.0815813 0.692725i
\(697\) −37.3530 21.5658i −1.41485 0.816862i
\(698\) 15.9339 3.45635i 0.603106 0.130825i
\(699\) 58.0921 2.19725
\(700\) 0 0
\(701\) −5.82647 −0.220063 −0.110031 0.993928i \(-0.535095\pi\)
−0.110031 + 0.993928i \(0.535095\pi\)
\(702\) 23.2419 5.04159i 0.877208 0.190283i
\(703\) 6.70882 + 3.87334i 0.253028 + 0.146086i
\(704\) 0.582351 0.551346i 0.0219482 0.0207796i
\(705\) 0 0
\(706\) 27.5237 + 8.81627i 1.03587 + 0.331805i
\(707\) 18.8036 + 2.38227i 0.707182 + 0.0895946i
\(708\) −27.1091 + 37.9744i −1.01882 + 1.42716i
\(709\) −8.29615 14.3694i −0.311569 0.539653i 0.667134 0.744938i \(-0.267521\pi\)
−0.978702 + 0.205286i \(0.934188\pi\)
\(710\) 0 0
\(711\) 16.6290 + 9.60078i 0.623638 + 0.360058i
\(712\) −8.29253 3.56846i −0.310776 0.133734i
\(713\) 8.20905 0.307431
\(714\) 50.1059 + 23.3452i 1.87517 + 0.873671i
\(715\) 0 0
\(716\) 17.6150 + 1.70302i 0.658304 + 0.0636448i
\(717\) −13.8955 + 24.0678i −0.518938 + 0.898828i
\(718\) 20.1722 + 22.2165i 0.752818 + 0.829111i
\(719\) 1.69923 + 2.94314i 0.0633704 + 0.109761i 0.895970 0.444115i \(-0.146482\pi\)
−0.832600 + 0.553875i \(0.813148\pi\)
\(720\) 0 0
\(721\) 7.81954 10.2942i 0.291215 0.383377i
\(722\) −49.3493 15.8074i −1.83659 0.588290i
\(723\) 26.0727 + 45.1593i 0.969655 + 1.67949i
\(724\) −17.7014 38.8822i −0.657869 1.44504i
\(725\) 0 0
\(726\) 41.5748 9.01834i 1.54299 0.334702i
\(727\) 14.3045i 0.530526i 0.964176 + 0.265263i \(0.0854588\pi\)
−0.964176 + 0.265263i \(0.914541\pi\)
\(728\) −26.5470 15.6397i −0.983898 0.579647i
\(729\) 43.8569 1.62433
\(730\) 0 0
\(731\) −19.0197 + 32.9430i −0.703468 + 1.21844i
\(732\) −39.3747 + 17.9257i −1.45533 + 0.662553i
\(733\) 24.7457 + 42.8607i 0.914001 + 1.58310i 0.808357 + 0.588693i \(0.200357\pi\)
0.105645 + 0.994404i \(0.466309\pi\)
\(734\) 3.30088 10.3051i 0.121838 0.380367i
\(735\) 0 0
\(736\) 0.177870 + 8.53039i 0.00655637 + 0.314434i
\(737\) 0.00953207 0.00550334i 0.000351118 0.000202718i
\(738\) −34.1271 37.5856i −1.25624 1.38355i
\(739\) −23.2184 13.4052i −0.854104 0.493117i 0.00792968 0.999969i \(-0.497476\pi\)
−0.862033 + 0.506852i \(0.830809\pi\)
\(740\) 0 0
\(741\) 84.0664i 3.08826i
\(742\) −2.01051 22.8954i −0.0738083 0.840518i
\(743\) 22.2896 0.817727 0.408863 0.912596i \(-0.365925\pi\)
0.408863 + 0.912596i \(0.365925\pi\)
\(744\) −38.7045 16.6554i −1.41898 0.610617i
\(745\) 0 0
\(746\) −24.3697 26.8394i −0.892238 0.982660i
\(747\) 25.2933 14.6031i 0.925435 0.534300i
\(748\) −0.628717 + 0.880706i −0.0229882 + 0.0322018i
\(749\) 15.9461 + 12.1128i 0.582659 + 0.442591i
\(750\) 0 0
\(751\) 11.1427 6.43324i 0.406603 0.234752i −0.282726 0.959201i \(-0.591239\pi\)
0.689329 + 0.724448i \(0.257905\pi\)
\(752\) 3.40515 17.4458i 0.124173 0.636184i
\(753\) 22.4290 + 12.9494i 0.817359 + 0.471902i
\(754\) −2.93395 13.5256i −0.106848 0.492573i
\(755\) 0 0
\(756\) 15.8723 + 14.6684i 0.577269 + 0.533485i
\(757\) 3.66830i 0.133327i −0.997776 0.0666633i \(-0.978765\pi\)
0.997776 0.0666633i \(-0.0212354\pi\)
\(758\) 40.2237 8.72527i 1.46099 0.316916i
\(759\) 0.206927 0.358408i 0.00751097 0.0130094i
\(760\) 0 0
\(761\) −2.56137 + 1.47880i −0.0928494 + 0.0536066i −0.545706 0.837977i \(-0.683738\pi\)
0.452856 + 0.891583i \(0.350405\pi\)
\(762\) 5.16700 16.1309i 0.187181 0.584362i
\(763\) 6.00339 47.3856i 0.217337 1.71547i
\(764\) −29.0782 + 40.7327i −1.05201 + 1.47366i
\(765\) 0 0
\(766\) −8.21683 9.04954i −0.296886 0.326973i
\(767\) −17.5460 + 30.3906i −0.633551 + 1.09734i
\(768\) 16.4688 40.5805i 0.594265 1.46432i
\(769\) 32.6324i 1.17676i 0.808586 + 0.588378i \(0.200233\pi\)
−0.808586 + 0.588378i \(0.799767\pi\)
\(770\) 0 0
\(771\) 7.51469i 0.270635i
\(772\) −16.2474 1.57080i −0.584756 0.0565342i
\(773\) −2.74844 + 4.76043i −0.0988544 + 0.171221i −0.911211 0.411941i \(-0.864851\pi\)
0.812356 + 0.583161i \(0.198184\pi\)
\(774\) −33.1482 + 30.0980i −1.19149 + 1.08185i
\(775\) 0 0
\(776\) 18.7178 + 25.0966i 0.671931 + 0.900916i
\(777\) −6.93425 + 2.91198i −0.248765 + 0.104467i
\(778\) −19.0936 6.11598i −0.684538 0.219269i
\(779\) −51.6233 + 29.8047i −1.84960 + 1.06786i
\(780\) 0 0
\(781\) −0.337429 + 0.584444i −0.0120742 + 0.0209131i
\(782\) −2.44060 11.2512i −0.0872756 0.402343i
\(783\) 9.70800i 0.346936i
\(784\) −2.20400 27.9131i −0.0787144 0.996897i
\(785\) 0 0
\(786\) −11.2788 + 2.44658i −0.402301 + 0.0872665i
\(787\) 27.2677 + 15.7430i 0.971987 + 0.561177i 0.899841 0.436217i \(-0.143682\pi\)
0.0721455 + 0.997394i \(0.477015\pi\)
\(788\) 10.3185 + 22.6652i 0.367582 + 0.807413i
\(789\) 60.8659 35.1410i 2.16689 1.25105i
\(790\) 0 0
\(791\) −18.5858 44.2582i −0.660837 1.57364i
\(792\) −1.02097 + 0.761473i −0.0362787 + 0.0270578i
\(793\) −28.1795 + 16.2694i −1.00068 + 0.577745i
\(794\) −0.183233 + 0.166372i −0.00650269 + 0.00590433i
\(795\) 0 0
\(796\) 4.46000 46.1316i 0.158081 1.63509i
\(797\) 20.2691 0.717968 0.358984 0.933344i \(-0.383123\pi\)
0.358984 + 0.933344i \(0.383123\pi\)
\(798\) 62.5655 43.8388i 2.21479 1.55188i
\(799\) 23.9845i 0.848512i
\(800\) 0 0
\(801\) 12.4171 + 7.16902i 0.438737 + 0.253305i
\(802\) 25.1879 22.8702i 0.889416 0.807574i
\(803\) 0.533638 0.308096i 0.0188317 0.0108725i
\(804\) 0.349241 0.489217i 0.0123168 0.0172534i
\(805\) 0 0
\(806\) −30.1806 9.66734i −1.06307 0.340518i
\(807\) −11.2224 19.4378i −0.395049 0.684244i
\(808\) 2.36992 + 20.1235i 0.0833735 + 0.707943i
\(809\) −15.6376 + 27.0851i −0.549789 + 0.952262i 0.448500 + 0.893783i \(0.351958\pi\)
−0.998289 + 0.0584790i \(0.981375\pi\)
\(810\) 0 0
\(811\) −51.4855 −1.80790 −0.903950 0.427638i \(-0.859346\pi\)
−0.903950 + 0.427638i \(0.859346\pi\)
\(812\) 8.53628 9.23687i 0.299565 0.324151i
\(813\) 17.5379i 0.615080i
\(814\) −0.0312102 0.143880i −0.00109392 0.00504299i
\(815\) 0 0
\(816\) −11.3206 + 57.9997i −0.396301 + 2.03039i
\(817\) 26.2859 + 45.5285i 0.919626 + 1.59284i
\(818\) −5.14940 + 16.0760i −0.180044 + 0.562084i
\(819\) 38.9680 + 29.6002i 1.36165 + 1.03432i
\(820\) 0 0
\(821\) 24.0601 + 41.6733i 0.839702 + 1.45441i 0.890144 + 0.455680i \(0.150604\pi\)
−0.0504413 + 0.998727i \(0.516063\pi\)
\(822\) −4.36973 + 3.96764i −0.152412 + 0.138387i
\(823\) −12.3490 + 21.3892i −0.430461 + 0.745580i −0.996913 0.0785148i \(-0.974982\pi\)
0.566452 + 0.824095i \(0.308316\pi\)
\(824\) 12.6944 + 5.46270i 0.442232 + 0.190302i
\(825\) 0 0
\(826\) −31.7678 + 2.78962i −1.10534 + 0.0970633i
\(827\) 19.9120 0.692408 0.346204 0.938159i \(-0.387470\pi\)
0.346204 + 0.938159i \(0.387470\pi\)
\(828\) 1.30404 13.4882i 0.0453185 0.468748i
\(829\) 13.8257 + 7.98225i 0.480185 + 0.277235i 0.720494 0.693461i \(-0.243915\pi\)
−0.240308 + 0.970697i \(0.577249\pi\)
\(830\) 0 0
\(831\) −21.8552 37.8543i −0.758149 1.31315i
\(832\) 9.39183 31.5715i 0.325603 1.09455i
\(833\) 10.1342 + 36.3969i 0.351128 + 1.26108i
\(834\) −8.45572 + 26.3981i −0.292798 + 0.914090i
\(835\) 0 0
\(836\) 0.619644 + 1.36108i 0.0214308 + 0.0470740i
\(837\) 19.2512 + 11.1147i 0.665418 + 0.384179i
\(838\) 9.02398 + 41.6008i 0.311728 + 1.43708i
\(839\) −14.5375 −0.501889 −0.250944 0.968002i \(-0.580741\pi\)
−0.250944 + 0.968002i \(0.580741\pi\)
\(840\) 0 0
\(841\) −23.3504 −0.805187
\(842\) 2.03339 + 9.37398i 0.0700752 + 0.323049i
\(843\) −22.9558 13.2536i −0.790641 0.456477i
\(844\) −9.09554 19.9788i −0.313081 0.687700i
\(845\) 0 0
\(846\) −8.61174 + 26.8851i −0.296078 + 0.924330i
\(847\) 23.1542 + 17.5880i 0.795586 + 0.604331i
\(848\) 23.2380 7.98136i 0.797996 0.274081i
\(849\) 35.7568 + 61.9325i 1.22717 + 2.12552i
\(850\) 0 0
\(851\) 1.35655 + 0.783202i 0.0465018 + 0.0268478i
\(852\) −3.54657 + 36.6836i −0.121503 + 1.25676i
\(853\) −36.2299 −1.24049 −0.620245 0.784408i \(-0.712967\pi\)
−0.620245 + 0.784408i \(0.712967\pi\)
\(854\) −26.8034 12.4881i −0.917192 0.427335i
\(855\) 0 0
\(856\) −8.46193 + 19.6642i −0.289223 + 0.672107i
\(857\) 19.0281 32.9576i 0.649986 1.12581i −0.333139 0.942878i \(-0.608108\pi\)
0.983126 0.182932i \(-0.0585588\pi\)
\(858\) −1.18284 + 1.07400i −0.0403817 + 0.0366658i
\(859\) −13.3104 23.0543i −0.454145 0.786602i 0.544494 0.838765i \(-0.316722\pi\)
−0.998639 + 0.0521630i \(0.983388\pi\)
\(860\) 0 0
\(861\) 7.27378 57.4129i 0.247890 1.95663i
\(862\) 6.87487 21.4628i 0.234159 0.731025i
\(863\) −11.6160 20.1195i −0.395413 0.684876i 0.597741 0.801690i \(-0.296065\pi\)
−0.993154 + 0.116814i \(0.962732\pi\)
\(864\) −11.1326 + 20.2456i −0.378740 + 0.688769i
\(865\) 0 0
\(866\) 4.53565 + 20.9095i 0.154128 + 0.710533i
\(867\) 33.2058i 1.12773i
\(868\) −8.54375 27.5029i −0.289994 0.933510i
\(869\) −0.428484 −0.0145353
\(870\) 0 0
\(871\) 0.226043 0.391517i 0.00765916 0.0132661i
\(872\) 50.7118 5.97226i 1.71732 0.202246i
\(873\) −24.8621 43.0624i −0.841455 1.45744i
\(874\) −15.1528 4.85370i −0.512553 0.164179i
\(875\) 0 0
\(876\) 19.5517 27.3881i 0.660592 0.925358i
\(877\) −2.22052 + 1.28202i −0.0749817 + 0.0432907i −0.537022 0.843568i \(-0.680451\pi\)
0.462040 + 0.886859i \(0.347118\pi\)
\(878\) 4.57202 4.15132i 0.154298 0.140100i
\(879\) −38.4937 22.2244i −1.29836 0.749609i
\(880\) 0 0
\(881\) 11.4074i 0.384324i 0.981363 + 0.192162i \(0.0615498\pi\)
−0.981363 + 0.192162i \(0.938450\pi\)
\(882\) −1.70869 + 44.4374i −0.0575347 + 1.49628i
\(883\) 15.8634 0.533845 0.266922 0.963718i \(-0.413993\pi\)
0.266922 + 0.963718i \(0.413993\pi\)
\(884\) −4.27706 + 44.2393i −0.143853 + 1.48793i
\(885\) 0 0
\(886\) 14.7610 13.4027i 0.495904 0.450272i
\(887\) 23.4277 13.5260i 0.786626 0.454159i −0.0521471 0.998639i \(-0.516606\pi\)
0.838774 + 0.544480i \(0.183273\pi\)
\(888\) −4.80687 6.44499i −0.161308 0.216280i
\(889\) 10.6741 4.48249i 0.357997 0.150338i
\(890\) 0 0
\(891\) −0.199403 + 0.115125i −0.00668024 + 0.00385684i
\(892\) −12.4134 27.2668i −0.415633 0.912960i
\(893\) 28.7066 + 16.5738i 0.960629 + 0.554620i
\(894\) 79.6214 17.2714i 2.66294 0.577641i
\(895\) 0 0
\(896\) 28.3944 9.47411i 0.948590 0.316508i
\(897\) 16.9985i 0.567563i
\(898\) −5.10016 23.5119i −0.170194 0.784601i
\(899\) 6.46818 11.2032i 0.215726 0.373648i
\(900\) 0 0
\(901\) −28.7121 + 16.5769i −0.956537 + 0.552257i
\(902\) 1.07888 + 0.345584i 0.0359229 + 0.0115067i
\(903\) −50.6346 6.41502i −1.68501 0.213478i
\(904\) 41.1355 30.6801i 1.36815 1.02041i
\(905\) 0 0
\(906\) −10.9562 + 9.94800i −0.363994 + 0.330500i
\(907\) −5.21256 + 9.02842i −0.173080 + 0.299784i −0.939495 0.342562i \(-0.888705\pi\)
0.766415 + 0.642346i \(0.222039\pi\)
\(908\) −3.00084 0.290121i −0.0995864 0.00962801i
\(909\) 32.1815i 1.06739i
\(910\) 0 0
\(911\) 43.7727i 1.45026i 0.688614 + 0.725128i \(0.258219\pi\)
−0.688614 + 0.725128i \(0.741781\pi\)
\(912\) 61.5958 + 53.6283i 2.03964 + 1.77581i
\(913\) −0.325870 + 0.564423i −0.0107847 + 0.0186797i
\(914\) 11.0892 + 12.2130i 0.366799 + 0.403972i
\(915\) 0 0
\(916\) 9.90692 13.8776i 0.327334 0.458529i
\(917\) −6.28147 4.77143i −0.207432 0.157567i
\(918\) 9.51014 29.6899i 0.313881 0.979912i
\(919\) 43.5772 25.1593i 1.43748 0.829929i 0.439806 0.898093i \(-0.355047\pi\)
0.997674 + 0.0681637i \(0.0217140\pi\)
\(920\) 0 0
\(921\) −32.2216 + 55.8095i −1.06174 + 1.83899i
\(922\) 36.5541 7.92926i 1.20385 0.261136i
\(923\) 27.7189i 0.912379i
\(924\) −1.41614 0.320250i −0.0465877 0.0105354i
\(925\) 0 0
\(926\) 0.940418 + 4.33535i 0.0309041 + 0.142469i
\(927\) −19.0085 10.9745i −0.624320 0.360451i
\(928\) 11.7819 + 6.47863i 0.386760 + 0.212671i
\(929\) 16.4494 9.49704i 0.539686 0.311588i −0.205266 0.978706i \(-0.565806\pi\)
0.744952 + 0.667118i \(0.232473\pi\)
\(930\) 0 0
\(931\) 50.5656 + 13.0216i 1.65722 + 0.426765i
\(932\) −24.6623 + 34.5469i −0.807840 + 1.13162i
\(933\) 12.7898 7.38419i 0.418719 0.241747i
\(934\) −7.73951 8.52385i −0.253244 0.278909i
\(935\) 0 0
\(936\) −20.6786 + 48.0538i −0.675902 + 1.57069i
\(937\) 44.7192 1.46091 0.730457 0.682959i \(-0.239307\pi\)
0.730457 + 0.682959i \(0.239307\pi\)
\(938\) 0.409259 0.0359382i 0.0133628 0.00117342i
\(939\) 89.1265i 2.90853i
\(940\) 0 0
\(941\) 8.88040 + 5.12710i 0.289493 + 0.167139i 0.637713 0.770274i \(-0.279881\pi\)
−0.348220 + 0.937413i \(0.613214\pi\)
\(942\) 3.34150 + 3.68013i 0.108872 + 0.119905i
\(943\) −10.4384 + 6.02661i −0.339921 + 0.196253i
\(944\) −11.0743 32.2431i −0.360436 1.04942i
\(945\) 0 0
\(946\) 0.304783 0.951508i 0.00990936 0.0309362i
\(947\) −12.4847 21.6242i −0.405699 0.702691i 0.588704 0.808349i \(-0.299638\pi\)
−0.994403 + 0.105658i \(0.966305\pi\)
\(948\) −21.2968 + 9.69554i −0.691687 + 0.314897i
\(949\) 12.6546 21.9185i 0.410787 0.711504i
\(950\) 0 0
\(951\) 37.5316 1.21704
\(952\) −35.1550 + 19.8867i −1.13938 + 0.644532i
\(953\) 26.3831i 0.854633i −0.904102 0.427317i \(-0.859459\pi\)
0.904102 0.427317i \(-0.140541\pi\)
\(954\) −38.1364 + 8.27249i −1.23471 + 0.267832i
\(955\) 0 0
\(956\) −8.41374 18.4812i −0.272120 0.597726i
\(957\) −0.326089 0.564803i −0.0105410 0.0182575i
\(958\) 33.3749 + 10.6905i 1.07829 + 0.345395i
\(959\) −4.00213 0.507039i −0.129235 0.0163731i
\(960\) 0 0
\(961\) 0.689177 + 1.19369i 0.0222315 + 0.0385061i
\(962\) −4.06502 4.47697i −0.131061 0.144343i
\(963\) 17.0000 29.4448i 0.547817 0.948846i
\(964\) −37.9247 3.66656i −1.22147 0.118092i
\(965\) 0 0
\(966\) 12.6509 8.86435i 0.407037 0.285206i
\(967\) −47.1287 −1.51556 −0.757778 0.652512i \(-0.773715\pi\)
−0.757778 + 0.652512i \(0.773715\pi\)
\(968\) −12.2869 + 28.5528i −0.394917 + 0.917723i
\(969\) −95.4367 55.1004i −3.06587 1.77008i
\(970\) 0 0
\(971\) −27.6416 47.8767i −0.887062 1.53644i −0.843332 0.537394i \(-0.819409\pi\)
−0.0437306 0.999043i \(-0.513924\pi\)
\(972\) −21.5443 + 30.1792i −0.691033 + 0.968000i
\(973\) −17.4680 + 7.33553i −0.559998 + 0.235166i
\(974\) 17.0971 + 5.47647i 0.547826 + 0.175477i
\(975\) 0 0
\(976\) 6.05579 31.0260i 0.193841 0.993117i
\(977\) −7.32085 4.22669i −0.234215 0.135224i 0.378300 0.925683i \(-0.376509\pi\)
−0.612515 + 0.790459i \(0.709842\pi\)
\(978\) 32.5377 7.05804i 1.04044 0.225691i
\(979\) −0.319954 −0.0102258
\(980\) 0 0
\(981\) −81.0982 −2.58927
\(982\) −13.1461 + 2.85164i −0.419510 + 0.0909996i
\(983\) −28.4854 16.4461i −0.908543 0.524548i −0.0285811 0.999591i \(-0.509099\pi\)
−0.879962 + 0.475044i \(0.842432\pi\)
\(984\) 61.4430 7.23606i 1.95873 0.230677i
\(985\) 0 0
\(986\) −17.2780 5.53442i −0.550244 0.176252i
\(987\) −29.6712 + 12.4602i −0.944445 + 0.396611i
\(988\) 49.9936 + 35.6893i 1.59051 + 1.13543i
\(989\) 5.31509 + 9.20601i 0.169010 + 0.292734i
\(990\) 0 0
\(991\) −26.5344 15.3196i −0.842893 0.486645i 0.0153535 0.999882i \(-0.495113\pi\)
−0.858247 + 0.513238i \(0.828446\pi\)
\(992\) 26.3364 15.9464i 0.836180 0.506300i
\(993\) 15.5659 0.493970
\(994\) −20.6295 + 14.4548i −0.654328 + 0.458479i
\(995\) 0 0
\(996\) −3.42507 + 35.4269i −0.108527 + 1.12254i
\(997\) −21.2349 + 36.7799i −0.672516 + 1.16483i 0.304673 + 0.952457i \(0.401453\pi\)
−0.977188 + 0.212374i \(0.931880\pi\)
\(998\) −8.07382 8.89204i −0.255572 0.281473i
\(999\) 2.12084 + 3.67340i 0.0671003 + 0.116221i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.t.c.199.9 32
4.3 odd 2 inner 700.2.t.c.199.5 32
5.2 odd 4 700.2.p.c.451.1 32
5.3 odd 4 140.2.o.a.31.16 yes 32
5.4 even 2 700.2.t.d.199.8 32
7.5 odd 6 700.2.t.d.299.12 32
20.3 even 4 140.2.o.a.31.4 32
20.7 even 4 700.2.p.c.451.13 32
20.19 odd 2 700.2.t.d.199.12 32
28.19 even 6 700.2.t.d.299.8 32
35.3 even 12 980.2.g.a.391.15 32
35.12 even 12 700.2.p.c.551.13 32
35.13 even 4 980.2.o.f.31.16 32
35.18 odd 12 980.2.g.a.391.16 32
35.19 odd 6 inner 700.2.t.c.299.5 32
35.23 odd 12 980.2.o.f.411.4 32
35.33 even 12 140.2.o.a.131.4 yes 32
140.3 odd 12 980.2.g.a.391.14 32
140.19 even 6 inner 700.2.t.c.299.9 32
140.23 even 12 980.2.o.f.411.16 32
140.47 odd 12 700.2.p.c.551.1 32
140.83 odd 4 980.2.o.f.31.4 32
140.103 odd 12 140.2.o.a.131.16 yes 32
140.123 even 12 980.2.g.a.391.13 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.o.a.31.4 32 20.3 even 4
140.2.o.a.31.16 yes 32 5.3 odd 4
140.2.o.a.131.4 yes 32 35.33 even 12
140.2.o.a.131.16 yes 32 140.103 odd 12
700.2.p.c.451.1 32 5.2 odd 4
700.2.p.c.451.13 32 20.7 even 4
700.2.p.c.551.1 32 140.47 odd 12
700.2.p.c.551.13 32 35.12 even 12
700.2.t.c.199.5 32 4.3 odd 2 inner
700.2.t.c.199.9 32 1.1 even 1 trivial
700.2.t.c.299.5 32 35.19 odd 6 inner
700.2.t.c.299.9 32 140.19 even 6 inner
700.2.t.d.199.8 32 5.4 even 2
700.2.t.d.199.12 32 20.19 odd 2
700.2.t.d.299.8 32 28.19 even 6
700.2.t.d.299.12 32 7.5 odd 6
980.2.g.a.391.13 32 140.123 even 12
980.2.g.a.391.14 32 140.3 odd 12
980.2.g.a.391.15 32 35.3 even 12
980.2.g.a.391.16 32 35.18 odd 12
980.2.o.f.31.4 32 140.83 odd 4
980.2.o.f.31.16 32 35.13 even 4
980.2.o.f.411.4 32 35.23 odd 12
980.2.o.f.411.16 32 140.23 even 12