Properties

Label 700.2.t.c.299.5
Level $700$
Weight $2$
Character 700.299
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(199,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 299.5
Character \(\chi\) \(=\) 700.299
Dual form 700.2.t.c.199.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04701 + 0.950668i) q^{2} +(-2.37047 + 1.36859i) q^{3} +(0.192463 - 1.99072i) q^{4} +(1.18083 - 3.68646i) q^{6} +(2.43939 + 1.02440i) q^{7} +(1.69100 + 2.26727i) q^{8} +(2.24609 - 3.89033i) q^{9} +(0.0868131 - 0.0501216i) q^{11} +(2.26825 + 4.98234i) q^{12} -4.11735 q^{13} +(-3.52793 + 1.24649i) q^{14} +(-3.92592 - 0.766277i) q^{16} +(-2.69867 - 4.67424i) q^{17} +(1.34674 + 6.20850i) q^{18} +(-3.72967 + 6.45997i) q^{19} +(-7.18448 + 0.910218i) q^{21} +(-0.0432453 + 0.135008i) q^{22} +(-0.754151 + 1.30623i) q^{23} +(-7.11143 - 3.06021i) q^{24} +(4.31091 - 3.91424i) q^{26} +4.08434i q^{27} +(2.50878 - 4.65897i) q^{28} +2.37688 q^{29} +(-2.72129 - 4.71341i) q^{31} +(4.83895 - 2.92994i) q^{32} +(-0.137192 + 0.237623i) q^{33} +(7.26919 + 2.32844i) q^{34} +(-7.31227 - 5.22007i) q^{36} +(0.899386 + 0.519260i) q^{37} +(-2.23629 - 10.3093i) q^{38} +(9.76007 - 5.63498i) q^{39} -7.99125i q^{41} +(6.65691 - 7.78306i) q^{42} -7.04778 q^{43} +(-0.0830696 - 0.182467i) q^{44} +(-0.452184 - 2.08458i) q^{46} +(-3.84841 - 2.22188i) q^{47} +(10.3550 - 3.55654i) q^{48} +(4.90122 + 4.99781i) q^{49} +(12.7943 + 7.38677i) q^{51} +(-0.792437 + 8.19649i) q^{52} +(5.31966 - 3.07131i) q^{53} +(-3.88285 - 4.27635i) q^{54} +(1.80242 + 7.26301i) q^{56} -20.4176i q^{57} +(-2.48862 + 2.25962i) q^{58} +(-4.26148 - 7.38111i) q^{59} +(6.84408 + 3.95143i) q^{61} +(7.33010 + 2.34795i) q^{62} +(9.46432 - 7.18914i) q^{63} +(-2.28103 + 7.66791i) q^{64} +(-0.0822594 - 0.379218i) q^{66} +(0.0549000 + 0.0950895i) q^{67} +(-9.82449 + 4.47268i) q^{68} -4.12850i q^{69} -6.73221i q^{71} +(12.6186 - 1.48607i) q^{72} +(-3.07349 - 5.32344i) q^{73} +(-1.43531 + 0.311345i) q^{74} +(12.1422 + 8.66802i) q^{76} +(0.263115 - 0.0333347i) q^{77} +(-4.86190 + 15.1785i) q^{78} +(-3.70178 - 2.13723i) q^{79} +(1.14846 + 1.98919i) q^{81} +(7.59702 + 8.36692i) q^{82} -6.50159i q^{83} +(0.429245 + 14.4774i) q^{84} +(7.37910 - 6.70009i) q^{86} +(-5.63433 + 3.25298i) q^{87} +(0.260440 + 0.112073i) q^{88} +(2.76417 + 1.59589i) q^{89} +(-10.0438 - 4.21781i) q^{91} +(2.45519 + 1.75270i) q^{92} +(12.9015 + 7.44866i) q^{93} +(6.14160 - 1.33223i) q^{94} +(-7.46070 + 13.5679i) q^{96} -11.0691 q^{97} +(-9.88288 - 0.573332i) q^{98} -0.450309i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{4} + 16 q^{9} - 14 q^{12} - 8 q^{13} - 2 q^{14} - 14 q^{16} + 54 q^{18} - 12 q^{21} - 36 q^{24} + 30 q^{26} + 32 q^{28} + 40 q^{29} + 60 q^{32} - 24 q^{33} + 60 q^{36} - 60 q^{37} - 46 q^{38}+ \cdots - 124 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04701 + 0.950668i −0.740348 + 0.672223i
\(3\) −2.37047 + 1.36859i −1.36859 + 0.790157i −0.990748 0.135713i \(-0.956668\pi\)
−0.377843 + 0.925870i \(0.623334\pi\)
\(4\) 0.192463 1.99072i 0.0962313 0.995359i
\(5\) 0 0
\(6\) 1.18083 3.68646i 0.482073 1.50499i
\(7\) 2.43939 + 1.02440i 0.922002 + 0.387186i
\(8\) 1.69100 + 2.26727i 0.597859 + 0.801601i
\(9\) 2.24609 3.89033i 0.748695 1.29678i
\(10\) 0 0
\(11\) 0.0868131 0.0501216i 0.0261751 0.0151122i −0.486855 0.873483i \(-0.661856\pi\)
0.513030 + 0.858370i \(0.328523\pi\)
\(12\) 2.26825 + 4.98234i 0.654788 + 1.43828i
\(13\) −4.11735 −1.14195 −0.570974 0.820968i \(-0.693434\pi\)
−0.570974 + 0.820968i \(0.693434\pi\)
\(14\) −3.52793 + 1.24649i −0.942878 + 0.333138i
\(15\) 0 0
\(16\) −3.92592 0.766277i −0.981479 0.191569i
\(17\) −2.69867 4.67424i −0.654525 1.13367i −0.982013 0.188815i \(-0.939535\pi\)
0.327488 0.944855i \(-0.393798\pi\)
\(18\) 1.34674 + 6.20850i 0.317429 + 1.46336i
\(19\) −3.72967 + 6.45997i −0.855645 + 1.48202i 0.0204012 + 0.999792i \(0.493506\pi\)
−0.876046 + 0.482228i \(0.839828\pi\)
\(20\) 0 0
\(21\) −7.18448 + 0.910218i −1.56778 + 0.198626i
\(22\) −0.0432453 + 0.135008i −0.00921993 + 0.0287838i
\(23\) −0.754151 + 1.30623i −0.157251 + 0.272367i −0.933877 0.357596i \(-0.883597\pi\)
0.776625 + 0.629963i \(0.216930\pi\)
\(24\) −7.11143 3.06021i −1.45162 0.624662i
\(25\) 0 0
\(26\) 4.31091 3.91424i 0.845440 0.767645i
\(27\) 4.08434i 0.786032i
\(28\) 2.50878 4.65897i 0.474115 0.880463i
\(29\) 2.37688 0.441376 0.220688 0.975344i \(-0.429170\pi\)
0.220688 + 0.975344i \(0.429170\pi\)
\(30\) 0 0
\(31\) −2.72129 4.71341i −0.488758 0.846553i 0.511159 0.859486i \(-0.329217\pi\)
−0.999916 + 0.0129330i \(0.995883\pi\)
\(32\) 4.83895 2.92994i 0.855414 0.517945i
\(33\) −0.137192 + 0.237623i −0.0238820 + 0.0413649i
\(34\) 7.26919 + 2.32844i 1.24666 + 0.399324i
\(35\) 0 0
\(36\) −7.31227 5.22007i −1.21871 0.870011i
\(37\) 0.899386 + 0.519260i 0.147858 + 0.0853659i 0.572104 0.820181i \(-0.306127\pi\)
−0.424246 + 0.905547i \(0.639461\pi\)
\(38\) −2.23629 10.3093i −0.362773 1.67240i
\(39\) 9.76007 5.63498i 1.56286 0.902318i
\(40\) 0 0
\(41\) 7.99125i 1.24802i −0.781415 0.624012i \(-0.785502\pi\)
0.781415 0.624012i \(-0.214498\pi\)
\(42\) 6.65691 7.78306i 1.02718 1.20095i
\(43\) −7.04778 −1.07478 −0.537388 0.843335i \(-0.680589\pi\)
−0.537388 + 0.843335i \(0.680589\pi\)
\(44\) −0.0830696 0.182467i −0.0125232 0.0275079i
\(45\) 0 0
\(46\) −0.452184 2.08458i −0.0666710 0.307355i
\(47\) −3.84841 2.22188i −0.561348 0.324095i 0.192338 0.981329i \(-0.438393\pi\)
−0.753686 + 0.657234i \(0.771726\pi\)
\(48\) 10.3550 3.55654i 1.49461 0.513342i
\(49\) 4.90122 + 4.99781i 0.700174 + 0.713973i
\(50\) 0 0
\(51\) 12.7943 + 7.38677i 1.79155 + 1.03435i
\(52\) −0.792437 + 8.19649i −0.109891 + 1.13665i
\(53\) 5.31966 3.07131i 0.730711 0.421876i −0.0879710 0.996123i \(-0.528038\pi\)
0.818682 + 0.574247i \(0.194705\pi\)
\(54\) −3.88285 4.27635i −0.528389 0.581938i
\(55\) 0 0
\(56\) 1.80242 + 7.26301i 0.240858 + 0.970560i
\(57\) 20.4176i 2.70437i
\(58\) −2.48862 + 2.25962i −0.326772 + 0.296703i
\(59\) −4.26148 7.38111i −0.554798 0.960938i −0.997919 0.0644767i \(-0.979462\pi\)
0.443121 0.896462i \(-0.353871\pi\)
\(60\) 0 0
\(61\) 6.84408 + 3.95143i 0.876295 + 0.505929i 0.869435 0.494048i \(-0.164483\pi\)
0.00685975 + 0.999976i \(0.497816\pi\)
\(62\) 7.33010 + 2.34795i 0.930924 + 0.298190i
\(63\) 9.46432 7.18914i 1.19239 0.905747i
\(64\) −2.28103 + 7.66791i −0.285129 + 0.958489i
\(65\) 0 0
\(66\) −0.0822594 0.379218i −0.0101254 0.0466785i
\(67\) 0.0549000 + 0.0950895i 0.00670710 + 0.0116170i 0.869359 0.494180i \(-0.164532\pi\)
−0.862652 + 0.505797i \(0.831198\pi\)
\(68\) −9.82449 + 4.47268i −1.19139 + 0.542393i
\(69\) 4.12850i 0.497013i
\(70\) 0 0
\(71\) 6.73221i 0.798967i −0.916740 0.399483i \(-0.869190\pi\)
0.916740 0.399483i \(-0.130810\pi\)
\(72\) 12.6186 1.48607i 1.48711 0.175135i
\(73\) −3.07349 5.32344i −0.359725 0.623062i 0.628190 0.778060i \(-0.283796\pi\)
−0.987915 + 0.154998i \(0.950463\pi\)
\(74\) −1.43531 + 0.311345i −0.166851 + 0.0361932i
\(75\) 0 0
\(76\) 12.1422 + 8.66802i 1.39280 + 0.994290i
\(77\) 0.263115 0.0333347i 0.0299848 0.00379884i
\(78\) −4.86190 + 15.1785i −0.550502 + 1.71862i
\(79\) −3.70178 2.13723i −0.416483 0.240457i 0.277088 0.960844i \(-0.410631\pi\)
−0.693572 + 0.720388i \(0.743964\pi\)
\(80\) 0 0
\(81\) 1.14846 + 1.98919i 0.127607 + 0.221021i
\(82\) 7.59702 + 8.36692i 0.838951 + 0.923972i
\(83\) 6.50159i 0.713642i −0.934173 0.356821i \(-0.883861\pi\)
0.934173 0.356821i \(-0.116139\pi\)
\(84\) 0.429245 + 14.4774i 0.0468345 + 1.57962i
\(85\) 0 0
\(86\) 7.37910 6.70009i 0.795709 0.722490i
\(87\) −5.63433 + 3.25298i −0.604063 + 0.348756i
\(88\) 0.260440 + 0.112073i 0.0277630 + 0.0119470i
\(89\) 2.76417 + 1.59589i 0.293001 + 0.169164i 0.639294 0.768962i \(-0.279226\pi\)
−0.346293 + 0.938126i \(0.612560\pi\)
\(90\) 0 0
\(91\) −10.0438 4.21781i −1.05288 0.442147i
\(92\) 2.45519 + 1.75270i 0.255971 + 0.182732i
\(93\) 12.9015 + 7.44866i 1.33782 + 0.772391i
\(94\) 6.14160 1.33223i 0.633457 0.137409i
\(95\) 0 0
\(96\) −7.46070 + 13.5679i −0.761454 + 1.38477i
\(97\) −11.0691 −1.12390 −0.561948 0.827173i \(-0.689948\pi\)
−0.561948 + 0.827173i \(0.689948\pi\)
\(98\) −9.88288 0.573332i −0.998322 0.0579152i
\(99\) 0.450309i 0.0452578i
\(100\) 0 0
\(101\) −6.20412 + 3.58195i −0.617333 + 0.356418i −0.775830 0.630942i \(-0.782669\pi\)
0.158497 + 0.987359i \(0.449335\pi\)
\(102\) −20.4181 + 4.42906i −2.02169 + 0.438542i
\(103\) 4.23147 + 2.44304i 0.416939 + 0.240720i 0.693767 0.720200i \(-0.255950\pi\)
−0.276828 + 0.960920i \(0.589283\pi\)
\(104\) −6.96245 9.33516i −0.682724 0.915388i
\(105\) 0 0
\(106\) −2.64995 + 8.27292i −0.257386 + 0.803537i
\(107\) 3.78436 6.55470i 0.365848 0.633667i −0.623064 0.782171i \(-0.714112\pi\)
0.988912 + 0.148504i \(0.0474458\pi\)
\(108\) 8.13077 + 0.786083i 0.782384 + 0.0756409i
\(109\) −9.02662 15.6346i −0.864593 1.49752i −0.867451 0.497523i \(-0.834243\pi\)
0.00285729 0.999996i \(-0.499090\pi\)
\(110\) 0 0
\(111\) −2.84262 −0.269810
\(112\) −8.79185 5.89095i −0.830752 0.556642i
\(113\) 18.1432i 1.70677i −0.521283 0.853384i \(-0.674547\pi\)
0.521283 0.853384i \(-0.325453\pi\)
\(114\) 19.4103 + 21.3774i 1.81794 + 2.00218i
\(115\) 0 0
\(116\) 0.457461 4.73170i 0.0424742 0.439328i
\(117\) −9.24793 + 16.0179i −0.854971 + 1.48085i
\(118\) 11.4788 + 3.67684i 1.05671 + 0.338481i
\(119\) −1.79483 14.1668i −0.164531 1.29867i
\(120\) 0 0
\(121\) −5.49498 + 9.51758i −0.499543 + 0.865234i
\(122\) −10.9223 + 2.36925i −0.988861 + 0.214502i
\(123\) 10.9368 + 18.9430i 0.986134 + 1.70803i
\(124\) −9.90682 + 4.51016i −0.889658 + 0.405025i
\(125\) 0 0
\(126\) −3.07476 + 16.5245i −0.273922 + 1.47212i
\(127\) 4.37573 0.388283 0.194141 0.980974i \(-0.437808\pi\)
0.194141 + 0.980974i \(0.437808\pi\)
\(128\) −4.90137 10.1969i −0.433224 0.901286i
\(129\) 16.7065 9.64553i 1.47093 0.849241i
\(130\) 0 0
\(131\) −1.49073 + 2.58201i −0.130245 + 0.225592i −0.923771 0.382945i \(-0.874910\pi\)
0.793526 + 0.608537i \(0.208243\pi\)
\(132\) 0.446637 + 0.318844i 0.0388747 + 0.0277518i
\(133\) −15.7157 + 11.9377i −1.36272 + 1.03513i
\(134\) −0.147879 0.0473681i −0.0127748 0.00409198i
\(135\) 0 0
\(136\) 6.03431 14.0228i 0.517438 1.20244i
\(137\) 1.32048 0.762377i 0.112816 0.0651342i −0.442530 0.896754i \(-0.645919\pi\)
0.555346 + 0.831619i \(0.312586\pi\)
\(138\) 3.92483 + 4.32258i 0.334104 + 0.367963i
\(139\) −7.16082 −0.607373 −0.303686 0.952772i \(-0.598217\pi\)
−0.303686 + 0.952772i \(0.598217\pi\)
\(140\) 0 0
\(141\) 12.1634 1.02434
\(142\) 6.40010 + 7.04870i 0.537084 + 0.591514i
\(143\) −0.357440 + 0.206368i −0.0298907 + 0.0172574i
\(144\) −11.7990 + 13.5520i −0.983251 + 1.12933i
\(145\) 0 0
\(146\) 8.27880 + 2.65183i 0.685158 + 0.219467i
\(147\) −18.4581 5.13939i −1.52240 0.423890i
\(148\) 1.20680 1.69048i 0.0991983 0.138957i
\(149\) −10.5236 + 18.2275i −0.862129 + 1.49325i 0.00774027 + 0.999970i \(0.497536\pi\)
−0.869870 + 0.493282i \(0.835797\pi\)
\(150\) 0 0
\(151\) −3.31081 + 1.91150i −0.269430 + 0.155555i −0.628628 0.777706i \(-0.716383\pi\)
0.359199 + 0.933261i \(0.383050\pi\)
\(152\) −20.9534 + 2.46765i −1.69954 + 0.200153i
\(153\) −24.2458 −1.96016
\(154\) −0.243794 + 0.285037i −0.0196455 + 0.0229689i
\(155\) 0 0
\(156\) −9.33920 20.5141i −0.747735 1.64244i
\(157\) 0.642065 + 1.11209i 0.0512423 + 0.0887543i 0.890509 0.454966i \(-0.150349\pi\)
−0.839266 + 0.543720i \(0.817015\pi\)
\(158\) 5.90760 1.28147i 0.469983 0.101948i
\(159\) −8.40673 + 14.5609i −0.666697 + 1.15475i
\(160\) 0 0
\(161\) −3.17776 + 2.41384i −0.250443 + 0.190238i
\(162\) −3.09351 0.990900i −0.243049 0.0778525i
\(163\) 4.30054 7.44875i 0.336844 0.583431i −0.646993 0.762496i \(-0.723974\pi\)
0.983837 + 0.179064i \(0.0573071\pi\)
\(164\) −15.9083 1.53802i −1.24223 0.120099i
\(165\) 0 0
\(166\) 6.18085 + 6.80723i 0.479727 + 0.528343i
\(167\) 8.10448i 0.627144i 0.949565 + 0.313572i \(0.101526\pi\)
−0.949565 + 0.313572i \(0.898474\pi\)
\(168\) −14.2127 14.7500i −1.09653 1.13799i
\(169\) 3.95261 0.304047
\(170\) 0 0
\(171\) 16.7543 + 29.0193i 1.28123 + 2.21916i
\(172\) −1.35643 + 14.0301i −0.103427 + 1.06979i
\(173\) 4.01688 6.95744i 0.305398 0.528964i −0.671952 0.740595i \(-0.734544\pi\)
0.977350 + 0.211630i \(0.0678773\pi\)
\(174\) 2.80670 8.76228i 0.212775 0.664267i
\(175\) 0 0
\(176\) −0.379228 + 0.130250i −0.0285854 + 0.00981797i
\(177\) 20.2034 + 11.6645i 1.51858 + 0.876755i
\(178\) −4.41128 + 0.956887i −0.330639 + 0.0717217i
\(179\) 7.66309 4.42429i 0.572766 0.330687i −0.185487 0.982647i \(-0.559386\pi\)
0.758253 + 0.651960i \(0.226053\pi\)
\(180\) 0 0
\(181\) 21.3610i 1.58775i −0.608082 0.793874i \(-0.708061\pi\)
0.608082 0.793874i \(-0.291939\pi\)
\(182\) 14.5257 5.13224i 1.07672 0.380427i
\(183\) −21.6316 −1.59905
\(184\) −4.23684 + 0.498968i −0.312344 + 0.0367844i
\(185\) 0 0
\(186\) −20.5892 + 4.46617i −1.50967 + 0.327476i
\(187\) −0.468561 0.270524i −0.0342645 0.0197826i
\(188\) −5.16381 + 7.23347i −0.376610 + 0.527555i
\(189\) −4.18399 + 9.96329i −0.304341 + 0.724723i
\(190\) 0 0
\(191\) −21.6710 12.5117i −1.56806 0.905317i −0.996396 0.0848269i \(-0.972966\pi\)
−0.571660 0.820491i \(-0.693700\pi\)
\(192\) −5.08712 21.2984i −0.367131 1.53708i
\(193\) 7.06813 4.08078i 0.508775 0.293741i −0.223555 0.974691i \(-0.571766\pi\)
0.732330 + 0.680950i \(0.238433\pi\)
\(194\) 11.5894 10.5230i 0.832074 0.755509i
\(195\) 0 0
\(196\) 10.8925 8.79505i 0.778038 0.628218i
\(197\) 12.4517i 0.887149i 0.896238 + 0.443574i \(0.146290\pi\)
−0.896238 + 0.443574i \(0.853710\pi\)
\(198\) 0.428094 + 0.471478i 0.0304233 + 0.0335065i
\(199\) 11.5867 + 20.0687i 0.821358 + 1.42263i 0.904671 + 0.426110i \(0.140116\pi\)
−0.0833132 + 0.996523i \(0.526550\pi\)
\(200\) 0 0
\(201\) −0.260277 0.150271i −0.0183586 0.0105993i
\(202\) 3.09054 9.64840i 0.217449 0.678859i
\(203\) 5.79814 + 2.43487i 0.406949 + 0.170895i
\(204\) 17.1674 24.0481i 1.20196 1.68370i
\(205\) 0 0
\(206\) −6.75291 + 1.46483i −0.470498 + 0.102060i
\(207\) 3.38778 + 5.86780i 0.235467 + 0.407840i
\(208\) 16.1644 + 3.15504i 1.12080 + 0.218762i
\(209\) 0.747747i 0.0517228i
\(210\) 0 0
\(211\) 10.9759i 0.755613i 0.925885 + 0.377807i \(0.123322\pi\)
−0.925885 + 0.377807i \(0.876678\pi\)
\(212\) −5.09027 11.1811i −0.349601 0.767918i
\(213\) 9.21365 + 15.9585i 0.631309 + 1.09346i
\(214\) 2.26908 + 10.4605i 0.155111 + 0.715066i
\(215\) 0 0
\(216\) −9.26031 + 6.90663i −0.630084 + 0.469936i
\(217\) −1.80987 14.2855i −0.122862 0.969764i
\(218\) 24.3142 + 7.78824i 1.64677 + 0.527486i
\(219\) 14.5712 + 8.41270i 0.984633 + 0.568478i
\(220\) 0 0
\(221\) 11.1114 + 19.2455i 0.747434 + 1.29459i
\(222\) 2.97626 2.70239i 0.199753 0.181372i
\(223\) 14.9798i 1.00312i 0.865123 + 0.501559i \(0.167240\pi\)
−0.865123 + 0.501559i \(0.832760\pi\)
\(224\) 14.8055 2.19024i 0.989234 0.146342i
\(225\) 0 0
\(226\) 17.2481 + 18.9961i 1.14733 + 1.26360i
\(227\) −1.30546 + 0.753708i −0.0866465 + 0.0500254i −0.542697 0.839928i \(-0.682597\pi\)
0.456051 + 0.889954i \(0.349264\pi\)
\(228\) −40.6456 3.92962i −2.69182 0.260245i
\(229\) −7.38329 4.26274i −0.487901 0.281690i 0.235802 0.971801i \(-0.424228\pi\)
−0.723703 + 0.690111i \(0.757562\pi\)
\(230\) 0 0
\(231\) −0.578085 + 0.439116i −0.0380352 + 0.0288917i
\(232\) 4.01931 + 5.38904i 0.263881 + 0.353808i
\(233\) 18.3799 + 10.6117i 1.20411 + 0.695193i 0.961467 0.274922i \(-0.0886520\pi\)
0.242644 + 0.970115i \(0.421985\pi\)
\(234\) −5.54500 25.5626i −0.362488 1.67108i
\(235\) 0 0
\(236\) −15.5139 + 7.06283i −1.00987 + 0.459751i
\(237\) 11.7000 0.759994
\(238\) 15.3471 + 13.1265i 0.994806 + 0.850865i
\(239\) 10.1532i 0.656754i 0.944547 + 0.328377i \(0.106502\pi\)
−0.944547 + 0.328377i \(0.893498\pi\)
\(240\) 0 0
\(241\) 16.4985 9.52539i 1.06276 0.613584i 0.136565 0.990631i \(-0.456394\pi\)
0.926194 + 0.377047i \(0.123060\pi\)
\(242\) −3.29475 15.1889i −0.211795 0.976379i
\(243\) −16.0562 9.27006i −1.03001 0.594674i
\(244\) 9.18342 12.8641i 0.587908 0.823542i
\(245\) 0 0
\(246\) −29.4594 9.43632i −1.87826 0.601638i
\(247\) 15.3564 26.5980i 0.977102 1.69239i
\(248\) 6.08488 14.1403i 0.386390 0.897909i
\(249\) 8.89801 + 15.4118i 0.563889 + 0.976684i
\(250\) 0 0
\(251\) −9.46184 −0.597226 −0.298613 0.954374i \(-0.596524\pi\)
−0.298613 + 0.954374i \(0.596524\pi\)
\(252\) −12.4900 20.2244i −0.786798 1.27402i
\(253\) 0.151197i 0.00950567i
\(254\) −4.58143 + 4.15986i −0.287465 + 0.261013i
\(255\) 0 0
\(256\) 14.8256 + 6.01668i 0.926602 + 0.376043i
\(257\) 1.37271 2.37760i 0.0856270 0.148310i −0.820031 0.572319i \(-0.806044\pi\)
0.905658 + 0.424008i \(0.139377\pi\)
\(258\) −8.32224 + 25.9813i −0.518120 + 1.61753i
\(259\) 1.66202 + 2.18801i 0.103273 + 0.135956i
\(260\) 0 0
\(261\) 5.33868 9.24686i 0.330456 0.572367i
\(262\) −0.893830 4.12058i −0.0552210 0.254570i
\(263\) −12.8384 22.2367i −0.791648 1.37117i −0.924946 0.380098i \(-0.875890\pi\)
0.133298 0.991076i \(-0.457443\pi\)
\(264\) −0.770748 + 0.0907700i −0.0474363 + 0.00558651i
\(265\) 0 0
\(266\) 5.10570 27.4393i 0.313051 1.68241i
\(267\) −8.73650 −0.534665
\(268\) 0.199863 0.0909892i 0.0122086 0.00555805i
\(269\) −7.10140 + 4.10000i −0.432980 + 0.249981i −0.700615 0.713539i \(-0.747091\pi\)
0.267635 + 0.963520i \(0.413758\pi\)
\(270\) 0 0
\(271\) 3.20364 5.54886i 0.194607 0.337069i −0.752165 0.658975i \(-0.770990\pi\)
0.946772 + 0.321906i \(0.104324\pi\)
\(272\) 7.01301 + 20.4186i 0.425226 + 1.23806i
\(273\) 29.5810 3.74769i 1.79033 0.226821i
\(274\) −0.657785 + 2.05355i −0.0397382 + 0.124059i
\(275\) 0 0
\(276\) −8.21868 0.794582i −0.494706 0.0478282i
\(277\) −13.8297 + 7.98456i −0.830944 + 0.479746i −0.854176 0.519984i \(-0.825938\pi\)
0.0232316 + 0.999730i \(0.492604\pi\)
\(278\) 7.49745 6.80756i 0.449667 0.408290i
\(279\) −24.4490 −1.46372
\(280\) 0 0
\(281\) −9.68409 −0.577704 −0.288852 0.957374i \(-0.593274\pi\)
−0.288852 + 0.957374i \(0.593274\pi\)
\(282\) −12.7352 + 11.5633i −0.758370 + 0.688587i
\(283\) −22.6264 + 13.0633i −1.34500 + 0.776535i −0.987536 0.157393i \(-0.949691\pi\)
−0.357462 + 0.933928i \(0.616358\pi\)
\(284\) −13.4019 1.29570i −0.795259 0.0768856i
\(285\) 0 0
\(286\) 0.178056 0.555877i 0.0105287 0.0328697i
\(287\) 8.18622 19.4937i 0.483217 1.15068i
\(288\) −0.529749 25.4060i −0.0312158 1.49706i
\(289\) −6.06569 + 10.5061i −0.356805 + 0.618005i
\(290\) 0 0
\(291\) 26.2389 15.1491i 1.53815 0.888053i
\(292\) −11.1890 + 5.09389i −0.654787 + 0.298097i
\(293\) −16.2389 −0.948684 −0.474342 0.880341i \(-0.657314\pi\)
−0.474342 + 0.880341i \(0.657314\pi\)
\(294\) 24.2117 12.1666i 1.41206 0.709568i
\(295\) 0 0
\(296\) 0.343557 + 2.91722i 0.0199689 + 0.169560i
\(297\) 0.204714 + 0.354574i 0.0118787 + 0.0205745i
\(298\) −6.30990 29.0888i −0.365523 1.68507i
\(299\) 3.10511 5.37821i 0.179573 0.311030i
\(300\) 0 0
\(301\) −17.1923 7.21973i −0.990945 0.416138i
\(302\) 1.64925 5.14883i 0.0949039 0.296282i
\(303\) 9.80446 16.9818i 0.563251 0.975580i
\(304\) 19.5925 22.5034i 1.12371 1.29066i
\(305\) 0 0
\(306\) 25.3856 23.0497i 1.45120 1.31766i
\(307\) 23.5437i 1.34371i 0.740684 + 0.671854i \(0.234502\pi\)
−0.740684 + 0.671854i \(0.765498\pi\)
\(308\) −0.0157201 0.530204i −0.000895737 0.0302112i
\(309\) −13.3741 −0.760825
\(310\) 0 0
\(311\) −2.69773 4.67261i −0.152974 0.264959i 0.779345 0.626595i \(-0.215552\pi\)
−0.932320 + 0.361635i \(0.882219\pi\)
\(312\) 29.2803 + 12.6000i 1.65767 + 0.713333i
\(313\) −16.2807 + 28.1990i −0.920240 + 1.59390i −0.121197 + 0.992629i \(0.538673\pi\)
−0.799043 + 0.601274i \(0.794660\pi\)
\(314\) −1.72948 0.553979i −0.0975999 0.0312628i
\(315\) 0 0
\(316\) −4.96707 + 6.95787i −0.279420 + 0.391411i
\(317\) 11.8747 + 6.85587i 0.666951 + 0.385064i 0.794920 0.606714i \(-0.207513\pi\)
−0.127970 + 0.991778i \(0.540846\pi\)
\(318\) −5.04062 23.2374i −0.282664 1.30309i
\(319\) 0.206344 0.119133i 0.0115531 0.00667017i
\(320\) 0 0
\(321\) 20.7170i 1.15631i
\(322\) 1.03239 5.54832i 0.0575328 0.309196i
\(323\) 40.2606 2.24016
\(324\) 4.18095 1.90341i 0.232275 0.105745i
\(325\) 0 0
\(326\) 2.57858 + 11.8873i 0.142814 + 0.658377i
\(327\) 42.7947 + 24.7075i 2.36655 + 1.36633i
\(328\) 18.1183 13.5132i 1.00042 0.746142i
\(329\) −7.11167 9.36233i −0.392079 0.516162i
\(330\) 0 0
\(331\) −4.92495 2.84342i −0.270700 0.156289i 0.358506 0.933527i \(-0.383286\pi\)
−0.629206 + 0.777239i \(0.716620\pi\)
\(332\) −12.9428 1.25131i −0.710330 0.0686747i
\(333\) 4.04019 2.33261i 0.221401 0.127826i
\(334\) −7.70467 8.48548i −0.421581 0.464305i
\(335\) 0 0
\(336\) 28.9031 + 1.93186i 1.57680 + 0.105392i
\(337\) 14.7219i 0.801955i 0.916088 + 0.400978i \(0.131330\pi\)
−0.916088 + 0.400978i \(0.868670\pi\)
\(338\) −4.13843 + 3.75762i −0.225101 + 0.204388i
\(339\) 24.8306 + 43.0079i 1.34861 + 2.33587i
\(340\) 0 0
\(341\) −0.472487 0.272790i −0.0255866 0.0147724i
\(342\) −45.1296 14.4557i −2.44033 0.781677i
\(343\) 6.83621 + 17.2124i 0.369121 + 0.929381i
\(344\) −11.9178 15.9792i −0.642564 0.861542i
\(345\) 0 0
\(346\) 2.40850 + 11.1032i 0.129482 + 0.596913i
\(347\) −7.73454 13.3966i −0.415212 0.719168i 0.580239 0.814446i \(-0.302959\pi\)
−0.995451 + 0.0952784i \(0.969626\pi\)
\(348\) 5.39137 + 11.8424i 0.289008 + 0.634821i
\(349\) 11.5290i 0.617132i 0.951203 + 0.308566i \(0.0998491\pi\)
−0.951203 + 0.308566i \(0.900151\pi\)
\(350\) 0 0
\(351\) 16.8167i 0.897608i
\(352\) 0.273231 0.496893i 0.0145633 0.0264845i
\(353\) 10.2181 + 17.6983i 0.543855 + 0.941985i 0.998678 + 0.0514030i \(0.0163693\pi\)
−0.454823 + 0.890582i \(0.650297\pi\)
\(354\) −32.2422 + 6.99394i −1.71366 + 0.371724i
\(355\) 0 0
\(356\) 3.70897 5.19553i 0.196575 0.275362i
\(357\) 23.6431 + 31.1256i 1.25133 + 1.64734i
\(358\) −3.81731 + 11.9173i −0.201751 + 0.629850i
\(359\) −18.3761 10.6095i −0.969856 0.559946i −0.0706634 0.997500i \(-0.522512\pi\)
−0.899192 + 0.437554i \(0.855845\pi\)
\(360\) 0 0
\(361\) −18.3208 31.7326i −0.964255 1.67014i
\(362\) 20.3072 + 22.3652i 1.06732 + 1.17549i
\(363\) 30.0815i 1.57887i
\(364\) −10.3295 + 19.1826i −0.541415 + 1.00544i
\(365\) 0 0
\(366\) 22.6485 20.5644i 1.18386 1.07492i
\(367\) 6.62637 3.82574i 0.345894 0.199702i −0.316982 0.948432i \(-0.602669\pi\)
0.662875 + 0.748730i \(0.269336\pi\)
\(368\) 3.96167 4.55025i 0.206516 0.237198i
\(369\) −31.0886 17.9490i −1.61841 0.934389i
\(370\) 0 0
\(371\) 16.1229 2.04265i 0.837062 0.106049i
\(372\) 17.3112 24.2496i 0.897546 1.25728i
\(373\) −22.2000 12.8172i −1.14947 0.663647i −0.200713 0.979650i \(-0.564326\pi\)
−0.948758 + 0.316003i \(0.897659\pi\)
\(374\) 0.747766 0.162204i 0.0386661 0.00838738i
\(375\) 0 0
\(376\) −1.47006 12.4826i −0.0758125 0.643740i
\(377\) −9.78647 −0.504029
\(378\) −5.09109 14.4093i −0.261857 0.741132i
\(379\) 29.1039i 1.49497i −0.664279 0.747485i \(-0.731261\pi\)
0.664279 0.747485i \(-0.268739\pi\)
\(380\) 0 0
\(381\) −10.3725 + 5.98858i −0.531401 + 0.306804i
\(382\) 34.5842 7.50196i 1.76948 0.383834i
\(383\) 7.48525 + 4.32161i 0.382478 + 0.220824i 0.678896 0.734234i \(-0.262459\pi\)
−0.296418 + 0.955058i \(0.595792\pi\)
\(384\) 25.5739 + 17.4635i 1.30506 + 0.891178i
\(385\) 0 0
\(386\) −3.52093 + 10.9921i −0.179211 + 0.559481i
\(387\) −15.8299 + 27.4182i −0.804679 + 1.39375i
\(388\) −2.13038 + 22.0354i −0.108154 + 1.11868i
\(389\) −7.08846 12.2776i −0.359399 0.622498i 0.628461 0.777841i \(-0.283685\pi\)
−0.987861 + 0.155343i \(0.950352\pi\)
\(390\) 0 0
\(391\) 8.14084 0.411700
\(392\) −3.04343 + 19.5637i −0.153716 + 0.988115i
\(393\) 8.16078i 0.411657i
\(394\) −11.8375 13.0371i −0.596362 0.656799i
\(395\) 0 0
\(396\) −0.896438 0.0866677i −0.0450477 0.00435521i
\(397\) 0.0875029 0.151559i 0.00439164 0.00760655i −0.863821 0.503798i \(-0.831935\pi\)
0.868213 + 0.496192i \(0.165269\pi\)
\(398\) −31.2101 9.99708i −1.56442 0.501108i
\(399\) 20.9157 49.8063i 1.04710 2.49344i
\(400\) 0 0
\(401\) −12.0285 + 20.8339i −0.600674 + 1.04040i 0.392046 + 0.919946i \(0.371768\pi\)
−0.992719 + 0.120452i \(0.961566\pi\)
\(402\) 0.415371 0.0901017i 0.0207168 0.00449386i
\(403\) 11.2045 + 19.4068i 0.558136 + 0.966721i
\(404\) 5.93659 + 13.0401i 0.295357 + 0.648767i
\(405\) 0 0
\(406\) −8.38547 + 2.96276i −0.416164 + 0.147039i
\(407\) 0.104105 0.00516027
\(408\) 4.88729 + 41.4991i 0.241957 + 2.05451i
\(409\) 10.3372 5.96818i 0.511141 0.295108i −0.222161 0.975010i \(-0.571311\pi\)
0.733303 + 0.679902i \(0.237978\pi\)
\(410\) 0 0
\(411\) −2.08676 + 3.61438i −0.102932 + 0.178284i
\(412\) 5.67780 7.95347i 0.279725 0.391839i
\(413\) −2.83421 22.3708i −0.139463 1.10080i
\(414\) −9.12536 2.92300i −0.448487 0.143658i
\(415\) 0 0
\(416\) −19.9237 + 12.0636i −0.976839 + 0.591467i
\(417\) 16.9745 9.80023i 0.831245 0.479919i
\(418\) −0.710859 0.782899i −0.0347692 0.0382929i
\(419\) −30.1003 −1.47050 −0.735249 0.677798i \(-0.762935\pi\)
−0.735249 + 0.677798i \(0.762935\pi\)
\(420\) 0 0
\(421\) 6.78256 0.330562 0.165281 0.986247i \(-0.447147\pi\)
0.165281 + 0.986247i \(0.447147\pi\)
\(422\) −10.4344 11.4919i −0.507941 0.559417i
\(423\) −17.2877 + 9.98107i −0.840557 + 0.485296i
\(424\) 15.9590 + 6.86753i 0.775039 + 0.333517i
\(425\) 0 0
\(426\) −24.8180 7.94961i −1.20244 0.385160i
\(427\) 12.6475 + 16.6501i 0.612056 + 0.805756i
\(428\) −12.3202 8.79513i −0.595520 0.425128i
\(429\) 0.564868 0.978379i 0.0272721 0.0472366i
\(430\) 0 0
\(431\) 13.8010 7.96802i 0.664772 0.383806i −0.129321 0.991603i \(-0.541280\pi\)
0.794093 + 0.607797i \(0.207946\pi\)
\(432\) 3.12974 16.0348i 0.150580 0.771474i
\(433\) 15.1291 0.727057 0.363529 0.931583i \(-0.381572\pi\)
0.363529 + 0.931583i \(0.381572\pi\)
\(434\) 15.4757 + 13.2365i 0.742858 + 0.635373i
\(435\) 0 0
\(436\) −32.8613 + 14.9604i −1.57377 + 0.716472i
\(437\) −5.62547 9.74360i −0.269103 0.466099i
\(438\) −23.2539 + 5.04421i −1.11112 + 0.241021i
\(439\) 2.18337 3.78171i 0.104207 0.180491i −0.809207 0.587523i \(-0.800103\pi\)
0.913414 + 0.407032i \(0.133436\pi\)
\(440\) 0 0
\(441\) 30.4517 7.84186i 1.45008 0.373422i
\(442\) −29.9298 9.58701i −1.42362 0.456007i
\(443\) 7.04909 12.2094i 0.334913 0.580086i −0.648555 0.761167i \(-0.724627\pi\)
0.983468 + 0.181082i \(0.0579599\pi\)
\(444\) −0.547098 + 5.65886i −0.0259641 + 0.268558i
\(445\) 0 0
\(446\) −14.2408 15.6840i −0.674320 0.742657i
\(447\) 57.6102i 2.72487i
\(448\) −13.4193 + 16.3683i −0.634003 + 0.773330i
\(449\) −17.0120 −0.802848 −0.401424 0.915892i \(-0.631485\pi\)
−0.401424 + 0.915892i \(0.631485\pi\)
\(450\) 0 0
\(451\) −0.400534 0.693745i −0.0188604 0.0326672i
\(452\) −36.1180 3.49188i −1.69885 0.164244i
\(453\) 5.23211 9.06228i 0.245826 0.425783i
\(454\) 0.650306 2.03020i 0.0305204 0.0952820i
\(455\) 0 0
\(456\) 46.2922 34.5261i 2.16783 1.61683i
\(457\) 10.1019 + 5.83234i 0.472548 + 0.272825i 0.717306 0.696759i \(-0.245375\pi\)
−0.244758 + 0.969584i \(0.578709\pi\)
\(458\) 11.7828 2.55591i 0.550575 0.119430i
\(459\) 19.0912 11.0223i 0.891101 0.514477i
\(460\) 0 0
\(461\) 26.4488i 1.23184i 0.787808 + 0.615921i \(0.211216\pi\)
−0.787808 + 0.615921i \(0.788784\pi\)
\(462\) 0.187808 1.00933i 0.00873761 0.0469581i
\(463\) −3.13685 −0.145782 −0.0728909 0.997340i \(-0.523222\pi\)
−0.0728909 + 0.997340i \(0.523222\pi\)
\(464\) −9.33144 1.82135i −0.433201 0.0845541i
\(465\) 0 0
\(466\) −29.3322 + 6.36269i −1.35879 + 0.294746i
\(467\) 7.05043 + 4.07057i 0.326255 + 0.188363i 0.654177 0.756341i \(-0.273015\pi\)
−0.327922 + 0.944705i \(0.606348\pi\)
\(468\) 30.1072 + 21.4929i 1.39171 + 0.993508i
\(469\) 0.0365127 + 0.288200i 0.00168600 + 0.0133078i
\(470\) 0 0
\(471\) −3.04399 1.75745i −0.140260 0.0809789i
\(472\) 9.52880 22.1434i 0.438599 1.01923i
\(473\) −0.611839 + 0.353246i −0.0281324 + 0.0162422i
\(474\) −12.2500 + 11.1228i −0.562660 + 0.510886i
\(475\) 0 0
\(476\) −28.5475 + 0.846412i −1.30847 + 0.0387952i
\(477\) 27.5937i 1.26343i
\(478\) −9.65229 10.6305i −0.441485 0.486227i
\(479\) −12.3904 21.4608i −0.566131 0.980567i −0.996944 0.0781258i \(-0.975106\pi\)
0.430813 0.902441i \(-0.358227\pi\)
\(480\) 0 0
\(481\) −3.70309 2.13798i −0.168846 0.0974835i
\(482\) −8.21858 + 25.6577i −0.374346 + 1.16868i
\(483\) 4.22923 10.0710i 0.192437 0.458247i
\(484\) 17.8892 + 12.7707i 0.813147 + 0.580487i
\(485\) 0 0
\(486\) 25.6238 5.55827i 1.16232 0.252128i
\(487\) −6.34726 10.9938i −0.287622 0.498175i 0.685620 0.727960i \(-0.259531\pi\)
−0.973242 + 0.229784i \(0.926198\pi\)
\(488\) 2.61438 + 22.1993i 0.118347 + 1.00491i
\(489\) 23.5427i 1.06464i
\(490\) 0 0
\(491\) 9.51192i 0.429267i 0.976695 + 0.214633i \(0.0688557\pi\)
−0.976695 + 0.214633i \(0.931144\pi\)
\(492\) 39.8151 18.1262i 1.79500 0.817191i
\(493\) −6.41443 11.1101i −0.288892 0.500375i
\(494\) 9.20758 + 42.4472i 0.414269 + 1.90979i
\(495\) 0 0
\(496\) 7.07177 + 20.5897i 0.317532 + 0.924506i
\(497\) 6.89647 16.4225i 0.309349 0.736649i
\(498\) −23.9678 7.67728i −1.07402 0.344027i
\(499\) 7.35497 + 4.24639i 0.329254 + 0.190095i 0.655510 0.755187i \(-0.272454\pi\)
−0.326256 + 0.945281i \(0.605787\pi\)
\(500\) 0 0
\(501\) −11.0917 19.2114i −0.495542 0.858303i
\(502\) 9.90665 8.99507i 0.442155 0.401469i
\(503\) 10.4796i 0.467261i −0.972325 0.233630i \(-0.924939\pi\)
0.972325 0.233630i \(-0.0750606\pi\)
\(504\) 32.3039 + 9.30134i 1.43893 + 0.414315i
\(505\) 0 0
\(506\) −0.143738 0.158305i −0.00638993 0.00703751i
\(507\) −9.36955 + 5.40951i −0.416116 + 0.240245i
\(508\) 0.842164 8.71084i 0.0373650 0.386481i
\(509\) 19.7483 + 11.4017i 0.875329 + 0.505371i 0.869115 0.494609i \(-0.164689\pi\)
0.00621337 + 0.999981i \(0.498022\pi\)
\(510\) 0 0
\(511\) −2.04411 16.1344i −0.0904259 0.713744i
\(512\) −21.2425 + 7.79472i −0.938793 + 0.344481i
\(513\) −26.3847 15.2332i −1.16492 0.672564i
\(514\) 0.823066 + 3.79435i 0.0363039 + 0.167362i
\(515\) 0 0
\(516\) −15.9861 35.1144i −0.703751 1.54583i
\(517\) −0.445456 −0.0195912
\(518\) −3.82022 0.710838i −0.167851 0.0312324i
\(519\) 21.9899i 0.965248i
\(520\) 0 0
\(521\) −7.88048 + 4.54980i −0.345250 + 0.199330i −0.662591 0.748981i \(-0.730543\pi\)
0.317341 + 0.948311i \(0.397210\pi\)
\(522\) 3.20104 + 14.7569i 0.140106 + 0.645891i
\(523\) 4.12311 + 2.38048i 0.180291 + 0.104091i 0.587429 0.809275i \(-0.300140\pi\)
−0.407138 + 0.913366i \(0.633473\pi\)
\(524\) 4.85315 + 3.46456i 0.212011 + 0.151350i
\(525\) 0 0
\(526\) 34.5816 + 11.0771i 1.50783 + 0.482982i
\(527\) −14.6877 + 25.4399i −0.639808 + 1.10818i
\(528\) 0.720689 0.827762i 0.0313640 0.0360237i
\(529\) 10.3625 + 17.9484i 0.450544 + 0.780365i
\(530\) 0 0
\(531\) −38.2866 −1.66150
\(532\) 20.7399 + 33.5831i 0.899190 + 1.45601i
\(533\) 32.9028i 1.42518i
\(534\) 9.14721 8.30551i 0.395838 0.359414i
\(535\) 0 0
\(536\) −0.122758 + 0.285270i −0.00530233 + 0.0123218i
\(537\) −12.1101 + 20.9753i −0.522588 + 0.905150i
\(538\) 3.53751 11.0438i 0.152513 0.476133i
\(539\) 0.675988 + 0.188219i 0.0291168 + 0.00810715i
\(540\) 0 0
\(541\) 11.2312 19.4530i 0.482867 0.836350i −0.516939 0.856022i \(-0.672929\pi\)
0.999806 + 0.0196717i \(0.00626211\pi\)
\(542\) 1.92088 + 8.85531i 0.0825089 + 0.380368i
\(543\) 29.2344 + 50.6355i 1.25457 + 2.17298i
\(544\) −26.7540 14.7115i −1.14707 0.630749i
\(545\) 0 0
\(546\) −27.4089 + 32.0456i −1.17299 + 1.37143i
\(547\) −24.4644 −1.04602 −0.523012 0.852326i \(-0.675192\pi\)
−0.523012 + 0.852326i \(0.675192\pi\)
\(548\) −1.26353 2.77542i −0.0539755 0.118560i
\(549\) 30.7448 17.7505i 1.31215 0.757573i
\(550\) 0 0
\(551\) −8.86498 + 15.3546i −0.377661 + 0.654128i
\(552\) 9.36043 6.98130i 0.398406 0.297144i
\(553\) −6.84071 9.00562i −0.290897 0.382958i
\(554\) 6.88915 21.5073i 0.292692 0.913759i
\(555\) 0 0
\(556\) −1.37819 + 14.2552i −0.0584483 + 0.604554i
\(557\) 7.30280 4.21627i 0.309430 0.178649i −0.337242 0.941418i \(-0.609494\pi\)
0.646671 + 0.762769i \(0.276161\pi\)
\(558\) 25.5983 23.2429i 1.08366 0.983948i
\(559\) 29.0182 1.22734
\(560\) 0 0
\(561\) 1.48095 0.0625255
\(562\) 10.1393 9.20635i 0.427702 0.388346i
\(563\) −23.5269 + 13.5833i −0.991541 + 0.572467i −0.905735 0.423845i \(-0.860680\pi\)
−0.0858067 + 0.996312i \(0.527347\pi\)
\(564\) 2.34100 24.2139i 0.0985738 1.01959i
\(565\) 0 0
\(566\) 11.2712 35.1876i 0.473762 1.47905i
\(567\) 0.763813 + 6.02888i 0.0320771 + 0.253189i
\(568\) 15.2638 11.3842i 0.640453 0.477669i
\(569\) 7.11643 12.3260i 0.298336 0.516733i −0.677419 0.735597i \(-0.736902\pi\)
0.975755 + 0.218864i \(0.0702350\pi\)
\(570\) 0 0
\(571\) −14.5870 + 8.42181i −0.610447 + 0.352442i −0.773140 0.634235i \(-0.781315\pi\)
0.162693 + 0.986677i \(0.447982\pi\)
\(572\) 0.342027 + 0.751281i 0.0143009 + 0.0314126i
\(573\) 68.4938 2.86137
\(574\) 9.96101 + 28.1925i 0.415764 + 1.17673i
\(575\) 0 0
\(576\) 24.7073 + 26.0968i 1.02947 + 1.08737i
\(577\) −1.07668 1.86487i −0.0448230 0.0776356i 0.842744 0.538315i \(-0.180939\pi\)
−0.887566 + 0.460680i \(0.847606\pi\)
\(578\) −3.63695 16.7664i −0.151277 0.697392i
\(579\) −11.1699 + 19.3468i −0.464203 + 0.804024i
\(580\) 0 0
\(581\) 6.66021 15.8599i 0.276312 0.657979i
\(582\) −13.0707 + 40.8057i −0.541799 + 1.69145i
\(583\) 0.307877 0.533259i 0.0127510 0.0220853i
\(584\) 6.87241 15.9704i 0.284382 0.660859i
\(585\) 0 0
\(586\) 17.0023 15.4378i 0.702357 0.637728i
\(587\) 11.3061i 0.466652i 0.972399 + 0.233326i \(0.0749609\pi\)
−0.972399 + 0.233326i \(0.925039\pi\)
\(588\) −13.7836 + 35.7558i −0.568425 + 1.47454i
\(589\) 40.5980 1.67281
\(590\) 0 0
\(591\) −17.0413 29.5164i −0.700986 1.21414i
\(592\) −3.13301 2.72775i −0.128766 0.112110i
\(593\) −8.51993 + 14.7570i −0.349872 + 0.605996i −0.986226 0.165401i \(-0.947108\pi\)
0.636355 + 0.771397i \(0.280442\pi\)
\(594\) −0.551420 0.176629i −0.0226250 0.00724716i
\(595\) 0 0
\(596\) 34.2603 + 24.4577i 1.40336 + 1.00183i
\(597\) −54.9318 31.7149i −2.24821 1.29800i
\(598\) 1.86180 + 8.58296i 0.0761348 + 0.350984i
\(599\) −3.39864 + 1.96221i −0.138865 + 0.0801736i −0.567823 0.823151i \(-0.692214\pi\)
0.428958 + 0.903324i \(0.358881\pi\)
\(600\) 0 0
\(601\) 8.98026i 0.366312i −0.983084 0.183156i \(-0.941369\pi\)
0.983084 0.183156i \(-0.0586314\pi\)
\(602\) 24.8640 8.78498i 1.01338 0.358049i
\(603\) 0.493240 0.0200863
\(604\) 3.16804 + 6.95877i 0.128906 + 0.283149i
\(605\) 0 0
\(606\) 5.87869 + 27.1009i 0.238806 + 1.10090i
\(607\) −32.5444 18.7895i −1.32094 0.762644i −0.337059 0.941483i \(-0.609432\pi\)
−0.983878 + 0.178840i \(0.942766\pi\)
\(608\) 0.879659 + 42.1872i 0.0356749 + 1.71092i
\(609\) −17.0767 + 2.16348i −0.691981 + 0.0876687i
\(610\) 0 0
\(611\) 15.8453 + 9.14827i 0.641031 + 0.370099i
\(612\) −4.66641 + 48.2666i −0.188629 + 1.95106i
\(613\) −40.0621 + 23.1299i −1.61809 + 0.934207i −0.630681 + 0.776042i \(0.717224\pi\)
−0.987413 + 0.158165i \(0.949442\pi\)
\(614\) −22.3822 24.6505i −0.903272 0.994812i
\(615\) 0 0
\(616\) 0.520507 + 0.540184i 0.0209718 + 0.0217646i
\(617\) 42.8844i 1.72646i 0.504809 + 0.863231i \(0.331563\pi\)
−0.504809 + 0.863231i \(0.668437\pi\)
\(618\) 14.0028 12.7143i 0.563276 0.511445i
\(619\) 14.7503 + 25.5483i 0.592865 + 1.02687i 0.993844 + 0.110785i \(0.0353364\pi\)
−0.400980 + 0.916087i \(0.631330\pi\)
\(620\) 0 0
\(621\) −5.33508 3.08021i −0.214090 0.123605i
\(622\) 7.26665 + 2.32762i 0.291366 + 0.0933293i
\(623\) 5.10804 + 6.72461i 0.204649 + 0.269416i
\(624\) −42.6352 + 14.6435i −1.70677 + 0.586210i
\(625\) 0 0
\(626\) −9.76181 45.0022i −0.390160 1.79865i
\(627\) −1.02336 1.77251i −0.0408691 0.0707873i
\(628\) 2.33743 1.06413i 0.0932735 0.0424636i
\(629\) 5.60526i 0.223496i
\(630\) 0 0
\(631\) 20.5872i 0.819563i 0.912184 + 0.409781i \(0.134395\pi\)
−0.912184 + 0.409781i \(0.865605\pi\)
\(632\) −1.41405 12.0070i −0.0562478 0.477613i
\(633\) −15.0215 26.0181i −0.597053 1.03413i
\(634\) −18.9506 + 4.11074i −0.752625 + 0.163258i
\(635\) 0 0
\(636\) 27.3686 + 19.5378i 1.08524 + 0.774726i
\(637\) −20.1800 20.5777i −0.799562 0.815320i
\(638\) −0.102789 + 0.320899i −0.00406945 + 0.0127045i
\(639\) −26.1906 15.1211i −1.03608 0.598182i
\(640\) 0 0
\(641\) 18.4263 + 31.9153i 0.727795 + 1.26058i 0.957813 + 0.287392i \(0.0927883\pi\)
−0.230018 + 0.973186i \(0.573878\pi\)
\(642\) −19.6949 21.6909i −0.777297 0.856071i
\(643\) 48.4719i 1.91154i −0.294108 0.955772i \(-0.595023\pi\)
0.294108 0.955772i \(-0.404977\pi\)
\(644\) 4.19368 + 6.79061i 0.165254 + 0.267587i
\(645\) 0 0
\(646\) −42.1533 + 38.2745i −1.65850 + 1.50589i
\(647\) 33.9366 19.5933i 1.33418 0.770292i 0.348247 0.937403i \(-0.386777\pi\)
0.985938 + 0.167111i \(0.0534439\pi\)
\(648\) −2.56799 + 5.96759i −0.100880 + 0.234429i
\(649\) −0.739905 0.427185i −0.0290438 0.0167685i
\(650\) 0 0
\(651\) 23.8413 + 31.3864i 0.934413 + 1.23013i
\(652\) −14.0007 9.99477i −0.548309 0.391425i
\(653\) −5.96105 3.44161i −0.233274 0.134681i 0.378808 0.925475i \(-0.376334\pi\)
−0.612082 + 0.790795i \(0.709668\pi\)
\(654\) −68.2951 + 14.8145i −2.67055 + 0.579291i
\(655\) 0 0
\(656\) −6.12351 + 31.3730i −0.239083 + 1.22491i
\(657\) −27.6133 −1.07730
\(658\) 16.3465 + 3.04163i 0.637251 + 0.118575i
\(659\) 40.9792i 1.59632i 0.602444 + 0.798161i \(0.294194\pi\)
−0.602444 + 0.798161i \(0.705806\pi\)
\(660\) 0 0
\(661\) 10.4696 6.04460i 0.407219 0.235108i −0.282375 0.959304i \(-0.591122\pi\)
0.689594 + 0.724196i \(0.257789\pi\)
\(662\) 7.85962 1.70490i 0.305473 0.0662627i
\(663\) −52.6785 30.4139i −2.04586 1.18118i
\(664\) 14.7409 10.9942i 0.572056 0.426657i
\(665\) 0 0
\(666\) −2.01259 + 6.28314i −0.0779863 + 0.243467i
\(667\) −1.79253 + 3.10475i −0.0694070 + 0.120216i
\(668\) 16.1337 + 1.55981i 0.624233 + 0.0603508i
\(669\) −20.5012 35.5091i −0.792621 1.37286i
\(670\) 0 0
\(671\) 0.792208 0.0305828
\(672\) −32.0984 + 25.4546i −1.23822 + 0.981932i
\(673\) 29.0006i 1.11789i 0.829205 + 0.558945i \(0.188794\pi\)
−0.829205 + 0.558945i \(0.811206\pi\)
\(674\) −13.9957 15.4140i −0.539093 0.593726i
\(675\) 0 0
\(676\) 0.760730 7.86853i 0.0292588 0.302636i
\(677\) 24.1541 41.8361i 0.928317 1.60789i 0.142178 0.989841i \(-0.454589\pi\)
0.786138 0.618051i \(-0.212077\pi\)
\(678\) −66.8841 21.4240i −2.56867 0.822786i
\(679\) −27.0018 11.3392i −1.03623 0.435157i
\(680\) 0 0
\(681\) 2.06304 3.57329i 0.0790558 0.136929i
\(682\) 0.754032 0.163563i 0.0288734 0.00626317i
\(683\) 6.61231 + 11.4528i 0.253013 + 0.438231i 0.964354 0.264616i \(-0.0852452\pi\)
−0.711341 + 0.702847i \(0.751912\pi\)
\(684\) 60.9938 27.7680i 2.33216 1.06173i
\(685\) 0 0
\(686\) −23.5208 11.5226i −0.898030 0.439934i
\(687\) 23.3358 0.890317
\(688\) 27.6690 + 5.40055i 1.05487 + 0.205894i
\(689\) −21.9029 + 12.6457i −0.834435 + 0.481761i
\(690\) 0 0
\(691\) −19.9447 + 34.5453i −0.758733 + 1.31416i 0.184763 + 0.982783i \(0.440848\pi\)
−0.943497 + 0.331382i \(0.892485\pi\)
\(692\) −13.0772 9.33552i −0.497121 0.354883i
\(693\) 0.461296 1.09848i 0.0175232 0.0417277i
\(694\) 20.8339 + 6.67342i 0.790843 + 0.253320i
\(695\) 0 0
\(696\) −16.9030 7.27376i −0.640708 0.275711i
\(697\) −37.3530 + 21.5658i −1.41485 + 0.816862i
\(698\) −10.9602 12.0710i −0.414851 0.456893i
\(699\) −58.0921 −2.19725
\(700\) 0 0
\(701\) −5.82647 −0.220063 −0.110031 0.993928i \(-0.535095\pi\)
−0.110031 + 0.993928i \(0.535095\pi\)
\(702\) 15.9871 + 17.6072i 0.603393 + 0.664543i
\(703\) −6.70882 + 3.87334i −0.253028 + 0.146086i
\(704\) 0.186304 + 0.780004i 0.00702160 + 0.0293975i
\(705\) 0 0
\(706\) −27.5237 8.81627i −1.03587 0.331805i
\(707\) −18.8036 + 2.38227i −0.707182 + 0.0895946i
\(708\) 27.1091 37.9744i 1.01882 1.42716i
\(709\) −8.29615 + 14.3694i −0.311569 + 0.539653i −0.978702 0.205286i \(-0.934188\pi\)
0.667134 + 0.744938i \(0.267521\pi\)
\(710\) 0 0
\(711\) −16.6290 + 9.60078i −0.623638 + 0.360058i
\(712\) 1.05589 + 8.96577i 0.0395710 + 0.336006i
\(713\) 8.20905 0.307431
\(714\) −54.3447 10.1121i −2.03380 0.378434i
\(715\) 0 0
\(716\) −7.33265 16.1066i −0.274034 0.601930i
\(717\) −13.8955 24.0678i −0.518938 0.898828i
\(718\) 29.3261 6.36137i 1.09444 0.237404i
\(719\) −1.69923 + 2.94314i −0.0633704 + 0.109761i −0.895970 0.444115i \(-0.853518\pi\)
0.832600 + 0.553875i \(0.186852\pi\)
\(720\) 0 0
\(721\) 7.81954 + 10.2942i 0.291215 + 0.383377i
\(722\) 49.3493 + 15.8074i 1.83659 + 0.588290i
\(723\) −26.0727 + 45.1593i −0.969655 + 1.67949i
\(724\) −42.5237 4.11119i −1.58038 0.152791i
\(725\) 0 0
\(726\) 28.5975 + 31.4957i 1.06135 + 1.16891i
\(727\) 14.3045i 0.530526i 0.964176 + 0.265263i \(0.0854588\pi\)
−0.964176 + 0.265263i \(0.914541\pi\)
\(728\) −7.42118 29.9044i −0.275047 1.10833i
\(729\) 43.8569 1.62433
\(730\) 0 0
\(731\) 19.0197 + 32.9430i 0.703468 + 1.21844i
\(732\) −4.16327 + 43.0624i −0.153879 + 1.59163i
\(733\) 24.7457 42.8607i 0.914001 1.58310i 0.105645 0.994404i \(-0.466309\pi\)
0.808357 0.588693i \(-0.200357\pi\)
\(734\) −3.30088 + 10.3051i −0.121838 + 0.380367i
\(735\) 0 0
\(736\) 0.177870 + 8.53039i 0.00655637 + 0.314434i
\(737\) 0.00953207 + 0.00550334i 0.000351118 + 0.000202718i
\(738\) 49.6137 10.7621i 1.82630 0.396159i
\(739\) 23.2184 13.4052i 0.854104 0.493117i −0.00792968 0.999969i \(-0.502524\pi\)
0.862033 + 0.506852i \(0.169191\pi\)
\(740\) 0 0
\(741\) 84.0664i 3.08826i
\(742\) −14.9390 + 17.4662i −0.548428 + 0.641206i
\(743\) −22.2896 −0.817727 −0.408863 0.912596i \(-0.634075\pi\)
−0.408863 + 0.912596i \(0.634075\pi\)
\(744\) 4.92824 + 41.8468i 0.180678 + 1.53418i
\(745\) 0 0
\(746\) 35.4285 7.68509i 1.29713 0.281371i
\(747\) −25.2933 14.6031i −0.925435 0.534300i
\(748\) −0.628717 + 0.880706i −0.0229882 + 0.0322018i
\(749\) 15.9461 12.1128i 0.582659 0.442591i
\(750\) 0 0
\(751\) −11.1427 6.43324i −0.406603 0.234752i 0.282726 0.959201i \(-0.408761\pi\)
−0.689329 + 0.724448i \(0.742095\pi\)
\(752\) 13.4060 + 11.6719i 0.488865 + 0.425629i
\(753\) 22.4290 12.9494i 0.817359 0.471902i
\(754\) 10.2465 9.30368i 0.373157 0.338820i
\(755\) 0 0
\(756\) 19.0288 + 10.2467i 0.692072 + 0.372669i
\(757\) 3.66830i 0.133327i 0.997776 + 0.0666633i \(0.0212354\pi\)
−0.997776 + 0.0666633i \(0.978765\pi\)
\(758\) 27.6682 + 30.4721i 1.00495 + 1.10680i
\(759\) −0.206927 0.358408i −0.00751097 0.0130094i
\(760\) 0 0
\(761\) −2.56137 1.47880i −0.0928494 0.0536066i 0.452856 0.891583i \(-0.350405\pi\)
−0.545706 + 0.837977i \(0.683738\pi\)
\(762\) 5.16700 16.1309i 0.187181 0.584362i
\(763\) −6.00339 47.3856i −0.217337 1.71547i
\(764\) −29.0782 + 40.7327i −1.05201 + 1.47366i
\(765\) 0 0
\(766\) −11.9456 + 2.59121i −0.431610 + 0.0936243i
\(767\) 17.5460 + 30.3906i 0.633551 + 1.09734i
\(768\) −43.3781 + 6.02788i −1.56527 + 0.217512i
\(769\) 32.6324i 1.17676i −0.808586 0.588378i \(-0.799767\pi\)
0.808586 0.588378i \(-0.200233\pi\)
\(770\) 0 0
\(771\) 7.51469i 0.270635i
\(772\) −6.76334 14.8560i −0.243418 0.534681i
\(773\) −2.74844 4.76043i −0.0988544 0.171221i 0.812356 0.583161i \(-0.198184\pi\)
−0.911211 + 0.411941i \(0.864851\pi\)
\(774\) −9.49151 43.7561i −0.341165 1.57278i
\(775\) 0 0
\(776\) −18.7178 25.0966i −0.671931 0.900916i
\(777\) −6.93425 2.91198i −0.248765 0.104467i
\(778\) 19.0936 + 6.11598i 0.684538 + 0.219269i
\(779\) 51.6233 + 29.8047i 1.84960 + 1.06786i
\(780\) 0 0
\(781\) −0.337429 0.584444i −0.0120742 0.0209131i
\(782\) −8.52354 + 7.73923i −0.304801 + 0.276754i
\(783\) 9.70800i 0.346936i
\(784\) −15.4121 23.3767i −0.550431 0.834881i
\(785\) 0 0
\(786\) 7.75819 + 8.54443i 0.276725 + 0.304770i
\(787\) −27.2677 + 15.7430i −0.971987 + 0.561177i −0.899841 0.436217i \(-0.856318\pi\)
−0.0721455 + 0.997394i \(0.522985\pi\)
\(788\) 24.7879 + 2.39649i 0.883031 + 0.0853715i
\(789\) 60.8659 + 35.1410i 2.16689 + 1.25105i
\(790\) 0 0
\(791\) 18.5858 44.2582i 0.660837 1.57364i
\(792\) 1.02097 0.761473i 0.0362787 0.0270578i
\(793\) −28.1795 16.2694i −1.00068 0.577745i
\(794\) 0.0524662 + 0.241870i 0.00186195 + 0.00858366i
\(795\) 0 0
\(796\) 42.1812 19.2033i 1.49507 0.680644i
\(797\) 20.2691 0.717968 0.358984 0.933344i \(-0.383123\pi\)
0.358984 + 0.933344i \(0.383123\pi\)
\(798\) 25.4503 + 72.0317i 0.900930 + 2.54989i
\(799\) 23.9845i 0.848512i
\(800\) 0 0
\(801\) 12.4171 7.16902i 0.438737 0.253305i
\(802\) −7.21220 33.2484i −0.254672 1.17404i
\(803\) −0.533638 0.308096i −0.0188317 0.0108725i
\(804\) −0.349241 + 0.489217i −0.0123168 + 0.0172534i
\(805\) 0 0
\(806\) −30.1806 9.66734i −1.06307 0.340518i
\(807\) 11.2224 19.4378i 0.395049 0.684244i
\(808\) −18.6124 8.00934i −0.654783 0.281768i
\(809\) −15.6376 27.0851i −0.549789 0.952262i −0.998289 0.0584790i \(-0.981375\pi\)
0.448500 0.893783i \(-0.351958\pi\)
\(810\) 0 0
\(811\) 51.4855 1.80790 0.903950 0.427638i \(-0.140654\pi\)
0.903950 + 0.427638i \(0.140654\pi\)
\(812\) 5.96307 11.0738i 0.209263 0.388615i
\(813\) 17.5379i 0.615080i
\(814\) −0.108999 + 0.0989688i −0.00382040 + 0.00346886i
\(815\) 0 0
\(816\) −44.5689 38.8038i −1.56022 1.35840i
\(817\) 26.2859 45.5285i 0.919626 1.59284i
\(818\) −5.14940 + 16.0760i −0.180044 + 0.562084i
\(819\) −38.9680 + 29.6002i −1.36165 + 1.03432i
\(820\) 0 0
\(821\) 24.0601 41.6733i 0.839702 1.45441i −0.0504413 0.998727i \(-0.516063\pi\)
0.890144 0.455680i \(-0.150604\pi\)
\(822\) −1.25121 5.76812i −0.0436410 0.201186i
\(823\) 12.3490 + 21.3892i 0.430461 + 0.745580i 0.996913 0.0785148i \(-0.0250178\pi\)
−0.566452 + 0.824095i \(0.691684\pi\)
\(824\) 1.61638 + 13.7251i 0.0563094 + 0.478135i
\(825\) 0 0
\(826\) 24.2347 + 20.7281i 0.843232 + 0.721223i
\(827\) −19.9120 −0.692408 −0.346204 0.938159i \(-0.612530\pi\)
−0.346204 + 0.938159i \(0.612530\pi\)
\(828\) 12.3332 5.61477i 0.428607 0.195127i
\(829\) 13.8257 7.98225i 0.480185 0.277235i −0.240308 0.970697i \(-0.577249\pi\)
0.720494 + 0.693461i \(0.243915\pi\)
\(830\) 0 0
\(831\) 21.8552 37.8543i 0.758149 1.31315i
\(832\) 9.39183 31.5715i 0.325603 1.09455i
\(833\) 10.1342 36.3969i 0.351128 1.26108i
\(834\) −8.45572 + 26.3981i −0.292798 + 0.914090i
\(835\) 0 0
\(836\) 1.48855 + 0.143913i 0.0514827 + 0.00497735i
\(837\) 19.2512 11.1147i 0.665418 0.384179i
\(838\) 31.5154 28.6154i 1.08868 0.988503i
\(839\) 14.5375 0.501889 0.250944 0.968002i \(-0.419259\pi\)
0.250944 + 0.968002i \(0.419259\pi\)
\(840\) 0 0
\(841\) −23.3504 −0.805187
\(842\) −7.10141 + 6.44796i −0.244731 + 0.222211i
\(843\) 22.9558 13.2536i 0.790641 0.456477i
\(844\) 21.8500 + 2.11245i 0.752106 + 0.0727136i
\(845\) 0 0
\(846\) 8.61174 26.8851i 0.296078 0.924330i
\(847\) −23.1542 + 17.5880i −0.795586 + 0.604331i
\(848\) −23.2380 + 7.98136i −0.797996 + 0.274081i
\(849\) 35.7568 61.9325i 1.22717 2.12552i
\(850\) 0 0
\(851\) −1.35655 + 0.783202i −0.0465018 + 0.0268478i
\(852\) 33.5422 15.2704i 1.14914 0.523154i
\(853\) −36.2299 −1.24049 −0.620245 0.784408i \(-0.712967\pi\)
−0.620245 + 0.784408i \(0.712967\pi\)
\(854\) −29.0708 5.40928i −0.994783 0.185102i
\(855\) 0 0
\(856\) 21.2606 2.50384i 0.726674 0.0855794i
\(857\) 19.0281 + 32.9576i 0.649986 + 1.12581i 0.983126 + 0.182932i \(0.0585588\pi\)
−0.333139 + 0.942878i \(0.608108\pi\)
\(858\) 0.338691 + 1.56137i 0.0115627 + 0.0533045i
\(859\) 13.3104 23.0543i 0.454145 0.786602i −0.544494 0.838765i \(-0.683278\pi\)
0.998639 + 0.0521630i \(0.0166115\pi\)
\(860\) 0 0
\(861\) 7.27378 + 57.4129i 0.247890 + 1.95663i
\(862\) −6.87487 + 21.4628i −0.234159 + 0.731025i
\(863\) 11.6160 20.1195i 0.395413 0.684876i −0.597741 0.801690i \(-0.703935\pi\)
0.993154 + 0.116814i \(0.0372681\pi\)
\(864\) 11.9669 + 19.7639i 0.407122 + 0.672383i
\(865\) 0 0
\(866\) −15.8403 + 14.3827i −0.538276 + 0.488745i
\(867\) 33.2058i 1.12773i
\(868\) −28.7868 + 0.853505i −0.977086 + 0.0289698i
\(869\) −0.428484 −0.0145353
\(870\) 0 0
\(871\) −0.226043 0.391517i −0.00765916 0.0132661i
\(872\) 20.1838 46.9038i 0.683509 1.58836i
\(873\) −24.8621 + 43.0624i −0.841455 + 1.45744i
\(874\) 15.1528 + 4.85370i 0.512553 + 0.164179i
\(875\) 0 0
\(876\) 19.5517 27.3881i 0.660592 0.925358i
\(877\) −2.22052 1.28202i −0.0749817 0.0432907i 0.462040 0.886859i \(-0.347118\pi\)
−0.537022 + 0.843568i \(0.680451\pi\)
\(878\) 1.30914 + 6.03515i 0.0441812 + 0.203676i
\(879\) 38.4937 22.2244i 1.29836 0.749609i
\(880\) 0 0
\(881\) 11.4074i 0.384324i −0.981363 0.192162i \(-0.938450\pi\)
0.981363 0.192162i \(-0.0615498\pi\)
\(882\) −24.4282 + 37.1599i −0.822542 + 1.25124i
\(883\) −15.8634 −0.533845 −0.266922 0.963718i \(-0.586007\pi\)
−0.266922 + 0.963718i \(0.586007\pi\)
\(884\) 40.4509 18.4156i 1.36051 0.619385i
\(885\) 0 0
\(886\) 4.22659 + 19.4847i 0.141995 + 0.654601i
\(887\) −23.4277 13.5260i −0.786626 0.454159i 0.0521471 0.998639i \(-0.483394\pi\)
−0.838774 + 0.544480i \(0.816727\pi\)
\(888\) −4.80687 6.44499i −0.161308 0.216280i
\(889\) 10.6741 + 4.48249i 0.357997 + 0.150338i
\(890\) 0 0
\(891\) 0.199403 + 0.115125i 0.00668024 + 0.00385684i
\(892\) 29.8205 + 2.88304i 0.998463 + 0.0965314i
\(893\) 28.7066 16.5738i 0.960629 0.554620i
\(894\) 54.7681 + 60.3185i 1.83172 + 2.01735i
\(895\) 0 0
\(896\) −1.51065 29.8951i −0.0504674 0.998726i
\(897\) 16.9985i 0.567563i
\(898\) 17.8118 16.1728i 0.594387 0.539693i
\(899\) −6.46818 11.2032i −0.215726 0.373648i
\(900\) 0 0
\(901\) −28.7121 16.5769i −0.956537 0.552257i
\(902\) 1.07888 + 0.345584i 0.0359229 + 0.0115067i
\(903\) 50.6346 6.41502i 1.68501 0.213478i
\(904\) 41.1355 30.6801i 1.36815 1.02041i
\(905\) 0 0
\(906\) 3.13714 + 14.4623i 0.104225 + 0.480478i
\(907\) 5.21256 + 9.02842i 0.173080 + 0.299784i 0.939495 0.342562i \(-0.111295\pi\)
−0.766415 + 0.642346i \(0.777961\pi\)
\(908\) 1.24917 + 2.74387i 0.0414551 + 0.0910584i
\(909\) 32.1815i 1.06739i
\(910\) 0 0
\(911\) 43.7727i 1.45026i 0.688614 + 0.725128i \(0.258219\pi\)
−0.688614 + 0.725128i \(0.741781\pi\)
\(912\) −15.6455 + 80.1577i −0.518075 + 2.65429i
\(913\) −0.325870 0.564423i −0.0107847 0.0186797i
\(914\) −16.1214 + 3.49704i −0.533250 + 0.115672i
\(915\) 0 0
\(916\) −9.90692 + 13.8776i −0.327334 + 0.458529i
\(917\) −6.28147 + 4.77143i −0.207432 + 0.157567i
\(918\) −9.51014 + 29.6899i −0.313881 + 0.979912i
\(919\) −43.5772 25.1593i −1.43748 0.829929i −0.439806 0.898093i \(-0.644953\pi\)
−0.997674 + 0.0681637i \(0.978286\pi\)
\(920\) 0 0
\(921\) −32.2216 55.8095i −1.06174 1.83899i
\(922\) −25.1440 27.6922i −0.828073 0.911993i
\(923\) 27.7189i 0.912379i
\(924\) 0.762896 + 1.23532i 0.0250974 + 0.0406390i
\(925\) 0 0
\(926\) 3.28432 2.98210i 0.107929 0.0979980i
\(927\) 19.0085 10.9745i 0.624320 0.360451i
\(928\) 11.5016 6.96412i 0.377559 0.228609i
\(929\) 16.4494 + 9.49704i 0.539686 + 0.311588i 0.744952 0.667118i \(-0.232473\pi\)
−0.205266 + 0.978706i \(0.565806\pi\)
\(930\) 0 0
\(931\) −50.5656 + 13.0216i −1.65722 + 0.426765i
\(932\) 24.6623 34.5469i 0.807840 1.13162i
\(933\) 12.7898 + 7.38419i 0.418719 + 0.241747i
\(934\) −11.2516 + 2.44069i −0.368164 + 0.0798617i
\(935\) 0 0
\(936\) −51.9551 + 6.11869i −1.69821 + 0.199996i
\(937\) 44.7192 1.46091 0.730457 0.682959i \(-0.239307\pi\)
0.730457 + 0.682959i \(0.239307\pi\)
\(938\) −0.312211 0.267037i −0.0101941 0.00871905i
\(939\) 89.1265i 2.90853i
\(940\) 0 0
\(941\) 8.88040 5.12710i 0.289493 0.167139i −0.348220 0.937413i \(-0.613214\pi\)
0.637713 + 0.770274i \(0.279881\pi\)
\(942\) 4.85784 1.05376i 0.158277 0.0343332i
\(943\) 10.4384 + 6.02661i 0.339921 + 0.196253i
\(944\) 11.0743 + 32.2431i 0.360436 + 1.04942i
\(945\) 0 0
\(946\) 0.304783 0.951508i 0.00990936 0.0309362i
\(947\) 12.4847 21.6242i 0.405699 0.702691i −0.588704 0.808349i \(-0.700362\pi\)
0.994403 + 0.105658i \(0.0336948\pi\)
\(948\) 2.25180 23.2913i 0.0731352 0.756467i
\(949\) 12.6546 + 21.9185i 0.410787 + 0.711504i
\(950\) 0 0
\(951\) −37.5316 −1.21704
\(952\) 29.0849 28.0254i 0.942648 0.908309i
\(953\) 26.3831i 0.854633i 0.904102 + 0.427317i \(0.140541\pi\)
−0.904102 + 0.427317i \(0.859459\pi\)
\(954\) 26.2324 + 28.8909i 0.849305 + 0.935376i
\(955\) 0 0
\(956\) 20.2121 + 1.95410i 0.653706 + 0.0632003i
\(957\) −0.326089 + 0.564803i −0.0105410 + 0.0182575i
\(958\) 33.3749 + 10.6905i 1.07829 + 0.345395i
\(959\) 4.00213 0.507039i 0.129235 0.0163731i
\(960\) 0 0
\(961\) 0.689177 1.19369i 0.0222315 0.0385061i
\(962\) 5.90968 1.28192i 0.190536 0.0413307i
\(963\) −17.0000 29.4448i −0.547817 0.948846i
\(964\) −15.7870 34.6771i −0.508466 1.11687i
\(965\) 0 0
\(966\) 5.14613 + 14.5650i 0.165574 + 0.468623i
\(967\) 47.1287 1.51556 0.757778 0.652512i \(-0.226285\pi\)
0.757778 + 0.652512i \(0.226285\pi\)
\(968\) −30.8709 + 3.63563i −0.992229 + 0.116854i
\(969\) −95.4367 + 55.1004i −3.06587 + 1.77008i
\(970\) 0 0
\(971\) 27.6416 47.8767i 0.887062 1.53644i 0.0437306 0.999043i \(-0.486076\pi\)
0.843332 0.537394i \(-0.180591\pi\)
\(972\) −21.5443 + 30.1792i −0.691033 + 0.968000i
\(973\) −17.4680 7.33553i −0.559998 0.235166i
\(974\) 17.0971 + 5.47647i 0.547826 + 0.175477i
\(975\) 0 0
\(976\) −23.8414 20.7575i −0.763144 0.664430i
\(977\) −7.32085 + 4.22669i −0.234215 + 0.135224i −0.612515 0.790459i \(-0.709842\pi\)
0.378300 + 0.925683i \(0.376509\pi\)
\(978\) −22.3813 24.6495i −0.715675 0.788204i
\(979\) 0.319954 0.0102258
\(980\) 0 0
\(981\) −81.0982 −2.58927
\(982\) −9.04267 9.95908i −0.288563 0.317807i
\(983\) 28.4854 16.4461i 0.908543 0.524548i 0.0285811 0.999591i \(-0.490901\pi\)
0.879962 + 0.475044i \(0.157568\pi\)
\(984\) −24.4549 + 56.8292i −0.779593 + 1.81165i
\(985\) 0 0
\(986\) 17.2780 + 5.53442i 0.550244 + 0.176252i
\(987\) 29.6712 + 12.4602i 0.944445 + 0.396611i
\(988\) −49.9936 35.6893i −1.59051 1.13543i
\(989\) 5.31509 9.20601i 0.169010 0.292734i
\(990\) 0 0
\(991\) 26.5344 15.3196i 0.842893 0.486645i −0.0153535 0.999882i \(-0.504887\pi\)
0.858247 + 0.513238i \(0.171554\pi\)
\(992\) −26.9782 14.8347i −0.856559 0.471004i
\(993\) 15.5659 0.493970
\(994\) 8.39163 + 23.7508i 0.266166 + 0.753328i
\(995\) 0 0
\(996\) 32.3931 14.7472i 1.02641 0.467284i
\(997\) −21.2349 36.7799i −0.672516 1.16483i −0.977188 0.212374i \(-0.931880\pi\)
0.304673 0.952457i \(-0.401453\pi\)
\(998\) −11.7376 + 2.54611i −0.371548 + 0.0805957i
\(999\) −2.12084 + 3.67340i −0.0671003 + 0.116221i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.t.c.299.5 32
4.3 odd 2 inner 700.2.t.c.299.9 32
5.2 odd 4 140.2.o.a.131.4 yes 32
5.3 odd 4 700.2.p.c.551.13 32
5.4 even 2 700.2.t.d.299.12 32
7.3 odd 6 700.2.t.d.199.8 32
20.3 even 4 700.2.p.c.551.1 32
20.7 even 4 140.2.o.a.131.16 yes 32
20.19 odd 2 700.2.t.d.299.8 32
28.3 even 6 700.2.t.d.199.12 32
35.2 odd 12 980.2.g.a.391.15 32
35.3 even 12 700.2.p.c.451.1 32
35.12 even 12 980.2.g.a.391.16 32
35.17 even 12 140.2.o.a.31.16 yes 32
35.24 odd 6 inner 700.2.t.c.199.9 32
35.27 even 4 980.2.o.f.411.4 32
35.32 odd 12 980.2.o.f.31.16 32
140.3 odd 12 700.2.p.c.451.13 32
140.27 odd 4 980.2.o.f.411.16 32
140.47 odd 12 980.2.g.a.391.13 32
140.59 even 6 inner 700.2.t.c.199.5 32
140.67 even 12 980.2.o.f.31.4 32
140.87 odd 12 140.2.o.a.31.4 32
140.107 even 12 980.2.g.a.391.14 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.o.a.31.4 32 140.87 odd 12
140.2.o.a.31.16 yes 32 35.17 even 12
140.2.o.a.131.4 yes 32 5.2 odd 4
140.2.o.a.131.16 yes 32 20.7 even 4
700.2.p.c.451.1 32 35.3 even 12
700.2.p.c.451.13 32 140.3 odd 12
700.2.p.c.551.1 32 20.3 even 4
700.2.p.c.551.13 32 5.3 odd 4
700.2.t.c.199.5 32 140.59 even 6 inner
700.2.t.c.199.9 32 35.24 odd 6 inner
700.2.t.c.299.5 32 1.1 even 1 trivial
700.2.t.c.299.9 32 4.3 odd 2 inner
700.2.t.d.199.8 32 7.3 odd 6
700.2.t.d.199.12 32 28.3 even 6
700.2.t.d.299.8 32 20.19 odd 2
700.2.t.d.299.12 32 5.4 even 2
980.2.g.a.391.13 32 140.47 odd 12
980.2.g.a.391.14 32 140.107 even 12
980.2.g.a.391.15 32 35.2 odd 12
980.2.g.a.391.16 32 35.12 even 12
980.2.o.f.31.4 32 140.67 even 12
980.2.o.f.31.16 32 35.32 odd 12
980.2.o.f.411.4 32 35.27 even 4
980.2.o.f.411.16 32 140.27 odd 4