Properties

Label 980.2.o.f.411.4
Level $980$
Weight $2$
Character 980.411
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(31,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 411.4
Character \(\chi\) \(=\) 980.411
Dual form 980.2.o.f.31.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.950668 - 1.04701i) q^{2} +(-1.36859 - 2.37047i) q^{3} +(-0.192463 + 1.99072i) q^{4} +(0.866025 + 0.500000i) q^{5} +(-1.18083 + 3.68646i) q^{6} +(2.26727 - 1.69100i) q^{8} +(-2.24609 + 3.89033i) q^{9} +(-0.299797 - 1.38207i) q^{10} +(0.0868131 - 0.0501216i) q^{11} +(4.98234 - 2.26825i) q^{12} -4.11735i q^{13} -2.73718i q^{15} +(-3.92592 - 0.766277i) q^{16} +(-4.67424 + 2.69867i) q^{17} +(6.20850 - 1.34674i) q^{18} +(-3.72967 + 6.45997i) q^{19} +(-1.16204 + 1.62778i) q^{20} +(-0.135008 - 0.0432453i) q^{22} +(1.30623 + 0.754151i) q^{23} +(-7.11143 - 3.06021i) q^{24} +(0.500000 + 0.866025i) q^{25} +(-4.31091 + 3.91424i) q^{26} +4.08434 q^{27} -2.37688 q^{29} +(-2.86586 + 2.60215i) q^{30} +(2.72129 + 4.71341i) q^{31} +(2.92994 + 4.83895i) q^{32} +(-0.237623 - 0.137192i) q^{33} +(7.26919 + 2.32844i) q^{34} +(-7.31227 - 5.22007i) q^{36} +(-0.519260 + 0.899386i) q^{37} +(10.3093 - 2.23629i) q^{38} +(-9.76007 + 5.63498i) q^{39} +(2.80901 - 0.330814i) q^{40} +7.99125i q^{41} +7.04778i q^{43} +(0.0830696 + 0.182467i) q^{44} +(-3.89033 + 2.24609i) q^{45} +(-0.452184 - 2.08458i) q^{46} +(-2.22188 + 3.84841i) q^{47} +(3.55654 + 10.3550i) q^{48} +(0.431404 - 1.34681i) q^{50} +(12.7943 + 7.38677i) q^{51} +(8.19649 + 0.792437i) q^{52} +(-3.07131 - 5.31966i) q^{53} +(-3.88285 - 4.27635i) q^{54} +0.100243 q^{55} +20.4176 q^{57} +(2.25962 + 2.48862i) q^{58} +(-4.26148 - 7.38111i) q^{59} +(5.44896 + 0.526805i) q^{60} +(-6.84408 - 3.95143i) q^{61} +(2.34795 - 7.33010i) q^{62} +(2.28103 - 7.66791i) q^{64} +(2.05868 - 3.56573i) q^{65} +(0.0822594 + 0.379218i) q^{66} +(-0.0950895 + 0.0549000i) q^{67} +(-4.47268 - 9.82449i) q^{68} -4.12850i q^{69} -6.73221i q^{71} +(1.48607 + 12.6186i) q^{72} +(5.32344 - 3.07349i) q^{73} +(1.43531 - 0.311345i) q^{74} +(1.36859 - 2.37047i) q^{75} +(-12.1422 - 8.66802i) q^{76} +(15.1785 + 4.86190i) q^{78} +(3.70178 + 2.13723i) q^{79} +(-3.01680 - 2.62657i) q^{80} +(1.14846 + 1.98919i) q^{81} +(8.36692 - 7.59702i) q^{82} +6.50159 q^{83} -5.39735 q^{85} +(7.37910 - 6.70009i) q^{86} +(3.25298 + 5.63433i) q^{87} +(0.112073 - 0.260440i) q^{88} +(2.76417 + 1.59589i) q^{89} +(6.05009 + 1.93794i) q^{90} +(-1.75270 + 2.45519i) q^{92} +(7.44866 - 12.9015i) q^{93} +(6.14160 - 1.33223i) q^{94} +(-6.45997 + 3.72967i) q^{95} +(7.46070 - 13.5679i) q^{96} +11.0691i q^{97} +0.450309i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 2 q^{4} - 4 q^{8} - 16 q^{9} + 30 q^{12} - 14 q^{16} - 8 q^{22} - 36 q^{24} + 16 q^{25} - 30 q^{26} - 40 q^{29} + 2 q^{32} + 60 q^{36} + 8 q^{37} + 60 q^{38} - 18 q^{44} - 12 q^{45} + 2 q^{46}+ \cdots + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.950668 1.04701i −0.672223 0.740348i
\(3\) −1.36859 2.37047i −0.790157 1.36859i −0.925870 0.377843i \(-0.876666\pi\)
0.135713 0.990748i \(-0.456668\pi\)
\(4\) −0.192463 + 1.99072i −0.0962313 + 0.995359i
\(5\) 0.866025 + 0.500000i 0.387298 + 0.223607i
\(6\) −1.18083 + 3.68646i −0.482073 + 1.50499i
\(7\) 0 0
\(8\) 2.26727 1.69100i 0.801601 0.597859i
\(9\) −2.24609 + 3.89033i −0.748695 + 1.29678i
\(10\) −0.299797 1.38207i −0.0948041 0.437049i
\(11\) 0.0868131 0.0501216i 0.0261751 0.0151122i −0.486855 0.873483i \(-0.661856\pi\)
0.513030 + 0.858370i \(0.328523\pi\)
\(12\) 4.98234 2.26825i 1.43828 0.654788i
\(13\) 4.11735i 1.14195i −0.820968 0.570974i \(-0.806566\pi\)
0.820968 0.570974i \(-0.193434\pi\)
\(14\) 0 0
\(15\) 2.73718i 0.706738i
\(16\) −3.92592 0.766277i −0.981479 0.191569i
\(17\) −4.67424 + 2.69867i −1.13367 + 0.654525i −0.944855 0.327488i \(-0.893798\pi\)
−0.188815 + 0.982013i \(0.560465\pi\)
\(18\) 6.20850 1.34674i 1.46336 0.317429i
\(19\) −3.72967 + 6.45997i −0.855645 + 1.48202i 0.0204012 + 0.999792i \(0.493506\pi\)
−0.876046 + 0.482228i \(0.839828\pi\)
\(20\) −1.16204 + 1.62778i −0.259839 + 0.363983i
\(21\) 0 0
\(22\) −0.135008 0.0432453i −0.0287838 0.00921993i
\(23\) 1.30623 + 0.754151i 0.272367 + 0.157251i 0.629963 0.776625i \(-0.283070\pi\)
−0.357596 + 0.933877i \(0.616403\pi\)
\(24\) −7.11143 3.06021i −1.45162 0.624662i
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) −4.31091 + 3.91424i −0.845440 + 0.767645i
\(27\) 4.08434 0.786032
\(28\) 0 0
\(29\) −2.37688 −0.441376 −0.220688 0.975344i \(-0.570830\pi\)
−0.220688 + 0.975344i \(0.570830\pi\)
\(30\) −2.86586 + 2.60215i −0.523232 + 0.475086i
\(31\) 2.72129 + 4.71341i 0.488758 + 0.846553i 0.999916 0.0129330i \(-0.00411682\pi\)
−0.511159 + 0.859486i \(0.670783\pi\)
\(32\) 2.92994 + 4.83895i 0.517945 + 0.855414i
\(33\) −0.237623 0.137192i −0.0413649 0.0238820i
\(34\) 7.26919 + 2.32844i 1.24666 + 0.399324i
\(35\) 0 0
\(36\) −7.31227 5.22007i −1.21871 0.870011i
\(37\) −0.519260 + 0.899386i −0.0853659 + 0.147858i −0.905547 0.424246i \(-0.860539\pi\)
0.820181 + 0.572104i \(0.193873\pi\)
\(38\) 10.3093 2.23629i 1.67240 0.362773i
\(39\) −9.76007 + 5.63498i −1.56286 + 0.902318i
\(40\) 2.80901 0.330814i 0.444144 0.0523063i
\(41\) 7.99125i 1.24802i 0.781415 + 0.624012i \(0.214498\pi\)
−0.781415 + 0.624012i \(0.785502\pi\)
\(42\) 0 0
\(43\) 7.04778i 1.07478i 0.843335 + 0.537388i \(0.180589\pi\)
−0.843335 + 0.537388i \(0.819411\pi\)
\(44\) 0.0830696 + 0.182467i 0.0125232 + 0.0275079i
\(45\) −3.89033 + 2.24609i −0.579937 + 0.334827i
\(46\) −0.452184 2.08458i −0.0666710 0.307355i
\(47\) −2.22188 + 3.84841i −0.324095 + 0.561348i −0.981329 0.192338i \(-0.938393\pi\)
0.657234 + 0.753686i \(0.271726\pi\)
\(48\) 3.55654 + 10.3550i 0.513342 + 1.49461i
\(49\) 0 0
\(50\) 0.431404 1.34681i 0.0610097 0.190467i
\(51\) 12.7943 + 7.38677i 1.79155 + 1.03435i
\(52\) 8.19649 + 0.792437i 1.13665 + 0.109891i
\(53\) −3.07131 5.31966i −0.421876 0.730711i 0.574247 0.818682i \(-0.305295\pi\)
−0.996123 + 0.0879710i \(0.971962\pi\)
\(54\) −3.88285 4.27635i −0.528389 0.581938i
\(55\) 0.100243 0.0135168
\(56\) 0 0
\(57\) 20.4176 2.70437
\(58\) 2.25962 + 2.48862i 0.296703 + 0.326772i
\(59\) −4.26148 7.38111i −0.554798 0.960938i −0.997919 0.0644767i \(-0.979462\pi\)
0.443121 0.896462i \(-0.353871\pi\)
\(60\) 5.44896 + 0.526805i 0.703458 + 0.0680103i
\(61\) −6.84408 3.95143i −0.876295 0.505929i −0.00685975 0.999976i \(-0.502184\pi\)
−0.869435 + 0.494048i \(0.835517\pi\)
\(62\) 2.34795 7.33010i 0.298190 0.930924i
\(63\) 0 0
\(64\) 2.28103 7.66791i 0.285129 0.958489i
\(65\) 2.05868 3.56573i 0.255348 0.442275i
\(66\) 0.0822594 + 0.379218i 0.0101254 + 0.0466785i
\(67\) −0.0950895 + 0.0549000i −0.0116170 + 0.00670710i −0.505797 0.862652i \(-0.668802\pi\)
0.494180 + 0.869359i \(0.335468\pi\)
\(68\) −4.47268 9.82449i −0.542393 1.19139i
\(69\) 4.12850i 0.497013i
\(70\) 0 0
\(71\) 6.73221i 0.798967i −0.916740 0.399483i \(-0.869190\pi\)
0.916740 0.399483i \(-0.130810\pi\)
\(72\) 1.48607 + 12.6186i 0.175135 + 1.48711i
\(73\) 5.32344 3.07349i 0.623062 0.359725i −0.154998 0.987915i \(-0.549537\pi\)
0.778060 + 0.628190i \(0.216204\pi\)
\(74\) 1.43531 0.311345i 0.166851 0.0361932i
\(75\) 1.36859 2.37047i 0.158031 0.273718i
\(76\) −12.1422 8.66802i −1.39280 0.994290i
\(77\) 0 0
\(78\) 15.1785 + 4.86190i 1.71862 + 0.550502i
\(79\) 3.70178 + 2.13723i 0.416483 + 0.240457i 0.693572 0.720388i \(-0.256036\pi\)
−0.277088 + 0.960844i \(0.589369\pi\)
\(80\) −3.01680 2.62657i −0.337289 0.293660i
\(81\) 1.14846 + 1.98919i 0.127607 + 0.221021i
\(82\) 8.36692 7.59702i 0.923972 0.838951i
\(83\) 6.50159 0.713642 0.356821 0.934173i \(-0.383861\pi\)
0.356821 + 0.934173i \(0.383861\pi\)
\(84\) 0 0
\(85\) −5.39735 −0.585425
\(86\) 7.37910 6.70009i 0.795709 0.722490i
\(87\) 3.25298 + 5.63433i 0.348756 + 0.604063i
\(88\) 0.112073 0.260440i 0.0119470 0.0277630i
\(89\) 2.76417 + 1.59589i 0.293001 + 0.169164i 0.639294 0.768962i \(-0.279226\pi\)
−0.346293 + 0.938126i \(0.612560\pi\)
\(90\) 6.05009 + 1.93794i 0.637735 + 0.204277i
\(91\) 0 0
\(92\) −1.75270 + 2.45519i −0.182732 + 0.255971i
\(93\) 7.44866 12.9015i 0.772391 1.33782i
\(94\) 6.14160 1.33223i 0.633457 0.137409i
\(95\) −6.45997 + 3.72967i −0.662779 + 0.382656i
\(96\) 7.46070 13.5679i 0.761454 1.38477i
\(97\) 11.0691i 1.12390i 0.827173 + 0.561948i \(0.189948\pi\)
−0.827173 + 0.561948i \(0.810052\pi\)
\(98\) 0 0
\(99\) 0.450309i 0.0452578i
\(100\) −1.82024 + 0.828682i −0.182024 + 0.0828682i
\(101\) 6.20412 3.58195i 0.617333 0.356418i −0.158497 0.987359i \(-0.550665\pi\)
0.775830 + 0.630942i \(0.217331\pi\)
\(102\) −4.42906 20.4181i −0.438542 2.02169i
\(103\) −2.44304 + 4.23147i −0.240720 + 0.416939i −0.960920 0.276828i \(-0.910717\pi\)
0.720200 + 0.693767i \(0.244050\pi\)
\(104\) −6.96245 9.33516i −0.682724 0.915388i
\(105\) 0 0
\(106\) −2.64995 + 8.27292i −0.257386 + 0.803537i
\(107\) 6.55470 + 3.78436i 0.633667 + 0.365848i 0.782171 0.623064i \(-0.214112\pi\)
−0.148504 + 0.988912i \(0.547446\pi\)
\(108\) −0.786083 + 8.13077i −0.0756409 + 0.782384i
\(109\) 9.02662 + 15.6346i 0.864593 + 1.49752i 0.867451 + 0.497523i \(0.165757\pi\)
−0.00285729 + 0.999996i \(0.500910\pi\)
\(110\) −0.0952979 0.104956i −0.00908630 0.0100071i
\(111\) 2.84262 0.269810
\(112\) 0 0
\(113\) −18.1432 −1.70677 −0.853384 0.521283i \(-0.825453\pi\)
−0.853384 + 0.521283i \(0.825453\pi\)
\(114\) −19.4103 21.3774i −1.81794 2.00218i
\(115\) 0.754151 + 1.30623i 0.0703250 + 0.121806i
\(116\) 0.457461 4.73170i 0.0424742 0.439328i
\(117\) 16.0179 + 9.24793i 1.48085 + 0.854971i
\(118\) −3.67684 + 11.4788i −0.338481 + 1.05671i
\(119\) 0 0
\(120\) −4.62858 6.20593i −0.422529 0.566522i
\(121\) −5.49498 + 9.51758i −0.499543 + 0.865234i
\(122\) 2.36925 + 10.9223i 0.214502 + 0.988861i
\(123\) 18.9430 10.9368i 1.70803 0.986134i
\(124\) −9.90682 + 4.51016i −0.889658 + 0.405025i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 4.37573i 0.388283i 0.980974 + 0.194141i \(0.0621921\pi\)
−0.980974 + 0.194141i \(0.937808\pi\)
\(128\) −10.1969 + 4.90137i −0.901286 + 0.433224i
\(129\) 16.7065 9.64553i 1.47093 0.849241i
\(130\) −5.69048 + 1.23437i −0.499088 + 0.108261i
\(131\) 1.49073 2.58201i 0.130245 0.225592i −0.793526 0.608537i \(-0.791757\pi\)
0.923771 + 0.382945i \(0.125090\pi\)
\(132\) 0.318844 0.446637i 0.0277518 0.0388747i
\(133\) 0 0
\(134\) 0.147879 + 0.0473681i 0.0127748 + 0.00409198i
\(135\) 3.53714 + 2.04217i 0.304429 + 0.175762i
\(136\) −6.03431 + 14.0228i −0.517438 + 1.20244i
\(137\) 0.762377 + 1.32048i 0.0651342 + 0.112816i 0.896754 0.442530i \(-0.145919\pi\)
−0.831619 + 0.555346i \(0.812586\pi\)
\(138\) −4.32258 + 3.92483i −0.367963 + 0.334104i
\(139\) −7.16082 −0.607373 −0.303686 0.952772i \(-0.598217\pi\)
−0.303686 + 0.952772i \(0.598217\pi\)
\(140\) 0 0
\(141\) 12.1634 1.02434
\(142\) −7.04870 + 6.40010i −0.591514 + 0.537084i
\(143\) −0.206368 0.357440i −0.0172574 0.0298907i
\(144\) 11.7990 13.5520i 0.983251 1.12933i
\(145\) −2.05844 1.18844i −0.170944 0.0986947i
\(146\) −8.27880 2.65183i −0.685158 0.219467i
\(147\) 0 0
\(148\) −1.69048 1.20680i −0.138957 0.0991983i
\(149\) 10.5236 18.2275i 0.862129 1.49325i −0.00774027 0.999970i \(-0.502464\pi\)
0.869870 0.493282i \(-0.164203\pi\)
\(150\) −3.78298 + 0.820599i −0.308879 + 0.0670016i
\(151\) −3.31081 + 1.91150i −0.269430 + 0.155555i −0.628628 0.777706i \(-0.716383\pi\)
0.359199 + 0.933261i \(0.383050\pi\)
\(152\) 2.46765 + 20.9534i 0.200153 + 1.69954i
\(153\) 24.2458i 1.96016i
\(154\) 0 0
\(155\) 5.44258i 0.437158i
\(156\) −9.33920 20.5141i −0.747735 1.64244i
\(157\) 1.11209 0.642065i 0.0887543 0.0512423i −0.454966 0.890509i \(-0.650349\pi\)
0.543720 + 0.839266i \(0.317015\pi\)
\(158\) −1.28147 5.90760i −0.101948 0.469983i
\(159\) −8.40673 + 14.5609i −0.666697 + 1.15475i
\(160\) 0.117927 + 5.65562i 0.00932296 + 0.447116i
\(161\) 0 0
\(162\) 0.990900 3.09351i 0.0778525 0.243049i
\(163\) −7.44875 4.30054i −0.583431 0.336844i 0.179064 0.983837i \(-0.442693\pi\)
−0.762496 + 0.646993i \(0.776026\pi\)
\(164\) −15.9083 1.53802i −1.24223 0.120099i
\(165\) −0.137192 0.237623i −0.0106804 0.0184989i
\(166\) −6.18085 6.80723i −0.479727 0.528343i
\(167\) 8.10448 0.627144 0.313572 0.949565i \(-0.398474\pi\)
0.313572 + 0.949565i \(0.398474\pi\)
\(168\) 0 0
\(169\) −3.95261 −0.304047
\(170\) 5.13109 + 5.65108i 0.393536 + 0.433418i
\(171\) −16.7543 29.0193i −1.28123 2.21916i
\(172\) −14.0301 1.35643i −1.06979 0.103427i
\(173\) 6.95744 + 4.01688i 0.528964 + 0.305398i 0.740595 0.671952i \(-0.234544\pi\)
−0.211630 + 0.977350i \(0.567877\pi\)
\(174\) 2.80670 8.76228i 0.212775 0.664267i
\(175\) 0 0
\(176\) −0.379228 + 0.130250i −0.0285854 + 0.00981797i
\(177\) −11.6645 + 20.2034i −0.876755 + 1.51858i
\(178\) −0.956887 4.41128i −0.0717217 0.330639i
\(179\) −7.66309 + 4.42429i −0.572766 + 0.330687i −0.758253 0.651960i \(-0.773947\pi\)
0.185487 + 0.982647i \(0.440614\pi\)
\(180\) −3.72258 8.17684i −0.277465 0.609466i
\(181\) 21.3610i 1.58775i 0.608082 + 0.793874i \(0.291939\pi\)
−0.608082 + 0.793874i \(0.708061\pi\)
\(182\) 0 0
\(183\) 21.6316i 1.59905i
\(184\) 4.23684 0.498968i 0.312344 0.0367844i
\(185\) −0.899386 + 0.519260i −0.0661241 + 0.0381768i
\(186\) −20.5892 + 4.46617i −1.50967 + 0.327476i
\(187\) −0.270524 + 0.468561i −0.0197826 + 0.0342645i
\(188\) −7.23347 5.16381i −0.527555 0.376610i
\(189\) 0 0
\(190\) 10.0463 + 3.21799i 0.728835 + 0.233457i
\(191\) −21.6710 12.5117i −1.56806 0.905317i −0.996396 0.0848269i \(-0.972966\pi\)
−0.571660 0.820491i \(-0.693700\pi\)
\(192\) −21.2984 + 5.08712i −1.53708 + 0.367131i
\(193\) −4.08078 7.06813i −0.293741 0.508775i 0.680950 0.732330i \(-0.261567\pi\)
−0.974691 + 0.223555i \(0.928234\pi\)
\(194\) 11.5894 10.5230i 0.832074 0.755509i
\(195\) −11.2700 −0.807058
\(196\) 0 0
\(197\) −12.4517 −0.887149 −0.443574 0.896238i \(-0.646290\pi\)
−0.443574 + 0.896238i \(0.646290\pi\)
\(198\) 0.471478 0.428094i 0.0335065 0.0304233i
\(199\) 11.5867 + 20.0687i 0.821358 + 1.42263i 0.904671 + 0.426110i \(0.140116\pi\)
−0.0833132 + 0.996523i \(0.526550\pi\)
\(200\) 2.59808 + 1.11801i 0.183712 + 0.0790555i
\(201\) 0.260277 + 0.150271i 0.0183586 + 0.0105993i
\(202\) −9.64840 3.09054i −0.678859 0.217449i
\(203\) 0 0
\(204\) −17.1674 + 24.0481i −1.20196 + 1.68370i
\(205\) −3.99562 + 6.92062i −0.279067 + 0.483357i
\(206\) 6.75291 1.46483i 0.470498 0.102060i
\(207\) −5.86780 + 3.38778i −0.407840 + 0.235467i
\(208\) −3.15504 + 16.1644i −0.218762 + 1.12080i
\(209\) 0.747747i 0.0517228i
\(210\) 0 0
\(211\) 10.9759i 0.755613i 0.925885 + 0.377807i \(0.123322\pi\)
−0.925885 + 0.377807i \(0.876678\pi\)
\(212\) 11.1811 5.09027i 0.767918 0.349601i
\(213\) −15.9585 + 9.21365i −1.09346 + 0.631309i
\(214\) −2.26908 10.4605i −0.155111 0.715066i
\(215\) −3.52389 + 6.10355i −0.240327 + 0.416259i
\(216\) 9.26031 6.90663i 0.630084 0.469936i
\(217\) 0 0
\(218\) 7.78824 24.3142i 0.527486 1.64677i
\(219\) −14.5712 8.41270i −0.984633 0.568478i
\(220\) −0.0192930 + 0.199556i −0.00130074 + 0.0134540i
\(221\) 11.1114 + 19.2455i 0.747434 + 1.29459i
\(222\) −2.70239 2.97626i −0.181372 0.199753i
\(223\) −14.9798 −1.00312 −0.501559 0.865123i \(-0.667240\pi\)
−0.501559 + 0.865123i \(0.667240\pi\)
\(224\) 0 0
\(225\) −4.49217 −0.299478
\(226\) 17.2481 + 18.9961i 1.14733 + 1.26360i
\(227\) 0.753708 + 1.30546i 0.0500254 + 0.0866465i 0.889954 0.456051i \(-0.150736\pi\)
−0.839928 + 0.542697i \(0.817403\pi\)
\(228\) −3.92962 + 40.6456i −0.260245 + 2.69182i
\(229\) −7.38329 4.26274i −0.487901 0.281690i 0.235802 0.971801i \(-0.424228\pi\)
−0.723703 + 0.690111i \(0.757562\pi\)
\(230\) 0.650688 2.03139i 0.0429051 0.133946i
\(231\) 0 0
\(232\) −5.38904 + 4.01931i −0.353808 + 0.263881i
\(233\) 10.6117 18.3799i 0.695193 1.20411i −0.274922 0.961467i \(-0.588652\pi\)
0.970115 0.242644i \(-0.0780146\pi\)
\(234\) −5.54500 25.5626i −0.362488 1.67108i
\(235\) −3.84841 + 2.22188i −0.251043 + 0.144940i
\(236\) 15.5139 7.06283i 1.00987 0.459751i
\(237\) 11.7000i 0.759994i
\(238\) 0 0
\(239\) 10.1532i 0.656754i −0.944547 0.328377i \(-0.893498\pi\)
0.944547 0.328377i \(-0.106502\pi\)
\(240\) −2.09744 + 10.7460i −0.135389 + 0.693648i
\(241\) −16.4985 + 9.52539i −1.06276 + 0.613584i −0.926194 0.377047i \(-0.876940\pi\)
−0.136565 + 0.990631i \(0.543606\pi\)
\(242\) 15.1889 3.29475i 0.976379 0.211795i
\(243\) 9.27006 16.0562i 0.594674 1.03001i
\(244\) 9.18342 12.8641i 0.587908 0.823542i
\(245\) 0 0
\(246\) −29.4594 9.43632i −1.87826 0.601638i
\(247\) 26.5980 + 15.3564i 1.69239 + 0.977102i
\(248\) 14.1403 + 6.08488i 0.897909 + 0.386390i
\(249\) −8.89801 15.4118i −0.563889 0.976684i
\(250\) 1.04701 0.950668i 0.0662188 0.0601255i
\(251\) 9.46184 0.597226 0.298613 0.954374i \(-0.403476\pi\)
0.298613 + 0.954374i \(0.403476\pi\)
\(252\) 0 0
\(253\) 0.151197 0.00950567
\(254\) 4.58143 4.15986i 0.287465 0.261013i
\(255\) 7.38677 + 12.7943i 0.462577 + 0.801207i
\(256\) 14.8256 + 6.01668i 0.926602 + 0.376043i
\(257\) −2.37760 1.37271i −0.148310 0.0856270i 0.424008 0.905658i \(-0.360623\pi\)
−0.572319 + 0.820031i \(0.693956\pi\)
\(258\) −25.9813 8.32224i −1.61753 0.518120i
\(259\) 0 0
\(260\) 6.70215 + 4.78452i 0.415650 + 0.296723i
\(261\) 5.33868 9.24686i 0.330456 0.572367i
\(262\) −4.12058 + 0.893830i −0.254570 + 0.0552210i
\(263\) −22.2367 + 12.8384i −1.37117 + 0.791648i −0.991076 0.133298i \(-0.957443\pi\)
−0.380098 + 0.924946i \(0.624110\pi\)
\(264\) −0.770748 + 0.0907700i −0.0474363 + 0.00558651i
\(265\) 6.14261i 0.377338i
\(266\) 0 0
\(267\) 8.73650i 0.534665i
\(268\) −0.0909892 0.199863i −0.00555805 0.0122086i
\(269\) −7.10140 + 4.10000i −0.432980 + 0.249981i −0.700615 0.713539i \(-0.747091\pi\)
0.267635 + 0.963520i \(0.413758\pi\)
\(270\) −1.22447 5.64485i −0.0745191 0.343535i
\(271\) −3.20364 + 5.54886i −0.194607 + 0.337069i −0.946772 0.321906i \(-0.895676\pi\)
0.752165 + 0.658975i \(0.229010\pi\)
\(272\) 20.4186 7.01301i 1.23806 0.425226i
\(273\) 0 0
\(274\) 0.657785 2.05355i 0.0397382 0.124059i
\(275\) 0.0868131 + 0.0501216i 0.00523503 + 0.00302244i
\(276\) 8.21868 + 0.794582i 0.494706 + 0.0478282i
\(277\) −7.98456 13.8297i −0.479746 0.830944i 0.519984 0.854176i \(-0.325938\pi\)
−0.999730 + 0.0232316i \(0.992604\pi\)
\(278\) 6.80756 + 7.49745i 0.408290 + 0.449667i
\(279\) −24.4490 −1.46372
\(280\) 0 0
\(281\) −9.68409 −0.577704 −0.288852 0.957374i \(-0.593274\pi\)
−0.288852 + 0.957374i \(0.593274\pi\)
\(282\) −11.5633 12.7352i −0.688587 0.758370i
\(283\) −13.0633 22.6264i −0.776535 1.34500i −0.933928 0.357462i \(-0.883642\pi\)
0.157393 0.987536i \(-0.449691\pi\)
\(284\) 13.4019 + 1.29570i 0.795259 + 0.0768856i
\(285\) 17.6821 + 10.2088i 1.04740 + 0.604716i
\(286\) −0.178056 + 0.555877i −0.0105287 + 0.0328697i
\(287\) 0 0
\(288\) −25.4060 + 0.529749i −1.49706 + 0.0312158i
\(289\) 6.06569 10.5061i 0.356805 0.618005i
\(290\) 0.712582 + 3.28502i 0.0418443 + 0.192903i
\(291\) 26.2389 15.1491i 1.53815 0.888053i
\(292\) 5.09389 + 11.1890i 0.298097 + 0.654787i
\(293\) 16.2389i 0.948684i −0.880341 0.474342i \(-0.842686\pi\)
0.880341 0.474342i \(-0.157314\pi\)
\(294\) 0 0
\(295\) 8.52297i 0.496226i
\(296\) 0.343557 + 2.91722i 0.0199689 + 0.169560i
\(297\) 0.354574 0.204714i 0.0205745 0.0118787i
\(298\) −29.0888 + 6.30990i −1.68507 + 0.365523i
\(299\) 3.10511 5.37821i 0.179573 0.311030i
\(300\) 4.45553 + 3.18071i 0.257240 + 0.183638i
\(301\) 0 0
\(302\) 5.14883 + 1.64925i 0.296282 + 0.0949039i
\(303\) −16.9818 9.80446i −0.975580 0.563251i
\(304\) 19.5925 22.5034i 1.12371 1.29066i
\(305\) −3.95143 6.84408i −0.226258 0.391891i
\(306\) −25.3856 + 23.0497i −1.45120 + 1.31766i
\(307\) 23.5437 1.34371 0.671854 0.740684i \(-0.265498\pi\)
0.671854 + 0.740684i \(0.265498\pi\)
\(308\) 0 0
\(309\) 13.3741 0.760825
\(310\) 5.69844 5.17408i 0.323649 0.293868i
\(311\) 2.69773 + 4.67261i 0.152974 + 0.264959i 0.932320 0.361635i \(-0.117781\pi\)
−0.779345 + 0.626595i \(0.784448\pi\)
\(312\) −12.6000 + 29.2803i −0.713333 + 1.65767i
\(313\) −28.1990 16.2807i −1.59390 0.920240i −0.992629 0.121197i \(-0.961327\pi\)
−0.601274 0.799043i \(-0.705340\pi\)
\(314\) −1.72948 0.553979i −0.0975999 0.0312628i
\(315\) 0 0
\(316\) −4.96707 + 6.95787i −0.279420 + 0.391411i
\(317\) −6.85587 + 11.8747i −0.385064 + 0.666951i −0.991778 0.127970i \(-0.959154\pi\)
0.606714 + 0.794920i \(0.292487\pi\)
\(318\) 23.2374 5.04062i 1.30309 0.282664i
\(319\) −0.206344 + 0.119133i −0.0115531 + 0.00667017i
\(320\) 5.80939 5.50009i 0.324755 0.307464i
\(321\) 20.7170i 1.15631i
\(322\) 0 0
\(323\) 40.2606i 2.24016i
\(324\) −4.18095 + 1.90341i −0.232275 + 0.105745i
\(325\) 3.56573 2.05868i 0.197791 0.114195i
\(326\) 2.57858 + 11.8873i 0.142814 + 0.658377i
\(327\) 24.7075 42.7947i 1.36633 2.36655i
\(328\) 13.5132 + 18.1183i 0.746142 + 1.00042i
\(329\) 0 0
\(330\) −0.118370 + 0.369542i −0.00651607 + 0.0203426i
\(331\) −4.92495 2.84342i −0.270700 0.156289i 0.358506 0.933527i \(-0.383286\pi\)
−0.629206 + 0.777239i \(0.716620\pi\)
\(332\) −1.25131 + 12.9428i −0.0686747 + 0.710330i
\(333\) −2.33261 4.04019i −0.127826 0.221401i
\(334\) −7.70467 8.48548i −0.421581 0.464305i
\(335\) −0.109800 −0.00599901
\(336\) 0 0
\(337\) −14.7219 −0.801955 −0.400978 0.916088i \(-0.631330\pi\)
−0.400978 + 0.916088i \(0.631330\pi\)
\(338\) 3.75762 + 4.13843i 0.204388 + 0.225101i
\(339\) 24.8306 + 43.0079i 1.34861 + 2.33587i
\(340\) 1.03879 10.7446i 0.0563362 0.582708i
\(341\) 0.472487 + 0.272790i 0.0255866 + 0.0147724i
\(342\) −14.4557 + 45.1296i −0.781677 + 2.44033i
\(343\) 0 0
\(344\) 11.9178 + 15.9792i 0.642564 + 0.861542i
\(345\) 2.06425 3.57539i 0.111135 0.192492i
\(346\) −2.40850 11.1032i −0.129482 0.596913i
\(347\) 13.3966 7.73454i 0.719168 0.415212i −0.0952784 0.995451i \(-0.530374\pi\)
0.814446 + 0.580239i \(0.197041\pi\)
\(348\) −11.8424 + 5.39137i −0.634821 + 0.289008i
\(349\) 11.5290i 0.617132i 0.951203 + 0.308566i \(0.0998491\pi\)
−0.951203 + 0.308566i \(0.900151\pi\)
\(350\) 0 0
\(351\) 16.8167i 0.897608i
\(352\) 0.496893 + 0.273231i 0.0264845 + 0.0145633i
\(353\) −17.6983 + 10.2181i −0.941985 + 0.543855i −0.890582 0.454823i \(-0.849703\pi\)
−0.0514030 + 0.998678i \(0.516369\pi\)
\(354\) 32.2422 6.99394i 1.71366 0.371724i
\(355\) 3.36611 5.83027i 0.178654 0.309438i
\(356\) −3.70897 + 5.19553i −0.196575 + 0.275362i
\(357\) 0 0
\(358\) 11.9173 + 3.81731i 0.629850 + 0.201751i
\(359\) 18.3761 + 10.6095i 0.969856 + 0.559946i 0.899192 0.437554i \(-0.144155\pi\)
0.0706634 + 0.997500i \(0.477488\pi\)
\(360\) −5.02231 + 11.6710i −0.264699 + 0.615118i
\(361\) −18.3208 31.7326i −0.964255 1.67014i
\(362\) 22.3652 20.3072i 1.17549 1.06732i
\(363\) 30.0815 1.57887
\(364\) 0 0
\(365\) 6.14698 0.321748
\(366\) 22.6485 20.5644i 1.18386 1.07492i
\(367\) −3.82574 6.62637i −0.199702 0.345894i 0.748730 0.662875i \(-0.230664\pi\)
−0.948432 + 0.316982i \(0.897331\pi\)
\(368\) −4.55025 3.96167i −0.237198 0.206516i
\(369\) −31.0886 17.9490i −1.61841 0.934389i
\(370\) 1.39869 + 0.448022i 0.0727143 + 0.0232916i
\(371\) 0 0
\(372\) 24.2496 + 17.3112i 1.25728 + 0.897546i
\(373\) −12.8172 + 22.2000i −0.663647 + 1.14947i 0.316003 + 0.948758i \(0.397659\pi\)
−0.979650 + 0.200713i \(0.935674\pi\)
\(374\) 0.747766 0.162204i 0.0386661 0.00838738i
\(375\) 2.37047 1.36859i 0.122411 0.0706738i
\(376\) 1.47006 + 12.4826i 0.0758125 + 0.643740i
\(377\) 9.78647i 0.504029i
\(378\) 0 0
\(379\) 29.1039i 1.49497i 0.664279 + 0.747485i \(0.268739\pi\)
−0.664279 + 0.747485i \(0.731261\pi\)
\(380\) −6.18141 13.5778i −0.317100 0.696527i
\(381\) 10.3725 5.98858i 0.531401 0.306804i
\(382\) 7.50196 + 34.5842i 0.383834 + 1.76948i
\(383\) −4.32161 + 7.48525i −0.220824 + 0.382478i −0.955058 0.296418i \(-0.904208\pi\)
0.734234 + 0.678896i \(0.237541\pi\)
\(384\) 25.5739 + 17.4635i 1.30506 + 0.891178i
\(385\) 0 0
\(386\) −3.52093 + 10.9921i −0.179211 + 0.559481i
\(387\) −27.4182 15.8299i −1.39375 0.804679i
\(388\) −22.0354 2.13038i −1.11868 0.108154i
\(389\) 7.08846 + 12.2776i 0.359399 + 0.622498i 0.987861 0.155343i \(-0.0496483\pi\)
−0.628461 + 0.777841i \(0.716315\pi\)
\(390\) 10.7140 + 11.7998i 0.542523 + 0.597504i
\(391\) −8.14084 −0.411700
\(392\) 0 0
\(393\) −8.16078 −0.411657
\(394\) 11.8375 + 13.0371i 0.596362 + 0.656799i
\(395\) 2.13723 + 3.70178i 0.107536 + 0.186257i
\(396\) −0.896438 0.0866677i −0.0450477 0.00435521i
\(397\) −0.151559 0.0875029i −0.00760655 0.00439164i 0.496192 0.868213i \(-0.334731\pi\)
−0.503798 + 0.863821i \(0.668065\pi\)
\(398\) 9.99708 31.2101i 0.501108 1.56442i
\(399\) 0 0
\(400\) −1.29934 3.78308i −0.0649671 0.189154i
\(401\) −12.0285 + 20.8339i −0.600674 + 1.04040i 0.392046 + 0.919946i \(0.371768\pi\)
−0.992719 + 0.120452i \(0.961566\pi\)
\(402\) −0.0901017 0.415371i −0.00449386 0.0207168i
\(403\) 19.4068 11.2045i 0.966721 0.558136i
\(404\) 5.93659 + 13.0401i 0.295357 + 0.648767i
\(405\) 2.29692i 0.114135i
\(406\) 0 0
\(407\) 0.104105i 0.00516027i
\(408\) 41.4991 4.88729i 2.05451 0.241957i
\(409\) 10.3372 5.96818i 0.511141 0.295108i −0.222161 0.975010i \(-0.571311\pi\)
0.733303 + 0.679902i \(0.237978\pi\)
\(410\) 11.0445 2.39575i 0.545448 0.118318i
\(411\) 2.08676 3.61438i 0.102932 0.178284i
\(412\) −7.95347 5.67780i −0.391839 0.279725i
\(413\) 0 0
\(414\) 9.12536 + 2.92300i 0.448487 + 0.143658i
\(415\) 5.63054 + 3.25079i 0.276392 + 0.159575i
\(416\) 19.9237 12.0636i 0.976839 0.591467i
\(417\) 9.80023 + 16.9745i 0.479919 + 0.831245i
\(418\) 0.782899 0.710859i 0.0382929 0.0347692i
\(419\) −30.1003 −1.47050 −0.735249 0.677798i \(-0.762935\pi\)
−0.735249 + 0.677798i \(0.762935\pi\)
\(420\) 0 0
\(421\) 6.78256 0.330562 0.165281 0.986247i \(-0.447147\pi\)
0.165281 + 0.986247i \(0.447147\pi\)
\(422\) 11.4919 10.4344i 0.559417 0.507941i
\(423\) −9.98107 17.2877i −0.485296 0.840557i
\(424\) −15.9590 6.86753i −0.775039 0.333517i
\(425\) −4.67424 2.69867i −0.226734 0.130905i
\(426\) 24.8180 + 7.94961i 1.20244 + 0.385160i
\(427\) 0 0
\(428\) −8.79513 + 12.3202i −0.425128 + 0.595520i
\(429\) −0.564868 + 0.978379i −0.0272721 + 0.0472366i
\(430\) 9.74053 2.11290i 0.469730 0.101893i
\(431\) 13.8010 7.96802i 0.664772 0.383806i −0.129321 0.991603i \(-0.541280\pi\)
0.794093 + 0.607797i \(0.207946\pi\)
\(432\) −16.0348 3.12974i −0.771474 0.150580i
\(433\) 15.1291i 0.727057i 0.931583 + 0.363529i \(0.118428\pi\)
−0.931583 + 0.363529i \(0.881572\pi\)
\(434\) 0 0
\(435\) 6.50596i 0.311937i
\(436\) −32.8613 + 14.9604i −1.57377 + 0.716472i
\(437\) −9.74360 + 5.62547i −0.466099 + 0.269103i
\(438\) 5.04421 + 23.2539i 0.241021 + 1.11112i
\(439\) 2.18337 3.78171i 0.104207 0.180491i −0.809207 0.587523i \(-0.800103\pi\)
0.913414 + 0.407032i \(0.133436\pi\)
\(440\) 0.227278 0.169511i 0.0108351 0.00808113i
\(441\) 0 0
\(442\) 9.58701 29.9298i 0.456007 1.42362i
\(443\) −12.2094 7.04909i −0.580086 0.334913i 0.181082 0.983468i \(-0.442040\pi\)
−0.761167 + 0.648555i \(0.775373\pi\)
\(444\) −0.547098 + 5.65886i −0.0259641 + 0.268558i
\(445\) 1.59589 + 2.76417i 0.0756526 + 0.131034i
\(446\) 14.2408 + 15.6840i 0.674320 + 0.742657i
\(447\) −57.6102 −2.72487
\(448\) 0 0
\(449\) 17.0120 0.802848 0.401424 0.915892i \(-0.368515\pi\)
0.401424 + 0.915892i \(0.368515\pi\)
\(450\) 4.27056 + 4.70335i 0.201316 + 0.221718i
\(451\) 0.400534 + 0.693745i 0.0188604 + 0.0326672i
\(452\) 3.49188 36.1180i 0.164244 1.69885i
\(453\) 9.06228 + 5.23211i 0.425783 + 0.245826i
\(454\) 0.650306 2.03020i 0.0305204 0.0952820i
\(455\) 0 0
\(456\) 46.2922 34.5261i 2.16783 1.61683i
\(457\) −5.83234 + 10.1019i −0.272825 + 0.472548i −0.969584 0.244758i \(-0.921291\pi\)
0.696759 + 0.717306i \(0.254625\pi\)
\(458\) 2.55591 + 11.7828i 0.119430 + 0.550575i
\(459\) −19.0912 + 11.0223i −0.891101 + 0.514477i
\(460\) −2.74548 + 1.24990i −0.128009 + 0.0582770i
\(461\) 26.4488i 1.23184i −0.787808 0.615921i \(-0.788784\pi\)
0.787808 0.615921i \(-0.211216\pi\)
\(462\) 0 0
\(463\) 3.13685i 0.145782i 0.997340 + 0.0728909i \(0.0232225\pi\)
−0.997340 + 0.0728909i \(0.976778\pi\)
\(464\) 9.33144 + 1.82135i 0.433201 + 0.0845541i
\(465\) 12.9015 7.44866i 0.598291 0.345424i
\(466\) −29.3322 + 6.36269i −1.35879 + 0.294746i
\(467\) 4.07057 7.05043i 0.188363 0.326255i −0.756341 0.654177i \(-0.773015\pi\)
0.944705 + 0.327922i \(0.106348\pi\)
\(468\) −21.4929 + 30.1072i −0.993508 + 1.39171i
\(469\) 0 0
\(470\) 5.98489 + 1.91706i 0.276062 + 0.0884272i
\(471\) −3.04399 1.75745i −0.140260 0.0809789i
\(472\) −22.1434 9.52880i −1.01923 0.438599i
\(473\) 0.353246 + 0.611839i 0.0162422 + 0.0281324i
\(474\) −12.2500 + 11.1228i −0.562660 + 0.510886i
\(475\) −7.45934 −0.342258
\(476\) 0 0
\(477\) 27.5937 1.26343
\(478\) −10.6305 + 9.65229i −0.486227 + 0.441485i
\(479\) −12.3904 21.4608i −0.566131 0.980567i −0.996944 0.0781258i \(-0.975106\pi\)
0.430813 0.902441i \(-0.358227\pi\)
\(480\) 13.2451 8.01978i 0.604553 0.366051i
\(481\) 3.70309 + 2.13798i 0.168846 + 0.0974835i
\(482\) 25.6577 + 8.21858i 1.16868 + 0.374346i
\(483\) 0 0
\(484\) −17.8892 12.7707i −0.813147 0.580487i
\(485\) −5.53454 + 9.58611i −0.251311 + 0.435283i
\(486\) −25.6238 + 5.55827i −1.16232 + 0.252128i
\(487\) 10.9938 6.34726i 0.498175 0.287622i −0.229784 0.973242i \(-0.573802\pi\)
0.727960 + 0.685620i \(0.240469\pi\)
\(488\) −22.1993 + 2.61438i −1.00491 + 0.118347i
\(489\) 23.5427i 1.06464i
\(490\) 0 0
\(491\) 9.51192i 0.429267i 0.976695 + 0.214633i \(0.0688557\pi\)
−0.976695 + 0.214633i \(0.931144\pi\)
\(492\) 18.1262 + 39.8151i 0.817191 + 1.79500i
\(493\) 11.1101 6.41443i 0.500375 0.288892i
\(494\) −9.20758 42.4472i −0.414269 1.90979i
\(495\) −0.225155 + 0.389979i −0.0101199 + 0.0175283i
\(496\) −7.07177 20.5897i −0.317532 0.924506i
\(497\) 0 0
\(498\) −7.67728 + 23.9678i −0.344027 + 1.07402i
\(499\) −7.35497 4.24639i −0.329254 0.190095i 0.326256 0.945281i \(-0.394213\pi\)
−0.655510 + 0.755187i \(0.727546\pi\)
\(500\) −1.99072 0.192463i −0.0890276 0.00860719i
\(501\) −11.0917 19.2114i −0.495542 0.858303i
\(502\) −8.99507 9.90665i −0.401469 0.442155i
\(503\) 10.4796 0.467261 0.233630 0.972325i \(-0.424939\pi\)
0.233630 + 0.972325i \(0.424939\pi\)
\(504\) 0 0
\(505\) 7.16390 0.318790
\(506\) −0.143738 0.158305i −0.00638993 0.00703751i
\(507\) 5.40951 + 9.36955i 0.240245 + 0.416116i
\(508\) −8.71084 0.842164i −0.386481 0.0373650i
\(509\) 19.7483 + 11.4017i 0.875329 + 0.505371i 0.869115 0.494609i \(-0.164689\pi\)
0.00621337 + 0.999981i \(0.498022\pi\)
\(510\) 6.37336 19.8971i 0.282217 0.881059i
\(511\) 0 0
\(512\) −7.79472 21.2425i −0.344481 0.938793i
\(513\) −15.2332 + 26.3847i −0.672564 + 1.16492i
\(514\) 0.823066 + 3.79435i 0.0363039 + 0.167362i
\(515\) −4.23147 + 2.44304i −0.186461 + 0.107653i
\(516\) 15.9861 + 35.1144i 0.703751 + 1.54583i
\(517\) 0.445456i 0.0195912i
\(518\) 0 0
\(519\) 21.9899i 0.965248i
\(520\) −1.36208 11.5657i −0.0597311 0.507190i
\(521\) 7.88048 4.54980i 0.345250 0.199330i −0.317341 0.948311i \(-0.602790\pi\)
0.662591 + 0.748981i \(0.269457\pi\)
\(522\) −14.7569 + 3.20104i −0.645891 + 0.140106i
\(523\) −2.38048 + 4.12311i −0.104091 + 0.180291i −0.913366 0.407138i \(-0.866527\pi\)
0.809275 + 0.587429i \(0.199860\pi\)
\(524\) 4.85315 + 3.46456i 0.212011 + 0.151350i
\(525\) 0 0
\(526\) 34.5816 + 11.0771i 1.50783 + 0.482982i
\(527\) −25.4399 14.6877i −1.10818 0.639808i
\(528\) 0.827762 + 0.720689i 0.0360237 + 0.0313640i
\(529\) −10.3625 17.9484i −0.450544 0.780365i
\(530\) −6.43138 + 5.83958i −0.279361 + 0.253655i
\(531\) 38.2866 1.66150
\(532\) 0 0
\(533\) 32.9028 1.42518
\(534\) −9.14721 + 8.30551i −0.395838 + 0.359414i
\(535\) 3.78436 + 6.55470i 0.163612 + 0.283384i
\(536\) −0.122758 + 0.285270i −0.00530233 + 0.0123218i
\(537\) 20.9753 + 12.1101i 0.905150 + 0.522588i
\(538\) 11.0438 + 3.53751i 0.476133 + 0.152513i
\(539\) 0 0
\(540\) −4.74615 + 6.64842i −0.204242 + 0.286102i
\(541\) 11.2312 19.4530i 0.482867 0.836350i −0.516939 0.856022i \(-0.672929\pi\)
0.999806 + 0.0196717i \(0.00626211\pi\)
\(542\) 8.85531 1.92088i 0.380368 0.0825089i
\(543\) 50.6355 29.2344i 2.17298 1.25457i
\(544\) −26.7540 14.7115i −1.14707 0.630749i
\(545\) 18.0532i 0.773316i
\(546\) 0 0
\(547\) 24.4644i 1.04602i −0.852326 0.523012i \(-0.824808\pi\)
0.852326 0.523012i \(-0.175192\pi\)
\(548\) −2.77542 + 1.26353i −0.118560 + 0.0539755i
\(549\) 30.7448 17.7505i 1.31215 0.757573i
\(550\) −0.0300526 0.138543i −0.00128145 0.00590750i
\(551\) 8.86498 15.3546i 0.377661 0.654128i
\(552\) −6.98130 9.36043i −0.297144 0.398406i
\(553\) 0 0
\(554\) −6.88915 + 21.5073i −0.292692 + 0.913759i
\(555\) 2.46178 + 1.42131i 0.104497 + 0.0603313i
\(556\) 1.37819 14.2552i 0.0584483 0.604554i
\(557\) 4.21627 + 7.30280i 0.178649 + 0.309430i 0.941418 0.337242i \(-0.109494\pi\)
−0.762769 + 0.646671i \(0.776161\pi\)
\(558\) 23.2429 + 25.5983i 0.983948 + 1.08366i
\(559\) 29.0182 1.22734
\(560\) 0 0
\(561\) 1.48095 0.0625255
\(562\) 9.20635 + 10.1393i 0.388346 + 0.427702i
\(563\) −13.5833 23.5269i −0.572467 0.991541i −0.996312 0.0858067i \(-0.972653\pi\)
0.423845 0.905735i \(-0.360680\pi\)
\(564\) −2.34100 + 24.2139i −0.0985738 + 1.01959i
\(565\) −15.7125 9.07159i −0.661028 0.381645i
\(566\) −11.2712 + 35.1876i −0.473762 + 1.47905i
\(567\) 0 0
\(568\) −11.3842 15.2638i −0.477669 0.640453i
\(569\) −7.11643 + 12.3260i −0.298336 + 0.516733i −0.975755 0.218864i \(-0.929765\pi\)
0.677419 + 0.735597i \(0.263098\pi\)
\(570\) −6.12112 28.2185i −0.256386 1.18194i
\(571\) −14.5870 + 8.42181i −0.610447 + 0.352442i −0.773140 0.634235i \(-0.781315\pi\)
0.162693 + 0.986677i \(0.447982\pi\)
\(572\) 0.751281 0.342027i 0.0314126 0.0143009i
\(573\) 68.4938i 2.86137i
\(574\) 0 0
\(575\) 1.50830i 0.0629006i
\(576\) 24.7073 + 26.0968i 1.02947 + 1.08737i
\(577\) −1.86487 + 1.07668i −0.0776356 + 0.0448230i −0.538315 0.842744i \(-0.680939\pi\)
0.460680 + 0.887566i \(0.347606\pi\)
\(578\) −16.7664 + 3.63695i −0.697392 + 0.151277i
\(579\) −11.1699 + 19.3468i −0.464203 + 0.804024i
\(580\) 2.76202 3.86904i 0.114687 0.160653i
\(581\) 0 0
\(582\) −40.8057 13.0707i −1.69145 0.541799i
\(583\) −0.533259 0.307877i −0.0220853 0.0127510i
\(584\) 6.87241 15.9704i 0.284382 0.660859i
\(585\) 9.24793 + 16.0179i 0.382355 + 0.662258i
\(586\) −17.0023 + 15.4378i −0.702357 + 0.637728i
\(587\) 11.3061 0.466652 0.233326 0.972399i \(-0.425039\pi\)
0.233326 + 0.972399i \(0.425039\pi\)
\(588\) 0 0
\(589\) −40.5980 −1.67281
\(590\) −8.92364 + 8.10251i −0.367380 + 0.333575i
\(591\) 17.0413 + 29.5164i 0.700986 + 1.21414i
\(592\) 2.72775 3.13301i 0.112110 0.128766i
\(593\) −14.7570 8.51993i −0.605996 0.349872i 0.165401 0.986226i \(-0.447108\pi\)
−0.771397 + 0.636355i \(0.780442\pi\)
\(594\) −0.551420 0.176629i −0.0226250 0.00724716i
\(595\) 0 0
\(596\) 34.2603 + 24.4577i 1.40336 + 1.00183i
\(597\) 31.7149 54.9318i 1.29800 2.24821i
\(598\) −8.58296 + 1.86180i −0.350984 + 0.0761348i
\(599\) 3.39864 1.96221i 0.138865 0.0801736i −0.428958 0.903324i \(-0.641119\pi\)
0.567823 + 0.823151i \(0.307786\pi\)
\(600\) −0.905498 7.68879i −0.0369668 0.313893i
\(601\) 8.98026i 0.366312i 0.983084 + 0.183156i \(0.0586314\pi\)
−0.983084 + 0.183156i \(0.941369\pi\)
\(602\) 0 0
\(603\) 0.493240i 0.0200863i
\(604\) −3.16804 6.95877i −0.128906 0.283149i
\(605\) −9.51758 + 5.49498i −0.386945 + 0.223403i
\(606\) 5.87869 + 27.1009i 0.238806 + 1.10090i
\(607\) −18.7895 + 32.5444i −0.762644 + 1.32094i 0.178840 + 0.983878i \(0.442766\pi\)
−0.941483 + 0.337059i \(0.890568\pi\)
\(608\) −42.1872 + 0.879659i −1.71092 + 0.0356749i
\(609\) 0 0
\(610\) −3.40933 + 10.6436i −0.138040 + 0.430948i
\(611\) 15.8453 + 9.14827i 0.641031 + 0.370099i
\(612\) 48.2666 + 4.66641i 1.95106 + 0.188629i
\(613\) 23.1299 + 40.0621i 0.934207 + 1.61809i 0.776042 + 0.630681i \(0.217224\pi\)
0.158165 + 0.987413i \(0.449442\pi\)
\(614\) −22.3822 24.6505i −0.903272 0.994812i
\(615\) 21.8735 0.882025
\(616\) 0 0
\(617\) −42.8844 −1.72646 −0.863231 0.504809i \(-0.831563\pi\)
−0.863231 + 0.504809i \(0.831563\pi\)
\(618\) −12.7143 14.0028i −0.511445 0.563276i
\(619\) 14.7503 + 25.5483i 0.592865 + 1.02687i 0.993844 + 0.110785i \(0.0353364\pi\)
−0.400980 + 0.916087i \(0.631330\pi\)
\(620\) −10.8346 1.04749i −0.435129 0.0420683i
\(621\) 5.33508 + 3.08021i 0.214090 + 0.123605i
\(622\) 2.32762 7.26665i 0.0933293 0.291366i
\(623\) 0 0
\(624\) 42.6352 14.6435i 1.70677 0.586210i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 9.76181 + 45.0022i 0.390160 + 1.79865i
\(627\) 1.77251 1.02336i 0.0707873 0.0408691i
\(628\) 1.06413 + 2.33743i 0.0424636 + 0.0932735i
\(629\) 5.60526i 0.223496i
\(630\) 0 0
\(631\) 20.5872i 0.819563i 0.912184 + 0.409781i \(0.134395\pi\)
−0.912184 + 0.409781i \(0.865605\pi\)
\(632\) 12.0070 1.41405i 0.477613 0.0562478i
\(633\) 26.0181 15.0215i 1.03413 0.597053i
\(634\) 18.9506 4.11074i 0.752625 0.163258i
\(635\) −2.18786 + 3.78949i −0.0868227 + 0.150381i
\(636\) −27.3686 19.5378i −1.08524 0.774726i
\(637\) 0 0
\(638\) 0.320899 + 0.102789i 0.0127045 + 0.00406945i
\(639\) 26.1906 + 15.1211i 1.03608 + 0.598182i
\(640\) −11.2815 0.853736i −0.445939 0.0337469i
\(641\) 18.4263 + 31.9153i 0.727795 + 1.26058i 0.957813 + 0.287392i \(0.0927883\pi\)
−0.230018 + 0.973186i \(0.573878\pi\)
\(642\) −21.6909 + 19.6949i −0.856071 + 0.777297i
\(643\) 48.4719 1.91154 0.955772 0.294108i \(-0.0950227\pi\)
0.955772 + 0.294108i \(0.0950227\pi\)
\(644\) 0 0
\(645\) 19.2911 0.759585
\(646\) −42.1533 + 38.2745i −1.65850 + 1.50589i
\(647\) −19.5933 33.9366i −0.770292 1.33418i −0.937403 0.348247i \(-0.886777\pi\)
0.167111 0.985938i \(-0.446556\pi\)
\(648\) 5.96759 + 2.56799i 0.234429 + 0.100880i
\(649\) −0.739905 0.427185i −0.0290438 0.0167685i
\(650\) −5.54528 1.77624i −0.217504 0.0696700i
\(651\) 0 0
\(652\) 9.99477 14.0007i 0.391425 0.548309i
\(653\) −3.44161 + 5.96105i −0.134681 + 0.233274i −0.925475 0.378808i \(-0.876334\pi\)
0.790795 + 0.612082i \(0.209668\pi\)
\(654\) −68.2951 + 14.8145i −2.67055 + 0.579291i
\(655\) 2.58201 1.49073i 0.100888 0.0582475i
\(656\) 6.12351 31.3730i 0.239083 1.22491i
\(657\) 27.6133i 1.07730i
\(658\) 0 0
\(659\) 40.9792i 1.59632i −0.602444 0.798161i \(-0.705806\pi\)
0.602444 0.798161i \(-0.294194\pi\)
\(660\) 0.499445 0.227377i 0.0194409 0.00885063i
\(661\) −10.4696 + 6.04460i −0.407219 + 0.235108i −0.689594 0.724196i \(-0.742211\pi\)
0.282375 + 0.959304i \(0.408878\pi\)
\(662\) 1.70490 + 7.85962i 0.0662627 + 0.305473i
\(663\) 30.4139 52.6785i 1.18118 2.04586i
\(664\) 14.7409 10.9942i 0.572056 0.426657i
\(665\) 0 0
\(666\) −2.01259 + 6.28314i −0.0779863 + 0.243467i
\(667\) −3.10475 1.79253i −0.120216 0.0694070i
\(668\) −1.55981 + 16.1337i −0.0603508 + 0.624233i
\(669\) 20.5012 + 35.5091i 0.792621 + 1.37286i
\(670\) 0.104383 + 0.114962i 0.00403268 + 0.00444136i
\(671\) −0.792208 −0.0305828
\(672\) 0 0
\(673\) 29.0006 1.11789 0.558945 0.829205i \(-0.311206\pi\)
0.558945 + 0.829205i \(0.311206\pi\)
\(674\) 13.9957 + 15.4140i 0.539093 + 0.593726i
\(675\) 2.04217 + 3.53714i 0.0786032 + 0.136145i
\(676\) 0.760730 7.86853i 0.0292588 0.302636i
\(677\) −41.8361 24.1541i −1.60789 0.928317i −0.989841 0.142178i \(-0.954589\pi\)
−0.618051 0.786138i \(-0.712077\pi\)
\(678\) 21.4240 66.8841i 0.822786 2.56867i
\(679\) 0 0
\(680\) −12.2373 + 9.12692i −0.469277 + 0.350001i
\(681\) 2.06304 3.57329i 0.0790558 0.136929i
\(682\) −0.163563 0.754032i −0.00626317 0.0288734i
\(683\) 11.4528 6.61231i 0.438231 0.253013i −0.264616 0.964354i \(-0.585245\pi\)
0.702847 + 0.711341i \(0.251912\pi\)
\(684\) 60.9938 27.7680i 2.33216 1.06173i
\(685\) 1.52475i 0.0582578i
\(686\) 0 0
\(687\) 23.3358i 0.890317i
\(688\) 5.40055 27.6690i 0.205894 1.05487i
\(689\) −21.9029 + 12.6457i −0.834435 + 0.481761i
\(690\) −5.70588 + 1.23771i −0.217219 + 0.0471189i
\(691\) 19.9447 34.5453i 0.758733 1.31416i −0.184763 0.982783i \(-0.559152\pi\)
0.943497 0.331382i \(-0.107515\pi\)
\(692\) −9.33552 + 13.0772i −0.354883 + 0.497121i
\(693\) 0 0
\(694\) −20.8339 6.67342i −0.790843 0.253320i
\(695\) −6.20145 3.58041i −0.235234 0.135813i
\(696\) 16.9030 + 7.27376i 0.640708 + 0.275711i
\(697\) −21.5658 37.3530i −0.816862 1.41485i
\(698\) 12.0710 10.9602i 0.456893 0.414851i
\(699\) −58.0921 −2.19725
\(700\) 0 0
\(701\) −5.82647 −0.220063 −0.110031 0.993928i \(-0.535095\pi\)
−0.110031 + 0.993928i \(0.535095\pi\)
\(702\) −17.6072 + 15.9871i −0.664543 + 0.603393i
\(703\) −3.87334 6.70882i −0.146086 0.253028i
\(704\) −0.186304 0.780004i −0.00702160 0.0293975i
\(705\) 10.5338 + 6.08169i 0.396726 + 0.229050i
\(706\) 27.5237 + 8.81627i 1.03587 + 0.331805i
\(707\) 0 0
\(708\) −37.9744 27.1091i −1.42716 1.01882i
\(709\) 8.29615 14.3694i 0.311569 0.539653i −0.667134 0.744938i \(-0.732479\pi\)
0.978702 + 0.205286i \(0.0658123\pi\)
\(710\) −9.30440 + 2.01830i −0.349188 + 0.0757453i
\(711\) −16.6290 + 9.60078i −0.623638 + 0.360058i
\(712\) 8.96577 1.05589i 0.336006 0.0395710i
\(713\) 8.20905i 0.307431i
\(714\) 0 0
\(715\) 0.412736i 0.0154355i
\(716\) −7.33265 16.1066i −0.274034 0.601930i
\(717\) −24.0678 + 13.8955i −0.898828 + 0.518938i
\(718\) −6.36137 29.3261i −0.237404 1.09444i
\(719\) −1.69923 + 2.94314i −0.0633704 + 0.109761i −0.895970 0.444115i \(-0.853518\pi\)
0.832600 + 0.553875i \(0.186852\pi\)
\(720\) 16.9942 5.83687i 0.633338 0.217527i
\(721\) 0 0
\(722\) −15.8074 + 49.3493i −0.588290 + 1.83659i
\(723\) 45.1593 + 26.0727i 1.67949 + 0.969655i
\(724\) −42.5237 4.11119i −1.58038 0.152791i
\(725\) −1.18844 2.05844i −0.0441376 0.0764486i
\(726\) −28.5975 31.4957i −1.06135 1.16891i
\(727\) 14.3045 0.530526 0.265263 0.964176i \(-0.414541\pi\)
0.265263 + 0.964176i \(0.414541\pi\)
\(728\) 0 0
\(729\) −43.8569 −1.62433
\(730\) −5.84373 6.43595i −0.216286 0.238205i
\(731\) −19.0197 32.9430i −0.703468 1.21844i
\(732\) −43.0624 4.16327i −1.59163 0.153879i
\(733\) 42.8607 + 24.7457i 1.58310 + 0.914001i 0.994404 + 0.105645i \(0.0336907\pi\)
0.588693 + 0.808357i \(0.299643\pi\)
\(734\) −3.30088 + 10.3051i −0.121838 + 0.380367i
\(735\) 0 0
\(736\) 0.177870 + 8.53039i 0.00655637 + 0.314434i
\(737\) −0.00550334 + 0.00953207i −0.000202718 + 0.000351118i
\(738\) 10.7621 + 49.6137i 0.396159 + 1.82630i
\(739\) −23.2184 + 13.4052i −0.854104 + 0.493117i −0.862033 0.506852i \(-0.830809\pi\)
0.00792968 + 0.999969i \(0.497476\pi\)
\(740\) −0.860603 1.89036i −0.0316364 0.0694911i
\(741\) 84.0664i 3.08826i
\(742\) 0 0
\(743\) 22.2896i 0.817727i 0.912596 + 0.408863i \(0.134075\pi\)
−0.912596 + 0.408863i \(0.865925\pi\)
\(744\) −4.92824 41.8468i −0.180678 1.53418i
\(745\) 18.2275 10.5236i 0.667803 0.385556i
\(746\) 35.4285 7.68509i 1.29713 0.281371i
\(747\) −14.6031 + 25.2933i −0.534300 + 0.925435i
\(748\) −0.880706 0.628717i −0.0322018 0.0229882i
\(749\) 0 0
\(750\) −3.68646 1.18083i −0.134610 0.0431179i
\(751\) −11.1427 6.43324i −0.406603 0.234752i 0.282726 0.959201i \(-0.408761\pi\)
−0.689329 + 0.724448i \(0.742095\pi\)
\(752\) 11.6719 13.4060i 0.425629 0.488865i
\(753\) −12.9494 22.4290i −0.471902 0.817359i
\(754\) 10.2465 9.30368i 0.373157 0.338820i
\(755\) −3.82299 −0.139133
\(756\) 0 0
\(757\) −3.66830 −0.133327 −0.0666633 0.997776i \(-0.521235\pi\)
−0.0666633 + 0.997776i \(0.521235\pi\)
\(758\) 30.4721 27.6682i 1.10680 1.00495i
\(759\) −0.206927 0.358408i −0.00751097 0.0130094i
\(760\) −8.33964 + 19.3800i −0.302511 + 0.702986i
\(761\) 2.56137 + 1.47880i 0.0928494 + 0.0536066i 0.545706 0.837977i \(-0.316262\pi\)
−0.452856 + 0.891583i \(0.649595\pi\)
\(762\) −16.1309 5.16700i −0.584362 0.187181i
\(763\) 0 0
\(764\) 29.0782 40.7327i 1.05201 1.47366i
\(765\) 12.1229 20.9975i 0.438305 0.759166i
\(766\) 11.9456 2.59121i 0.431610 0.0936243i
\(767\) −30.3906 + 17.5460i −1.09734 + 0.633551i
\(768\) −6.02788 43.3781i −0.217512 1.56527i
\(769\) 32.6324i 1.17676i −0.808586 0.588378i \(-0.799767\pi\)
0.808586 0.588378i \(-0.200233\pi\)
\(770\) 0 0
\(771\) 7.51469i 0.270635i
\(772\) 14.8560 6.76334i 0.534681 0.243418i
\(773\) 4.76043 2.74844i 0.171221 0.0988544i −0.411941 0.911211i \(-0.635149\pi\)
0.583161 + 0.812356i \(0.301816\pi\)
\(774\) 9.49151 + 43.7561i 0.341165 + 1.57278i
\(775\) −2.72129 + 4.71341i −0.0977516 + 0.169311i
\(776\) 18.7178 + 25.0966i 0.671931 + 0.900916i
\(777\) 0 0
\(778\) 6.11598 19.0936i 0.219269 0.684538i
\(779\) −51.6233 29.8047i −1.84960 1.06786i
\(780\) 2.16904 22.4353i 0.0776642 0.803313i
\(781\) −0.337429 0.584444i −0.0120742 0.0209131i
\(782\) 7.73923 + 8.52354i 0.276754 + 0.304801i
\(783\) −9.70800 −0.346936
\(784\) 0 0
\(785\) 1.28413 0.0458325
\(786\) 7.75819 + 8.54443i 0.276725 + 0.304770i
\(787\) 15.7430 + 27.2677i 0.561177 + 0.971987i 0.997394 + 0.0721455i \(0.0229846\pi\)
−0.436217 + 0.899841i \(0.643682\pi\)
\(788\) 2.39649 24.7879i 0.0853715 0.883031i
\(789\) 60.8659 + 35.1410i 2.16689 + 1.25105i
\(790\) 1.84402 5.75687i 0.0656072 0.204820i
\(791\) 0 0
\(792\) 0.761473 + 1.02097i 0.0270578 + 0.0362787i
\(793\) −16.2694 + 28.1795i −0.577745 + 1.00068i
\(794\) 0.0524662 + 0.241870i 0.00186195 + 0.00858366i
\(795\) −14.5609 + 8.40673i −0.516421 + 0.298156i
\(796\) −42.1812 + 19.2033i −1.49507 + 0.680644i
\(797\) 20.2691i 0.717968i −0.933344 0.358984i \(-0.883123\pi\)
0.933344 0.358984i \(-0.116877\pi\)
\(798\) 0 0
\(799\) 23.9845i 0.848512i
\(800\) −2.72568 + 4.95688i −0.0963675 + 0.175252i
\(801\) −12.4171 + 7.16902i −0.438737 + 0.253305i
\(802\) 33.2484 7.21220i 1.17404 0.254672i
\(803\) 0.308096 0.533638i 0.0108725 0.0188317i
\(804\) −0.349241 + 0.489217i −0.0123168 + 0.0172534i
\(805\) 0 0
\(806\) −30.1806 9.66734i −1.06307 0.340518i
\(807\) 19.4378 + 11.2224i 0.684244 + 0.395049i
\(808\) 8.00934 18.6124i 0.281768 0.654783i
\(809\) 15.6376 + 27.0851i 0.549789 + 0.952262i 0.998289 + 0.0584790i \(0.0186251\pi\)
−0.448500 + 0.893783i \(0.648042\pi\)
\(810\) 2.40490 2.18361i 0.0844995 0.0767241i
\(811\) −51.4855 −1.80790 −0.903950 0.427638i \(-0.859346\pi\)
−0.903950 + 0.427638i \(0.859346\pi\)
\(812\) 0 0
\(813\) 17.5379 0.615080
\(814\) 0.108999 0.0989688i 0.00382040 0.00346886i
\(815\) −4.30054 7.44875i −0.150641 0.260918i
\(816\) −44.5689 38.8038i −1.56022 1.35840i
\(817\) −45.5285 26.2859i −1.59284 0.919626i
\(818\) −16.0760 5.14940i −0.562084 0.180044i
\(819\) 0 0
\(820\) −13.0080 9.28612i −0.454259 0.324285i
\(821\) 24.0601 41.6733i 0.839702 1.45441i −0.0504413 0.998727i \(-0.516063\pi\)
0.890144 0.455680i \(-0.150604\pi\)
\(822\) −5.76812 + 1.25121i −0.201186 + 0.0436410i
\(823\) 21.3892 12.3490i 0.745580 0.430461i −0.0785148 0.996913i \(-0.525018\pi\)
0.824095 + 0.566452i \(0.191684\pi\)
\(824\) 1.61638 + 13.7251i 0.0563094 + 0.478135i
\(825\) 0.274384i 0.00955282i
\(826\) 0 0
\(827\) 19.9120i 0.692408i −0.938159 0.346204i \(-0.887470\pi\)
0.938159 0.346204i \(-0.112530\pi\)
\(828\) −5.61477 12.3332i −0.195127 0.428607i
\(829\) 13.8257 7.98225i 0.480185 0.277235i −0.240308 0.970697i \(-0.577249\pi\)
0.720494 + 0.693461i \(0.243915\pi\)
\(830\) −1.94916 8.98566i −0.0676562 0.311897i
\(831\) −21.8552 + 37.8543i −0.758149 + 1.31315i
\(832\) −31.5715 9.39183i −1.09455 0.325603i
\(833\) 0 0
\(834\) 8.45572 26.3981i 0.292798 0.914090i
\(835\) 7.01869 + 4.05224i 0.242892 + 0.140234i
\(836\) −1.48855 0.143913i −0.0514827 0.00497735i
\(837\) 11.1147 + 19.2512i 0.384179 + 0.665418i
\(838\) 28.6154 + 31.5154i 0.988503 + 1.08868i
\(839\) 14.5375 0.501889 0.250944 0.968002i \(-0.419259\pi\)
0.250944 + 0.968002i \(0.419259\pi\)
\(840\) 0 0
\(841\) −23.3504 −0.805187
\(842\) −6.44796 7.10141i −0.222211 0.244731i
\(843\) 13.2536 + 22.9558i 0.456477 + 0.790641i
\(844\) −21.8500 2.11245i −0.752106 0.0727136i
\(845\) −3.42306 1.97631i −0.117757 0.0679870i
\(846\) −8.61174 + 26.8851i −0.296078 + 0.924330i
\(847\) 0 0
\(848\) 7.98136 + 23.2380i 0.274081 + 0.797996i
\(849\) −35.7568 + 61.9325i −1.22717 + 2.12552i
\(850\) 1.61811 + 7.45952i 0.0555007 + 0.255860i
\(851\) −1.35655 + 0.783202i −0.0465018 + 0.0268478i
\(852\) −15.2704 33.5422i −0.523154 1.14914i
\(853\) 36.2299i 1.24049i −0.784408 0.620245i \(-0.787033\pi\)
0.784408 0.620245i \(-0.212967\pi\)
\(854\) 0 0
\(855\) 33.5086i 1.14597i
\(856\) 21.2606 2.50384i 0.726674 0.0855794i
\(857\) 32.9576 19.0281i 1.12581 0.649986i 0.182932 0.983126i \(-0.441441\pi\)
0.942878 + 0.333139i \(0.108108\pi\)
\(858\) 1.56137 0.338691i 0.0533045 0.0115627i
\(859\) 13.3104 23.0543i 0.454145 0.786602i −0.544494 0.838765i \(-0.683278\pi\)
0.998639 + 0.0521630i \(0.0166115\pi\)
\(860\) −11.4722 8.18977i −0.391200 0.279269i
\(861\) 0 0
\(862\) −21.4628 6.87487i −0.731025 0.234159i
\(863\) −20.1195 11.6160i −0.684876 0.395413i 0.116814 0.993154i \(-0.462732\pi\)
−0.801690 + 0.597741i \(0.796065\pi\)
\(864\) 11.9669 + 19.7639i 0.407122 + 0.672383i
\(865\) 4.01688 + 6.95744i 0.136578 + 0.236560i
\(866\) 15.8403 14.3827i 0.538276 0.488745i
\(867\) −33.2058 −1.12773
\(868\) 0 0
\(869\) 0.428484 0.0145353
\(870\) 6.81181 6.18501i 0.230942 0.209691i
\(871\) 0.226043 + 0.391517i 0.00765916 + 0.0132661i
\(872\) 46.9038 + 20.1838i 1.58836 + 0.683509i
\(873\) −43.0624 24.8621i −1.45744 0.841455i
\(874\) 15.1528 + 4.85370i 0.512553 + 0.164179i
\(875\) 0 0
\(876\) 19.5517 27.3881i 0.660592 0.925358i
\(877\) 1.28202 2.22052i 0.0432907 0.0749817i −0.843568 0.537022i \(-0.819549\pi\)
0.886859 + 0.462040i \(0.152882\pi\)
\(878\) −6.03515 + 1.30914i −0.203676 + 0.0441812i
\(879\) −38.4937 + 22.2244i −1.29836 + 0.749609i
\(880\) −0.393546 0.0768140i −0.0132664 0.00258940i
\(881\) 11.4074i 0.384324i 0.981363 + 0.192162i \(0.0615498\pi\)
−0.981363 + 0.192162i \(0.938450\pi\)
\(882\) 0 0
\(883\) 15.8634i 0.533845i 0.963718 + 0.266922i \(0.0860068\pi\)
−0.963718 + 0.266922i \(0.913993\pi\)
\(884\) −40.4509 + 18.4156i −1.36051 + 0.619385i
\(885\) −20.2034 + 11.6645i −0.679131 + 0.392097i
\(886\) 4.22659 + 19.4847i 0.141995 + 0.654601i
\(887\) −13.5260 + 23.4277i −0.454159 + 0.786626i −0.998639 0.0521471i \(-0.983394\pi\)
0.544480 + 0.838774i \(0.316727\pi\)
\(888\) 6.44499 4.80687i 0.216280 0.161308i
\(889\) 0 0
\(890\) 1.37695 4.29872i 0.0461554 0.144093i
\(891\) 0.199403 + 0.115125i 0.00668024 + 0.00385684i
\(892\) 2.88304 29.8205i 0.0965314 0.998463i
\(893\) −16.5738 28.7066i −0.554620 0.960629i
\(894\) 54.7681 + 60.3185i 1.83172 + 2.01735i
\(895\) −8.84857 −0.295775
\(896\) 0 0
\(897\) −16.9985 −0.567563
\(898\) −16.1728 17.8118i −0.539693 0.594387i
\(899\) −6.46818 11.2032i −0.215726 0.373648i
\(900\) 0.864575 8.94264i 0.0288192 0.298088i
\(901\) 28.7121 + 16.5769i 0.956537 + 0.552257i
\(902\) 0.345584 1.07888i 0.0115067 0.0359229i
\(903\) 0 0
\(904\) −41.1355 + 30.6801i −1.36815 + 1.02041i
\(905\) −10.6805 + 18.4991i −0.355031 + 0.614932i
\(906\) −3.13714 14.4623i −0.104225 0.480478i
\(907\) −9.02842 + 5.21256i −0.299784 + 0.173080i −0.642346 0.766415i \(-0.722039\pi\)
0.342562 + 0.939495i \(0.388705\pi\)
\(908\) −2.74387 + 1.24917i −0.0910584 + 0.0414551i
\(909\) 32.1815i 1.06739i
\(910\) 0 0
\(911\) 43.7727i 1.45026i 0.688614 + 0.725128i \(0.258219\pi\)
−0.688614 + 0.725128i \(0.741781\pi\)
\(912\) −80.1577 15.6455i −2.65429 0.518075i
\(913\) 0.564423 0.325870i 0.0186797 0.0107847i
\(914\) 16.1214 3.49704i 0.533250 0.115672i
\(915\) −10.8158 + 18.7335i −0.357559 + 0.619310i
\(916\) 9.90692 13.8776i 0.327334 0.458529i
\(917\) 0 0
\(918\) 29.6899 + 9.51014i 0.979912 + 0.313881i
\(919\) 43.5772 + 25.1593i 1.43748 + 0.829929i 0.997674 0.0681637i \(-0.0217140\pi\)
0.439806 + 0.898093i \(0.355047\pi\)
\(920\) 3.91870 + 1.68630i 0.129196 + 0.0555958i
\(921\) −32.2216 55.8095i −1.06174 1.83899i
\(922\) −27.6922 + 25.1440i −0.911993 + 0.828073i
\(923\) −27.7189 −0.912379
\(924\) 0 0
\(925\) −1.03852 −0.0341464
\(926\) 3.28432 2.98210i 0.107929 0.0979980i
\(927\) −10.9745 19.0085i −0.360451 0.624320i
\(928\) −6.96412 11.5016i −0.228609 0.377559i
\(929\) 16.4494 + 9.49704i 0.539686 + 0.311588i 0.744952 0.667118i \(-0.232473\pi\)
−0.205266 + 0.978706i \(0.565806\pi\)
\(930\) −20.0638 6.42677i −0.657919 0.210742i
\(931\) 0 0
\(932\) 34.5469 + 24.6623i 1.13162 + 0.807840i
\(933\) 7.38419 12.7898i 0.241747 0.418719i
\(934\) −11.2516 + 2.44069i −0.368164 + 0.0798617i
\(935\) −0.468561 + 0.270524i −0.0153236 + 0.00884707i
\(936\) 51.9551 6.11869i 1.69821 0.199996i
\(937\) 44.7192i 1.46091i −0.682959 0.730457i \(-0.739307\pi\)
0.682959 0.730457i \(-0.260693\pi\)
\(938\) 0 0
\(939\) 89.1265i 2.90853i
\(940\) −3.68246 8.08873i −0.120109 0.263825i
\(941\) −8.88040 + 5.12710i −0.289493 + 0.167139i −0.637713 0.770274i \(-0.720119\pi\)
0.348220 + 0.937413i \(0.386786\pi\)
\(942\) 1.05376 + 4.85784i 0.0343332 + 0.158277i
\(943\) −6.02661 + 10.4384i −0.196253 + 0.339921i
\(944\) 11.0743 + 32.2431i 0.360436 + 1.04942i
\(945\) 0 0
\(946\) 0.304783 0.951508i 0.00990936 0.0309362i
\(947\) 21.6242 + 12.4847i 0.702691 + 0.405699i 0.808349 0.588704i \(-0.200362\pi\)
−0.105658 + 0.994403i \(0.533695\pi\)
\(948\) 23.2913 + 2.25180i 0.756467 + 0.0731352i
\(949\) −12.6546 21.9185i −0.410787 0.711504i
\(950\) 7.09135 + 7.81000i 0.230074 + 0.253390i
\(951\) 37.5316 1.21704
\(952\) 0 0
\(953\) 26.3831 0.854633 0.427317 0.904102i \(-0.359459\pi\)
0.427317 + 0.904102i \(0.359459\pi\)
\(954\) −26.2324 28.8909i −0.849305 0.935376i
\(955\) −12.5117 21.6710i −0.404870 0.701256i
\(956\) 20.2121 + 1.95410i 0.653706 + 0.0632003i
\(957\) 0.564803 + 0.326089i 0.0182575 + 0.0105410i
\(958\) −10.6905 + 33.3749i −0.345395 + 1.07829i
\(959\) 0 0
\(960\) −20.9885 6.24361i −0.677400 0.201512i
\(961\) 0.689177 1.19369i 0.0222315 0.0385061i
\(962\) −1.28192 5.90968i −0.0413307 0.190536i
\(963\) −29.4448 + 17.0000i −0.948846 + 0.547817i
\(964\) −15.7870 34.6771i −0.508466 1.11687i
\(965\) 8.16157i 0.262730i
\(966\) 0 0
\(967\) 47.1287i 1.51556i 0.652512 + 0.757778i \(0.273715\pi\)
−0.652512 + 0.757778i \(0.726285\pi\)
\(968\) 3.63563 + 30.8709i 0.116854 + 0.992229i
\(969\) −95.4367 + 55.1004i −3.06587 + 1.77008i
\(970\) 15.2983 3.31848i 0.491198 0.106550i
\(971\) −27.6416 + 47.8767i −0.887062 + 1.53644i −0.0437306 + 0.999043i \(0.513924\pi\)
−0.843332 + 0.537394i \(0.819409\pi\)
\(972\) 30.1792 + 21.5443i 0.968000 + 0.691033i
\(973\) 0 0
\(974\) −17.0971 5.47647i −0.547826 0.175477i
\(975\) −9.76007 5.63498i −0.312572 0.180464i
\(976\) 23.8414 + 20.7575i 0.763144 + 0.664430i
\(977\) −4.22669 7.32085i −0.135224 0.234215i 0.790459 0.612515i \(-0.209842\pi\)
−0.925683 + 0.378300i \(0.876509\pi\)
\(978\) 24.6495 22.3813i 0.788204 0.715675i
\(979\) 0.319954 0.0102258
\(980\) 0 0
\(981\) −81.0982 −2.58927
\(982\) 9.95908 9.04267i 0.317807 0.288563i
\(983\) 16.4461 + 28.4854i 0.524548 + 0.908543i 0.999591 + 0.0285811i \(0.00909888\pi\)
−0.475044 + 0.879962i \(0.657568\pi\)
\(984\) 24.4549 56.8292i 0.779593 1.81165i
\(985\) −10.7835 6.22586i −0.343591 0.198372i
\(986\) −17.2780 5.53442i −0.550244 0.176252i
\(987\) 0 0
\(988\) −35.6893 + 49.9936i −1.13543 + 1.59051i
\(989\) −5.31509 + 9.20601i −0.169010 + 0.292734i
\(990\) 0.622359 0.135001i 0.0197799 0.00429062i
\(991\) 26.5344 15.3196i 0.842893 0.486645i −0.0153535 0.999882i \(-0.504887\pi\)
0.858247 + 0.513238i \(0.171554\pi\)
\(992\) −14.8347 + 26.9782i −0.471004 + 0.856559i
\(993\) 15.5659i 0.493970i
\(994\) 0 0
\(995\) 23.1734i 0.734645i
\(996\) 32.3931 14.7472i 1.02641 0.467284i
\(997\) −36.7799 + 21.2349i −1.16483 + 0.672516i −0.952457 0.304673i \(-0.901453\pi\)
−0.212374 + 0.977188i \(0.568120\pi\)
\(998\) 2.54611 + 11.7376i 0.0805957 + 0.371548i
\(999\) −2.12084 + 3.67340i −0.0671003 + 0.116221i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.o.f.411.4 32
4.3 odd 2 inner 980.2.o.f.411.16 32
7.2 even 3 980.2.g.a.391.16 32
7.3 odd 6 inner 980.2.o.f.31.16 32
7.4 even 3 140.2.o.a.31.16 yes 32
7.5 odd 6 980.2.g.a.391.15 32
7.6 odd 2 140.2.o.a.131.4 yes 32
28.3 even 6 inner 980.2.o.f.31.4 32
28.11 odd 6 140.2.o.a.31.4 32
28.19 even 6 980.2.g.a.391.14 32
28.23 odd 6 980.2.g.a.391.13 32
28.27 even 2 140.2.o.a.131.16 yes 32
35.4 even 6 700.2.p.c.451.1 32
35.13 even 4 700.2.t.c.299.5 32
35.18 odd 12 700.2.t.d.199.8 32
35.27 even 4 700.2.t.d.299.12 32
35.32 odd 12 700.2.t.c.199.9 32
35.34 odd 2 700.2.p.c.551.13 32
140.27 odd 4 700.2.t.d.299.8 32
140.39 odd 6 700.2.p.c.451.13 32
140.67 even 12 700.2.t.c.199.5 32
140.83 odd 4 700.2.t.c.299.9 32
140.123 even 12 700.2.t.d.199.12 32
140.139 even 2 700.2.p.c.551.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.o.a.31.4 32 28.11 odd 6
140.2.o.a.31.16 yes 32 7.4 even 3
140.2.o.a.131.4 yes 32 7.6 odd 2
140.2.o.a.131.16 yes 32 28.27 even 2
700.2.p.c.451.1 32 35.4 even 6
700.2.p.c.451.13 32 140.39 odd 6
700.2.p.c.551.1 32 140.139 even 2
700.2.p.c.551.13 32 35.34 odd 2
700.2.t.c.199.5 32 140.67 even 12
700.2.t.c.199.9 32 35.32 odd 12
700.2.t.c.299.5 32 35.13 even 4
700.2.t.c.299.9 32 140.83 odd 4
700.2.t.d.199.8 32 35.18 odd 12
700.2.t.d.199.12 32 140.123 even 12
700.2.t.d.299.8 32 140.27 odd 4
700.2.t.d.299.12 32 35.27 even 4
980.2.g.a.391.13 32 28.23 odd 6
980.2.g.a.391.14 32 28.19 even 6
980.2.g.a.391.15 32 7.5 odd 6
980.2.g.a.391.16 32 7.2 even 3
980.2.o.f.31.4 32 28.3 even 6 inner
980.2.o.f.31.16 32 7.3 odd 6 inner
980.2.o.f.411.4 32 1.1 even 1 trivial
980.2.o.f.411.16 32 4.3 odd 2 inner