Properties

Label 700.2.t.c.299.10
Level $700$
Weight $2$
Character 700.299
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(199,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 299.10
Character \(\chi\) \(=\) 700.299
Dual form 700.2.t.c.199.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.334637 + 1.37405i) q^{2} +(-0.963833 + 0.556469i) q^{3} +(-1.77604 + 0.919616i) q^{4} +(-1.08715 - 1.13814i) q^{6} +(-1.26433 - 2.32410i) q^{7} +(-1.85793 - 2.13263i) q^{8} +(-0.880685 + 1.52539i) q^{9} +(-1.48417 + 0.856885i) q^{11} +(1.20006 - 1.87467i) q^{12} +2.45950 q^{13} +(2.77035 - 2.51499i) q^{14} +(2.30861 - 3.26654i) q^{16} +(-3.10946 - 5.38574i) q^{17} +(-2.39067 - 0.699655i) q^{18} +(-0.108256 + 0.187505i) q^{19} +(2.51190 + 1.53648i) q^{21} +(-1.67406 - 1.75258i) q^{22} +(3.28328 - 5.68681i) q^{23} +(2.97747 + 1.02162i) q^{24} +(0.823038 + 3.37948i) q^{26} -5.29911i q^{27} +(4.38279 + 2.96499i) q^{28} +2.47123 q^{29} +(-0.0819131 - 0.141878i) q^{31} +(5.26095 + 2.07905i) q^{32} +(0.953659 - 1.65179i) q^{33} +(6.35975 - 6.07482i) q^{34} +(0.161354 - 3.51904i) q^{36} +(-6.66562 - 3.84840i) q^{37} +(-0.293869 - 0.0860036i) q^{38} +(-2.37054 + 1.36863i) q^{39} -8.34130i q^{41} +(-1.27063 + 3.96564i) q^{42} -1.89449 q^{43} +(1.84793 - 2.88672i) q^{44} +(8.91268 + 2.60838i) q^{46} +(10.1364 + 5.85225i) q^{47} +(-0.407385 + 4.43307i) q^{48} +(-3.80292 + 5.87689i) q^{49} +(5.99399 + 3.46063i) q^{51} +(-4.36816 + 2.26179i) q^{52} +(-11.2823 + 6.51382i) q^{53} +(7.28125 - 1.77328i) q^{54} +(-2.60741 + 7.01437i) q^{56} -0.240965i q^{57} +(0.826965 + 3.39560i) q^{58} +(-2.14379 - 3.71315i) q^{59} +(6.06251 + 3.50019i) q^{61} +(0.167536 - 0.160030i) q^{62} +(4.65865 + 0.118198i) q^{63} +(-1.09621 + 7.92454i) q^{64} +(2.58877 + 0.757629i) q^{66} +(-2.58708 - 4.48095i) q^{67} +(10.4753 + 6.70576i) q^{68} +7.30818i q^{69} -5.04201i q^{71} +(4.88934 - 0.955891i) q^{72} +(-3.80759 - 6.59493i) q^{73} +(3.05734 - 10.4467i) q^{74} +(0.0198341 - 0.432571i) q^{76} +(3.86797 + 2.36597i) q^{77} +(-2.67384 - 2.79925i) q^{78} +(-13.8125 - 7.97463i) q^{79} +(0.306736 + 0.531282i) q^{81} +(11.4614 - 2.79131i) q^{82} +5.47827i q^{83} +(-5.87420 - 0.418869i) q^{84} +(-0.633967 - 2.60313i) q^{86} +(-2.38185 + 1.37516i) q^{87} +(4.58489 + 1.57315i) q^{88} +(1.54471 + 0.891838i) q^{89} +(-3.10963 - 5.71612i) q^{91} +(-0.601545 + 13.1193i) q^{92} +(0.157901 + 0.0911642i) q^{93} +(-4.64929 + 15.8863i) q^{94} +(-6.22760 + 0.923701i) q^{96} -10.5305 q^{97} +(-9.34775 - 3.25878i) q^{98} -3.01858i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{4} + 16 q^{9} - 14 q^{12} - 8 q^{13} - 2 q^{14} - 14 q^{16} + 54 q^{18} - 12 q^{21} - 36 q^{24} + 30 q^{26} + 32 q^{28} + 40 q^{29} + 60 q^{32} - 24 q^{33} + 60 q^{36} - 60 q^{37} - 46 q^{38}+ \cdots - 124 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.334637 + 1.37405i 0.236624 + 0.971601i
\(3\) −0.963833 + 0.556469i −0.556469 + 0.321278i −0.751727 0.659474i \(-0.770779\pi\)
0.195258 + 0.980752i \(0.437446\pi\)
\(4\) −1.77604 + 0.919616i −0.888018 + 0.459808i
\(5\) 0 0
\(6\) −1.08715 1.13814i −0.443827 0.464644i
\(7\) −1.26433 2.32410i −0.477874 0.878429i
\(8\) −1.85793 2.13263i −0.656876 0.753998i
\(9\) −0.880685 + 1.52539i −0.293562 + 0.508463i
\(10\) 0 0
\(11\) −1.48417 + 0.856885i −0.447493 + 0.258360i −0.706771 0.707442i \(-0.749849\pi\)
0.259278 + 0.965803i \(0.416516\pi\)
\(12\) 1.20006 1.87467i 0.346429 0.541169i
\(13\) 2.45950 0.682142 0.341071 0.940038i \(-0.389210\pi\)
0.341071 + 0.940038i \(0.389210\pi\)
\(14\) 2.77035 2.51499i 0.740406 0.672160i
\(15\) 0 0
\(16\) 2.30861 3.26654i 0.577153 0.816636i
\(17\) −3.10946 5.38574i −0.754155 1.30623i −0.945794 0.324768i \(-0.894714\pi\)
0.191639 0.981465i \(-0.438620\pi\)
\(18\) −2.39067 0.699655i −0.563487 0.164910i
\(19\) −0.108256 + 0.187505i −0.0248357 + 0.0430167i −0.878176 0.478337i \(-0.841240\pi\)
0.853340 + 0.521354i \(0.174573\pi\)
\(20\) 0 0
\(21\) 2.51190 + 1.53648i 0.548141 + 0.335288i
\(22\) −1.67406 1.75258i −0.356911 0.373651i
\(23\) 3.28328 5.68681i 0.684612 1.18578i −0.288947 0.957345i \(-0.593305\pi\)
0.973559 0.228437i \(-0.0733615\pi\)
\(24\) 2.97747 + 1.02162i 0.607774 + 0.208537i
\(25\) 0 0
\(26\) 0.823038 + 3.37948i 0.161411 + 0.662770i
\(27\) 5.29911i 1.01981i
\(28\) 4.38279 + 2.96499i 0.828269 + 0.560331i
\(29\) 2.47123 0.458896 0.229448 0.973321i \(-0.426308\pi\)
0.229448 + 0.973321i \(0.426308\pi\)
\(30\) 0 0
\(31\) −0.0819131 0.141878i −0.0147120 0.0254820i 0.858576 0.512687i \(-0.171350\pi\)
−0.873288 + 0.487205i \(0.838016\pi\)
\(32\) 5.26095 + 2.07905i 0.930013 + 0.367527i
\(33\) 0.953659 1.65179i 0.166011 0.287539i
\(34\) 6.35975 6.07482i 1.09069 1.04182i
\(35\) 0 0
\(36\) 0.161354 3.51904i 0.0268924 0.586507i
\(37\) −6.66562 3.84840i −1.09582 0.632673i −0.160701 0.987003i \(-0.551375\pi\)
−0.935120 + 0.354331i \(0.884709\pi\)
\(38\) −0.293869 0.0860036i −0.0476718 0.0139516i
\(39\) −2.37054 + 1.36863i −0.379591 + 0.219157i
\(40\) 0 0
\(41\) 8.34130i 1.30269i −0.758781 0.651346i \(-0.774205\pi\)
0.758781 0.651346i \(-0.225795\pi\)
\(42\) −1.27063 + 3.96564i −0.196063 + 0.611912i
\(43\) −1.89449 −0.288907 −0.144454 0.989512i \(-0.546142\pi\)
−0.144454 + 0.989512i \(0.546142\pi\)
\(44\) 1.84793 2.88672i 0.278586 0.435190i
\(45\) 0 0
\(46\) 8.91268 + 2.60838i 1.31410 + 0.384585i
\(47\) 10.1364 + 5.85225i 1.47855 + 0.853639i 0.999706 0.0242630i \(-0.00772390\pi\)
0.478840 + 0.877902i \(0.341057\pi\)
\(48\) −0.407385 + 4.43307i −0.0588010 + 0.639859i
\(49\) −3.80292 + 5.87689i −0.543274 + 0.839556i
\(50\) 0 0
\(51\) 5.99399 + 3.46063i 0.839327 + 0.484586i
\(52\) −4.36816 + 2.26179i −0.605754 + 0.313654i
\(53\) −11.2823 + 6.51382i −1.54974 + 0.894743i −0.551579 + 0.834123i \(0.685974\pi\)
−0.998161 + 0.0606196i \(0.980692\pi\)
\(54\) 7.28125 1.77328i 0.990853 0.241312i
\(55\) 0 0
\(56\) −2.60741 + 7.01437i −0.348430 + 0.937335i
\(57\) 0.240965i 0.0319166i
\(58\) 0.826965 + 3.39560i 0.108586 + 0.445864i
\(59\) −2.14379 3.71315i −0.279098 0.483411i 0.692063 0.721837i \(-0.256702\pi\)
−0.971161 + 0.238426i \(0.923369\pi\)
\(60\) 0 0
\(61\) 6.06251 + 3.50019i 0.776225 + 0.448154i 0.835091 0.550112i \(-0.185415\pi\)
−0.0588657 + 0.998266i \(0.518748\pi\)
\(62\) 0.167536 0.160030i 0.0212771 0.0203239i
\(63\) 4.65865 + 0.118198i 0.586934 + 0.0148916i
\(64\) −1.09621 + 7.92454i −0.137027 + 0.990567i
\(65\) 0 0
\(66\) 2.58877 + 0.757629i 0.318656 + 0.0932577i
\(67\) −2.58708 4.48095i −0.316062 0.547435i 0.663601 0.748087i \(-0.269027\pi\)
−0.979663 + 0.200652i \(0.935694\pi\)
\(68\) 10.4753 + 6.70576i 1.27032 + 0.813193i
\(69\) 7.30818i 0.879801i
\(70\) 0 0
\(71\) 5.04201i 0.598376i −0.954194 0.299188i \(-0.903284\pi\)
0.954194 0.299188i \(-0.0967158\pi\)
\(72\) 4.88934 0.955891i 0.576214 0.112653i
\(73\) −3.80759 6.59493i −0.445644 0.771878i 0.552453 0.833544i \(-0.313692\pi\)
−0.998097 + 0.0616659i \(0.980359\pi\)
\(74\) 3.05734 10.4467i 0.355408 1.21441i
\(75\) 0 0
\(76\) 0.0198341 0.432571i 0.00227513 0.0496193i
\(77\) 3.86797 + 2.36597i 0.440797 + 0.269627i
\(78\) −2.67384 2.79925i −0.302753 0.316953i
\(79\) −13.8125 7.97463i −1.55402 0.897216i −0.997808 0.0661781i \(-0.978919\pi\)
−0.556216 0.831038i \(-0.687747\pi\)
\(80\) 0 0
\(81\) 0.306736 + 0.531282i 0.0340817 + 0.0590313i
\(82\) 11.4614 2.79131i 1.26570 0.308248i
\(83\) 5.47827i 0.601318i 0.953732 + 0.300659i \(0.0972066\pi\)
−0.953732 + 0.300659i \(0.902793\pi\)
\(84\) −5.87420 0.418869i −0.640928 0.0457024i
\(85\) 0 0
\(86\) −0.633967 2.60313i −0.0683624 0.280703i
\(87\) −2.38185 + 1.37516i −0.255362 + 0.147433i
\(88\) 4.58489 + 1.57315i 0.488751 + 0.167698i
\(89\) 1.54471 + 0.891838i 0.163739 + 0.0945347i 0.579630 0.814880i \(-0.303197\pi\)
−0.415891 + 0.909414i \(0.636530\pi\)
\(90\) 0 0
\(91\) −3.10963 5.71612i −0.325977 0.599213i
\(92\) −0.601545 + 13.1193i −0.0627154 + 1.36779i
\(93\) 0.157901 + 0.0911642i 0.0163736 + 0.00945329i
\(94\) −4.64929 + 15.8863i −0.479537 + 1.63855i
\(95\) 0 0
\(96\) −6.22760 + 0.923701i −0.635601 + 0.0942748i
\(97\) −10.5305 −1.06921 −0.534606 0.845101i \(-0.679540\pi\)
−0.534606 + 0.845101i \(0.679540\pi\)
\(98\) −9.34775 3.25878i −0.944265 0.329187i
\(99\) 3.01858i 0.303379i
\(100\) 0 0
\(101\) −0.389513 + 0.224885i −0.0387580 + 0.0223769i −0.519254 0.854620i \(-0.673790\pi\)
0.480496 + 0.876997i \(0.340457\pi\)
\(102\) −2.74928 + 9.39411i −0.272219 + 0.930156i
\(103\) −8.03841 4.64098i −0.792048 0.457289i 0.0486348 0.998817i \(-0.484513\pi\)
−0.840683 + 0.541527i \(0.817846\pi\)
\(104\) −4.56957 5.24519i −0.448083 0.514334i
\(105\) 0 0
\(106\) −12.7258 13.3227i −1.23604 1.29401i
\(107\) 9.26201 16.0423i 0.895392 1.55086i 0.0620738 0.998072i \(-0.480229\pi\)
0.833318 0.552793i \(-0.186438\pi\)
\(108\) 4.87315 + 9.41141i 0.468919 + 0.905613i
\(109\) −3.48557 6.03718i −0.333857 0.578257i 0.649408 0.760441i \(-0.275017\pi\)
−0.983265 + 0.182183i \(0.941684\pi\)
\(110\) 0 0
\(111\) 8.56605 0.813054
\(112\) −10.5106 1.23545i −0.993163 0.116739i
\(113\) 0.333646i 0.0313868i −0.999877 0.0156934i \(-0.995004\pi\)
0.999877 0.0156934i \(-0.00499557\pi\)
\(114\) 0.331098 0.0806358i 0.0310102 0.00755223i
\(115\) 0 0
\(116\) −4.38900 + 2.27259i −0.407508 + 0.211004i
\(117\) −2.16604 + 3.75169i −0.200251 + 0.346844i
\(118\) 4.38467 4.18824i 0.403642 0.385558i
\(119\) −8.58562 + 14.0361i −0.787043 + 1.28669i
\(120\) 0 0
\(121\) −4.03150 + 6.98276i −0.366500 + 0.634796i
\(122\) −2.78071 + 9.50150i −0.251753 + 0.860225i
\(123\) 4.64168 + 8.03962i 0.418526 + 0.724908i
\(124\) 0.275954 + 0.176651i 0.0247814 + 0.0158638i
\(125\) 0 0
\(126\) 1.39654 + 6.44077i 0.124414 + 0.573790i
\(127\) −15.8806 −1.40918 −0.704589 0.709616i \(-0.748869\pi\)
−0.704589 + 0.709616i \(0.748869\pi\)
\(128\) −11.2556 + 1.14559i −0.994860 + 0.101257i
\(129\) 1.82597 1.05423i 0.160768 0.0928195i
\(130\) 0 0
\(131\) −1.60328 + 2.77697i −0.140080 + 0.242625i −0.927526 0.373758i \(-0.878069\pi\)
0.787447 + 0.616383i \(0.211402\pi\)
\(132\) −0.174724 + 3.81063i −0.0152078 + 0.331673i
\(133\) 0.572654 + 0.0145293i 0.0496554 + 0.00125985i
\(134\) 5.29133 5.05427i 0.457101 0.436622i
\(135\) 0 0
\(136\) −5.70864 + 16.6376i −0.489512 + 1.42667i
\(137\) 1.12893 0.651787i 0.0964508 0.0556859i −0.450999 0.892525i \(-0.648932\pi\)
0.547450 + 0.836839i \(0.315599\pi\)
\(138\) −10.0418 + 2.44558i −0.854816 + 0.208182i
\(139\) 20.8813 1.77113 0.885563 0.464519i \(-0.153773\pi\)
0.885563 + 0.464519i \(0.153773\pi\)
\(140\) 0 0
\(141\) −13.0264 −1.09702
\(142\) 6.92798 1.68724i 0.581383 0.141590i
\(143\) −3.65031 + 2.10750i −0.305254 + 0.176238i
\(144\) 2.94960 + 6.39833i 0.245800 + 0.533194i
\(145\) 0 0
\(146\) 7.78762 7.43873i 0.644508 0.615633i
\(147\) 0.395068 7.78054i 0.0325846 0.641728i
\(148\) 15.3774 + 0.705083i 1.26402 + 0.0579574i
\(149\) 4.86747 8.43071i 0.398759 0.690670i −0.594814 0.803863i \(-0.702774\pi\)
0.993573 + 0.113193i \(0.0361078\pi\)
\(150\) 0 0
\(151\) −12.9360 + 7.46858i −1.05271 + 0.607784i −0.923408 0.383821i \(-0.874608\pi\)
−0.129306 + 0.991605i \(0.541275\pi\)
\(152\) 0.601012 0.117501i 0.0487485 0.00953058i
\(153\) 10.9538 0.885563
\(154\) −1.95660 + 6.10654i −0.157667 + 0.492079i
\(155\) 0 0
\(156\) 2.95155 4.61073i 0.236313 0.369154i
\(157\) 4.11231 + 7.12273i 0.328198 + 0.568456i 0.982154 0.188076i \(-0.0602252\pi\)
−0.653956 + 0.756532i \(0.726892\pi\)
\(158\) 6.33540 21.6476i 0.504017 1.72219i
\(159\) 7.24948 12.5565i 0.574921 0.995793i
\(160\) 0 0
\(161\) −17.3679 0.440656i −1.36878 0.0347285i
\(162\) −0.627364 + 0.599257i −0.0492903 + 0.0470821i
\(163\) 5.99330 10.3807i 0.469431 0.813079i −0.529958 0.848024i \(-0.677792\pi\)
0.999389 + 0.0349450i \(0.0111256\pi\)
\(164\) 7.67080 + 14.8145i 0.598989 + 1.15681i
\(165\) 0 0
\(166\) −7.52742 + 1.83323i −0.584241 + 0.142286i
\(167\) 14.8103i 1.14606i 0.819535 + 0.573029i \(0.194232\pi\)
−0.819535 + 0.573029i \(0.805768\pi\)
\(168\) −1.39017 8.21162i −0.107254 0.633540i
\(169\) −6.95088 −0.534683
\(170\) 0 0
\(171\) −0.190679 0.330266i −0.0145816 0.0252561i
\(172\) 3.36469 1.74221i 0.256555 0.132842i
\(173\) 7.81044 13.5281i 0.593817 1.02852i −0.399896 0.916561i \(-0.630954\pi\)
0.993713 0.111960i \(-0.0357129\pi\)
\(174\) −2.68660 2.81261i −0.203671 0.213224i
\(175\) 0 0
\(176\) −0.627316 + 6.82631i −0.0472857 + 0.514553i
\(177\) 4.13251 + 2.38591i 0.310618 + 0.179336i
\(178\) −0.708516 + 2.42095i −0.0531055 + 0.181458i
\(179\) −5.53306 + 3.19451i −0.413560 + 0.238769i −0.692318 0.721592i \(-0.743411\pi\)
0.278758 + 0.960361i \(0.410077\pi\)
\(180\) 0 0
\(181\) 1.18770i 0.0882808i −0.999025 0.0441404i \(-0.985945\pi\)
0.999025 0.0441404i \(-0.0140549\pi\)
\(182\) 6.81366 6.18561i 0.505062 0.458508i
\(183\) −7.79100 −0.575927
\(184\) −18.2280 + 3.56366i −1.34378 + 0.262716i
\(185\) 0 0
\(186\) −0.0724249 + 0.247471i −0.00531045 + 0.0181455i
\(187\) 9.22992 + 5.32890i 0.674958 + 0.389687i
\(188\) −23.3844 1.07222i −1.70549 0.0781996i
\(189\) −12.3157 + 6.69985i −0.895834 + 0.487342i
\(190\) 0 0
\(191\) −9.14608 5.28049i −0.661787 0.382083i 0.131170 0.991360i \(-0.458126\pi\)
−0.792958 + 0.609277i \(0.791460\pi\)
\(192\) −3.35319 8.24794i −0.241996 0.595244i
\(193\) −4.68353 + 2.70403i −0.337128 + 0.194641i −0.659001 0.752142i \(-0.729021\pi\)
0.321874 + 0.946783i \(0.395687\pi\)
\(194\) −3.52390 14.4695i −0.253001 1.03885i
\(195\) 0 0
\(196\) 1.34964 13.9348i 0.0964025 0.995342i
\(197\) 17.9504i 1.27892i 0.768826 + 0.639458i \(0.220841\pi\)
−0.768826 + 0.639458i \(0.779159\pi\)
\(198\) 4.14769 1.01013i 0.294763 0.0717867i
\(199\) 3.82538 + 6.62575i 0.271174 + 0.469687i 0.969163 0.246422i \(-0.0792548\pi\)
−0.697989 + 0.716109i \(0.745921\pi\)
\(200\) 0 0
\(201\) 4.98702 + 2.87926i 0.351757 + 0.203087i
\(202\) −0.439349 0.459956i −0.0309125 0.0323624i
\(203\) −3.12447 5.74340i −0.219294 0.403108i
\(204\) −13.8280 0.634039i −0.968154 0.0443916i
\(205\) 0 0
\(206\) 3.68700 12.5982i 0.256885 0.877761i
\(207\) 5.78307 + 10.0166i 0.401951 + 0.696200i
\(208\) 5.67802 8.03405i 0.393700 0.557061i
\(209\) 0.371053i 0.0256662i
\(210\) 0 0
\(211\) 15.5710i 1.07195i 0.844234 + 0.535975i \(0.180056\pi\)
−0.844234 + 0.535975i \(0.819944\pi\)
\(212\) 14.0475 21.9442i 0.964787 1.50713i
\(213\) 2.80572 + 4.85965i 0.192245 + 0.332978i
\(214\) 25.1423 + 7.35815i 1.71869 + 0.502993i
\(215\) 0 0
\(216\) −11.3010 + 9.84536i −0.768938 + 0.669892i
\(217\) −0.226173 + 0.369755i −0.0153536 + 0.0251006i
\(218\) 7.12900 6.80962i 0.482837 0.461205i
\(219\) 7.33975 + 4.23761i 0.495974 + 0.286351i
\(220\) 0 0
\(221\) −7.64770 13.2462i −0.514440 0.891036i
\(222\) 2.86652 + 11.7702i 0.192388 + 0.789964i
\(223\) 11.4678i 0.767938i −0.923346 0.383969i \(-0.874557\pi\)
0.923346 0.383969i \(-0.125443\pi\)
\(224\) −1.81968 14.8556i −0.121582 0.992581i
\(225\) 0 0
\(226\) 0.458447 0.111650i 0.0304954 0.00742686i
\(227\) −7.75470 + 4.47718i −0.514697 + 0.297161i −0.734762 0.678325i \(-0.762706\pi\)
0.220065 + 0.975485i \(0.429373\pi\)
\(228\) 0.221595 + 0.427963i 0.0146755 + 0.0283425i
\(229\) 2.08431 + 1.20337i 0.137735 + 0.0795212i 0.567284 0.823522i \(-0.307994\pi\)
−0.429549 + 0.903043i \(0.641328\pi\)
\(230\) 0 0
\(231\) −5.04467 0.127993i −0.331915 0.00842129i
\(232\) −4.59137 5.27022i −0.301438 0.346007i
\(233\) −2.21768 1.28038i −0.145285 0.0838803i 0.425595 0.904914i \(-0.360065\pi\)
−0.570880 + 0.821033i \(0.693398\pi\)
\(234\) −5.87986 1.72080i −0.384378 0.112492i
\(235\) 0 0
\(236\) 7.22213 + 4.62323i 0.470120 + 0.300947i
\(237\) 17.7505 1.15302
\(238\) −22.1594 7.10010i −1.43638 0.460231i
\(239\) 6.31200i 0.408289i −0.978941 0.204145i \(-0.934559\pi\)
0.978941 0.204145i \(-0.0654413\pi\)
\(240\) 0 0
\(241\) 8.33650 4.81308i 0.537001 0.310038i −0.206862 0.978370i \(-0.566325\pi\)
0.743863 + 0.668332i \(0.232992\pi\)
\(242\) −10.9438 3.20280i −0.703491 0.205884i
\(243\) 13.1762 + 7.60728i 0.845254 + 0.488008i
\(244\) −13.9861 0.641286i −0.895367 0.0410542i
\(245\) 0 0
\(246\) −9.49358 + 9.06825i −0.605288 + 0.578171i
\(247\) −0.266256 + 0.461169i −0.0169415 + 0.0293435i
\(248\) −0.150384 + 0.438289i −0.00954938 + 0.0278314i
\(249\) −3.04848 5.28013i −0.193190 0.334615i
\(250\) 0 0
\(251\) 24.9508 1.57488 0.787440 0.616391i \(-0.211406\pi\)
0.787440 + 0.616391i \(0.211406\pi\)
\(252\) −8.38262 + 4.07424i −0.528056 + 0.256653i
\(253\) 11.2536i 0.707506i
\(254\) −5.31424 21.8208i −0.333445 1.36916i
\(255\) 0 0
\(256\) −5.34062 15.0824i −0.333789 0.942648i
\(257\) 8.48813 14.7019i 0.529475 0.917078i −0.469934 0.882702i \(-0.655722\pi\)
0.999409 0.0343764i \(-0.0109445\pi\)
\(258\) 2.05960 + 2.15620i 0.128225 + 0.134239i
\(259\) −0.516501 + 20.3573i −0.0320938 + 1.26494i
\(260\) 0 0
\(261\) −2.17638 + 3.76960i −0.134714 + 0.233332i
\(262\) −4.35222 1.27372i −0.268881 0.0786906i
\(263\) 7.51675 + 13.0194i 0.463503 + 0.802810i 0.999133 0.0416428i \(-0.0132591\pi\)
−0.535630 + 0.844453i \(0.679926\pi\)
\(264\) −5.29448 + 1.03510i −0.325853 + 0.0637059i
\(265\) 0 0
\(266\) 0.171667 + 0.791719i 0.0105256 + 0.0485434i
\(267\) −1.98512 −0.121487
\(268\) 8.71550 + 5.57921i 0.532384 + 0.340805i
\(269\) 27.2203 15.7157i 1.65965 0.958201i 0.686778 0.726867i \(-0.259025\pi\)
0.972875 0.231333i \(-0.0743088\pi\)
\(270\) 0 0
\(271\) 1.65885 2.87322i 0.100768 0.174536i −0.811233 0.584723i \(-0.801203\pi\)
0.912001 + 0.410187i \(0.134537\pi\)
\(272\) −24.7713 2.27640i −1.50198 0.138027i
\(273\) 6.17800 + 3.77898i 0.373910 + 0.228714i
\(274\) 1.27337 + 1.33309i 0.0769270 + 0.0805351i
\(275\) 0 0
\(276\) −6.72072 12.9796i −0.404540 0.781280i
\(277\) 12.7703 7.37294i 0.767293 0.442997i −0.0646150 0.997910i \(-0.520582\pi\)
0.831908 + 0.554913i \(0.187249\pi\)
\(278\) 6.98764 + 28.6919i 0.419091 + 1.72083i
\(279\) 0.288558 0.0172755
\(280\) 0 0
\(281\) 20.5438 1.22554 0.612769 0.790262i \(-0.290056\pi\)
0.612769 + 0.790262i \(0.290056\pi\)
\(282\) −4.35911 17.8989i −0.259581 1.06587i
\(283\) −24.1069 + 13.9181i −1.43301 + 0.827346i −0.997349 0.0727665i \(-0.976817\pi\)
−0.435657 + 0.900113i \(0.643484\pi\)
\(284\) 4.63671 + 8.95479i 0.275138 + 0.531369i
\(285\) 0 0
\(286\) −4.11735 4.31046i −0.243464 0.254883i
\(287\) −19.3861 + 10.5462i −1.14432 + 0.622522i
\(288\) −7.80459 + 6.19401i −0.459890 + 0.364986i
\(289\) −10.8375 + 18.7710i −0.637498 + 1.10418i
\(290\) 0 0
\(291\) 10.1497 5.85991i 0.594983 0.343514i
\(292\) 12.8272 + 8.21132i 0.750656 + 0.480531i
\(293\) 4.28428 0.250290 0.125145 0.992138i \(-0.460060\pi\)
0.125145 + 0.992138i \(0.460060\pi\)
\(294\) 10.8231 2.06081i 0.631214 0.120189i
\(295\) 0 0
\(296\) 4.17703 + 21.3653i 0.242785 + 1.24183i
\(297\) 4.54072 + 7.86477i 0.263480 + 0.456360i
\(298\) 13.2131 + 3.86693i 0.765412 + 0.224005i
\(299\) 8.07522 13.9867i 0.467002 0.808871i
\(300\) 0 0
\(301\) 2.39527 + 4.40300i 0.138061 + 0.253785i
\(302\) −14.5911 15.2754i −0.839621 0.879001i
\(303\) 0.250283 0.433504i 0.0143784 0.0249041i
\(304\) 0.362573 + 0.786501i 0.0207950 + 0.0451089i
\(305\) 0 0
\(306\) 3.66555 + 15.0511i 0.209545 + 0.860414i
\(307\) 14.3171i 0.817117i 0.912732 + 0.408559i \(0.133968\pi\)
−0.912732 + 0.408559i \(0.866032\pi\)
\(308\) −9.04545 0.645000i −0.515412 0.0367523i
\(309\) 10.3302 0.587667
\(310\) 0 0
\(311\) −12.8315 22.2249i −0.727609 1.26026i −0.957891 0.287132i \(-0.907298\pi\)
0.230281 0.973124i \(-0.426035\pi\)
\(312\) 7.32308 + 2.51267i 0.414588 + 0.142252i
\(313\) −16.2527 + 28.1505i −0.918656 + 1.59116i −0.117196 + 0.993109i \(0.537391\pi\)
−0.801459 + 0.598049i \(0.795943\pi\)
\(314\) −8.41088 + 8.03406i −0.474653 + 0.453388i
\(315\) 0 0
\(316\) 31.8650 + 1.46107i 1.79255 + 0.0821915i
\(317\) −2.52937 1.46033i −0.142064 0.0820205i 0.427284 0.904118i \(-0.359471\pi\)
−0.569347 + 0.822097i \(0.692804\pi\)
\(318\) 19.6792 + 5.75931i 1.10355 + 0.322966i
\(319\) −3.66772 + 2.11756i −0.205353 + 0.118561i
\(320\) 0 0
\(321\) 20.6161i 1.15068i
\(322\) −5.20645 24.0119i −0.290144 1.33813i
\(323\) 1.34647 0.0749198
\(324\) −1.03335 0.661497i −0.0574083 0.0367498i
\(325\) 0 0
\(326\) 16.2692 + 4.76134i 0.901067 + 0.263706i
\(327\) 6.71901 + 3.87922i 0.371562 + 0.214522i
\(328\) −17.7889 + 15.4975i −0.982228 + 0.855708i
\(329\) 0.785443 30.9573i 0.0433029 1.70673i
\(330\) 0 0
\(331\) 3.41964 + 1.97433i 0.187960 + 0.108519i 0.591027 0.806652i \(-0.298723\pi\)
−0.403067 + 0.915170i \(0.632056\pi\)
\(332\) −5.03790 9.72960i −0.276491 0.533981i
\(333\) 11.7406 6.77845i 0.643382 0.371457i
\(334\) −20.3502 + 4.95608i −1.11351 + 0.271185i
\(335\) 0 0
\(336\) 10.8180 4.65808i 0.590170 0.254119i
\(337\) 10.0467i 0.547280i −0.961832 0.273640i \(-0.911772\pi\)
0.961832 0.273640i \(-0.0882277\pi\)
\(338\) −2.32602 9.55087i −0.126519 0.519499i
\(339\) 0.185664 + 0.321579i 0.0100839 + 0.0174658i
\(340\) 0 0
\(341\) 0.243146 + 0.140380i 0.0131671 + 0.00760201i
\(342\) 0.389995 0.372522i 0.0210885 0.0201437i
\(343\) 18.4667 + 1.40802i 0.997106 + 0.0760258i
\(344\) 3.51983 + 4.04025i 0.189776 + 0.217836i
\(345\) 0 0
\(346\) 21.2019 + 6.20496i 1.13982 + 0.333581i
\(347\) −0.0100550 0.0174157i −0.000539780 0.000934926i 0.865755 0.500467i \(-0.166838\pi\)
−0.866295 + 0.499532i \(0.833505\pi\)
\(348\) 2.96564 4.63274i 0.158975 0.248341i
\(349\) 5.60366i 0.299957i 0.988689 + 0.149978i \(0.0479204\pi\)
−0.988689 + 0.149978i \(0.952080\pi\)
\(350\) 0 0
\(351\) 13.0331i 0.695657i
\(352\) −9.58963 + 1.42237i −0.511129 + 0.0758126i
\(353\) −12.7422 22.0701i −0.678198 1.17467i −0.975523 0.219897i \(-0.929428\pi\)
0.297325 0.954776i \(-0.403905\pi\)
\(354\) −1.89547 + 6.47669i −0.100743 + 0.344232i
\(355\) 0 0
\(356\) −3.56361 0.163398i −0.188871 0.00866007i
\(357\) 0.464459 18.3061i 0.0245818 0.968860i
\(358\) −6.24099 6.53371i −0.329847 0.345317i
\(359\) 16.7562 + 9.67422i 0.884361 + 0.510586i 0.872094 0.489339i \(-0.162762\pi\)
0.0122672 + 0.999925i \(0.496095\pi\)
\(360\) 0 0
\(361\) 9.47656 + 16.4139i 0.498766 + 0.863889i
\(362\) 1.63196 0.397447i 0.0857737 0.0208893i
\(363\) 8.97361i 0.470993i
\(364\) 10.7795 + 7.29238i 0.564997 + 0.382225i
\(365\) 0 0
\(366\) −2.60715 10.7052i −0.136278 0.559571i
\(367\) −14.9780 + 8.64757i −0.781846 + 0.451399i −0.837084 0.547074i \(-0.815742\pi\)
0.0552378 + 0.998473i \(0.482408\pi\)
\(368\) −10.9964 23.8536i −0.573227 1.24346i
\(369\) 12.7237 + 7.34606i 0.662372 + 0.382420i
\(370\) 0 0
\(371\) 29.4034 + 17.9855i 1.52655 + 0.933762i
\(372\) −0.364274 0.0167026i −0.0188867 0.000865990i
\(373\) 9.62126 + 5.55483i 0.498170 + 0.287618i 0.727957 0.685622i \(-0.240470\pi\)
−0.229788 + 0.973241i \(0.573803\pi\)
\(374\) −4.23351 + 14.4656i −0.218910 + 0.748000i
\(375\) 0 0
\(376\) −6.35201 32.4902i −0.327580 1.67556i
\(377\) 6.07799 0.313032
\(378\) −13.3272 14.6804i −0.685478 0.755076i
\(379\) 14.3198i 0.735558i 0.929913 + 0.367779i \(0.119882\pi\)
−0.929913 + 0.367779i \(0.880118\pi\)
\(380\) 0 0
\(381\) 15.3063 8.83707i 0.784164 0.452737i
\(382\) 4.19506 14.3342i 0.214638 0.733403i
\(383\) 9.05330 + 5.22693i 0.462602 + 0.267084i 0.713138 0.701024i \(-0.247273\pi\)
−0.250536 + 0.968107i \(0.580607\pi\)
\(384\) 10.2110 7.36753i 0.521077 0.375972i
\(385\) 0 0
\(386\) −5.28276 5.53054i −0.268886 0.281497i
\(387\) 1.66845 2.88984i 0.0848121 0.146899i
\(388\) 18.7026 9.68403i 0.949480 0.491632i
\(389\) −15.0629 26.0897i −0.763718 1.32280i −0.940922 0.338624i \(-0.890038\pi\)
0.177204 0.984174i \(-0.443295\pi\)
\(390\) 0 0
\(391\) −40.8369 −2.06521
\(392\) 19.5988 2.80862i 0.989887 0.141857i
\(393\) 3.56871i 0.180018i
\(394\) −24.6648 + 6.00688i −1.24260 + 0.302622i
\(395\) 0 0
\(396\) 2.77594 + 5.36111i 0.139496 + 0.269406i
\(397\) −6.71896 + 11.6376i −0.337215 + 0.584073i −0.983908 0.178677i \(-0.942818\pi\)
0.646693 + 0.762750i \(0.276151\pi\)
\(398\) −7.82401 + 7.47349i −0.392182 + 0.374612i
\(399\) −0.560028 + 0.304660i −0.0280365 + 0.0152521i
\(400\) 0 0
\(401\) 14.4423 25.0149i 0.721216 1.24918i −0.239297 0.970946i \(-0.576917\pi\)
0.960513 0.278236i \(-0.0897497\pi\)
\(402\) −2.28741 + 7.81593i −0.114086 + 0.389823i
\(403\) −0.201465 0.348948i −0.0100357 0.0173823i
\(404\) 0.484981 0.757607i 0.0241287 0.0376924i
\(405\) 0 0
\(406\) 6.84617 6.21513i 0.339770 0.308452i
\(407\) 13.1905 0.653830
\(408\) −3.75616 19.2126i −0.185957 0.951164i
\(409\) 22.4328 12.9516i 1.10923 0.640413i 0.170599 0.985341i \(-0.445430\pi\)
0.938629 + 0.344927i \(0.112096\pi\)
\(410\) 0 0
\(411\) −0.725398 + 1.25643i −0.0357813 + 0.0619749i
\(412\) 18.5444 + 0.850295i 0.913619 + 0.0418910i
\(413\) −5.91929 + 9.67706i −0.291269 + 0.476177i
\(414\) −11.8281 + 11.2982i −0.581318 + 0.555274i
\(415\) 0 0
\(416\) 12.9393 + 5.11341i 0.634400 + 0.250705i
\(417\) −20.1260 + 11.6198i −0.985577 + 0.569023i
\(418\) 0.509846 0.124168i 0.0249374 0.00607325i
\(419\) 28.1022 1.37288 0.686441 0.727185i \(-0.259172\pi\)
0.686441 + 0.727185i \(0.259172\pi\)
\(420\) 0 0
\(421\) 15.6269 0.761608 0.380804 0.924656i \(-0.375647\pi\)
0.380804 + 0.924656i \(0.375647\pi\)
\(422\) −21.3953 + 5.21062i −1.04151 + 0.253649i
\(423\) −17.8539 + 10.3080i −0.868088 + 0.501191i
\(424\) 34.8532 + 11.9587i 1.69262 + 0.580765i
\(425\) 0 0
\(426\) −5.73851 + 5.48142i −0.278032 + 0.265576i
\(427\) 0.469768 18.5153i 0.0227337 0.896019i
\(428\) −1.69694 + 37.0092i −0.0820245 + 1.78890i
\(429\) 2.34552 4.06256i 0.113243 0.196142i
\(430\) 0 0
\(431\) −17.2771 + 9.97495i −0.832210 + 0.480477i −0.854609 0.519273i \(-0.826203\pi\)
0.0223988 + 0.999749i \(0.492870\pi\)
\(432\) −17.3098 12.2336i −0.832817 0.588589i
\(433\) 11.8294 0.568487 0.284243 0.958752i \(-0.408258\pi\)
0.284243 + 0.958752i \(0.408258\pi\)
\(434\) −0.583749 0.187039i −0.0280208 0.00897818i
\(435\) 0 0
\(436\) 11.7424 + 7.51687i 0.562359 + 0.359993i
\(437\) 0.710872 + 1.23127i 0.0340056 + 0.0588995i
\(438\) −3.36654 + 11.5033i −0.160860 + 0.549647i
\(439\) 13.9474 24.1577i 0.665675 1.15298i −0.313427 0.949612i \(-0.601477\pi\)
0.979102 0.203371i \(-0.0651897\pi\)
\(440\) 0 0
\(441\) −5.61538 10.9766i −0.267399 0.522696i
\(442\) 15.6418 14.9410i 0.744003 0.710671i
\(443\) −9.59955 + 16.6269i −0.456088 + 0.789968i −0.998750 0.0499830i \(-0.984083\pi\)
0.542662 + 0.839951i \(0.317417\pi\)
\(444\) −15.2136 + 7.87748i −0.722007 + 0.373849i
\(445\) 0 0
\(446\) 15.7573 3.83753i 0.746130 0.181713i
\(447\) 10.8344i 0.512449i
\(448\) 19.8034 7.47156i 0.935624 0.352998i
\(449\) 4.94035 0.233150 0.116575 0.993182i \(-0.462809\pi\)
0.116575 + 0.993182i \(0.462809\pi\)
\(450\) 0 0
\(451\) 7.14753 + 12.3799i 0.336564 + 0.582946i
\(452\) 0.306826 + 0.592568i 0.0144319 + 0.0278720i
\(453\) 8.31206 14.3969i 0.390535 0.676426i
\(454\) −8.74688 9.15713i −0.410511 0.429765i
\(455\) 0 0
\(456\) −0.513889 + 0.447696i −0.0240651 + 0.0209653i
\(457\) 22.6243 + 13.0622i 1.05832 + 0.611022i 0.924967 0.380046i \(-0.124092\pi\)
0.133354 + 0.991068i \(0.457425\pi\)
\(458\) −0.956014 + 3.26664i −0.0446716 + 0.152640i
\(459\) −28.5396 + 16.4774i −1.33212 + 0.769097i
\(460\) 0 0
\(461\) 13.3894i 0.623609i 0.950146 + 0.311804i \(0.100933\pi\)
−0.950146 + 0.311804i \(0.899067\pi\)
\(462\) −1.51226 6.97447i −0.0703568 0.324482i
\(463\) −16.4019 −0.762259 −0.381130 0.924522i \(-0.624465\pi\)
−0.381130 + 0.924522i \(0.624465\pi\)
\(464\) 5.70512 8.07239i 0.264853 0.374751i
\(465\) 0 0
\(466\) 1.01719 3.47567i 0.0471203 0.161007i
\(467\) −10.3345 5.96663i −0.478224 0.276103i 0.241452 0.970413i \(-0.422376\pi\)
−0.719676 + 0.694310i \(0.755710\pi\)
\(468\) 0.396850 8.65507i 0.0183444 0.400081i
\(469\) −7.14326 + 11.6781i −0.329845 + 0.539242i
\(470\) 0 0
\(471\) −7.92716 4.57675i −0.365264 0.210885i
\(472\) −3.93577 + 11.4707i −0.181159 + 0.527981i
\(473\) 2.81175 1.62336i 0.129284 0.0746423i
\(474\) 5.93998 + 24.3902i 0.272832 + 1.12028i
\(475\) 0 0
\(476\) 2.34057 32.8241i 0.107280 1.50449i
\(477\) 22.9465i 1.05065i
\(478\) 8.67301 2.11223i 0.396694 0.0966110i
\(479\) −18.5889 32.1969i −0.849347 1.47111i −0.881792 0.471639i \(-0.843663\pi\)
0.0324444 0.999474i \(-0.489671\pi\)
\(480\) 0 0
\(481\) −16.3941 9.46512i −0.747505 0.431572i
\(482\) 9.40312 + 9.84415i 0.428300 + 0.448389i
\(483\) 16.9850 9.23998i 0.772843 0.420434i
\(484\) 0.738629 16.1091i 0.0335741 0.732230i
\(485\) 0 0
\(486\) −6.04356 + 20.6505i −0.274142 + 0.936724i
\(487\) −0.489188 0.847298i −0.0221672 0.0383948i 0.854729 0.519075i \(-0.173723\pi\)
−0.876896 + 0.480680i \(0.840390\pi\)
\(488\) −3.79909 19.4322i −0.171977 0.879654i
\(489\) 13.3403i 0.603271i
\(490\) 0 0
\(491\) 18.4167i 0.831132i −0.909563 0.415566i \(-0.863583\pi\)
0.909563 0.415566i \(-0.136417\pi\)
\(492\) −15.6372 10.0101i −0.704977 0.451290i
\(493\) −7.68420 13.3094i −0.346079 0.599426i
\(494\) −0.722769 0.211525i −0.0325189 0.00951698i
\(495\) 0 0
\(496\) −0.652555 0.0599677i −0.0293006 0.00269263i
\(497\) −11.7181 + 6.37478i −0.525631 + 0.285948i
\(498\) 6.23504 5.95570i 0.279399 0.266881i
\(499\) −16.9167 9.76688i −0.757297 0.437226i 0.0710273 0.997474i \(-0.477372\pi\)
−0.828324 + 0.560249i \(0.810706\pi\)
\(500\) 0 0
\(501\) −8.24149 14.2747i −0.368203 0.637746i
\(502\) 8.34945 + 34.2837i 0.372654 + 1.53016i
\(503\) 11.7007i 0.521707i 0.965378 + 0.260853i \(0.0840039\pi\)
−0.965378 + 0.260853i \(0.915996\pi\)
\(504\) −8.40335 10.1548i −0.374315 0.452329i
\(505\) 0 0
\(506\) −15.4630 + 3.76586i −0.687414 + 0.167413i
\(507\) 6.69948 3.86795i 0.297534 0.171782i
\(508\) 28.2046 14.6041i 1.25138 0.647951i
\(509\) 1.85583 + 1.07147i 0.0822584 + 0.0474919i 0.540565 0.841302i \(-0.318211\pi\)
−0.458307 + 0.888794i \(0.651544\pi\)
\(510\) 0 0
\(511\) −10.5132 + 17.1874i −0.465079 + 0.760327i
\(512\) 18.9368 12.3854i 0.836896 0.547363i
\(513\) 0.993611 + 0.573662i 0.0438690 + 0.0253278i
\(514\) 23.0416 + 6.74335i 1.01632 + 0.297436i
\(515\) 0 0
\(516\) −2.27351 + 3.55154i −0.100086 + 0.156348i
\(517\) −20.0588 −0.882186
\(518\) −28.1448 + 6.10258i −1.23661 + 0.268132i
\(519\) 17.3851i 0.763120i
\(520\) 0 0
\(521\) −11.8399 + 6.83576i −0.518714 + 0.299480i −0.736408 0.676537i \(-0.763480\pi\)
0.217694 + 0.976017i \(0.430146\pi\)
\(522\) −5.90792 1.72901i −0.258582 0.0756767i
\(523\) −32.5328 18.7828i −1.42256 0.821316i −0.426043 0.904703i \(-0.640093\pi\)
−0.996517 + 0.0833873i \(0.973426\pi\)
\(524\) 0.293745 6.40640i 0.0128323 0.279865i
\(525\) 0 0
\(526\) −15.3739 + 14.6852i −0.670336 + 0.640304i
\(527\) −0.509411 + 0.882325i −0.0221903 + 0.0384347i
\(528\) −3.19400 6.92851i −0.139001 0.301524i
\(529\) −10.0599 17.4242i −0.437386 0.757575i
\(530\) 0 0
\(531\) 7.55201 0.327729
\(532\) −1.03042 + 0.500818i −0.0446742 + 0.0217132i
\(533\) 20.5154i 0.888621i
\(534\) −0.664294 2.72766i −0.0287468 0.118037i
\(535\) 0 0
\(536\) −4.74960 + 13.8426i −0.205152 + 0.597907i
\(537\) 3.55530 6.15795i 0.153422 0.265735i
\(538\) 30.7030 + 32.1431i 1.32370 + 1.38579i
\(539\) 0.608349 11.9810i 0.0262035 0.516056i
\(540\) 0 0
\(541\) −13.3052 + 23.0452i −0.572034 + 0.990793i 0.424323 + 0.905511i \(0.360512\pi\)
−0.996357 + 0.0852815i \(0.972821\pi\)
\(542\) 4.50306 + 1.31787i 0.193423 + 0.0566072i
\(543\) 0.660916 + 1.14474i 0.0283626 + 0.0491255i
\(544\) −5.16149 34.7988i −0.221297 1.49199i
\(545\) 0 0
\(546\) −3.12512 + 9.75348i −0.133743 + 0.417411i
\(547\) 24.0582 1.02865 0.514327 0.857594i \(-0.328042\pi\)
0.514327 + 0.857594i \(0.328042\pi\)
\(548\) −1.40562 + 2.19578i −0.0600452 + 0.0937990i
\(549\) −10.6783 + 6.16513i −0.455740 + 0.263121i
\(550\) 0 0
\(551\) −0.267527 + 0.463370i −0.0113970 + 0.0197402i
\(552\) 15.5856 13.5781i 0.663369 0.577921i
\(553\) −1.07029 + 42.1842i −0.0455134 + 1.79385i
\(554\) 14.4042 + 15.0798i 0.611976 + 0.640679i
\(555\) 0 0
\(556\) −37.0859 + 19.2028i −1.57279 + 0.814378i
\(557\) 23.1592 13.3710i 0.981286 0.566546i 0.0786280 0.996904i \(-0.474946\pi\)
0.902658 + 0.430358i \(0.141613\pi\)
\(558\) 0.0965622 + 0.396494i 0.00408780 + 0.0167849i
\(559\) −4.65950 −0.197076
\(560\) 0 0
\(561\) −11.8615 −0.500791
\(562\) 6.87470 + 28.2282i 0.289992 + 1.19073i
\(563\) 15.1306 8.73567i 0.637680 0.368165i −0.146041 0.989279i \(-0.546653\pi\)
0.783720 + 0.621114i \(0.213320\pi\)
\(564\) 23.1353 11.9793i 0.974174 0.504419i
\(565\) 0 0
\(566\) −27.1913 28.4666i −1.14293 1.19654i
\(567\) 0.846937 1.38460i 0.0355680 0.0581479i
\(568\) −10.7527 + 9.36768i −0.451175 + 0.393059i
\(569\) −10.1792 + 17.6309i −0.426734 + 0.739125i −0.996581 0.0826258i \(-0.973669\pi\)
0.569846 + 0.821751i \(0.307003\pi\)
\(570\) 0 0
\(571\) 19.2734 11.1275i 0.806565 0.465671i −0.0391963 0.999232i \(-0.512480\pi\)
0.845762 + 0.533561i \(0.179146\pi\)
\(572\) 4.54498 7.09989i 0.190035 0.296861i
\(573\) 11.7537 0.491019
\(574\) −20.9783 23.1083i −0.875618 0.964522i
\(575\) 0 0
\(576\) −11.1226 8.65117i −0.463442 0.360465i
\(577\) −0.485564 0.841022i −0.0202143 0.0350122i 0.855741 0.517404i \(-0.173102\pi\)
−0.875956 + 0.482392i \(0.839768\pi\)
\(578\) −29.4190 8.60976i −1.22367 0.358119i
\(579\) 3.00942 5.21247i 0.125067 0.216623i
\(580\) 0 0
\(581\) 12.7321 6.92636i 0.528215 0.287354i
\(582\) 11.4483 + 11.9852i 0.474546 + 0.496803i
\(583\) 11.1632 19.3352i 0.462332 0.800783i
\(584\) −6.99033 + 20.3731i −0.289262 + 0.843044i
\(585\) 0 0
\(586\) 1.43368 + 5.88682i 0.0592246 + 0.243182i
\(587\) 17.6042i 0.726602i −0.931672 0.363301i \(-0.881650\pi\)
0.931672 0.363301i \(-0.118350\pi\)
\(588\) 6.45346 + 14.1818i 0.266136 + 0.584849i
\(589\) 0.0354704 0.00146153
\(590\) 0 0
\(591\) −9.98887 17.3012i −0.410887 0.711677i
\(592\) −27.9593 + 12.8891i −1.14912 + 0.529738i
\(593\) 11.1886 19.3792i 0.459461 0.795810i −0.539471 0.842004i \(-0.681376\pi\)
0.998932 + 0.0461938i \(0.0147092\pi\)
\(594\) −9.28710 + 8.87103i −0.381054 + 0.363983i
\(595\) 0 0
\(596\) −0.891792 + 19.4494i −0.0365292 + 0.796680i
\(597\) −7.37405 4.25741i −0.301800 0.174244i
\(598\) 21.9207 + 6.41531i 0.896404 + 0.262342i
\(599\) −15.9061 + 9.18338i −0.649905 + 0.375223i −0.788420 0.615137i \(-0.789100\pi\)
0.138515 + 0.990360i \(0.455767\pi\)
\(600\) 0 0
\(601\) 11.9668i 0.488136i 0.969758 + 0.244068i \(0.0784820\pi\)
−0.969758 + 0.244068i \(0.921518\pi\)
\(602\) −5.24840 + 4.76463i −0.213909 + 0.194192i
\(603\) 9.11360 0.371134
\(604\) 16.1065 25.1606i 0.655365 1.02377i
\(605\) 0 0
\(606\) 0.679410 + 0.198836i 0.0275992 + 0.00807717i
\(607\) −14.1791 8.18629i −0.575511 0.332271i 0.183837 0.982957i \(-0.441148\pi\)
−0.759347 + 0.650686i \(0.774482\pi\)
\(608\) −0.959363 + 0.761386i −0.0389073 + 0.0308783i
\(609\) 6.20749 + 3.79701i 0.251540 + 0.153863i
\(610\) 0 0
\(611\) 24.9304 + 14.3936i 1.00858 + 0.582303i
\(612\) −19.4544 + 10.0733i −0.786396 + 0.407189i
\(613\) −39.6151 + 22.8718i −1.60004 + 0.923783i −0.608561 + 0.793507i \(0.708253\pi\)
−0.991478 + 0.130276i \(0.958414\pi\)
\(614\) −19.6724 + 4.79101i −0.793912 + 0.193349i
\(615\) 0 0
\(616\) −2.14068 12.6448i −0.0862503 0.509472i
\(617\) 3.88479i 0.156396i 0.996938 + 0.0781979i \(0.0249166\pi\)
−0.996938 + 0.0781979i \(0.975083\pi\)
\(618\) 3.45688 + 14.1943i 0.139056 + 0.570978i
\(619\) −10.2165 17.6955i −0.410636 0.711242i 0.584323 0.811521i \(-0.301360\pi\)
−0.994959 + 0.100278i \(0.968027\pi\)
\(620\) 0 0
\(621\) −30.1350 17.3985i −1.20928 0.698176i
\(622\) 26.2442 25.0684i 1.05230 1.00515i
\(623\) 0.119695 4.71765i 0.00479549 0.189009i
\(624\) −1.00196 + 10.9031i −0.0401106 + 0.436474i
\(625\) 0 0
\(626\) −44.1189 12.9118i −1.76335 0.516061i
\(627\) 0.206479 + 0.357633i 0.00824599 + 0.0142825i
\(628\) −13.8538 8.86849i −0.552827 0.353891i
\(629\) 47.8657i 1.90853i
\(630\) 0 0
\(631\) 23.7070i 0.943762i 0.881662 + 0.471881i \(0.156425\pi\)
−0.881662 + 0.471881i \(0.843575\pi\)
\(632\) 8.65563 + 44.2731i 0.344302 + 1.76109i
\(633\) −8.66476 15.0078i −0.344393 0.596507i
\(634\) 1.16015 3.96417i 0.0460756 0.157437i
\(635\) 0 0
\(636\) −1.32821 + 28.9675i −0.0526670 + 1.14864i
\(637\) −9.35326 + 14.4542i −0.370590 + 0.572696i
\(638\) −4.13700 4.33103i −0.163785 0.171467i
\(639\) 7.69103 + 4.44042i 0.304252 + 0.175660i
\(640\) 0 0
\(641\) −7.19683 12.4653i −0.284258 0.492349i 0.688171 0.725548i \(-0.258414\pi\)
−0.972429 + 0.233200i \(0.925080\pi\)
\(642\) −28.3276 + 6.89890i −1.11800 + 0.272278i
\(643\) 47.6127i 1.87766i −0.344380 0.938830i \(-0.611911\pi\)
0.344380 0.938830i \(-0.388089\pi\)
\(644\) 31.2513 15.1892i 1.23147 0.598538i
\(645\) 0 0
\(646\) 0.450580 + 1.85012i 0.0177278 + 0.0727922i
\(647\) −0.00937783 + 0.00541429i −0.000368680 + 0.000212858i −0.500184 0.865919i \(-0.666734\pi\)
0.499816 + 0.866132i \(0.333401\pi\)
\(648\) 0.563134 1.64124i 0.0221220 0.0644738i
\(649\) 6.36349 + 3.67396i 0.249789 + 0.144216i
\(650\) 0 0
\(651\) 0.0122353 0.482240i 0.000479540 0.0189005i
\(652\) −1.09806 + 23.9480i −0.0430033 + 0.937877i
\(653\) −9.19915 5.31113i −0.359990 0.207841i 0.309086 0.951034i \(-0.399977\pi\)
−0.669077 + 0.743193i \(0.733310\pi\)
\(654\) −3.08183 + 10.5304i −0.120509 + 0.411771i
\(655\) 0 0
\(656\) −27.2472 19.2568i −1.06383 0.751853i
\(657\) 13.4131 0.523296
\(658\) 42.7997 9.28019i 1.66851 0.361780i
\(659\) 13.3688i 0.520773i 0.965505 + 0.260386i \(0.0838499\pi\)
−0.965505 + 0.260386i \(0.916150\pi\)
\(660\) 0 0
\(661\) −6.49983 + 3.75268i −0.252814 + 0.145962i −0.621052 0.783769i \(-0.713294\pi\)
0.368238 + 0.929732i \(0.379961\pi\)
\(662\) −1.56849 + 5.35944i −0.0609612 + 0.208301i
\(663\) 14.7422 + 8.51142i 0.572540 + 0.330556i
\(664\) 11.6831 10.1782i 0.453393 0.394992i
\(665\) 0 0
\(666\) 13.2428 + 13.8639i 0.513147 + 0.537215i
\(667\) 8.11376 14.0534i 0.314166 0.544151i
\(668\) −13.6198 26.3037i −0.526967 1.01772i
\(669\) 6.38146 + 11.0530i 0.246721 + 0.427334i
\(670\) 0 0
\(671\) −11.9970 −0.463141
\(672\) 10.0205 + 13.3057i 0.386551 + 0.513279i
\(673\) 19.9107i 0.767501i −0.923437 0.383751i \(-0.874632\pi\)
0.923437 0.383751i \(-0.125368\pi\)
\(674\) 13.8047 3.36200i 0.531738 0.129500i
\(675\) 0 0
\(676\) 12.3450 6.39214i 0.474808 0.245852i
\(677\) −13.0027 + 22.5213i −0.499733 + 0.865563i −1.00000 0.000308393i \(-0.999902\pi\)
0.500267 + 0.865871i \(0.333235\pi\)
\(678\) −0.379736 + 0.362724i −0.0145837 + 0.0139303i
\(679\) 13.3141 + 24.4740i 0.510948 + 0.939226i
\(680\) 0 0
\(681\) 4.98282 8.63049i 0.190942 0.330721i
\(682\) −0.111524 + 0.381071i −0.00427048 + 0.0145920i
\(683\) 7.41000 + 12.8345i 0.283536 + 0.491098i 0.972253 0.233932i \(-0.0751592\pi\)
−0.688717 + 0.725030i \(0.741826\pi\)
\(684\) 0.642372 + 0.411213i 0.0245617 + 0.0157231i
\(685\) 0 0
\(686\) 4.24493 + 25.8453i 0.162072 + 0.986779i
\(687\) −2.67856 −0.102194
\(688\) −4.37365 + 6.18844i −0.166744 + 0.235932i
\(689\) −27.7487 + 16.0207i −1.05714 + 0.610341i
\(690\) 0 0
\(691\) 13.2455 22.9418i 0.503882 0.872749i −0.496108 0.868261i \(-0.665238\pi\)
0.999990 0.00448815i \(-0.00142863\pi\)
\(692\) −1.43099 + 31.2090i −0.0543980 + 1.18639i
\(693\) −7.01549 + 3.81650i −0.266497 + 0.144977i
\(694\) 0.0205654 0.0196440i 0.000780651 0.000745677i
\(695\) 0 0
\(696\) 7.35803 + 2.52466i 0.278905 + 0.0956969i
\(697\) −44.9241 + 25.9369i −1.70162 + 0.982432i
\(698\) −7.69971 + 1.87519i −0.291438 + 0.0709769i
\(699\) 2.84996 0.107795
\(700\) 0 0
\(701\) −0.713553 −0.0269505 −0.0134753 0.999909i \(-0.504289\pi\)
−0.0134753 + 0.999909i \(0.504289\pi\)
\(702\) 17.9082 4.36137i 0.675902 0.164609i
\(703\) 1.44319 0.833226i 0.0544310 0.0314257i
\(704\) −5.16345 12.7007i −0.194605 0.478675i
\(705\) 0 0
\(706\) 26.0615 24.8939i 0.980836 0.936893i
\(707\) 1.01513 + 0.620938i 0.0381779 + 0.0233528i
\(708\) −9.53361 0.437133i −0.358295 0.0164285i
\(709\) −9.56584 + 16.5685i −0.359253 + 0.622244i −0.987836 0.155498i \(-0.950302\pi\)
0.628584 + 0.777742i \(0.283635\pi\)
\(710\) 0 0
\(711\) 24.3288 14.0463i 0.912403 0.526776i
\(712\) −0.967997 4.95126i −0.0362772 0.185556i
\(713\) −1.07578 −0.0402881
\(714\) 25.3089 5.48769i 0.947162 0.205372i
\(715\) 0 0
\(716\) 6.88919 10.7619i 0.257461 0.402190i
\(717\) 3.51243 + 6.08371i 0.131174 + 0.227200i
\(718\) −7.68563 + 26.2613i −0.286825 + 0.980063i
\(719\) −20.0286 + 34.6906i −0.746941 + 1.29374i 0.202341 + 0.979315i \(0.435145\pi\)
−0.949282 + 0.314425i \(0.898188\pi\)
\(720\) 0 0
\(721\) −0.622875 + 24.5499i −0.0231971 + 0.914284i
\(722\) −19.3823 + 18.5140i −0.721335 + 0.689019i
\(723\) −5.35666 + 9.27801i −0.199216 + 0.345053i
\(724\) 1.09222 + 2.10939i 0.0405922 + 0.0783949i
\(725\) 0 0
\(726\) 12.3302 3.00290i 0.457617 0.111448i
\(727\) 14.4074i 0.534341i −0.963649 0.267171i \(-0.913911\pi\)
0.963649 0.267171i \(-0.0860887\pi\)
\(728\) −6.41291 + 17.2518i −0.237678 + 0.639395i
\(729\) −18.7733 −0.695307
\(730\) 0 0
\(731\) 5.89085 + 10.2032i 0.217881 + 0.377381i
\(732\) 13.8371 7.16473i 0.511434 0.264816i
\(733\) 0.387263 0.670759i 0.0143039 0.0247751i −0.858785 0.512336i \(-0.828780\pi\)
0.873089 + 0.487561i \(0.162113\pi\)
\(734\) −16.8944 17.6868i −0.623584 0.652831i
\(735\) 0 0
\(736\) 29.0963 23.0919i 1.07250 0.851179i
\(737\) 7.67931 + 4.43365i 0.282871 + 0.163316i
\(738\) −5.83603 + 19.9413i −0.214827 + 0.734051i
\(739\) −7.09915 + 4.09870i −0.261147 + 0.150773i −0.624858 0.780739i \(-0.714843\pi\)
0.363711 + 0.931512i \(0.381510\pi\)
\(740\) 0 0
\(741\) 0.592653i 0.0217716i
\(742\) −14.8736 + 46.4204i −0.546027 + 1.70415i
\(743\) 8.66498 0.317887 0.158944 0.987288i \(-0.449191\pi\)
0.158944 + 0.987288i \(0.449191\pi\)
\(744\) −0.0989492 0.506121i −0.00362765 0.0185553i
\(745\) 0 0
\(746\) −4.41301 + 15.0790i −0.161572 + 0.552080i
\(747\) −8.35649 4.82462i −0.305748 0.176524i
\(748\) −21.2932 0.976331i −0.778557 0.0356982i
\(749\) −48.9942 1.24307i −1.79021 0.0454209i
\(750\) 0 0
\(751\) −6.73208 3.88677i −0.245657 0.141830i 0.372117 0.928186i \(-0.378632\pi\)
−0.617774 + 0.786356i \(0.711965\pi\)
\(752\) 42.5177 19.6004i 1.55046 0.714754i
\(753\) −24.0484 + 13.8843i −0.876372 + 0.505974i
\(754\) 2.03392 + 8.35147i 0.0740709 + 0.304143i
\(755\) 0 0
\(756\) 15.7118 23.2249i 0.571433 0.844680i
\(757\) 5.10767i 0.185641i −0.995683 0.0928206i \(-0.970412\pi\)
0.995683 0.0928206i \(-0.0295883\pi\)
\(758\) −19.6761 + 4.79192i −0.714669 + 0.174050i
\(759\) −6.26227 10.8466i −0.227306 0.393705i
\(760\) 0 0
\(761\) −4.16241 2.40317i −0.150887 0.0871149i 0.422655 0.906290i \(-0.361098\pi\)
−0.573543 + 0.819176i \(0.694431\pi\)
\(762\) 17.2646 + 18.0744i 0.625432 + 0.654766i
\(763\) −9.62411 + 15.7338i −0.348416 + 0.569603i
\(764\) 21.0998 + 0.967463i 0.763364 + 0.0350016i
\(765\) 0 0
\(766\) −4.15250 + 14.1888i −0.150036 + 0.512663i
\(767\) −5.27264 9.13249i −0.190384 0.329755i
\(768\) 13.5403 + 11.5650i 0.488595 + 0.417315i
\(769\) 24.7841i 0.893738i −0.894600 0.446869i \(-0.852539\pi\)
0.894600 0.446869i \(-0.147461\pi\)
\(770\) 0 0
\(771\) 18.8935i 0.680434i
\(772\) 5.83144 9.10951i 0.209878 0.327858i
\(773\) 12.6560 + 21.9209i 0.455205 + 0.788438i 0.998700 0.0509742i \(-0.0162326\pi\)
−0.543495 + 0.839412i \(0.682899\pi\)
\(774\) 4.52912 + 1.32549i 0.162796 + 0.0476438i
\(775\) 0 0
\(776\) 19.5649 + 22.4577i 0.702340 + 0.806184i
\(777\) −10.8304 19.9084i −0.388537 0.714210i
\(778\) 30.8080 29.4277i 1.10452 1.05504i
\(779\) 1.56404 + 0.902999i 0.0560375 + 0.0323533i
\(780\) 0 0
\(781\) 4.32042 + 7.48318i 0.154597 + 0.267769i
\(782\) −13.6655 56.1120i −0.488678 2.00656i
\(783\) 13.0953i 0.467989i
\(784\) 10.4177 + 25.9899i 0.372059 + 0.928209i
\(785\) 0 0
\(786\) 4.90359 1.19422i 0.174905 0.0425965i
\(787\) 43.2134 24.9493i 1.54039 0.889345i 0.541577 0.840651i \(-0.317827\pi\)
0.998814 0.0486943i \(-0.0155060\pi\)
\(788\) −16.5075 31.8806i −0.588056 1.13570i
\(789\) −14.4898 8.36567i −0.515850 0.297826i
\(790\) 0 0
\(791\) −0.775428 + 0.421840i −0.0275711 + 0.0149989i
\(792\) −6.43751 + 5.60830i −0.228747 + 0.199282i
\(793\) 14.9107 + 8.60871i 0.529495 + 0.305704i
\(794\) −18.2390 5.33783i −0.647279 0.189433i
\(795\) 0 0
\(796\) −12.8872 8.24969i −0.456773 0.292403i
\(797\) −38.2770 −1.35584 −0.677921 0.735135i \(-0.737119\pi\)
−0.677921 + 0.735135i \(0.737119\pi\)
\(798\) −0.606025 0.667557i −0.0214531 0.0236313i
\(799\) 72.7894i 2.57510i
\(800\) 0 0
\(801\) −2.72080 + 1.57086i −0.0961349 + 0.0555035i
\(802\) 39.2046 + 11.4736i 1.38436 + 0.405148i
\(803\) 11.3022 + 6.52532i 0.398846 + 0.230274i
\(804\) −11.5049 0.527522i −0.405748 0.0186043i
\(805\) 0 0
\(806\) 0.412054 0.393594i 0.0145140 0.0138638i
\(807\) −17.4906 + 30.2945i −0.615697 + 1.06642i
\(808\) 1.20328 + 0.412866i 0.0423314 + 0.0145246i
\(809\) 4.90151 + 8.48966i 0.172328 + 0.298480i 0.939233 0.343280i \(-0.111538\pi\)
−0.766906 + 0.641760i \(0.778205\pi\)
\(810\) 0 0
\(811\) 4.75188 0.166861 0.0834305 0.996514i \(-0.473412\pi\)
0.0834305 + 0.996514i \(0.473412\pi\)
\(812\) 10.8309 + 7.32718i 0.380090 + 0.257134i
\(813\) 3.69240i 0.129498i
\(814\) 4.41404 + 18.1245i 0.154712 + 0.635262i
\(815\) 0 0
\(816\) 25.1421 11.5904i 0.880150 0.405745i
\(817\) 0.205091 0.355228i 0.00717522 0.0124278i
\(818\) 25.3029 + 26.4897i 0.884696 + 0.926191i
\(819\) 11.4579 + 0.290709i 0.400372 + 0.0101582i
\(820\) 0 0
\(821\) −7.82822 + 13.5589i −0.273207 + 0.473208i −0.969681 0.244374i \(-0.921418\pi\)
0.696474 + 0.717582i \(0.254751\pi\)
\(822\) −1.96914 0.576288i −0.0686816 0.0201004i
\(823\) 9.89848 + 17.1447i 0.345039 + 0.597626i 0.985361 0.170481i \(-0.0545322\pi\)
−0.640322 + 0.768107i \(0.721199\pi\)
\(824\) 5.03730 + 25.7656i 0.175483 + 0.897586i
\(825\) 0 0
\(826\) −15.2776 4.89511i −0.531575 0.170323i
\(827\) 13.0808 0.454863 0.227431 0.973794i \(-0.426967\pi\)
0.227431 + 0.973794i \(0.426967\pi\)
\(828\) −19.4824 12.4716i −0.677059 0.433418i
\(829\) 21.7092 12.5338i 0.753990 0.435316i −0.0731437 0.997321i \(-0.523303\pi\)
0.827134 + 0.562005i \(0.189970\pi\)
\(830\) 0 0
\(831\) −8.20562 + 14.2126i −0.284650 + 0.493028i
\(832\) −2.69613 + 19.4904i −0.0934715 + 0.675707i
\(833\) 43.4764 + 2.20757i 1.50637 + 0.0764879i
\(834\) −22.7011 23.7658i −0.786074 0.822943i
\(835\) 0 0
\(836\) 0.341226 + 0.659003i 0.0118015 + 0.0227921i
\(837\) −0.751825 + 0.434066i −0.0259869 + 0.0150035i
\(838\) 9.40403 + 38.6139i 0.324857 + 1.33389i
\(839\) −32.1347 −1.10941 −0.554707 0.832046i \(-0.687170\pi\)
−0.554707 + 0.832046i \(0.687170\pi\)
\(840\) 0 0
\(841\) −22.8930 −0.789414
\(842\) 5.22933 + 21.4722i 0.180215 + 0.739980i
\(843\) −19.8007 + 11.4320i −0.681974 + 0.393738i
\(844\) −14.3193 27.6546i −0.492891 0.951911i
\(845\) 0 0
\(846\) −20.1383 21.0828i −0.692368 0.724842i
\(847\) 21.3258 + 0.541075i 0.732764 + 0.0185916i
\(848\) −4.76870 + 51.8919i −0.163758 + 1.78198i
\(849\) 15.4900 26.8295i 0.531616 0.920785i
\(850\) 0 0
\(851\) −43.7702 + 25.2707i −1.50042 + 0.866270i
\(852\) −9.45208 6.05073i −0.323823 0.207295i
\(853\) −45.8238 −1.56898 −0.784489 0.620142i \(-0.787075\pi\)
−0.784489 + 0.620142i \(0.787075\pi\)
\(854\) 25.5982 5.55042i 0.875953 0.189931i
\(855\) 0 0
\(856\) −51.4204 + 10.0529i −1.75751 + 0.343603i
\(857\) −18.6629 32.3250i −0.637512 1.10420i −0.985977 0.166881i \(-0.946630\pi\)
0.348465 0.937322i \(-0.386703\pi\)
\(858\) 6.36707 + 1.86339i 0.217368 + 0.0636150i
\(859\) −6.62605 + 11.4767i −0.226078 + 0.391579i −0.956642 0.291265i \(-0.905924\pi\)
0.730564 + 0.682844i \(0.239257\pi\)
\(860\) 0 0
\(861\) 12.8163 20.9525i 0.436778 0.714059i
\(862\) −19.4877 20.4017i −0.663752 0.694884i
\(863\) −3.96707 + 6.87116i −0.135041 + 0.233897i −0.925613 0.378471i \(-0.876450\pi\)
0.790572 + 0.612369i \(0.209783\pi\)
\(864\) 11.0171 27.8783i 0.374809 0.948440i
\(865\) 0 0
\(866\) 3.95857 + 16.2543i 0.134518 + 0.552342i
\(867\) 24.1229i 0.819255i
\(868\) 0.0616582 0.864691i 0.00209281 0.0293495i
\(869\) 27.3334 0.927221
\(870\) 0 0
\(871\) −6.36291 11.0209i −0.215599 0.373428i
\(872\) −6.39914 + 18.6501i −0.216702 + 0.631571i
\(873\) 9.27406 16.0631i 0.313879 0.543655i
\(874\) −1.45394 + 1.38880i −0.0491803 + 0.0469769i
\(875\) 0 0
\(876\) −16.9326 0.776391i −0.572101 0.0262318i
\(877\) −44.8202 25.8770i −1.51347 0.873803i −0.999876 0.0157714i \(-0.994980\pi\)
−0.513596 0.858032i \(-0.671687\pi\)
\(878\) 37.8612 + 11.0805i 1.27775 + 0.373948i
\(879\) −4.12932 + 2.38407i −0.139279 + 0.0804126i
\(880\) 0 0
\(881\) 7.69261i 0.259171i 0.991568 + 0.129585i \(0.0413646\pi\)
−0.991568 + 0.129585i \(0.958635\pi\)
\(882\) 13.2033 11.3890i 0.444579 0.383488i
\(883\) 35.2766 1.18715 0.593575 0.804778i \(-0.297716\pi\)
0.593575 + 0.804778i \(0.297716\pi\)
\(884\) 25.7640 + 16.4928i 0.866538 + 0.554713i
\(885\) 0 0
\(886\) −26.0586 7.62631i −0.875456 0.256211i
\(887\) −10.0685 5.81304i −0.338067 0.195183i 0.321350 0.946960i \(-0.395863\pi\)
−0.659417 + 0.751778i \(0.729197\pi\)
\(888\) −15.9151 18.2682i −0.534076 0.613041i
\(889\) 20.0784 + 36.9082i 0.673409 + 1.23786i
\(890\) 0 0
\(891\) −0.910494 0.525674i −0.0305027 0.0176107i
\(892\) 10.5459 + 20.3672i 0.353104 + 0.681943i
\(893\) −2.19466 + 1.26709i −0.0734414 + 0.0424014i
\(894\) −14.8870 + 3.62558i −0.497896 + 0.121258i
\(895\) 0 0
\(896\) 16.8933 + 24.7107i 0.564364 + 0.825526i
\(897\) 17.9744i 0.600149i
\(898\) 1.65322 + 6.78830i 0.0551688 + 0.226529i
\(899\) −0.202426 0.350613i −0.00675130 0.0116936i
\(900\) 0 0
\(901\) 70.1635 + 40.5089i 2.33749 + 1.34955i
\(902\) −14.6188 + 13.9638i −0.486752 + 0.464945i
\(903\) −4.75877 2.91086i −0.158362 0.0968673i
\(904\) −0.711543 + 0.619890i −0.0236656 + 0.0206172i
\(905\) 0 0
\(906\) 22.5636 + 6.60347i 0.749626 + 0.219386i
\(907\) −11.5887 20.0723i −0.384798 0.666490i 0.606943 0.794745i \(-0.292396\pi\)
−0.991741 + 0.128256i \(0.959062\pi\)
\(908\) 9.65534 15.0830i 0.320424 0.500546i
\(909\) 0.792212i 0.0262760i
\(910\) 0 0
\(911\) 43.0818i 1.42737i −0.700469 0.713683i \(-0.747026\pi\)
0.700469 0.713683i \(-0.252974\pi\)
\(912\) −0.787123 0.556295i −0.0260642 0.0184208i
\(913\) −4.69424 8.13067i −0.155357 0.269086i
\(914\) −10.3772 + 35.4581i −0.343246 + 1.17285i
\(915\) 0 0
\(916\) −4.80845 0.220476i −0.158876 0.00728473i
\(917\) 8.48105 + 0.215180i 0.280069 + 0.00710587i
\(918\) −32.1911 33.7010i −1.06247 1.11230i
\(919\) 18.1455 + 10.4763i 0.598564 + 0.345581i 0.768476 0.639878i \(-0.221015\pi\)
−0.169912 + 0.985459i \(0.554348\pi\)
\(920\) 0 0
\(921\) −7.96699 13.7992i −0.262521 0.454700i
\(922\) −18.3978 + 4.48060i −0.605899 + 0.147561i
\(923\) 12.4008i 0.408177i
\(924\) 9.07722 4.41184i 0.298619 0.145139i
\(925\) 0 0
\(926\) −5.48867 22.5370i −0.180369 0.740612i
\(927\) 14.1586 8.17448i 0.465030 0.268485i
\(928\) 13.0010 + 5.13781i 0.426780 + 0.168657i
\(929\) 8.90058 + 5.13875i 0.292019 + 0.168597i 0.638852 0.769330i \(-0.279410\pi\)
−0.346833 + 0.937927i \(0.612743\pi\)
\(930\) 0 0
\(931\) −0.690259 1.34928i −0.0226223 0.0442208i
\(932\) 5.11613 + 0.234584i 0.167585 + 0.00768405i
\(933\) 24.7349 + 14.2807i 0.809784 + 0.467529i
\(934\) 4.74016 16.1968i 0.155103 0.529976i
\(935\) 0 0
\(936\) 12.0253 2.35101i 0.393060 0.0768452i
\(937\) 38.3992 1.25445 0.627224 0.778839i \(-0.284191\pi\)
0.627224 + 0.778839i \(0.284191\pi\)
\(938\) −18.4366 5.90730i −0.601978 0.192880i
\(939\) 36.1764i 1.18057i
\(940\) 0 0
\(941\) −13.2891 + 7.67245i −0.433211 + 0.250115i −0.700714 0.713443i \(-0.747135\pi\)
0.267502 + 0.963557i \(0.413802\pi\)
\(942\) 3.63597 12.4239i 0.118466 0.404792i
\(943\) −47.4354 27.3869i −1.54471 0.891839i
\(944\) −17.0784 1.56945i −0.555853 0.0510811i
\(945\) 0 0
\(946\) 3.17150 + 3.32025i 0.103114 + 0.107951i
\(947\) −13.3114 + 23.0560i −0.432562 + 0.749219i −0.997093 0.0761928i \(-0.975724\pi\)
0.564531 + 0.825412i \(0.309057\pi\)
\(948\) −31.5256 + 16.3237i −1.02390 + 0.530169i
\(949\) −9.36474 16.2202i −0.303992 0.526530i
\(950\) 0 0
\(951\) 3.25052 0.105405
\(952\) 45.8852 7.76807i 1.48715 0.251765i
\(953\) 5.39146i 0.174646i −0.996180 0.0873232i \(-0.972169\pi\)
0.996180 0.0873232i \(-0.0278313\pi\)
\(954\) 31.5297 7.67874i 1.02081 0.248608i
\(955\) 0 0
\(956\) 5.80462 + 11.2103i 0.187735 + 0.362568i
\(957\) 2.35672 4.08195i 0.0761818 0.131951i
\(958\) 38.0197 36.3163i 1.22836 1.17333i
\(959\) −2.94216 1.79967i −0.0950074 0.0581143i
\(960\) 0 0
\(961\) 15.4866 26.8235i 0.499567 0.865276i
\(962\) 7.51951 25.6937i 0.242439 0.828397i
\(963\) 16.3138 + 28.2564i 0.525705 + 0.910548i
\(964\) −10.3797 + 16.2146i −0.334309 + 0.522237i
\(965\) 0 0
\(966\) 18.3800 + 20.2462i 0.591367 + 0.651410i
\(967\) 6.14901 0.197739 0.0988694 0.995100i \(-0.468477\pi\)
0.0988694 + 0.995100i \(0.468477\pi\)
\(968\) 22.3819 4.37577i 0.719380 0.140643i
\(969\) −1.29778 + 0.749271i −0.0416906 + 0.0240701i
\(970\) 0 0
\(971\) 15.6816 27.1613i 0.503247 0.871649i −0.496746 0.867896i \(-0.665472\pi\)
0.999993 0.00375309i \(-0.00119465\pi\)
\(972\) −30.3972 1.39377i −0.974991 0.0447051i
\(973\) −26.4009 48.5302i −0.846374 1.55581i
\(974\) 1.00053 0.955707i 0.0320591 0.0306228i
\(975\) 0 0
\(976\) 25.4295 11.7229i 0.813979 0.375240i
\(977\) 34.0446 19.6557i 1.08918 0.628841i 0.155825 0.987785i \(-0.450196\pi\)
0.933359 + 0.358944i \(0.116863\pi\)
\(978\) −18.3303 + 4.46417i −0.586139 + 0.142748i
\(979\) −3.05681 −0.0976961
\(980\) 0 0
\(981\) 12.2787 0.392030
\(982\) 25.3054 6.16289i 0.807529 0.196666i
\(983\) 26.4013 15.2428i 0.842072 0.486170i −0.0158960 0.999874i \(-0.505060\pi\)
0.857968 + 0.513703i \(0.171727\pi\)
\(984\) 8.52163 24.8360i 0.271660 0.791743i
\(985\) 0 0
\(986\) 15.7164 15.0123i 0.500513 0.478089i
\(987\) 16.4697 + 30.2747i 0.524237 + 0.963654i
\(988\) 0.0487820 1.06391i 0.00155196 0.0338474i
\(989\) −6.22015 + 10.7736i −0.197789 + 0.342581i
\(990\) 0 0
\(991\) −11.3870 + 6.57431i −0.361721 + 0.208840i −0.669835 0.742510i \(-0.733635\pi\)
0.308114 + 0.951349i \(0.400302\pi\)
\(992\) −0.135970 0.916712i −0.00431706 0.0291056i
\(993\) −4.39461 −0.139459
\(994\) −12.6806 13.9681i −0.402204 0.443041i
\(995\) 0 0
\(996\) 10.2699 + 6.57427i 0.325415 + 0.208314i
\(997\) 5.65950 + 9.80253i 0.179238 + 0.310449i 0.941620 0.336678i \(-0.109303\pi\)
−0.762382 + 0.647128i \(0.775970\pi\)
\(998\) 7.75924 26.5128i 0.245615 0.839249i
\(999\) −20.3931 + 35.3218i −0.645208 + 1.11753i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.t.c.299.10 32
4.3 odd 2 inner 700.2.t.c.299.15 32
5.2 odd 4 700.2.p.c.551.2 32
5.3 odd 4 140.2.o.a.131.15 yes 32
5.4 even 2 700.2.t.d.299.7 32
7.3 odd 6 700.2.t.d.199.2 32
20.3 even 4 140.2.o.a.131.7 yes 32
20.7 even 4 700.2.p.c.551.10 32
20.19 odd 2 700.2.t.d.299.2 32
28.3 even 6 700.2.t.d.199.7 32
35.3 even 12 140.2.o.a.31.7 32
35.13 even 4 980.2.o.f.411.15 32
35.17 even 12 700.2.p.c.451.10 32
35.18 odd 12 980.2.o.f.31.7 32
35.23 odd 12 980.2.g.a.391.10 32
35.24 odd 6 inner 700.2.t.c.199.15 32
35.33 even 12 980.2.g.a.391.9 32
140.3 odd 12 140.2.o.a.31.15 yes 32
140.23 even 12 980.2.g.a.391.11 32
140.59 even 6 inner 700.2.t.c.199.10 32
140.83 odd 4 980.2.o.f.411.7 32
140.87 odd 12 700.2.p.c.451.2 32
140.103 odd 12 980.2.g.a.391.12 32
140.123 even 12 980.2.o.f.31.15 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.o.a.31.7 32 35.3 even 12
140.2.o.a.31.15 yes 32 140.3 odd 12
140.2.o.a.131.7 yes 32 20.3 even 4
140.2.o.a.131.15 yes 32 5.3 odd 4
700.2.p.c.451.2 32 140.87 odd 12
700.2.p.c.451.10 32 35.17 even 12
700.2.p.c.551.2 32 5.2 odd 4
700.2.p.c.551.10 32 20.7 even 4
700.2.t.c.199.10 32 140.59 even 6 inner
700.2.t.c.199.15 32 35.24 odd 6 inner
700.2.t.c.299.10 32 1.1 even 1 trivial
700.2.t.c.299.15 32 4.3 odd 2 inner
700.2.t.d.199.2 32 7.3 odd 6
700.2.t.d.199.7 32 28.3 even 6
700.2.t.d.299.2 32 20.19 odd 2
700.2.t.d.299.7 32 5.4 even 2
980.2.g.a.391.9 32 35.33 even 12
980.2.g.a.391.10 32 35.23 odd 12
980.2.g.a.391.11 32 140.23 even 12
980.2.g.a.391.12 32 140.103 odd 12
980.2.o.f.31.7 32 35.18 odd 12
980.2.o.f.31.15 32 140.123 even 12
980.2.o.f.411.7 32 140.83 odd 4
980.2.o.f.411.15 32 35.13 even 4