Properties

Label 700.2.t.c.299.15
Level $700$
Weight $2$
Character 700.299
Analytic conductor $5.590$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(199,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.199");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 299.15
Character \(\chi\) \(=\) 700.299
Dual form 700.2.t.c.199.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35728 - 0.397222i) q^{2} +(0.963833 - 0.556469i) q^{3} +(1.68443 - 1.07828i) q^{4} +(1.08715 - 1.13814i) q^{6} +(1.26433 + 2.32410i) q^{7} +(1.85793 - 2.13263i) q^{8} +(-0.880685 + 1.52539i) q^{9} +(1.48417 - 0.856885i) q^{11} +(1.02348 - 1.97662i) q^{12} +2.45950 q^{13} +(2.63924 + 2.65224i) q^{14} +(1.67460 - 3.63259i) q^{16} +(-3.10946 - 5.38574i) q^{17} +(-0.589419 + 2.42021i) q^{18} +(0.108256 - 0.187505i) q^{19} +(2.51190 + 1.53648i) q^{21} +(1.67406 - 1.75258i) q^{22} +(-3.28328 + 5.68681i) q^{23} +(0.603989 - 3.08938i) q^{24} +(3.33823 - 0.976966i) q^{26} +5.29911i q^{27} +(4.63573 + 2.55148i) q^{28} +2.47123 q^{29} +(0.0819131 + 0.141878i) q^{31} +(0.829966 - 5.59564i) q^{32} +(0.953659 - 1.65179i) q^{33} +(-6.35975 - 6.07482i) q^{34} +(0.161354 + 3.51904i) q^{36} +(-6.66562 - 3.84840i) q^{37} +(0.0724531 - 0.297500i) q^{38} +(2.37054 - 1.36863i) q^{39} -8.34130i q^{41} +(4.01968 + 1.08766i) q^{42} +1.89449 q^{43} +(1.57601 - 3.04372i) q^{44} +(-2.19741 + 9.02280i) q^{46} +(-10.1364 - 5.85225i) q^{47} +(-0.407385 - 4.43307i) q^{48} +(-3.80292 + 5.87689i) q^{49} +(-5.99399 - 3.46063i) q^{51} +(4.14285 - 2.65204i) q^{52} +(-11.2823 + 6.51382i) q^{53} +(2.10492 + 7.19238i) q^{54} +(7.30549 + 1.62166i) q^{56} -0.240965i q^{57} +(3.35416 - 0.981628i) q^{58} +(2.14379 + 3.71315i) q^{59} +(6.06251 + 3.50019i) q^{61} +(0.167536 + 0.160030i) q^{62} +(-4.65865 - 0.118198i) q^{63} +(-1.09621 - 7.92454i) q^{64} +(0.638259 - 2.62076i) q^{66} +(2.58708 + 4.48095i) q^{67} +(-11.0450 - 5.71902i) q^{68} +7.30818i q^{69} +5.04201i q^{71} +(1.61684 + 4.71224i) q^{72} +(-3.80759 - 6.59493i) q^{73} +(-10.5758 - 2.57563i) q^{74} +(-0.0198341 - 0.432571i) q^{76} +(3.86797 + 2.36597i) q^{77} +(2.67384 - 2.79925i) q^{78} +(13.8125 + 7.97463i) q^{79} +(0.306736 + 0.531282i) q^{81} +(-3.31335 - 11.3215i) q^{82} -5.47827i q^{83} +(5.88788 - 0.120443i) q^{84} +(2.57136 - 0.752534i) q^{86} +(2.38185 - 1.37516i) q^{87} +(0.930059 - 4.75721i) q^{88} +(1.54471 + 0.891838i) q^{89} +(3.10963 + 5.71612i) q^{91} +(0.601545 + 13.1193i) q^{92} +(0.157901 + 0.0911642i) q^{93} +(-16.0826 - 3.91676i) q^{94} +(-2.31385 - 5.85511i) q^{96} -10.5305 q^{97} +(-2.82720 + 9.48720i) q^{98} +3.01858i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{4} + 16 q^{9} - 14 q^{12} - 8 q^{13} - 2 q^{14} - 14 q^{16} + 54 q^{18} - 12 q^{21} - 36 q^{24} + 30 q^{26} + 32 q^{28} + 40 q^{29} + 60 q^{32} - 24 q^{33} + 60 q^{36} - 60 q^{37} - 46 q^{38}+ \cdots - 124 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35728 0.397222i 0.959743 0.280878i
\(3\) 0.963833 0.556469i 0.556469 0.321278i −0.195258 0.980752i \(-0.562554\pi\)
0.751727 + 0.659474i \(0.229221\pi\)
\(4\) 1.68443 1.07828i 0.842215 0.539142i
\(5\) 0 0
\(6\) 1.08715 1.13814i 0.443827 0.464644i
\(7\) 1.26433 + 2.32410i 0.477874 + 0.878429i
\(8\) 1.85793 2.13263i 0.656876 0.753998i
\(9\) −0.880685 + 1.52539i −0.293562 + 0.508463i
\(10\) 0 0
\(11\) 1.48417 0.856885i 0.447493 0.258360i −0.259278 0.965803i \(-0.583484\pi\)
0.706771 + 0.707442i \(0.250151\pi\)
\(12\) 1.02348 1.97662i 0.295452 0.570601i
\(13\) 2.45950 0.682142 0.341071 0.940038i \(-0.389210\pi\)
0.341071 + 0.940038i \(0.389210\pi\)
\(14\) 2.63924 + 2.65224i 0.705368 + 0.708842i
\(15\) 0 0
\(16\) 1.67460 3.63259i 0.418651 0.908147i
\(17\) −3.10946 5.38574i −0.754155 1.30623i −0.945794 0.324768i \(-0.894714\pi\)
0.191639 0.981465i \(-0.438620\pi\)
\(18\) −0.589419 + 2.42021i −0.138927 + 0.570450i
\(19\) 0.108256 0.187505i 0.0248357 0.0430167i −0.853340 0.521354i \(-0.825427\pi\)
0.878176 + 0.478337i \(0.158760\pi\)
\(20\) 0 0
\(21\) 2.51190 + 1.53648i 0.548141 + 0.335288i
\(22\) 1.67406 1.75258i 0.356911 0.373651i
\(23\) −3.28328 + 5.68681i −0.684612 + 1.18578i 0.288947 + 0.957345i \(0.406695\pi\)
−0.973559 + 0.228437i \(0.926638\pi\)
\(24\) 0.603989 3.08938i 0.123289 0.630616i
\(25\) 0 0
\(26\) 3.33823 0.976966i 0.654681 0.191599i
\(27\) 5.29911i 1.01981i
\(28\) 4.63573 + 2.55148i 0.876070 + 0.482184i
\(29\) 2.47123 0.458896 0.229448 0.973321i \(-0.426308\pi\)
0.229448 + 0.973321i \(0.426308\pi\)
\(30\) 0 0
\(31\) 0.0819131 + 0.141878i 0.0147120 + 0.0254820i 0.873288 0.487205i \(-0.161984\pi\)
−0.858576 + 0.512687i \(0.828650\pi\)
\(32\) 0.829966 5.59564i 0.146719 0.989178i
\(33\) 0.953659 1.65179i 0.166011 0.287539i
\(34\) −6.35975 6.07482i −1.09069 1.04182i
\(35\) 0 0
\(36\) 0.161354 + 3.51904i 0.0268924 + 0.586507i
\(37\) −6.66562 3.84840i −1.09582 0.632673i −0.160701 0.987003i \(-0.551375\pi\)
−0.935120 + 0.354331i \(0.884709\pi\)
\(38\) 0.0724531 0.297500i 0.0117534 0.0482608i
\(39\) 2.37054 1.36863i 0.379591 0.219157i
\(40\) 0 0
\(41\) 8.34130i 1.30269i −0.758781 0.651346i \(-0.774205\pi\)
0.758781 0.651346i \(-0.225795\pi\)
\(42\) 4.01968 + 1.08766i 0.620250 + 0.167830i
\(43\) 1.89449 0.288907 0.144454 0.989512i \(-0.453858\pi\)
0.144454 + 0.989512i \(0.453858\pi\)
\(44\) 1.57601 3.04372i 0.237592 0.458858i
\(45\) 0 0
\(46\) −2.19741 + 9.02280i −0.323991 + 1.33034i
\(47\) −10.1364 5.85225i −1.47855 0.853639i −0.478840 0.877902i \(-0.658943\pi\)
−0.999706 + 0.0242630i \(0.992276\pi\)
\(48\) −0.407385 4.43307i −0.0588010 0.639859i
\(49\) −3.80292 + 5.87689i −0.543274 + 0.839556i
\(50\) 0 0
\(51\) −5.99399 3.46063i −0.839327 0.484586i
\(52\) 4.14285 2.65204i 0.574510 0.367771i
\(53\) −11.2823 + 6.51382i −1.54974 + 0.894743i −0.551579 + 0.834123i \(0.685974\pi\)
−0.998161 + 0.0606196i \(0.980692\pi\)
\(54\) 2.10492 + 7.19238i 0.286444 + 0.978760i
\(55\) 0 0
\(56\) 7.30549 + 1.62166i 0.976238 + 0.216703i
\(57\) 0.240965i 0.0319166i
\(58\) 3.35416 0.981628i 0.440423 0.128894i
\(59\) 2.14379 + 3.71315i 0.279098 + 0.483411i 0.971161 0.238426i \(-0.0766313\pi\)
−0.692063 + 0.721837i \(0.743298\pi\)
\(60\) 0 0
\(61\) 6.06251 + 3.50019i 0.776225 + 0.448154i 0.835091 0.550112i \(-0.185415\pi\)
−0.0588657 + 0.998266i \(0.518748\pi\)
\(62\) 0.167536 + 0.160030i 0.0212771 + 0.0203239i
\(63\) −4.65865 0.118198i −0.586934 0.0148916i
\(64\) −1.09621 7.92454i −0.137027 0.990567i
\(65\) 0 0
\(66\) 0.638259 2.62076i 0.0785642 0.322593i
\(67\) 2.58708 + 4.48095i 0.316062 + 0.547435i 0.979663 0.200652i \(-0.0643060\pi\)
−0.663601 + 0.748087i \(0.730973\pi\)
\(68\) −11.0450 5.71902i −1.33941 0.693533i
\(69\) 7.30818i 0.879801i
\(70\) 0 0
\(71\) 5.04201i 0.598376i 0.954194 + 0.299188i \(0.0967158\pi\)
−0.954194 + 0.299188i \(0.903284\pi\)
\(72\) 1.61684 + 4.71224i 0.190547 + 0.555343i
\(73\) −3.80759 6.59493i −0.445644 0.771878i 0.552453 0.833544i \(-0.313692\pi\)
−0.998097 + 0.0616659i \(0.980359\pi\)
\(74\) −10.5758 2.57563i −1.22941 0.299411i
\(75\) 0 0
\(76\) −0.0198341 0.432571i −0.00227513 0.0496193i
\(77\) 3.86797 + 2.36597i 0.440797 + 0.269627i
\(78\) 2.67384 2.79925i 0.302753 0.316953i
\(79\) 13.8125 + 7.97463i 1.55402 + 0.897216i 0.997808 + 0.0661781i \(0.0210805\pi\)
0.556216 + 0.831038i \(0.312253\pi\)
\(80\) 0 0
\(81\) 0.306736 + 0.531282i 0.0340817 + 0.0590313i
\(82\) −3.31335 11.3215i −0.365898 1.25025i
\(83\) 5.47827i 0.601318i −0.953732 0.300659i \(-0.902793\pi\)
0.953732 0.300659i \(-0.0972066\pi\)
\(84\) 5.88788 0.120443i 0.642421 0.0131414i
\(85\) 0 0
\(86\) 2.57136 0.752534i 0.277277 0.0811479i
\(87\) 2.38185 1.37516i 0.255362 0.147433i
\(88\) 0.930059 4.75721i 0.0991446 0.507120i
\(89\) 1.54471 + 0.891838i 0.163739 + 0.0945347i 0.579630 0.814880i \(-0.303197\pi\)
−0.415891 + 0.909414i \(0.636530\pi\)
\(90\) 0 0
\(91\) 3.10963 + 5.71612i 0.325977 + 0.599213i
\(92\) 0.601545 + 13.1193i 0.0627154 + 1.36779i
\(93\) 0.157901 + 0.0911642i 0.0163736 + 0.00945329i
\(94\) −16.0826 3.91676i −1.65879 0.403983i
\(95\) 0 0
\(96\) −2.31385 5.85511i −0.236156 0.597584i
\(97\) −10.5305 −1.06921 −0.534606 0.845101i \(-0.679540\pi\)
−0.534606 + 0.845101i \(0.679540\pi\)
\(98\) −2.82720 + 9.48720i −0.285590 + 0.958352i
\(99\) 3.01858i 0.303379i
\(100\) 0 0
\(101\) −0.389513 + 0.224885i −0.0387580 + 0.0223769i −0.519254 0.854620i \(-0.673790\pi\)
0.480496 + 0.876997i \(0.340457\pi\)
\(102\) −9.51018 2.31611i −0.941648 0.229329i
\(103\) 8.03841 + 4.64098i 0.792048 + 0.457289i 0.840683 0.541527i \(-0.182154\pi\)
−0.0486348 + 0.998817i \(0.515487\pi\)
\(104\) 4.56957 5.24519i 0.448083 0.514334i
\(105\) 0 0
\(106\) −12.7258 + 13.3227i −1.23604 + 1.29401i
\(107\) −9.26201 + 16.0423i −0.895392 + 1.55086i −0.0620738 + 0.998072i \(0.519771\pi\)
−0.833318 + 0.552793i \(0.813562\pi\)
\(108\) 5.71395 + 8.92597i 0.549825 + 0.858902i
\(109\) −3.48557 6.03718i −0.333857 0.578257i 0.649408 0.760441i \(-0.275017\pi\)
−0.983265 + 0.182183i \(0.941684\pi\)
\(110\) 0 0
\(111\) −8.56605 −0.813054
\(112\) 10.5598 0.700854i 0.997805 0.0662245i
\(113\) 0.333646i 0.0313868i −0.999877 0.0156934i \(-0.995004\pi\)
0.999877 0.0156934i \(-0.00499557\pi\)
\(114\) −0.0957166 0.327058i −0.00896468 0.0306317i
\(115\) 0 0
\(116\) 4.16262 2.66469i 0.386489 0.247411i
\(117\) −2.16604 + 3.75169i −0.200251 + 0.346844i
\(118\) 4.38467 + 4.18824i 0.403642 + 0.385558i
\(119\) 8.58562 14.0361i 0.787043 1.28669i
\(120\) 0 0
\(121\) −4.03150 + 6.98276i −0.366500 + 0.634796i
\(122\) 9.61889 + 2.34259i 0.870854 + 0.212088i
\(123\) −4.64168 8.03962i −0.418526 0.724908i
\(124\) 0.290961 + 0.150657i 0.0261291 + 0.0135294i
\(125\) 0 0
\(126\) −6.37005 + 1.69009i −0.567489 + 0.150565i
\(127\) 15.8806 1.40918 0.704589 0.709616i \(-0.251131\pi\)
0.704589 + 0.709616i \(0.251131\pi\)
\(128\) −4.63567 10.3204i −0.409739 0.912203i
\(129\) 1.82597 1.05423i 0.160768 0.0928195i
\(130\) 0 0
\(131\) 1.60328 2.77697i 0.140080 0.242625i −0.787447 0.616383i \(-0.788598\pi\)
0.927526 + 0.373758i \(0.121931\pi\)
\(132\) −0.174724 3.81063i −0.0152078 0.331673i
\(133\) 0.572654 + 0.0145293i 0.0496554 + 0.00125985i
\(134\) 5.29133 + 5.05427i 0.457101 + 0.436622i
\(135\) 0 0
\(136\) −17.2629 3.37499i −1.48028 0.289403i
\(137\) 1.12893 0.651787i 0.0964508 0.0556859i −0.450999 0.892525i \(-0.648932\pi\)
0.547450 + 0.836839i \(0.315599\pi\)
\(138\) 2.90297 + 9.91926i 0.247117 + 0.844383i
\(139\) −20.8813 −1.77113 −0.885563 0.464519i \(-0.846227\pi\)
−0.885563 + 0.464519i \(0.846227\pi\)
\(140\) 0 0
\(141\) −13.0264 −1.09702
\(142\) 2.00280 + 6.84343i 0.168071 + 0.574288i
\(143\) 3.65031 2.10750i 0.305254 0.176238i
\(144\) 4.06632 + 5.75359i 0.338860 + 0.479466i
\(145\) 0 0
\(146\) −7.78762 7.43873i −0.644508 0.615633i
\(147\) −0.395068 + 7.78054i −0.0325846 + 0.641728i
\(148\) −15.3774 + 0.705083i −1.26402 + 0.0579574i
\(149\) 4.86747 8.43071i 0.398759 0.690670i −0.594814 0.803863i \(-0.702774\pi\)
0.993573 + 0.113193i \(0.0361078\pi\)
\(150\) 0 0
\(151\) 12.9360 7.46858i 1.05271 0.607784i 0.129306 0.991605i \(-0.458725\pi\)
0.923408 + 0.383821i \(0.125392\pi\)
\(152\) −0.198747 0.579242i −0.0161205 0.0469827i
\(153\) 10.9538 0.885563
\(154\) 6.18975 + 1.67485i 0.498784 + 0.134963i
\(155\) 0 0
\(156\) 2.51723 4.86149i 0.201540 0.389230i
\(157\) 4.11231 + 7.12273i 0.328198 + 0.568456i 0.982154 0.188076i \(-0.0602252\pi\)
−0.653956 + 0.756532i \(0.726892\pi\)
\(158\) 21.9151 + 5.33721i 1.74347 + 0.424605i
\(159\) −7.24948 + 12.5565i −0.574921 + 0.995793i
\(160\) 0 0
\(161\) −17.3679 0.440656i −1.36878 0.0347285i
\(162\) 0.627364 + 0.599257i 0.0492903 + 0.0470821i
\(163\) −5.99330 + 10.3807i −0.469431 + 0.813079i −0.999389 0.0349450i \(-0.988874\pi\)
0.529958 + 0.848024i \(0.322208\pi\)
\(164\) −8.99430 14.0503i −0.702337 1.09715i
\(165\) 0 0
\(166\) −2.17609 7.43555i −0.168897 0.577111i
\(167\) 14.8103i 1.14606i −0.819535 0.573029i \(-0.805768\pi\)
0.819535 0.573029i \(-0.194232\pi\)
\(168\) 7.94367 2.50227i 0.612868 0.193054i
\(169\) −6.95088 −0.534683
\(170\) 0 0
\(171\) 0.190679 + 0.330266i 0.0145816 + 0.0252561i
\(172\) 3.19114 2.04280i 0.243322 0.155762i
\(173\) 7.81044 13.5281i 0.593817 1.02852i −0.399896 0.916561i \(-0.630954\pi\)
0.993713 0.111960i \(-0.0357129\pi\)
\(174\) 2.68660 2.81261i 0.203671 0.213224i
\(175\) 0 0
\(176\) −0.627316 6.82631i −0.0472857 0.514553i
\(177\) 4.13251 + 2.38591i 0.310618 + 0.179336i
\(178\) 2.45086 + 0.596884i 0.183700 + 0.0447383i
\(179\) 5.53306 3.19451i 0.413560 0.238769i −0.278758 0.960361i \(-0.589923\pi\)
0.692318 + 0.721592i \(0.256589\pi\)
\(180\) 0 0
\(181\) 1.18770i 0.0882808i −0.999025 0.0441404i \(-0.985945\pi\)
0.999025 0.0441404i \(-0.0140549\pi\)
\(182\) 6.49121 + 6.52318i 0.481161 + 0.483530i
\(183\) 7.79100 0.575927
\(184\) 6.02776 + 17.5677i 0.444372 + 1.29511i
\(185\) 0 0
\(186\) 0.250529 + 0.0610138i 0.0183697 + 0.00447375i
\(187\) −9.22992 5.32890i −0.674958 0.389687i
\(188\) −23.3844 + 1.07222i −1.70549 + 0.0781996i
\(189\) −12.3157 + 6.69985i −0.895834 + 0.487342i
\(190\) 0 0
\(191\) 9.14608 + 5.28049i 0.661787 + 0.382083i 0.792958 0.609277i \(-0.208540\pi\)
−0.131170 + 0.991360i \(0.541874\pi\)
\(192\) −5.46633 7.02792i −0.394498 0.507196i
\(193\) −4.68353 + 2.70403i −0.337128 + 0.194641i −0.659001 0.752142i \(-0.729021\pi\)
0.321874 + 0.946783i \(0.395687\pi\)
\(194\) −14.2929 + 4.18295i −1.02617 + 0.300319i
\(195\) 0 0
\(196\) −0.0687835 + 13.9998i −0.00491310 + 0.999988i
\(197\) 17.9504i 1.27892i 0.768826 + 0.639458i \(0.220841\pi\)
−0.768826 + 0.639458i \(0.779159\pi\)
\(198\) 1.19905 + 4.09707i 0.0852125 + 0.291166i
\(199\) −3.82538 6.62575i −0.271174 0.469687i 0.697989 0.716109i \(-0.254079\pi\)
−0.969163 + 0.246422i \(0.920745\pi\)
\(200\) 0 0
\(201\) 4.98702 + 2.87926i 0.351757 + 0.203087i
\(202\) −0.439349 + 0.459956i −0.0309125 + 0.0323624i
\(203\) 3.12447 + 5.74340i 0.219294 + 0.403108i
\(204\) −13.8280 + 0.634039i −0.968154 + 0.0443916i
\(205\) 0 0
\(206\) 12.7539 + 3.10608i 0.888606 + 0.216411i
\(207\) −5.78307 10.0166i −0.401951 0.696200i
\(208\) 4.11868 8.93434i 0.285579 0.619485i
\(209\) 0.371053i 0.0256662i
\(210\) 0 0
\(211\) 15.5710i 1.07195i −0.844234 0.535975i \(-0.819944\pi\)
0.844234 0.535975i \(-0.180056\pi\)
\(212\) −11.9804 + 23.1376i −0.822820 + 1.58910i
\(213\) 2.80572 + 4.85965i 0.192245 + 0.332978i
\(214\) −6.19882 + 25.4530i −0.423742 + 1.73993i
\(215\) 0 0
\(216\) 11.3010 + 9.84536i 0.768938 + 0.669892i
\(217\) −0.226173 + 0.369755i −0.0153536 + 0.0251006i
\(218\) −7.12900 6.80962i −0.482837 0.461205i
\(219\) −7.33975 4.23761i −0.495974 0.286351i
\(220\) 0 0
\(221\) −7.64770 13.2462i −0.514440 0.891036i
\(222\) −11.6266 + 3.40263i −0.780323 + 0.228369i
\(223\) 11.4678i 0.767938i 0.923346 + 0.383969i \(0.125443\pi\)
−0.923346 + 0.383969i \(0.874557\pi\)
\(224\) 14.0542 5.14583i 0.939035 0.343820i
\(225\) 0 0
\(226\) −0.132532 0.452852i −0.00881587 0.0301233i
\(227\) 7.75470 4.47718i 0.514697 0.297161i −0.220065 0.975485i \(-0.570627\pi\)
0.734762 + 0.678325i \(0.237294\pi\)
\(228\) −0.259829 0.405889i −0.0172076 0.0268806i
\(229\) 2.08431 + 1.20337i 0.137735 + 0.0795212i 0.567284 0.823522i \(-0.307994\pi\)
−0.429549 + 0.903043i \(0.641328\pi\)
\(230\) 0 0
\(231\) 5.04467 + 0.127993i 0.331915 + 0.00842129i
\(232\) 4.59137 5.27022i 0.301438 0.346007i
\(233\) −2.21768 1.28038i −0.145285 0.0838803i 0.425595 0.904914i \(-0.360065\pi\)
−0.570880 + 0.821033i \(0.693398\pi\)
\(234\) −1.44967 + 5.95250i −0.0947681 + 0.389127i
\(235\) 0 0
\(236\) 7.61490 + 3.94293i 0.495688 + 0.256663i
\(237\) 17.7505 1.15302
\(238\) 6.07767 22.4613i 0.393957 1.45595i
\(239\) 6.31200i 0.408289i 0.978941 + 0.204145i \(0.0654413\pi\)
−0.978941 + 0.204145i \(0.934559\pi\)
\(240\) 0 0
\(241\) 8.33650 4.81308i 0.537001 0.310038i −0.206862 0.978370i \(-0.566325\pi\)
0.743863 + 0.668332i \(0.232992\pi\)
\(242\) −2.69817 + 11.0790i −0.173445 + 0.712183i
\(243\) −13.1762 7.60728i −0.845254 0.488008i
\(244\) 13.9861 0.641286i 0.895367 0.0410542i
\(245\) 0 0
\(246\) −9.49358 9.06825i −0.605288 0.578171i
\(247\) 0.266256 0.461169i 0.0169415 0.0293435i
\(248\) 0.454761 + 0.0889081i 0.0288773 + 0.00564567i
\(249\) −3.04848 5.28013i −0.193190 0.334615i
\(250\) 0 0
\(251\) −24.9508 −1.57488 −0.787440 0.616391i \(-0.788594\pi\)
−0.787440 + 0.616391i \(0.788594\pi\)
\(252\) −7.97461 + 4.82425i −0.502353 + 0.303899i
\(253\) 11.2536i 0.707506i
\(254\) 21.5545 6.30813i 1.35245 0.395808i
\(255\) 0 0
\(256\) −10.3914 12.1663i −0.649463 0.760394i
\(257\) 8.48813 14.7019i 0.529475 0.917078i −0.469934 0.882702i \(-0.655722\pi\)
0.999409 0.0343764i \(-0.0109445\pi\)
\(258\) 2.05960 2.15620i 0.128225 0.134239i
\(259\) 0.516501 20.3573i 0.0320938 1.26494i
\(260\) 0 0
\(261\) −2.17638 + 3.76960i −0.134714 + 0.233332i
\(262\) 1.07303 4.40599i 0.0662923 0.272203i
\(263\) −7.51675 13.0194i −0.463503 0.802810i 0.535630 0.844453i \(-0.320074\pi\)
−0.999133 + 0.0416428i \(0.986741\pi\)
\(264\) −1.75082 5.10270i −0.107755 0.314050i
\(265\) 0 0
\(266\) 0.783025 0.207751i 0.0480103 0.0127380i
\(267\) 1.98512 0.121487
\(268\) 9.18949 + 4.75824i 0.561337 + 0.290656i
\(269\) 27.2203 15.7157i 1.65965 0.958201i 0.686778 0.726867i \(-0.259025\pi\)
0.972875 0.231333i \(-0.0743088\pi\)
\(270\) 0 0
\(271\) −1.65885 + 2.87322i −0.100768 + 0.174536i −0.912001 0.410187i \(-0.865463\pi\)
0.811233 + 0.584723i \(0.198797\pi\)
\(272\) −24.7713 + 2.27640i −1.50198 + 0.138027i
\(273\) 6.17800 + 3.77898i 0.373910 + 0.228714i
\(274\) 1.27337 1.33309i 0.0769270 0.0805351i
\(275\) 0 0
\(276\) 7.88030 + 12.3101i 0.474338 + 0.740982i
\(277\) 12.7703 7.37294i 0.767293 0.442997i −0.0646150 0.997910i \(-0.520582\pi\)
0.831908 + 0.554913i \(0.187249\pi\)
\(278\) −28.3418 + 8.29450i −1.69983 + 0.497471i
\(279\) −0.288558 −0.0172755
\(280\) 0 0
\(281\) 20.5438 1.22554 0.612769 0.790262i \(-0.290056\pi\)
0.612769 + 0.790262i \(0.290056\pi\)
\(282\) −17.6805 + 5.17437i −1.05286 + 0.308129i
\(283\) 24.1069 13.9181i 1.43301 0.827346i 0.435657 0.900113i \(-0.356516\pi\)
0.997349 + 0.0727665i \(0.0231828\pi\)
\(284\) 5.43672 + 8.49290i 0.322610 + 0.503961i
\(285\) 0 0
\(286\) 4.11735 4.31046i 0.243464 0.254883i
\(287\) 19.3861 10.5462i 1.14432 0.622522i
\(288\) 7.80459 + 6.19401i 0.459890 + 0.364986i
\(289\) −10.8375 + 18.7710i −0.637498 + 1.10418i
\(290\) 0 0
\(291\) −10.1497 + 5.85991i −0.594983 + 0.343514i
\(292\) −13.5248 7.00304i −0.791480 0.409822i
\(293\) 4.28428 0.250290 0.125145 0.992138i \(-0.460060\pi\)
0.125145 + 0.992138i \(0.460060\pi\)
\(294\) 2.55438 + 10.7173i 0.148975 + 0.625047i
\(295\) 0 0
\(296\) −20.5914 + 7.06525i −1.19685 + 0.410659i
\(297\) 4.54072 + 7.86477i 0.263480 + 0.456360i
\(298\) 3.25767 13.3763i 0.188712 0.774869i
\(299\) −8.07522 + 13.9867i −0.467002 + 0.808871i
\(300\) 0 0
\(301\) 2.39527 + 4.40300i 0.138061 + 0.253785i
\(302\) 14.5911 15.2754i 0.839621 0.879001i
\(303\) −0.250283 + 0.433504i −0.0143784 + 0.0249041i
\(304\) −0.499844 0.707248i −0.0286680 0.0405635i
\(305\) 0 0
\(306\) 14.8674 4.35109i 0.849913 0.248736i
\(307\) 14.3171i 0.817117i −0.912732 0.408559i \(-0.866032\pi\)
0.912732 0.408559i \(-0.133968\pi\)
\(308\) 9.06652 0.185466i 0.516613 0.0105679i
\(309\) 10.3302 0.587667
\(310\) 0 0
\(311\) 12.8315 + 22.2249i 0.727609 + 1.26026i 0.957891 + 0.287132i \(0.0927020\pi\)
−0.230281 + 0.973124i \(0.573965\pi\)
\(312\) 1.48551 7.59831i 0.0841004 0.430170i
\(313\) −16.2527 + 28.1505i −0.918656 + 1.59116i −0.117196 + 0.993109i \(0.537391\pi\)
−0.801459 + 0.598049i \(0.795943\pi\)
\(314\) 8.41088 + 8.03406i 0.474653 + 0.453388i
\(315\) 0 0
\(316\) 31.8650 1.46107i 1.79255 0.0821915i
\(317\) −2.52937 1.46033i −0.142064 0.0820205i 0.427284 0.904118i \(-0.359471\pi\)
−0.569347 + 0.822097i \(0.692804\pi\)
\(318\) −4.85188 + 19.9223i −0.272080 + 1.11719i
\(319\) 3.66772 2.11756i 0.205353 0.118561i
\(320\) 0 0
\(321\) 20.6161i 1.15068i
\(322\) −23.7482 + 6.30082i −1.32343 + 0.351131i
\(323\) −1.34647 −0.0749198
\(324\) 1.08955 + 0.564158i 0.0605304 + 0.0313421i
\(325\) 0 0
\(326\) −4.01115 + 16.4702i −0.222157 + 0.912200i
\(327\) −6.71901 3.87922i −0.371562 0.214522i
\(328\) −17.7889 15.4975i −0.982228 0.855708i
\(329\) 0.785443 30.9573i 0.0433029 1.70673i
\(330\) 0 0
\(331\) −3.41964 1.97433i −0.187960 0.108519i 0.403067 0.915170i \(-0.367944\pi\)
−0.591027 + 0.806652i \(0.701277\pi\)
\(332\) −5.90713 9.22775i −0.324196 0.506439i
\(333\) 11.7406 6.77845i 0.643382 0.371457i
\(334\) −5.88299 20.1018i −0.321903 1.09992i
\(335\) 0 0
\(336\) 9.78785 6.55169i 0.533971 0.357424i
\(337\) 10.0467i 0.547280i −0.961832 0.273640i \(-0.911772\pi\)
0.961832 0.273640i \(-0.0882277\pi\)
\(338\) −9.43430 + 2.76104i −0.513158 + 0.150181i
\(339\) −0.185664 0.321579i −0.0100839 0.0174658i
\(340\) 0 0
\(341\) 0.243146 + 0.140380i 0.0131671 + 0.00760201i
\(342\) 0.389995 + 0.372522i 0.0210885 + 0.0201437i
\(343\) −18.4667 1.40802i −0.997106 0.0760258i
\(344\) 3.51983 4.04025i 0.189776 0.217836i
\(345\) 0 0
\(346\) 5.22732 21.4639i 0.281022 1.15391i
\(347\) 0.0100550 + 0.0174157i 0.000539780 + 0.000934926i 0.866295 0.499532i \(-0.166495\pi\)
−0.865755 + 0.500467i \(0.833162\pi\)
\(348\) 2.52925 4.88469i 0.135582 0.261847i
\(349\) 5.60366i 0.299957i 0.988689 + 0.149978i \(0.0479204\pi\)
−0.988689 + 0.149978i \(0.952080\pi\)
\(350\) 0 0
\(351\) 13.0331i 0.695657i
\(352\) −3.56301 9.01605i −0.189909 0.480557i
\(353\) −12.7422 22.0701i −0.678198 1.17467i −0.975523 0.219897i \(-0.929428\pi\)
0.297325 0.954776i \(-0.403905\pi\)
\(354\) 6.55672 + 1.59682i 0.348485 + 0.0848702i
\(355\) 0 0
\(356\) 3.56361 0.163398i 0.188871 0.00866007i
\(357\) 0.464459 18.3061i 0.0245818 0.968860i
\(358\) 6.24099 6.53371i 0.329847 0.345317i
\(359\) −16.7562 9.67422i −0.884361 0.510586i −0.0122672 0.999925i \(-0.503905\pi\)
−0.872094 + 0.489339i \(0.837238\pi\)
\(360\) 0 0
\(361\) 9.47656 + 16.4139i 0.498766 + 0.863889i
\(362\) −0.471779 1.61204i −0.0247962 0.0847269i
\(363\) 8.97361i 0.470993i
\(364\) 11.4016 + 6.27535i 0.597604 + 0.328917i
\(365\) 0 0
\(366\) 10.5746 3.09476i 0.552742 0.161765i
\(367\) 14.9780 8.64757i 0.781846 0.451399i −0.0552378 0.998473i \(-0.517592\pi\)
0.837084 + 0.547074i \(0.184258\pi\)
\(368\) 15.1596 + 21.4500i 0.790251 + 1.11816i
\(369\) 12.7237 + 7.34606i 0.662372 + 0.382420i
\(370\) 0 0
\(371\) −29.4034 17.9855i −1.52655 0.933762i
\(372\) 0.364274 0.0167026i 0.0188867 0.000865990i
\(373\) 9.62126 + 5.55483i 0.498170 + 0.287618i 0.727957 0.685622i \(-0.240470\pi\)
−0.229788 + 0.973241i \(0.573803\pi\)
\(374\) −14.6444 3.56649i −0.757242 0.184419i
\(375\) 0 0
\(376\) −31.3134 + 10.7441i −1.61486 + 0.554086i
\(377\) 6.07799 0.313032
\(378\) −14.0545 + 13.9856i −0.722887 + 0.719344i
\(379\) 14.3198i 0.735558i −0.929913 0.367779i \(-0.880118\pi\)
0.929913 0.367779i \(-0.119882\pi\)
\(380\) 0 0
\(381\) 15.3063 8.83707i 0.784164 0.452737i
\(382\) 14.5113 + 3.53409i 0.742465 + 0.180820i
\(383\) −9.05330 5.22693i −0.462602 0.267084i 0.250536 0.968107i \(-0.419393\pi\)
−0.713138 + 0.701024i \(0.752727\pi\)
\(384\) −10.2110 7.36753i −0.521077 0.375972i
\(385\) 0 0
\(386\) −5.28276 + 5.53054i −0.268886 + 0.281497i
\(387\) −1.66845 + 2.88984i −0.0848121 + 0.146899i
\(388\) −17.7379 + 11.3549i −0.900506 + 0.576457i
\(389\) −15.0629 26.0897i −0.763718 1.32280i −0.940922 0.338624i \(-0.890038\pi\)
0.177204 0.984174i \(-0.443295\pi\)
\(390\) 0 0
\(391\) 40.8369 2.06521
\(392\) 5.46768 + 19.0290i 0.276160 + 0.961112i
\(393\) 3.56871i 0.180018i
\(394\) 7.13031 + 24.3638i 0.359220 + 1.22743i
\(395\) 0 0
\(396\) 3.25489 + 5.08459i 0.163564 + 0.255510i
\(397\) −6.71896 + 11.6376i −0.337215 + 0.584073i −0.983908 0.178677i \(-0.942818\pi\)
0.646693 + 0.762750i \(0.276151\pi\)
\(398\) −7.82401 7.47349i −0.392182 0.374612i
\(399\) 0.560028 0.304660i 0.0280365 0.0152521i
\(400\) 0 0
\(401\) 14.4423 25.0149i 0.721216 1.24918i −0.239297 0.970946i \(-0.576917\pi\)
0.960513 0.278236i \(-0.0897497\pi\)
\(402\) 7.91250 + 1.92701i 0.394639 + 0.0961105i
\(403\) 0.201465 + 0.348948i 0.0100357 + 0.0173823i
\(404\) −0.413616 + 0.798809i −0.0205782 + 0.0397422i
\(405\) 0 0
\(406\) 6.52219 + 6.55431i 0.323691 + 0.325285i
\(407\) −13.1905 −0.653830
\(408\) −18.5167 + 6.35336i −0.916711 + 0.314538i
\(409\) 22.4328 12.9516i 1.10923 0.640413i 0.170599 0.985341i \(-0.445430\pi\)
0.938629 + 0.344927i \(0.112096\pi\)
\(410\) 0 0
\(411\) 0.725398 1.25643i 0.0357813 0.0619749i
\(412\) 18.5444 0.850295i 0.913619 0.0418910i
\(413\) −5.91929 + 9.67706i −0.291269 + 0.476177i
\(414\) −11.8281 11.2982i −0.581318 0.555274i
\(415\) 0 0
\(416\) 2.04130 13.7624i 0.100083 0.674760i
\(417\) −20.1260 + 11.6198i −0.985577 + 0.569023i
\(418\) −0.147390 0.503623i −0.00720909 0.0246330i
\(419\) −28.1022 −1.37288 −0.686441 0.727185i \(-0.740828\pi\)
−0.686441 + 0.727185i \(0.740828\pi\)
\(420\) 0 0
\(421\) 15.6269 0.761608 0.380804 0.924656i \(-0.375647\pi\)
0.380804 + 0.924656i \(0.375647\pi\)
\(422\) −6.18513 21.1342i −0.301087 1.02880i
\(423\) 17.8539 10.3080i 0.868088 0.501191i
\(424\) −7.07007 + 36.1631i −0.343353 + 1.75624i
\(425\) 0 0
\(426\) 5.73851 + 5.48142i 0.278032 + 0.265576i
\(427\) −0.469768 + 18.5153i −0.0227337 + 0.896019i
\(428\) 1.69694 + 37.0092i 0.0820245 + 1.78890i
\(429\) 2.34552 4.06256i 0.113243 0.196142i
\(430\) 0 0
\(431\) 17.2771 9.97495i 0.832210 0.480477i −0.0223988 0.999749i \(-0.507130\pi\)
0.854609 + 0.519273i \(0.173797\pi\)
\(432\) 19.2495 + 8.87391i 0.926141 + 0.426946i
\(433\) 11.8294 0.568487 0.284243 0.958752i \(-0.408258\pi\)
0.284243 + 0.958752i \(0.408258\pi\)
\(434\) −0.160105 + 0.591703i −0.00768530 + 0.0284027i
\(435\) 0 0
\(436\) −12.3810 6.41077i −0.592942 0.307020i
\(437\) 0.710872 + 1.23127i 0.0340056 + 0.0588995i
\(438\) −11.6454 2.83612i −0.556438 0.135515i
\(439\) −13.9474 + 24.1577i −0.665675 + 1.15298i 0.313427 + 0.949612i \(0.398523\pi\)
−0.979102 + 0.203371i \(0.934810\pi\)
\(440\) 0 0
\(441\) −5.61538 10.9766i −0.267399 0.522696i
\(442\) −15.6418 14.9410i −0.744003 0.710671i
\(443\) 9.59955 16.6269i 0.456088 0.789968i −0.542662 0.839951i \(-0.682583\pi\)
0.998750 + 0.0499830i \(0.0159167\pi\)
\(444\) −14.4289 + 9.23665i −0.684766 + 0.438352i
\(445\) 0 0
\(446\) 4.55525 + 15.5650i 0.215697 + 0.737024i
\(447\) 10.8344i 0.512449i
\(448\) 17.0315 12.5670i 0.804661 0.593734i
\(449\) 4.94035 0.233150 0.116575 0.993182i \(-0.462809\pi\)
0.116575 + 0.993182i \(0.462809\pi\)
\(450\) 0 0
\(451\) −7.14753 12.3799i −0.336564 0.582946i
\(452\) −0.359765 0.562003i −0.0169219 0.0264344i
\(453\) 8.31206 14.3969i 0.390535 0.676426i
\(454\) 8.74688 9.15713i 0.410511 0.429765i
\(455\) 0 0
\(456\) −0.513889 0.447696i −0.0240651 0.0209653i
\(457\) 22.6243 + 13.0622i 1.05832 + 0.611022i 0.924967 0.380046i \(-0.124092\pi\)
0.133354 + 0.991068i \(0.457425\pi\)
\(458\) 3.30700 + 0.805387i 0.154526 + 0.0376332i
\(459\) 28.5396 16.4774i 1.33212 0.769097i
\(460\) 0 0
\(461\) 13.3894i 0.623609i 0.950146 + 0.311804i \(0.100933\pi\)
−0.950146 + 0.311804i \(0.899067\pi\)
\(462\) 6.89788 1.83013i 0.320918 0.0851454i
\(463\) 16.4019 0.762259 0.381130 0.924522i \(-0.375535\pi\)
0.381130 + 0.924522i \(0.375535\pi\)
\(464\) 4.13834 8.97697i 0.192117 0.416746i
\(465\) 0 0
\(466\) −3.51861 0.856922i −0.162996 0.0396962i
\(467\) 10.3345 + 5.96663i 0.478224 + 0.276103i 0.719676 0.694310i \(-0.244290\pi\)
−0.241452 + 0.970413i \(0.577624\pi\)
\(468\) 0.396850 + 8.65507i 0.0183444 + 0.400081i
\(469\) −7.14326 + 11.6781i −0.329845 + 0.539242i
\(470\) 0 0
\(471\) 7.92716 + 4.57675i 0.365264 + 0.210885i
\(472\) 11.9018 + 2.32686i 0.547824 + 0.107102i
\(473\) 2.81175 1.62336i 0.129284 0.0746423i
\(474\) 24.0925 7.05090i 1.10660 0.323859i
\(475\) 0 0
\(476\) −0.673018 32.9005i −0.0308477 1.50799i
\(477\) 22.9465i 1.05065i
\(478\) 2.50726 + 8.56716i 0.114680 + 0.391853i
\(479\) 18.5889 + 32.1969i 0.849347 + 1.47111i 0.881792 + 0.471639i \(0.156337\pi\)
−0.0324444 + 0.999474i \(0.510329\pi\)
\(480\) 0 0
\(481\) −16.3941 9.46512i −0.747505 0.431572i
\(482\) 9.40312 9.84415i 0.428300 0.448389i
\(483\) −16.9850 + 9.23998i −0.772843 + 0.420434i
\(484\) 0.738629 + 16.1091i 0.0335741 + 0.732230i
\(485\) 0 0
\(486\) −20.9056 5.09135i −0.948298 0.230948i
\(487\) 0.489188 + 0.847298i 0.0221672 + 0.0383948i 0.876896 0.480680i \(-0.159610\pi\)
−0.854729 + 0.519075i \(0.826277\pi\)
\(488\) 18.7283 6.42599i 0.847791 0.290891i
\(489\) 13.3403i 0.603271i
\(490\) 0 0
\(491\) 18.4167i 0.831132i 0.909563 + 0.415566i \(0.136417\pi\)
−0.909563 + 0.415566i \(0.863583\pi\)
\(492\) −16.4876 8.53712i −0.743317 0.384883i
\(493\) −7.68420 13.3094i −0.346079 0.599426i
\(494\) 0.178198 0.731699i 0.00801751 0.0329207i
\(495\) 0 0
\(496\) 0.652555 0.0599677i 0.0293006 0.00269263i
\(497\) −11.7181 + 6.37478i −0.525631 + 0.285948i
\(498\) −6.23504 5.95570i −0.279399 0.266881i
\(499\) 16.9167 + 9.76688i 0.757297 + 0.437226i 0.828324 0.560249i \(-0.189294\pi\)
−0.0710273 + 0.997474i \(0.522628\pi\)
\(500\) 0 0
\(501\) −8.24149 14.2747i −0.368203 0.637746i
\(502\) −33.8653 + 9.91101i −1.51148 + 0.442350i
\(503\) 11.7007i 0.521707i −0.965378 0.260853i \(-0.915996\pi\)
0.965378 0.260853i \(-0.0840039\pi\)
\(504\) −8.90750 + 9.71556i −0.396771 + 0.432765i
\(505\) 0 0
\(506\) 4.47017 + 15.2743i 0.198723 + 0.679025i
\(507\) −6.69948 + 3.86795i −0.297534 + 0.171782i
\(508\) 26.7498 17.1238i 1.18683 0.759747i
\(509\) 1.85583 + 1.07147i 0.0822584 + 0.0474919i 0.540565 0.841302i \(-0.318211\pi\)
−0.458307 + 0.888794i \(0.651544\pi\)
\(510\) 0 0
\(511\) 10.5132 17.1874i 0.465079 0.760327i
\(512\) −18.9368 12.3854i −0.836896 0.547363i
\(513\) 0.993611 + 0.573662i 0.0438690 + 0.0253278i
\(514\) 5.68088 23.3263i 0.250573 1.02888i
\(515\) 0 0
\(516\) 1.93897 3.74469i 0.0853583 0.164851i
\(517\) −20.0588 −0.882186
\(518\) −7.38531 27.8357i −0.324492 1.22303i
\(519\) 17.3851i 0.763120i
\(520\) 0 0
\(521\) −11.8399 + 6.83576i −0.518714 + 0.299480i −0.736408 0.676537i \(-0.763480\pi\)
0.217694 + 0.976017i \(0.430146\pi\)
\(522\) −1.45659 + 5.98091i −0.0637533 + 0.261777i
\(523\) 32.5328 + 18.7828i 1.42256 + 0.821316i 0.996517 0.0833873i \(-0.0265739\pi\)
0.426043 + 0.904703i \(0.359907\pi\)
\(524\) −0.293745 6.40640i −0.0128323 0.279865i
\(525\) 0 0
\(526\) −15.3739 14.6852i −0.670336 0.640304i
\(527\) 0.509411 0.882325i 0.0221903 0.0384347i
\(528\) −4.40326 6.23034i −0.191627 0.271141i
\(529\) −10.0599 17.4242i −0.437386 0.757575i
\(530\) 0 0
\(531\) −7.55201 −0.327729
\(532\) 0.980262 0.593011i 0.0424998 0.0257103i
\(533\) 20.5154i 0.888621i
\(534\) 2.69437 0.788534i 0.116597 0.0341232i
\(535\) 0 0
\(536\) 14.3628 + 2.80800i 0.620379 + 0.121287i
\(537\) 3.55530 6.15795i 0.153422 0.265735i
\(538\) 30.7030 32.1431i 1.32370 1.38579i
\(539\) −0.608349 + 11.9810i −0.0262035 + 0.516056i
\(540\) 0 0
\(541\) −13.3052 + 23.0452i −0.572034 + 0.990793i 0.424323 + 0.905511i \(0.360512\pi\)
−0.996357 + 0.0852815i \(0.972821\pi\)
\(542\) −1.11023 + 4.55870i −0.0476883 + 0.195813i
\(543\) −0.660916 1.14474i −0.0283626 0.0491255i
\(544\) −32.7174 + 12.9294i −1.40275 + 0.554344i
\(545\) 0 0
\(546\) 9.88639 + 2.67510i 0.423098 + 0.114484i
\(547\) −24.0582 −1.02865 −0.514327 0.857594i \(-0.671958\pi\)
−0.514327 + 0.857594i \(0.671958\pi\)
\(548\) 1.19879 2.31519i 0.0512097 0.0989002i
\(549\) −10.6783 + 6.16513i −0.455740 + 0.263121i
\(550\) 0 0
\(551\) 0.267527 0.463370i 0.0113970 0.0197402i
\(552\) 15.5856 + 13.5781i 0.663369 + 0.577921i
\(553\) −1.07029 + 42.1842i −0.0455134 + 1.79385i
\(554\) 14.4042 15.0798i 0.611976 0.640679i
\(555\) 0 0
\(556\) −35.1730 + 22.5160i −1.49167 + 0.954889i
\(557\) 23.1592 13.3710i 0.981286 0.566546i 0.0786280 0.996904i \(-0.474946\pi\)
0.902658 + 0.430358i \(0.141613\pi\)
\(558\) −0.391655 + 0.114622i −0.0165801 + 0.00485233i
\(559\) 4.65950 0.197076
\(560\) 0 0
\(561\) −11.8615 −0.500791
\(562\) 27.8837 8.16043i 1.17620 0.344227i
\(563\) −15.1306 + 8.73567i −0.637680 + 0.368165i −0.783720 0.621114i \(-0.786680\pi\)
0.146041 + 0.989279i \(0.453347\pi\)
\(564\) −21.9420 + 14.0462i −0.923926 + 0.591450i
\(565\) 0 0
\(566\) 27.1913 28.4666i 1.14293 1.19654i
\(567\) −0.846937 + 1.38460i −0.0355680 + 0.0581479i
\(568\) 10.7527 + 9.36768i 0.451175 + 0.393059i
\(569\) −10.1792 + 17.6309i −0.426734 + 0.739125i −0.996581 0.0826258i \(-0.973669\pi\)
0.569846 + 0.821751i \(0.307003\pi\)
\(570\) 0 0
\(571\) −19.2734 + 11.1275i −0.806565 + 0.465671i −0.845762 0.533561i \(-0.820854\pi\)
0.0391963 + 0.999232i \(0.487520\pi\)
\(572\) 3.87619 7.48601i 0.162072 0.313006i
\(573\) 11.7537 0.491019
\(574\) 22.1232 22.0147i 0.923403 0.918877i
\(575\) 0 0
\(576\) 13.0534 + 5.30687i 0.543893 + 0.221119i
\(577\) −0.485564 0.841022i −0.0202143 0.0350122i 0.855741 0.517404i \(-0.173102\pi\)
−0.875956 + 0.482392i \(0.839768\pi\)
\(578\) −7.25323 + 29.7825i −0.301694 + 1.23879i
\(579\) −3.00942 + 5.21247i −0.125067 + 0.216623i
\(580\) 0 0
\(581\) 12.7321 6.92636i 0.528215 0.287354i
\(582\) −11.4483 + 11.9852i −0.474546 + 0.496803i
\(583\) −11.1632 + 19.3352i −0.462332 + 0.800783i
\(584\) −21.1388 4.13274i −0.874728 0.171014i
\(585\) 0 0
\(586\) 5.81497 1.70181i 0.240214 0.0703011i
\(587\) 17.6042i 0.726602i 0.931672 + 0.363301i \(0.118350\pi\)
−0.931672 + 0.363301i \(0.881650\pi\)
\(588\) 7.72418 + 13.5318i 0.318540 + 0.558041i
\(589\) 0.0354704 0.00146153
\(590\) 0 0
\(591\) 9.98887 + 17.3012i 0.410887 + 0.711677i
\(592\) −25.1419 + 17.7689i −1.03333 + 0.730298i
\(593\) 11.1886 19.3792i 0.459461 0.795810i −0.539471 0.842004i \(-0.681376\pi\)
0.998932 + 0.0461938i \(0.0147092\pi\)
\(594\) 9.28710 + 8.87103i 0.381054 + 0.363983i
\(595\) 0 0
\(596\) −0.891792 19.4494i −0.0365292 0.796680i
\(597\) −7.37405 4.25741i −0.301800 0.174244i
\(598\) −5.40453 + 22.1915i −0.221008 + 0.907480i
\(599\) 15.9061 9.18338i 0.649905 0.375223i −0.138515 0.990360i \(-0.544233\pi\)
0.788420 + 0.615137i \(0.210900\pi\)
\(600\) 0 0
\(601\) 11.9668i 0.488136i 0.969758 + 0.244068i \(0.0784820\pi\)
−0.969758 + 0.244068i \(0.921518\pi\)
\(602\) 5.00003 + 5.02465i 0.203786 + 0.204790i
\(603\) −9.11360 −0.371134
\(604\) 13.7365 26.5289i 0.558928 1.07945i
\(605\) 0 0
\(606\) −0.167508 + 0.687805i −0.00680455 + 0.0279402i
\(607\) 14.1791 + 8.18629i 0.575511 + 0.332271i 0.759347 0.650686i \(-0.225518\pi\)
−0.183837 + 0.982957i \(0.558852\pi\)
\(608\) −0.959363 0.761386i −0.0389073 0.0308783i
\(609\) 6.20749 + 3.79701i 0.251540 + 0.153863i
\(610\) 0 0
\(611\) −24.9304 14.3936i −1.00858 0.582303i
\(612\) 18.4509 11.8113i 0.745834 0.477445i
\(613\) −39.6151 + 22.8718i −1.60004 + 0.923783i −0.608561 + 0.793507i \(0.708253\pi\)
−0.991478 + 0.130276i \(0.958414\pi\)
\(614\) −5.68705 19.4323i −0.229511 0.784223i
\(615\) 0 0
\(616\) 12.2322 3.85315i 0.492847 0.155248i
\(617\) 3.88479i 0.156396i 0.996938 + 0.0781979i \(0.0249166\pi\)
−0.996938 + 0.0781979i \(0.975083\pi\)
\(618\) 14.0211 4.10340i 0.564010 0.165063i
\(619\) 10.2165 + 17.6955i 0.410636 + 0.711242i 0.994959 0.100278i \(-0.0319734\pi\)
−0.584323 + 0.811521i \(0.698640\pi\)
\(620\) 0 0
\(621\) −30.1350 17.3985i −1.20928 0.698176i
\(622\) 26.2442 + 25.0684i 1.05230 + 1.00515i
\(623\) −0.119695 + 4.71765i −0.00479549 + 0.189009i
\(624\) −1.00196 10.9031i −0.0401106 0.436474i
\(625\) 0 0
\(626\) −10.8775 + 44.6640i −0.434752 + 1.78513i
\(627\) −0.206479 0.357633i −0.00824599 0.0142825i
\(628\) 14.6072 + 7.56350i 0.582892 + 0.301816i
\(629\) 47.8657i 1.90853i
\(630\) 0 0
\(631\) 23.7070i 0.943762i −0.881662 0.471881i \(-0.843575\pi\)
0.881662 0.471881i \(-0.156425\pi\)
\(632\) 42.6695 14.6406i 1.69730 0.582371i
\(633\) −8.66476 15.0078i −0.344393 0.596507i
\(634\) −4.01315 0.977362i −0.159382 0.0388160i
\(635\) 0 0
\(636\) 1.32821 + 28.9675i 0.0526670 + 1.14864i
\(637\) −9.35326 + 14.4542i −0.370590 + 0.572696i
\(638\) 4.13700 4.33103i 0.163785 0.171467i
\(639\) −7.69103 4.44042i −0.304252 0.175660i
\(640\) 0 0
\(641\) −7.19683 12.4653i −0.284258 0.492349i 0.688171 0.725548i \(-0.258414\pi\)
−0.972429 + 0.233200i \(0.925080\pi\)
\(642\) 8.18916 + 27.9818i 0.323200 + 1.10436i
\(643\) 47.6127i 1.87766i 0.344380 + 0.938830i \(0.388089\pi\)
−0.344380 + 0.938830i \(0.611911\pi\)
\(644\) −29.7302 + 17.9853i −1.17153 + 0.708720i
\(645\) 0 0
\(646\) −1.82754 + 0.534849i −0.0719038 + 0.0210434i
\(647\) 0.00937783 0.00541429i 0.000368680 0.000212858i −0.499816 0.866132i \(-0.666599\pi\)
0.500184 + 0.865919i \(0.333266\pi\)
\(648\) 1.70292 + 0.332929i 0.0668970 + 0.0130787i
\(649\) 6.36349 + 3.67396i 0.249789 + 0.144216i
\(650\) 0 0
\(651\) −0.0122353 + 0.482240i −0.000479540 + 0.0189005i
\(652\) 1.09806 + 23.9480i 0.0430033 + 0.937877i
\(653\) −9.19915 5.31113i −0.359990 0.207841i 0.309086 0.951034i \(-0.399977\pi\)
−0.669077 + 0.743193i \(0.733310\pi\)
\(654\) −10.6605 2.59626i −0.416859 0.101522i
\(655\) 0 0
\(656\) −30.3005 13.9684i −1.18304 0.545374i
\(657\) 13.4131 0.523296
\(658\) −11.2308 42.3297i −0.437824 1.65018i
\(659\) 13.3688i 0.520773i −0.965505 0.260386i \(-0.916150\pi\)
0.965505 0.260386i \(-0.0838499\pi\)
\(660\) 0 0
\(661\) −6.49983 + 3.75268i −0.252814 + 0.145962i −0.621052 0.783769i \(-0.713294\pi\)
0.368238 + 0.929732i \(0.379961\pi\)
\(662\) −5.42566 1.32137i −0.210874 0.0513563i
\(663\) −14.7422 8.51142i −0.572540 0.330556i
\(664\) −11.6831 10.1782i −0.453393 0.394992i
\(665\) 0 0
\(666\) 13.2428 13.8639i 0.513147 0.537215i
\(667\) −8.11376 + 14.0534i −0.314166 + 0.544151i
\(668\) −15.9698 24.9470i −0.617889 0.965227i
\(669\) 6.38146 + 11.0530i 0.246721 + 0.427334i
\(670\) 0 0
\(671\) 11.9970 0.463141
\(672\) 10.6824 12.7804i 0.412082 0.493016i
\(673\) 19.9107i 0.767501i −0.923437 0.383751i \(-0.874632\pi\)
0.923437 0.383751i \(-0.125368\pi\)
\(674\) −3.99078 13.6362i −0.153719 0.525249i
\(675\) 0 0
\(676\) −11.7083 + 7.49503i −0.450318 + 0.288270i
\(677\) −13.0027 + 22.5213i −0.499733 + 0.865563i −1.00000 0.000308393i \(-0.999902\pi\)
0.500267 + 0.865871i \(0.333235\pi\)
\(678\) −0.379736 0.362724i −0.0145837 0.0139303i
\(679\) −13.3141 24.4740i −0.510948 0.939226i
\(680\) 0 0
\(681\) 4.98282 8.63049i 0.190942 0.330721i
\(682\) 0.385779 + 0.0939527i 0.0147722 + 0.00359763i
\(683\) −7.41000 12.8345i −0.283536 0.491098i 0.688717 0.725030i \(-0.258174\pi\)
−0.972253 + 0.233932i \(0.924841\pi\)
\(684\) 0.677307 + 0.350704i 0.0258975 + 0.0134095i
\(685\) 0 0
\(686\) −25.6238 + 5.42429i −0.978320 + 0.207100i
\(687\) 2.67856 0.102194
\(688\) 3.17253 6.88191i 0.120951 0.262370i
\(689\) −27.7487 + 16.0207i −1.05714 + 0.610341i
\(690\) 0 0
\(691\) −13.2455 + 22.9418i −0.503882 + 0.872749i 0.496108 + 0.868261i \(0.334762\pi\)
−0.999990 + 0.00448815i \(0.998571\pi\)
\(692\) −1.43099 31.2090i −0.0543980 1.18639i
\(693\) −7.01549 + 3.81650i −0.266497 + 0.144977i
\(694\) 0.0205654 + 0.0196440i 0.000780651 + 0.000745677i
\(695\) 0 0
\(696\) 1.49260 7.63457i 0.0565768 0.289388i
\(697\) −44.9241 + 25.9369i −1.70162 + 0.982432i
\(698\) 2.22590 + 7.60574i 0.0842514 + 0.287882i
\(699\) −2.84996 −0.107795
\(700\) 0 0
\(701\) −0.713553 −0.0269505 −0.0134753 0.999909i \(-0.504289\pi\)
−0.0134753 + 0.999909i \(0.504289\pi\)
\(702\) 5.17705 + 17.6896i 0.195395 + 0.667653i
\(703\) −1.44319 + 0.833226i −0.0544310 + 0.0314257i
\(704\) −8.41738 10.8220i −0.317242 0.407870i
\(705\) 0 0
\(706\) −26.0615 24.8939i −0.980836 0.936893i
\(707\) −1.01513 0.620938i −0.0381779 0.0233528i
\(708\) 9.53361 0.437133i 0.358295 0.0164285i
\(709\) −9.56584 + 16.5685i −0.359253 + 0.622244i −0.987836 0.155498i \(-0.950302\pi\)
0.628584 + 0.777742i \(0.283635\pi\)
\(710\) 0 0
\(711\) −24.3288 + 14.0463i −0.912403 + 0.526776i
\(712\) 4.77192 1.63732i 0.178835 0.0613612i
\(713\) −1.07578 −0.0402881
\(714\) −6.64117 25.0310i −0.248540 0.936761i
\(715\) 0 0
\(716\) 5.87545 11.3471i 0.219576 0.424063i
\(717\) 3.51243 + 6.08371i 0.131174 + 0.227200i
\(718\) −26.5858 6.47470i −0.992172 0.241634i
\(719\) 20.0286 34.6906i 0.746941 1.29374i −0.202341 0.979315i \(-0.564855\pi\)
0.949282 0.314425i \(-0.101812\pi\)
\(720\) 0 0
\(721\) −0.622875 + 24.5499i −0.0231971 + 0.914284i
\(722\) 19.3823 + 18.5140i 0.721335 + 0.689019i
\(723\) 5.35666 9.27801i 0.199216 0.345053i
\(724\) −1.28067 2.00059i −0.0475959 0.0743514i
\(725\) 0 0
\(726\) 3.56452 + 12.1797i 0.132292 + 0.452032i
\(727\) 14.4074i 0.534341i 0.963649 + 0.267171i \(0.0860887\pi\)
−0.963649 + 0.267171i \(0.913911\pi\)
\(728\) 17.9678 + 3.98846i 0.665932 + 0.147822i
\(729\) −18.7733 −0.695307
\(730\) 0 0
\(731\) −5.89085 10.2032i −0.217881 0.377381i
\(732\) 13.1234 8.40091i 0.485054 0.310507i
\(733\) 0.387263 0.670759i 0.0143039 0.0247751i −0.858785 0.512336i \(-0.828780\pi\)
0.873089 + 0.487561i \(0.162113\pi\)
\(734\) 16.8944 17.6868i 0.623584 0.652831i
\(735\) 0 0
\(736\) 29.0963 + 23.0919i 1.07250 + 0.851179i
\(737\) 7.67931 + 4.43365i 0.282871 + 0.163316i
\(738\) 20.1877 + 4.91652i 0.743120 + 0.180980i
\(739\) 7.09915 4.09870i 0.261147 0.150773i −0.363711 0.931512i \(-0.618490\pi\)
0.624858 + 0.780739i \(0.285157\pi\)
\(740\) 0 0
\(741\) 0.592653i 0.0217716i
\(742\) −47.0529 12.7318i −1.72737 0.467398i
\(743\) −8.66498 −0.317887 −0.158944 0.987288i \(-0.550809\pi\)
−0.158944 + 0.987288i \(0.550809\pi\)
\(744\) 0.487788 0.167368i 0.0178832 0.00613600i
\(745\) 0 0
\(746\) 15.2653 + 3.71770i 0.558901 + 0.136115i
\(747\) 8.35649 + 4.82462i 0.305748 + 0.176524i
\(748\) −21.2932 + 0.976331i −0.778557 + 0.0356982i
\(749\) −48.9942 1.24307i −1.79021 0.0454209i
\(750\) 0 0
\(751\) 6.73208 + 3.88677i 0.245657 + 0.141830i 0.617774 0.786356i \(-0.288035\pi\)
−0.372117 + 0.928186i \(0.621368\pi\)
\(752\) −38.2333 + 27.0212i −1.39422 + 0.985361i
\(753\) −24.0484 + 13.8843i −0.876372 + 0.505974i
\(754\) 8.24955 2.41431i 0.300431 0.0879240i
\(755\) 0 0
\(756\) −13.5205 + 24.5652i −0.491738 + 0.893429i
\(757\) 5.10767i 0.185641i −0.995683 0.0928206i \(-0.970412\pi\)
0.995683 0.0928206i \(-0.0295883\pi\)
\(758\) −5.68813 19.4360i −0.206602 0.705946i
\(759\) 6.26227 + 10.8466i 0.227306 + 0.393705i
\(760\) 0 0
\(761\) −4.16241 2.40317i −0.150887 0.0871149i 0.422655 0.906290i \(-0.361098\pi\)
−0.573543 + 0.819176i \(0.694431\pi\)
\(762\) 17.2646 18.0744i 0.625432 0.654766i
\(763\) 9.62411 15.7338i 0.348416 0.569603i
\(764\) 21.0998 0.967463i 0.763364 0.0350016i
\(765\) 0 0
\(766\) −14.3641 3.49824i −0.518997 0.126397i
\(767\) 5.27264 + 9.13249i 0.190384 + 0.329755i
\(768\) −16.7857 5.94378i −0.605703 0.214478i
\(769\) 24.7841i 0.893738i −0.894600 0.446869i \(-0.852539\pi\)
0.894600 0.446869i \(-0.147461\pi\)
\(770\) 0 0
\(771\) 18.8935i 0.680434i
\(772\) −4.97335 + 9.60493i −0.178995 + 0.345689i
\(773\) 12.6560 + 21.9209i 0.455205 + 0.788438i 0.998700 0.0509742i \(-0.0162326\pi\)
−0.543495 + 0.839412i \(0.682899\pi\)
\(774\) −1.11665 + 4.58507i −0.0401371 + 0.164807i
\(775\) 0 0
\(776\) −19.5649 + 22.4577i −0.702340 + 0.806184i
\(777\) −10.8304 19.9084i −0.388537 0.714210i
\(778\) −30.8080 29.4277i −1.10452 1.05504i
\(779\) −1.56404 0.902999i −0.0560375 0.0323533i
\(780\) 0 0
\(781\) 4.32042 + 7.48318i 0.154597 + 0.267769i
\(782\) 55.4272 16.2213i 1.98207 0.580073i
\(783\) 13.0953i 0.467989i
\(784\) 14.9799 + 23.6559i 0.534998 + 0.844853i
\(785\) 0 0
\(786\) −1.41757 4.84375i −0.0505631 0.172771i
\(787\) −43.2134 + 24.9493i −1.54039 + 0.889345i −0.541577 + 0.840651i \(0.682173\pi\)
−0.998814 + 0.0486943i \(0.984494\pi\)
\(788\) 19.3557 + 30.2363i 0.689518 + 1.07712i
\(789\) −14.4898 8.36567i −0.515850 0.297826i
\(790\) 0 0
\(791\) 0.775428 0.421840i 0.0275711 0.0149989i
\(792\) 6.43751 + 5.60830i 0.228747 + 0.199282i
\(793\) 14.9107 + 8.60871i 0.529495 + 0.305704i
\(794\) −4.49682 + 18.4644i −0.159586 + 0.655277i
\(795\) 0 0
\(796\) −13.5880 7.03576i −0.481615 0.249376i
\(797\) −38.2770 −1.35584 −0.677921 0.735135i \(-0.737119\pi\)
−0.677921 + 0.735135i \(0.737119\pi\)
\(798\) 0.639098 0.635966i 0.0226238 0.0225129i
\(799\) 72.7894i 2.57510i
\(800\) 0 0
\(801\) −2.72080 + 1.57086i −0.0961349 + 0.0555035i
\(802\) 9.66587 39.6890i 0.341314 1.40147i
\(803\) −11.3022 6.52532i −0.398846 0.230274i
\(804\) 11.5049 0.527522i 0.405748 0.0186043i
\(805\) 0 0
\(806\) 0.412054 + 0.393594i 0.0145140 + 0.0138638i
\(807\) 17.4906 30.2945i 0.615697 1.06642i
\(808\) −0.244090 + 1.24851i −0.00858704 + 0.0439223i
\(809\) 4.90151 + 8.48966i 0.172328 + 0.298480i 0.939233 0.343280i \(-0.111538\pi\)
−0.766906 + 0.641760i \(0.778205\pi\)
\(810\) 0 0
\(811\) −4.75188 −0.166861 −0.0834305 0.996514i \(-0.526588\pi\)
−0.0834305 + 0.996514i \(0.526588\pi\)
\(812\) 11.4560 + 6.30529i 0.402026 + 0.221272i
\(813\) 3.69240i 0.129498i
\(814\) −17.9033 + 5.23957i −0.627509 + 0.183647i
\(815\) 0 0
\(816\) −22.6086 + 15.9785i −0.791460 + 0.559360i
\(817\) 0.205091 0.355228i 0.00717522 0.0124278i
\(818\) 25.3029 26.4897i 0.884696 0.926191i
\(819\) −11.4579 0.290709i −0.400372 0.0101582i
\(820\) 0 0
\(821\) −7.82822 + 13.5589i −0.273207 + 0.473208i −0.969681 0.244374i \(-0.921418\pi\)
0.696474 + 0.717582i \(0.254751\pi\)
\(822\) 0.485490 1.99347i 0.0169334 0.0695302i
\(823\) −9.89848 17.1447i −0.345039 0.597626i 0.640322 0.768107i \(-0.278801\pi\)
−0.985361 + 0.170481i \(0.945468\pi\)
\(824\) 24.8323 8.52035i 0.865073 0.296820i
\(825\) 0 0
\(826\) −4.19020 + 15.4858i −0.145796 + 0.538819i
\(827\) −13.0808 −0.454863 −0.227431 0.973794i \(-0.573033\pi\)
−0.227431 + 0.973794i \(0.573033\pi\)
\(828\) −20.5419 10.6364i −0.713880 0.369641i
\(829\) 21.7092 12.5338i 0.753990 0.435316i −0.0731437 0.997321i \(-0.523303\pi\)
0.827134 + 0.562005i \(0.189970\pi\)
\(830\) 0 0
\(831\) 8.20562 14.2126i 0.284650 0.493028i
\(832\) −2.69613 19.4904i −0.0934715 0.675707i
\(833\) 43.4764 + 2.20757i 1.50637 + 0.0764879i
\(834\) −22.7011 + 23.7658i −0.786074 + 0.822943i
\(835\) 0 0
\(836\) −0.400100 0.625012i −0.0138378 0.0216165i
\(837\) −0.751825 + 0.434066i −0.0259869 + 0.0150035i
\(838\) −38.1426 + 11.1628i −1.31761 + 0.385613i
\(839\) 32.1347 1.10941 0.554707 0.832046i \(-0.312830\pi\)
0.554707 + 0.832046i \(0.312830\pi\)
\(840\) 0 0
\(841\) −22.8930 −0.789414
\(842\) 21.2101 6.20735i 0.730948 0.213919i
\(843\) 19.8007 11.4320i 0.681974 0.393738i
\(844\) −16.7899 26.2282i −0.577933 0.902811i
\(845\) 0 0
\(846\) 20.1383 21.0828i 0.692368 0.724842i
\(847\) −21.3258 0.541075i −0.732764 0.0185916i
\(848\) 4.76870 + 51.8919i 0.163758 + 1.78198i
\(849\) 15.4900 26.8295i 0.531616 0.920785i
\(850\) 0 0
\(851\) 43.7702 25.2707i 1.50042 0.866270i
\(852\) 9.96612 + 5.16037i 0.341434 + 0.176791i
\(853\) −45.8238 −1.56898 −0.784489 0.620142i \(-0.787075\pi\)
−0.784489 + 0.620142i \(0.787075\pi\)
\(854\) 6.71709 + 25.3171i 0.229854 + 0.866334i
\(855\) 0 0
\(856\) 17.0041 + 49.5578i 0.581187 + 1.69385i
\(857\) −18.6629 32.3250i −0.637512 1.10420i −0.985977 0.166881i \(-0.946630\pi\)
0.348465 0.937322i \(-0.386703\pi\)
\(858\) 1.56980 6.44574i 0.0535919 0.220054i
\(859\) 6.62605 11.4767i 0.226078 0.391579i −0.730564 0.682844i \(-0.760743\pi\)
0.956642 + 0.291265i \(0.0940762\pi\)
\(860\) 0 0
\(861\) 12.8163 20.9525i 0.436778 0.714059i
\(862\) 19.4877 20.4017i 0.663752 0.694884i
\(863\) 3.96707 6.87116i 0.135041 0.233897i −0.790572 0.612369i \(-0.790217\pi\)
0.925613 + 0.378471i \(0.123550\pi\)
\(864\) 29.6519 + 4.39808i 1.00878 + 0.149626i
\(865\) 0 0
\(866\) 16.0559 4.69892i 0.545601 0.159676i
\(867\) 24.1229i 0.819255i
\(868\) 0.0177294 + 0.866705i 0.000601776 + 0.0294179i
\(869\) 27.3334 0.927221
\(870\) 0 0
\(871\) 6.36291 + 11.0209i 0.215599 + 0.373428i
\(872\) −19.3510 3.78322i −0.655308 0.128116i
\(873\) 9.27406 16.0631i 0.313879 0.543655i
\(874\) 1.45394 + 1.38880i 0.0491803 + 0.0469769i
\(875\) 0 0
\(876\) −16.9326 + 0.776391i −0.572101 + 0.0262318i
\(877\) −44.8202 25.8770i −1.51347 0.873803i −0.999876 0.0157714i \(-0.994980\pi\)
−0.513596 0.858032i \(-0.671687\pi\)
\(878\) −9.33465 + 38.3290i −0.315029 + 1.29354i
\(879\) 4.12932 2.38407i 0.139279 0.0804126i
\(880\) 0 0
\(881\) 7.69261i 0.259171i 0.991568 + 0.129585i \(0.0413646\pi\)
−0.991568 + 0.129585i \(0.958635\pi\)
\(882\) −11.9818 12.6678i −0.403449 0.426547i
\(883\) −35.2766 −1.18715 −0.593575 0.804778i \(-0.702284\pi\)
−0.593575 + 0.804778i \(0.702284\pi\)
\(884\) −27.1652 14.0659i −0.913665 0.473087i
\(885\) 0 0
\(886\) 6.42472 26.3806i 0.215843 0.886272i
\(887\) 10.0685 + 5.81304i 0.338067 + 0.195183i 0.659417 0.751778i \(-0.270803\pi\)
−0.321350 + 0.946960i \(0.604137\pi\)
\(888\) −15.9151 + 18.2682i −0.534076 + 0.613041i
\(889\) 20.0784 + 36.9082i 0.673409 + 1.23786i
\(890\) 0 0
\(891\) 0.910494 + 0.525674i 0.0305027 + 0.0176107i
\(892\) 12.3655 + 19.3166i 0.414028 + 0.646769i
\(893\) −2.19466 + 1.26709i −0.0734414 + 0.0424014i
\(894\) −4.30366 14.7053i −0.143936 0.491819i
\(895\) 0 0
\(896\) 18.1246 23.8222i 0.605501 0.795844i
\(897\) 17.9744i 0.600149i
\(898\) 6.70545 1.96242i 0.223764 0.0654867i
\(899\) 0.202426 + 0.350613i 0.00675130 + 0.0116936i
\(900\) 0 0
\(901\) 70.1635 + 40.5089i 2.33749 + 1.34955i
\(902\) −14.6188 13.9638i −0.486752 0.464945i
\(903\) 4.75877 + 2.91086i 0.158362 + 0.0968673i
\(904\) −0.711543 0.619890i −0.0236656 0.0206172i
\(905\) 0 0
\(906\) 5.56304 22.8424i 0.184820 0.758888i
\(907\) 11.5887 + 20.0723i 0.384798 + 0.666490i 0.991741 0.128256i \(-0.0409378\pi\)
−0.606943 + 0.794745i \(0.707604\pi\)
\(908\) 8.23457 15.9033i 0.273274 0.527768i
\(909\) 0.792212i 0.0262760i
\(910\) 0 0
\(911\) 43.0818i 1.42737i 0.700469 + 0.713683i \(0.252974\pi\)
−0.700469 + 0.713683i \(0.747026\pi\)
\(912\) −0.875327 0.403521i −0.0289850 0.0133619i
\(913\) −4.69424 8.13067i −0.155357 0.269086i
\(914\) 35.8962 + 8.74216i 1.18734 + 0.289165i
\(915\) 0 0
\(916\) 4.80845 0.220476i 0.158876 0.00728473i
\(917\) 8.48105 + 0.215180i 0.280069 + 0.00710587i
\(918\) 32.1911 33.7010i 1.06247 1.11230i
\(919\) −18.1455 10.4763i −0.598564 0.345581i 0.169912 0.985459i \(-0.445652\pi\)
−0.768476 + 0.639878i \(0.778985\pi\)
\(920\) 0 0
\(921\) −7.96699 13.7992i −0.262521 0.454700i
\(922\) 5.31858 + 18.1733i 0.175158 + 0.598504i
\(923\) 12.4008i 0.408177i
\(924\) 8.63540 5.22399i 0.284084 0.171857i
\(925\) 0 0
\(926\) 22.2620 6.51518i 0.731573 0.214102i
\(927\) −14.1586 + 8.17448i −0.465030 + 0.268485i
\(928\) 2.05104 13.8281i 0.0673287 0.453930i
\(929\) 8.90058 + 5.13875i 0.292019 + 0.168597i 0.638852 0.769330i \(-0.279410\pi\)
−0.346833 + 0.937927i \(0.612743\pi\)
\(930\) 0 0
\(931\) 0.690259 + 1.34928i 0.0226223 + 0.0442208i
\(932\) −5.11613 + 0.234584i −0.167585 + 0.00768405i
\(933\) 24.7349 + 14.2807i 0.809784 + 0.467529i
\(934\) 16.3969 + 3.99331i 0.536524 + 0.130665i
\(935\) 0 0
\(936\) 3.97662 + 11.5897i 0.129980 + 0.378822i
\(937\) 38.3992 1.25445 0.627224 0.778839i \(-0.284191\pi\)
0.627224 + 0.778839i \(0.284191\pi\)
\(938\) −5.05664 + 18.6879i −0.165105 + 0.610181i
\(939\) 36.1764i 1.18057i
\(940\) 0 0
\(941\) −13.2891 + 7.67245i −0.433211 + 0.250115i −0.700714 0.713443i \(-0.747135\pi\)
0.267502 + 0.963557i \(0.413802\pi\)
\(942\) 12.5774 + 3.06310i 0.409793 + 0.0998011i
\(943\) 47.4354 + 27.3869i 1.54471 + 0.891839i
\(944\) 17.0784 1.56945i 0.555853 0.0510811i
\(945\) 0 0
\(946\) 3.17150 3.32025i 0.103114 0.107951i
\(947\) 13.3114 23.0560i 0.432562 0.749219i −0.564531 0.825412i \(-0.690943\pi\)
0.997093 + 0.0761928i \(0.0242764\pi\)
\(948\) 29.8995 19.1401i 0.971091 0.621643i
\(949\) −9.36474 16.2202i −0.303992 0.526530i
\(950\) 0 0
\(951\) −3.25052 −0.105405
\(952\) −13.9823 44.3880i −0.453169 1.43862i
\(953\) 5.39146i 0.174646i −0.996180 0.0873232i \(-0.972169\pi\)
0.996180 0.0873232i \(-0.0278313\pi\)
\(954\) −9.11485 31.1449i −0.295104 1.00835i
\(955\) 0 0
\(956\) 6.80613 + 10.6321i 0.220126 + 0.343867i
\(957\) 2.35672 4.08195i 0.0761818 0.131951i
\(958\) 38.0197 + 36.3163i 1.22836 + 1.17333i
\(959\) 2.94216 + 1.79967i 0.0950074 + 0.0581143i
\(960\) 0 0
\(961\) 15.4866 26.8235i 0.499567 0.865276i
\(962\) −26.0111 6.33475i −0.838632 0.204241i
\(963\) −16.3138 28.2564i −0.525705 0.910548i
\(964\) 8.85237 17.0964i 0.285116 0.550638i
\(965\) 0 0
\(966\) −19.3831 + 19.2881i −0.623640 + 0.620583i
\(967\) −6.14901 −0.197739 −0.0988694 0.995100i \(-0.531523\pi\)
−0.0988694 + 0.995100i \(0.531523\pi\)
\(968\) 7.40140 + 21.5711i 0.237890 + 0.693323i
\(969\) −1.29778 + 0.749271i −0.0416906 + 0.0240701i
\(970\) 0 0
\(971\) −15.6816 + 27.1613i −0.503247 + 0.871649i 0.496746 + 0.867896i \(0.334528\pi\)
−0.999993 + 0.00375309i \(0.998805\pi\)
\(972\) −30.3972 + 1.39377i −0.974991 + 0.0447051i
\(973\) −26.4009 48.5302i −0.846374 1.55581i
\(974\) 1.00053 + 0.955707i 0.0320591 + 0.0306228i
\(975\) 0 0
\(976\) 22.8671 16.1612i 0.731957 0.517307i
\(977\) 34.0446 19.6557i 1.08918 0.628841i 0.155825 0.987785i \(-0.450196\pi\)
0.933359 + 0.358944i \(0.116863\pi\)
\(978\) 5.29908 + 18.1066i 0.169446 + 0.578985i
\(979\) 3.05681 0.0976961
\(980\) 0 0
\(981\) 12.2787 0.392030
\(982\) 7.31550 + 24.9966i 0.233447 + 0.797674i
\(983\) −26.4013 + 15.2428i −0.842072 + 0.486170i −0.857968 0.513703i \(-0.828273\pi\)
0.0158960 + 0.999874i \(0.494940\pi\)
\(984\) −25.7694 5.03805i −0.821499 0.160607i
\(985\) 0 0
\(986\) −15.7164 15.0123i −0.500513 0.478089i
\(987\) −16.4697 30.2747i −0.524237 0.963654i
\(988\) −0.0487820 1.06391i −0.00155196 0.0338474i
\(989\) −6.22015 + 10.7736i −0.197789 + 0.342581i
\(990\) 0 0
\(991\) 11.3870 6.57431i 0.361721 0.208840i −0.308114 0.951349i \(-0.599698\pi\)
0.669835 + 0.742510i \(0.266365\pi\)
\(992\) 0.861881 0.340602i 0.0273647 0.0108141i
\(993\) −4.39461 −0.139459
\(994\) −13.3726 + 13.3071i −0.424154 + 0.422075i
\(995\) 0 0
\(996\) −10.8284 5.60687i −0.343112 0.177661i
\(997\) 5.65950 + 9.80253i 0.179238 + 0.310449i 0.941620 0.336678i \(-0.109303\pi\)
−0.762382 + 0.647128i \(0.775970\pi\)
\(998\) 26.8404 + 6.53671i 0.849618 + 0.206916i
\(999\) 20.3931 35.3218i 0.645208 1.11753i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.t.c.299.15 32
4.3 odd 2 inner 700.2.t.c.299.10 32
5.2 odd 4 700.2.p.c.551.10 32
5.3 odd 4 140.2.o.a.131.7 yes 32
5.4 even 2 700.2.t.d.299.2 32
7.3 odd 6 700.2.t.d.199.7 32
20.3 even 4 140.2.o.a.131.15 yes 32
20.7 even 4 700.2.p.c.551.2 32
20.19 odd 2 700.2.t.d.299.7 32
28.3 even 6 700.2.t.d.199.2 32
35.3 even 12 140.2.o.a.31.15 yes 32
35.13 even 4 980.2.o.f.411.7 32
35.17 even 12 700.2.p.c.451.2 32
35.18 odd 12 980.2.o.f.31.15 32
35.23 odd 12 980.2.g.a.391.11 32
35.24 odd 6 inner 700.2.t.c.199.10 32
35.33 even 12 980.2.g.a.391.12 32
140.3 odd 12 140.2.o.a.31.7 32
140.23 even 12 980.2.g.a.391.10 32
140.59 even 6 inner 700.2.t.c.199.15 32
140.83 odd 4 980.2.o.f.411.15 32
140.87 odd 12 700.2.p.c.451.10 32
140.103 odd 12 980.2.g.a.391.9 32
140.123 even 12 980.2.o.f.31.7 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.o.a.31.7 32 140.3 odd 12
140.2.o.a.31.15 yes 32 35.3 even 12
140.2.o.a.131.7 yes 32 5.3 odd 4
140.2.o.a.131.15 yes 32 20.3 even 4
700.2.p.c.451.2 32 35.17 even 12
700.2.p.c.451.10 32 140.87 odd 12
700.2.p.c.551.2 32 20.7 even 4
700.2.p.c.551.10 32 5.2 odd 4
700.2.t.c.199.10 32 35.24 odd 6 inner
700.2.t.c.199.15 32 140.59 even 6 inner
700.2.t.c.299.10 32 4.3 odd 2 inner
700.2.t.c.299.15 32 1.1 even 1 trivial
700.2.t.d.199.2 32 28.3 even 6
700.2.t.d.199.7 32 7.3 odd 6
700.2.t.d.299.2 32 5.4 even 2
700.2.t.d.299.7 32 20.19 odd 2
980.2.g.a.391.9 32 140.103 odd 12
980.2.g.a.391.10 32 140.23 even 12
980.2.g.a.391.11 32 35.23 odd 12
980.2.g.a.391.12 32 35.33 even 12
980.2.o.f.31.7 32 140.123 even 12
980.2.o.f.31.15 32 35.18 odd 12
980.2.o.f.411.7 32 35.13 even 4
980.2.o.f.411.15 32 140.83 odd 4