Properties

Label 980.2.o.f.411.7
Level $980$
Weight $2$
Character 980.411
Analytic conductor $7.825$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [980,2,Mod(31,980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("980.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 980 = 2^{2} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 980.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.82533939809\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 411.7
Character \(\chi\) \(=\) 980.411
Dual form 980.2.o.f.31.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.397222 - 1.35728i) q^{2} +(-0.556469 - 0.963833i) q^{3} +(-1.68443 + 1.07828i) q^{4} +(-0.866025 - 0.500000i) q^{5} +(-1.08715 + 1.13814i) q^{6} +(2.13263 + 1.85793i) q^{8} +(0.880685 - 1.52539i) q^{9} +(-0.334637 + 1.37405i) q^{10} +(1.48417 - 0.856885i) q^{11} +(1.97662 + 1.02348i) q^{12} -2.45950i q^{13} +1.11294i q^{15} +(1.67460 - 3.63259i) q^{16} +(5.38574 - 3.10946i) q^{17} +(-2.42021 - 0.589419i) q^{18} +(0.108256 - 0.187505i) q^{19} +(1.99790 - 0.0916073i) q^{20} +(-1.75258 - 1.67406i) q^{22} +(-5.68681 - 3.28328i) q^{23} +(0.603989 - 3.08938i) q^{24} +(0.500000 + 0.866025i) q^{25} +(-3.33823 + 0.976966i) q^{26} -5.29911 q^{27} -2.47123 q^{29} +(1.51057 - 0.442083i) q^{30} +(-0.0819131 - 0.141878i) q^{31} +(-5.59564 - 0.829966i) q^{32} +(-1.65179 - 0.953659i) q^{33} +(-6.35975 - 6.07482i) q^{34} +(0.161354 + 3.51904i) q^{36} +(-3.84840 + 6.66562i) q^{37} +(-0.297500 - 0.0724531i) q^{38} +(-2.37054 + 1.36863i) q^{39} +(-0.917947 - 2.67533i) q^{40} +8.34130i q^{41} +1.89449i q^{43} +(-1.57601 + 3.04372i) q^{44} +(-1.52539 + 0.880685i) q^{45} +(-2.19741 + 9.02280i) q^{46} +(5.85225 - 10.1364i) q^{47} +(-4.43307 + 0.407385i) q^{48} +(0.976830 - 1.02265i) q^{50} +(-5.99399 - 3.46063i) q^{51} +(2.65204 + 4.14285i) q^{52} +(-6.51382 - 11.2823i) q^{53} +(2.10492 + 7.19238i) q^{54} -1.71377 q^{55} -0.240965 q^{57} +(0.981628 + 3.35416i) q^{58} +(2.14379 + 3.71315i) q^{59} +(-1.20006 - 1.87467i) q^{60} +(-6.06251 - 3.50019i) q^{61} +(-0.160030 + 0.167536i) q^{62} +(1.09621 + 7.92454i) q^{64} +(-1.22975 + 2.12999i) q^{65} +(-0.638259 + 2.62076i) q^{66} +(4.48095 - 2.58708i) q^{67} +(-5.71902 + 11.0450i) q^{68} +7.30818i q^{69} +5.04201i q^{71} +(4.71224 - 1.61684i) q^{72} +(-6.59493 + 3.80759i) q^{73} +(10.5758 + 2.57563i) q^{74} +(0.556469 - 0.963833i) q^{75} +(0.0198341 + 0.432571i) q^{76} +(2.79925 + 2.67384i) q^{78} +(-13.8125 - 7.97463i) q^{79} +(-3.26654 + 2.30861i) q^{80} +(0.306736 + 0.531282i) q^{81} +(11.3215 - 3.31335i) q^{82} -5.47827 q^{83} -6.21892 q^{85} +(2.57136 - 0.752534i) q^{86} +(1.37516 + 2.38185i) q^{87} +(4.75721 + 0.930059i) q^{88} +(1.54471 + 0.891838i) q^{89} +(1.80126 + 1.72056i) q^{90} +(13.1193 - 0.601545i) q^{92} +(-0.0911642 + 0.157901i) q^{93} +(-16.0826 - 3.91676i) q^{94} +(-0.187505 + 0.108256i) q^{95} +(2.31385 + 5.85511i) q^{96} -10.5305i q^{97} -3.01858i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{2} - 2 q^{4} - 4 q^{8} - 16 q^{9} + 30 q^{12} - 14 q^{16} - 8 q^{22} - 36 q^{24} + 16 q^{25} - 30 q^{26} - 40 q^{29} + 2 q^{32} + 60 q^{36} + 8 q^{37} + 60 q^{38} - 18 q^{44} - 12 q^{45} + 2 q^{46}+ \cdots + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/980\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.397222 1.35728i −0.280878 0.959743i
\(3\) −0.556469 0.963833i −0.321278 0.556469i 0.659474 0.751727i \(-0.270779\pi\)
−0.980752 + 0.195258i \(0.937446\pi\)
\(4\) −1.68443 + 1.07828i −0.842215 + 0.539142i
\(5\) −0.866025 0.500000i −0.387298 0.223607i
\(6\) −1.08715 + 1.13814i −0.443827 + 0.464644i
\(7\) 0 0
\(8\) 2.13263 + 1.85793i 0.753998 + 0.656876i
\(9\) 0.880685 1.52539i 0.293562 0.508463i
\(10\) −0.334637 + 1.37405i −0.105821 + 0.434513i
\(11\) 1.48417 0.856885i 0.447493 0.258360i −0.259278 0.965803i \(-0.583484\pi\)
0.706771 + 0.707442i \(0.250151\pi\)
\(12\) 1.97662 + 1.02348i 0.570601 + 0.295452i
\(13\) 2.45950i 0.682142i −0.940038 0.341071i \(-0.889210\pi\)
0.940038 0.341071i \(-0.110790\pi\)
\(14\) 0 0
\(15\) 1.11294i 0.287359i
\(16\) 1.67460 3.63259i 0.418651 0.908147i
\(17\) 5.38574 3.10946i 1.30623 0.754155i 0.324768 0.945794i \(-0.394714\pi\)
0.981465 + 0.191639i \(0.0613803\pi\)
\(18\) −2.42021 0.589419i −0.570450 0.138927i
\(19\) 0.108256 0.187505i 0.0248357 0.0430167i −0.853340 0.521354i \(-0.825427\pi\)
0.878176 + 0.478337i \(0.158760\pi\)
\(20\) 1.99790 0.0916073i 0.446744 0.0204840i
\(21\) 0 0
\(22\) −1.75258 1.67406i −0.373651 0.356911i
\(23\) −5.68681 3.28328i −1.18578 0.684612i −0.228437 0.973559i \(-0.573362\pi\)
−0.957345 + 0.288947i \(0.906695\pi\)
\(24\) 0.603989 3.08938i 0.123289 0.630616i
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) −3.33823 + 0.976966i −0.654681 + 0.191599i
\(27\) −5.29911 −1.01981
\(28\) 0 0
\(29\) −2.47123 −0.458896 −0.229448 0.973321i \(-0.573692\pi\)
−0.229448 + 0.973321i \(0.573692\pi\)
\(30\) 1.51057 0.442083i 0.275791 0.0807130i
\(31\) −0.0819131 0.141878i −0.0147120 0.0254820i 0.858576 0.512687i \(-0.171350\pi\)
−0.873288 + 0.487205i \(0.838016\pi\)
\(32\) −5.59564 0.829966i −0.989178 0.146719i
\(33\) −1.65179 0.953659i −0.287539 0.166011i
\(34\) −6.35975 6.07482i −1.09069 1.04182i
\(35\) 0 0
\(36\) 0.161354 + 3.51904i 0.0268924 + 0.586507i
\(37\) −3.84840 + 6.66562i −0.632673 + 1.09582i 0.354331 + 0.935120i \(0.384709\pi\)
−0.987003 + 0.160701i \(0.948625\pi\)
\(38\) −0.297500 0.0724531i −0.0482608 0.0117534i
\(39\) −2.37054 + 1.36863i −0.379591 + 0.219157i
\(40\) −0.917947 2.67533i −0.145140 0.423006i
\(41\) 8.34130i 1.30269i 0.758781 + 0.651346i \(0.225795\pi\)
−0.758781 + 0.651346i \(0.774205\pi\)
\(42\) 0 0
\(43\) 1.89449i 0.288907i 0.989512 + 0.144454i \(0.0461425\pi\)
−0.989512 + 0.144454i \(0.953858\pi\)
\(44\) −1.57601 + 3.04372i −0.237592 + 0.458858i
\(45\) −1.52539 + 0.880685i −0.227392 + 0.131285i
\(46\) −2.19741 + 9.02280i −0.323991 + 1.33034i
\(47\) 5.85225 10.1364i 0.853639 1.47855i −0.0242630 0.999706i \(-0.507724\pi\)
0.877902 0.478840i \(-0.158943\pi\)
\(48\) −4.43307 + 0.407385i −0.639859 + 0.0588010i
\(49\) 0 0
\(50\) 0.976830 1.02265i 0.138145 0.144624i
\(51\) −5.99399 3.46063i −0.839327 0.484586i
\(52\) 2.65204 + 4.14285i 0.367771 + 0.574510i
\(53\) −6.51382 11.2823i −0.894743 1.54974i −0.834123 0.551579i \(-0.814026\pi\)
−0.0606196 0.998161i \(-0.519308\pi\)
\(54\) 2.10492 + 7.19238i 0.286444 + 0.978760i
\(55\) −1.71377 −0.231085
\(56\) 0 0
\(57\) −0.240965 −0.0319166
\(58\) 0.981628 + 3.35416i 0.128894 + 0.440423i
\(59\) 2.14379 + 3.71315i 0.279098 + 0.483411i 0.971161 0.238426i \(-0.0766313\pi\)
−0.692063 + 0.721837i \(0.743298\pi\)
\(60\) −1.20006 1.87467i −0.154928 0.242018i
\(61\) −6.06251 3.50019i −0.776225 0.448154i 0.0588657 0.998266i \(-0.481252\pi\)
−0.835091 + 0.550112i \(0.814585\pi\)
\(62\) −0.160030 + 0.167536i −0.0203239 + 0.0212771i
\(63\) 0 0
\(64\) 1.09621 + 7.92454i 0.137027 + 0.990567i
\(65\) −1.22975 + 2.12999i −0.152531 + 0.264192i
\(66\) −0.638259 + 2.62076i −0.0785642 + 0.322593i
\(67\) 4.48095 2.58708i 0.547435 0.316062i −0.200652 0.979663i \(-0.564306\pi\)
0.748087 + 0.663601i \(0.230973\pi\)
\(68\) −5.71902 + 11.0450i −0.693533 + 1.33941i
\(69\) 7.30818i 0.879801i
\(70\) 0 0
\(71\) 5.04201i 0.598376i 0.954194 + 0.299188i \(0.0967158\pi\)
−0.954194 + 0.299188i \(0.903284\pi\)
\(72\) 4.71224 1.61684i 0.555343 0.190547i
\(73\) −6.59493 + 3.80759i −0.771878 + 0.445644i −0.833544 0.552453i \(-0.813692\pi\)
0.0616659 + 0.998097i \(0.480359\pi\)
\(74\) 10.5758 + 2.57563i 1.22941 + 0.299411i
\(75\) 0.556469 0.963833i 0.0642555 0.111294i
\(76\) 0.0198341 + 0.432571i 0.00227513 + 0.0496193i
\(77\) 0 0
\(78\) 2.79925 + 2.67384i 0.316953 + 0.302753i
\(79\) −13.8125 7.97463i −1.55402 0.897216i −0.997808 0.0661781i \(-0.978919\pi\)
−0.556216 0.831038i \(-0.687747\pi\)
\(80\) −3.26654 + 2.30861i −0.365211 + 0.258111i
\(81\) 0.306736 + 0.531282i 0.0340817 + 0.0590313i
\(82\) 11.3215 3.31335i 1.25025 0.365898i
\(83\) −5.47827 −0.601318 −0.300659 0.953732i \(-0.597207\pi\)
−0.300659 + 0.953732i \(0.597207\pi\)
\(84\) 0 0
\(85\) −6.21892 −0.674536
\(86\) 2.57136 0.752534i 0.277277 0.0811479i
\(87\) 1.37516 + 2.38185i 0.147433 + 0.255362i
\(88\) 4.75721 + 0.930059i 0.507120 + 0.0991446i
\(89\) 1.54471 + 0.891838i 0.163739 + 0.0945347i 0.579630 0.814880i \(-0.303197\pi\)
−0.415891 + 0.909414i \(0.636530\pi\)
\(90\) 1.80126 + 1.72056i 0.189869 + 0.181363i
\(91\) 0 0
\(92\) 13.1193 0.601545i 1.36779 0.0627154i
\(93\) −0.0911642 + 0.157901i −0.00945329 + 0.0163736i
\(94\) −16.0826 3.91676i −1.65879 0.403983i
\(95\) −0.187505 + 0.108256i −0.0192376 + 0.0111069i
\(96\) 2.31385 + 5.85511i 0.236156 + 0.597584i
\(97\) 10.5305i 1.06921i −0.845101 0.534606i \(-0.820460\pi\)
0.845101 0.534606i \(-0.179540\pi\)
\(98\) 0 0
\(99\) 3.01858i 0.303379i
\(100\) −1.77604 0.919616i −0.177604 0.0919616i
\(101\) 0.389513 0.224885i 0.0387580 0.0223769i −0.480496 0.876997i \(-0.659543\pi\)
0.519254 + 0.854620i \(0.326210\pi\)
\(102\) −2.31611 + 9.51018i −0.229329 + 0.941648i
\(103\) 4.64098 8.03841i 0.457289 0.792048i −0.541527 0.840683i \(-0.682154\pi\)
0.998817 + 0.0486348i \(0.0154871\pi\)
\(104\) 4.56957 5.24519i 0.448083 0.514334i
\(105\) 0 0
\(106\) −12.7258 + 13.3227i −1.23604 + 1.29401i
\(107\) 16.0423 + 9.26201i 1.55086 + 0.895392i 0.998072 + 0.0620738i \(0.0197714\pi\)
0.552793 + 0.833318i \(0.313562\pi\)
\(108\) 8.92597 5.71395i 0.858902 0.549825i
\(109\) 3.48557 + 6.03718i 0.333857 + 0.578257i 0.983265 0.182183i \(-0.0583164\pi\)
−0.649408 + 0.760441i \(0.724983\pi\)
\(110\) 0.680747 + 2.32607i 0.0649067 + 0.221782i
\(111\) 8.56605 0.813054
\(112\) 0 0
\(113\) 0.333646 0.0313868 0.0156934 0.999877i \(-0.495004\pi\)
0.0156934 + 0.999877i \(0.495004\pi\)
\(114\) 0.0957166 + 0.327058i 0.00896468 + 0.0306317i
\(115\) 3.28328 + 5.68681i 0.306168 + 0.530298i
\(116\) 4.16262 2.66469i 0.386489 0.247411i
\(117\) −3.75169 2.16604i −0.346844 0.200251i
\(118\) 4.18824 4.38467i 0.385558 0.403642i
\(119\) 0 0
\(120\) −2.06776 + 2.37348i −0.188760 + 0.216668i
\(121\) −4.03150 + 6.98276i −0.366500 + 0.634796i
\(122\) −2.34259 + 9.61889i −0.212088 + 0.870854i
\(123\) 8.03962 4.64168i 0.724908 0.418526i
\(124\) 0.290961 + 0.150657i 0.0261291 + 0.0135294i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 15.8806i 1.40918i −0.709616 0.704589i \(-0.751131\pi\)
0.709616 0.704589i \(-0.248869\pi\)
\(128\) 10.3204 4.63567i 0.912203 0.409739i
\(129\) 1.82597 1.05423i 0.160768 0.0928195i
\(130\) 3.37948 + 0.823038i 0.296400 + 0.0721852i
\(131\) −1.60328 + 2.77697i −0.140080 + 0.242625i −0.927526 0.373758i \(-0.878069\pi\)
0.787447 + 0.616383i \(0.211402\pi\)
\(132\) 3.81063 0.174724i 0.331673 0.0152078i
\(133\) 0 0
\(134\) −5.29133 5.05427i −0.457101 0.436622i
\(135\) 4.58916 + 2.64955i 0.394972 + 0.228037i
\(136\) 17.2629 + 3.37499i 1.48028 + 0.289403i
\(137\) −0.651787 1.12893i −0.0556859 0.0964508i 0.836839 0.547450i \(-0.184401\pi\)
−0.892525 + 0.450999i \(0.851068\pi\)
\(138\) 9.91926 2.90297i 0.844383 0.247117i
\(139\) −20.8813 −1.77113 −0.885563 0.464519i \(-0.846227\pi\)
−0.885563 + 0.464519i \(0.846227\pi\)
\(140\) 0 0
\(141\) −13.0264 −1.09702
\(142\) 6.84343 2.00280i 0.574288 0.168071i
\(143\) −2.10750 3.65031i −0.176238 0.305254i
\(144\) −4.06632 5.75359i −0.338860 0.479466i
\(145\) 2.14015 + 1.23562i 0.177730 + 0.102612i
\(146\) 7.78762 + 7.43873i 0.644508 + 0.615633i
\(147\) 0 0
\(148\) −0.705083 15.3774i −0.0579574 1.26402i
\(149\) −4.86747 + 8.43071i −0.398759 + 0.690670i −0.993573 0.113193i \(-0.963892\pi\)
0.594814 + 0.803863i \(0.297226\pi\)
\(150\) −1.52923 0.372430i −0.124861 0.0304088i
\(151\) 12.9360 7.46858i 1.05271 0.607784i 0.129306 0.991605i \(-0.458725\pi\)
0.923408 + 0.383821i \(0.125392\pi\)
\(152\) 0.579242 0.198747i 0.0469827 0.0161205i
\(153\) 10.9538i 0.885563i
\(154\) 0 0
\(155\) 0.163826i 0.0131588i
\(156\) 2.51723 4.86149i 0.201540 0.389230i
\(157\) −7.12273 + 4.11231i −0.568456 + 0.328198i −0.756532 0.653956i \(-0.773108\pi\)
0.188076 + 0.982154i \(0.439775\pi\)
\(158\) −5.33721 + 21.9151i −0.424605 + 1.74347i
\(159\) −7.24948 + 12.5565i −0.574921 + 0.995793i
\(160\) 4.43098 + 3.51659i 0.350300 + 0.278011i
\(161\) 0 0
\(162\) 0.599257 0.627364i 0.0470821 0.0492903i
\(163\) −10.3807 5.99330i −0.813079 0.469431i 0.0349450 0.999389i \(-0.488874\pi\)
−0.848024 + 0.529958i \(0.822208\pi\)
\(164\) −8.99430 14.0503i −0.702337 1.09715i
\(165\) 0.953659 + 1.65179i 0.0742423 + 0.128591i
\(166\) 2.17609 + 7.43555i 0.168897 + 0.577111i
\(167\) 14.8103 1.14606 0.573029 0.819535i \(-0.305768\pi\)
0.573029 + 0.819535i \(0.305768\pi\)
\(168\) 0 0
\(169\) 6.95088 0.534683
\(170\) 2.47029 + 8.44083i 0.189463 + 0.647382i
\(171\) −0.190679 0.330266i −0.0145816 0.0252561i
\(172\) −2.04280 3.19114i −0.155762 0.243322i
\(173\) −13.5281 7.81044i −1.02852 0.593817i −0.111960 0.993713i \(-0.535713\pi\)
−0.916561 + 0.399896i \(0.869046\pi\)
\(174\) 2.68660 2.81261i 0.203671 0.213224i
\(175\) 0 0
\(176\) −0.627316 6.82631i −0.0472857 0.514553i
\(177\) 2.38591 4.13251i 0.179336 0.310618i
\(178\) 0.596884 2.45086i 0.0447383 0.183700i
\(179\) −5.53306 + 3.19451i −0.413560 + 0.238769i −0.692318 0.721592i \(-0.743411\pi\)
0.278758 + 0.960361i \(0.410077\pi\)
\(180\) 1.61978 3.12826i 0.120732 0.233166i
\(181\) 1.18770i 0.0882808i 0.999025 + 0.0441404i \(0.0140549\pi\)
−0.999025 + 0.0441404i \(0.985945\pi\)
\(182\) 0 0
\(183\) 7.79100i 0.575927i
\(184\) −6.02776 17.5677i −0.444372 1.29511i
\(185\) 6.66562 3.84840i 0.490066 0.282940i
\(186\) 0.250529 + 0.0610138i 0.0183697 + 0.00447375i
\(187\) 5.32890 9.22992i 0.389687 0.674958i
\(188\) 1.07222 + 23.3844i 0.0781996 + 1.70549i
\(189\) 0 0
\(190\) 0.221416 + 0.211496i 0.0160632 + 0.0153435i
\(191\) 9.14608 + 5.28049i 0.661787 + 0.382083i 0.792958 0.609277i \(-0.208540\pi\)
−0.131170 + 0.991360i \(0.541874\pi\)
\(192\) 7.02792 5.46633i 0.507196 0.394498i
\(193\) −2.70403 4.68353i −0.194641 0.337128i 0.752142 0.659001i \(-0.229021\pi\)
−0.946783 + 0.321874i \(0.895687\pi\)
\(194\) −14.2929 + 4.18295i −1.02617 + 0.300319i
\(195\) 2.73727 0.196020
\(196\) 0 0
\(197\) 17.9504 1.27892 0.639458 0.768826i \(-0.279159\pi\)
0.639458 + 0.768826i \(0.279159\pi\)
\(198\) −4.09707 + 1.19905i −0.291166 + 0.0852125i
\(199\) −3.82538 6.62575i −0.271174 0.469687i 0.697989 0.716109i \(-0.254079\pi\)
−0.969163 + 0.246422i \(0.920745\pi\)
\(200\) −0.542698 + 2.77587i −0.0383745 + 0.196284i
\(201\) −4.98702 2.87926i −0.351757 0.203087i
\(202\) −0.459956 0.439349i −0.0323624 0.0309125i
\(203\) 0 0
\(204\) 13.8280 0.634039i 0.968154 0.0443916i
\(205\) 4.17065 7.22378i 0.291291 0.504531i
\(206\) −12.7539 3.10608i −0.888606 0.216411i
\(207\) −10.0166 + 5.78307i −0.696200 + 0.401951i
\(208\) −8.93434 4.11868i −0.619485 0.285579i
\(209\) 0.371053i 0.0256662i
\(210\) 0 0
\(211\) 15.5710i 1.07195i −0.844234 0.535975i \(-0.819944\pi\)
0.844234 0.535975i \(-0.180056\pi\)
\(212\) 23.1376 + 11.9804i 1.58910 + 0.822820i
\(213\) 4.85965 2.80572i 0.332978 0.192245i
\(214\) 6.19882 25.4530i 0.423742 1.73993i
\(215\) 0.947246 1.64068i 0.0646017 0.111893i
\(216\) −11.3010 9.84536i −0.768938 0.669892i
\(217\) 0 0
\(218\) 6.80962 7.12900i 0.461205 0.482837i
\(219\) 7.33975 + 4.23761i 0.495974 + 0.286351i
\(220\) 2.88672 1.84793i 0.194623 0.124588i
\(221\) −7.64770 13.2462i −0.514440 0.891036i
\(222\) −3.40263 11.6266i −0.228369 0.780323i
\(223\) 11.4678 0.767938 0.383969 0.923346i \(-0.374557\pi\)
0.383969 + 0.923346i \(0.374557\pi\)
\(224\) 0 0
\(225\) 1.76137 0.117425
\(226\) −0.132532 0.452852i −0.00881587 0.0301233i
\(227\) 4.47718 + 7.75470i 0.297161 + 0.514697i 0.975485 0.220065i \(-0.0706270\pi\)
−0.678325 + 0.734762i \(0.737294\pi\)
\(228\) 0.405889 0.259829i 0.0268806 0.0172076i
\(229\) 2.08431 + 1.20337i 0.137735 + 0.0795212i 0.567284 0.823522i \(-0.307994\pi\)
−0.429549 + 0.903043i \(0.641328\pi\)
\(230\) 6.41442 6.71527i 0.422954 0.442792i
\(231\) 0 0
\(232\) −5.27022 4.59137i −0.346007 0.301438i
\(233\) 1.28038 2.21768i 0.0838803 0.145285i −0.821033 0.570880i \(-0.806602\pi\)
0.904914 + 0.425595i \(0.139935\pi\)
\(234\) −1.44967 + 5.95250i −0.0947681 + 0.389127i
\(235\) −10.1364 + 5.85225i −0.661226 + 0.381759i
\(236\) −7.61490 3.94293i −0.495688 0.256663i
\(237\) 17.7505i 1.15302i
\(238\) 0 0
\(239\) 6.31200i 0.408289i −0.978941 0.204145i \(-0.934559\pi\)
0.978941 0.204145i \(-0.0654413\pi\)
\(240\) 4.04285 + 1.86373i 0.260965 + 0.120303i
\(241\) −8.33650 + 4.81308i −0.537001 + 0.310038i −0.743863 0.668332i \(-0.767008\pi\)
0.206862 + 0.978370i \(0.433675\pi\)
\(242\) 11.0790 + 2.69817i 0.712183 + 0.173445i
\(243\) −7.60728 + 13.1762i −0.488008 + 0.845254i
\(244\) 13.9861 0.641286i 0.895367 0.0410542i
\(245\) 0 0
\(246\) −9.49358 9.06825i −0.605288 0.578171i
\(247\) −0.461169 0.266256i −0.0293435 0.0169415i
\(248\) 0.0889081 0.454761i 0.00564567 0.0288773i
\(249\) 3.04848 + 5.28013i 0.193190 + 0.334615i
\(250\) −1.35728 + 0.397222i −0.0858421 + 0.0251225i
\(251\) 24.9508 1.57488 0.787440 0.616391i \(-0.211406\pi\)
0.787440 + 0.616391i \(0.211406\pi\)
\(252\) 0 0
\(253\) −11.2536 −0.707506
\(254\) −21.5545 + 6.30813i −1.35245 + 0.395808i
\(255\) 3.46063 + 5.99399i 0.216713 + 0.375359i
\(256\) −10.3914 12.1663i −0.649463 0.760394i
\(257\) 14.7019 + 8.48813i 0.917078 + 0.529475i 0.882702 0.469934i \(-0.155722\pi\)
0.0343764 + 0.999409i \(0.489056\pi\)
\(258\) −2.15620 2.05960i −0.134239 0.128225i
\(259\) 0 0
\(260\) −0.225308 4.91383i −0.0139730 0.304743i
\(261\) −2.17638 + 3.76960i −0.134714 + 0.233332i
\(262\) 4.40599 + 1.07303i 0.272203 + 0.0662923i
\(263\) 13.0194 7.51675i 0.802810 0.463503i −0.0416428 0.999133i \(-0.513259\pi\)
0.844453 + 0.535630i \(0.179926\pi\)
\(264\) −1.75082 5.10270i −0.107755 0.314050i
\(265\) 13.0276i 0.800282i
\(266\) 0 0
\(267\) 1.98512i 0.121487i
\(268\) −4.75824 + 9.18949i −0.290656 + 0.561337i
\(269\) 27.2203 15.7157i 1.65965 0.958201i 0.686778 0.726867i \(-0.259025\pi\)
0.972875 0.231333i \(-0.0743088\pi\)
\(270\) 1.77328 7.28125i 0.107918 0.443123i
\(271\) 1.65885 2.87322i 0.100768 0.174536i −0.811233 0.584723i \(-0.801203\pi\)
0.912001 + 0.410187i \(0.134537\pi\)
\(272\) −2.27640 24.7713i −0.138027 1.50198i
\(273\) 0 0
\(274\) −1.27337 + 1.33309i −0.0769270 + 0.0805351i
\(275\) 1.48417 + 0.856885i 0.0894987 + 0.0516721i
\(276\) −7.88030 12.3101i −0.474338 0.740982i
\(277\) −7.37294 12.7703i −0.442997 0.767293i 0.554913 0.831908i \(-0.312751\pi\)
−0.997910 + 0.0646150i \(0.979418\pi\)
\(278\) 8.29450 + 28.3418i 0.497471 + 1.69983i
\(279\) −0.288558 −0.0172755
\(280\) 0 0
\(281\) 20.5438 1.22554 0.612769 0.790262i \(-0.290056\pi\)
0.612769 + 0.790262i \(0.290056\pi\)
\(282\) 5.17437 + 17.6805i 0.308129 + 1.05286i
\(283\) −13.9181 24.1069i −0.827346 1.43301i −0.900113 0.435657i \(-0.856516\pi\)
0.0727665 0.997349i \(-0.476817\pi\)
\(284\) −5.43672 8.49290i −0.322610 0.503961i
\(285\) 0.208682 + 0.120483i 0.0123612 + 0.00713677i
\(286\) −4.11735 + 4.31046i −0.243464 + 0.254883i
\(287\) 0 0
\(288\) −6.19401 + 7.80459i −0.364986 + 0.459890i
\(289\) 10.8375 18.7710i 0.637498 1.10418i
\(290\) 0.826965 3.39560i 0.0485611 0.199397i
\(291\) −10.1497 + 5.85991i −0.594983 + 0.343514i
\(292\) 7.00304 13.5248i 0.409822 0.791480i
\(293\) 4.28428i 0.250290i −0.992138 0.125145i \(-0.960060\pi\)
0.992138 0.125145i \(-0.0399396\pi\)
\(294\) 0 0
\(295\) 4.28758i 0.249633i
\(296\) −20.5914 + 7.06525i −1.19685 + 0.410659i
\(297\) −7.86477 + 4.54072i −0.456360 + 0.263480i
\(298\) 13.3763 + 3.25767i 0.774869 + 0.188712i
\(299\) −8.07522 + 13.9867i −0.467002 + 0.808871i
\(300\) 0.101953 + 2.22354i 0.00588627 + 0.128376i
\(301\) 0 0
\(302\) −15.2754 14.5911i −0.879001 0.839621i
\(303\) −0.433504 0.250283i −0.0249041 0.0143784i
\(304\) −0.499844 0.707248i −0.0286680 0.0405635i
\(305\) 3.50019 + 6.06251i 0.200420 + 0.347138i
\(306\) −14.8674 + 4.35109i −0.849913 + 0.248736i
\(307\) 14.3171 0.817117 0.408559 0.912732i \(-0.366032\pi\)
0.408559 + 0.912732i \(0.366032\pi\)
\(308\) 0 0
\(309\) −10.3302 −0.587667
\(310\) 0.222358 0.0650754i 0.0126291 0.00369603i
\(311\) −12.8315 22.2249i −0.727609 1.26026i −0.957891 0.287132i \(-0.907298\pi\)
0.230281 0.973124i \(-0.426035\pi\)
\(312\) −7.59831 1.48551i −0.430170 0.0841004i
\(313\) 28.1505 + 16.2527i 1.59116 + 0.918656i 0.993109 + 0.117196i \(0.0373907\pi\)
0.598049 + 0.801459i \(0.295943\pi\)
\(314\) 8.41088 + 8.03406i 0.474653 + 0.453388i
\(315\) 0 0
\(316\) 31.8650 1.46107i 1.79255 0.0821915i
\(317\) −1.46033 + 2.52937i −0.0820205 + 0.142064i −0.904118 0.427284i \(-0.859471\pi\)
0.822097 + 0.569347i \(0.192804\pi\)
\(318\) 19.9223 + 4.85188i 1.11719 + 0.272080i
\(319\) −3.66772 + 2.11756i −0.205353 + 0.118561i
\(320\) 3.01292 7.41096i 0.168427 0.414285i
\(321\) 20.6161i 1.15068i
\(322\) 0 0
\(323\) 1.34647i 0.0749198i
\(324\) −1.08955 0.564158i −0.0605304 0.0313421i
\(325\) 2.12999 1.22975i 0.118150 0.0682142i
\(326\) −4.01115 + 16.4702i −0.222157 + 0.912200i
\(327\) 3.87922 6.71901i 0.214522 0.371562i
\(328\) −15.4975 + 17.7889i −0.855708 + 0.982228i
\(329\) 0 0
\(330\) 1.86313 1.95051i 0.102562 0.107372i
\(331\) −3.41964 1.97433i −0.187960 0.108519i 0.403067 0.915170i \(-0.367944\pi\)
−0.591027 + 0.806652i \(0.701277\pi\)
\(332\) 9.22775 5.90713i 0.506439 0.324196i
\(333\) 6.77845 + 11.7406i 0.371457 + 0.643382i
\(334\) −5.88299 20.1018i −0.321903 1.09992i
\(335\) −5.17415 −0.282694
\(336\) 0 0
\(337\) −10.0467 −0.547280 −0.273640 0.961832i \(-0.588228\pi\)
−0.273640 + 0.961832i \(0.588228\pi\)
\(338\) −2.76104 9.43430i −0.150181 0.513158i
\(339\) −0.185664 0.321579i −0.0100839 0.0174658i
\(340\) 10.4753 6.70576i 0.568104 0.363671i
\(341\) −0.243146 0.140380i −0.0131671 0.00760201i
\(342\) −0.372522 + 0.389995i −0.0201437 + 0.0210885i
\(343\) 0 0
\(344\) −3.51983 + 4.04025i −0.189776 + 0.217836i
\(345\) 3.65409 6.32907i 0.196730 0.340746i
\(346\) −5.22732 + 21.4639i −0.281022 + 1.15391i
\(347\) 0.0174157 0.0100550i 0.000934926 0.000539780i −0.499532 0.866295i \(-0.666495\pi\)
0.500467 + 0.865755i \(0.333162\pi\)
\(348\) −4.88469 2.52925i −0.261847 0.135582i
\(349\) 5.60366i 0.299957i 0.988689 + 0.149978i \(0.0479204\pi\)
−0.988689 + 0.149978i \(0.952080\pi\)
\(350\) 0 0
\(351\) 13.0331i 0.695657i
\(352\) −9.01605 + 3.56301i −0.480557 + 0.189909i
\(353\) −22.0701 + 12.7422i −1.17467 + 0.678198i −0.954776 0.297325i \(-0.903905\pi\)
−0.219897 + 0.975523i \(0.570572\pi\)
\(354\) −6.55672 1.59682i −0.348485 0.0848702i
\(355\) 2.52100 4.36651i 0.133801 0.231750i
\(356\) −3.56361 + 0.163398i −0.188871 + 0.00866007i
\(357\) 0 0
\(358\) 6.53371 + 6.24099i 0.345317 + 0.329847i
\(359\) 16.7562 + 9.67422i 0.884361 + 0.510586i 0.872094 0.489339i \(-0.162762\pi\)
0.0122672 + 0.999925i \(0.496095\pi\)
\(360\) −4.88934 0.955891i −0.257691 0.0503799i
\(361\) 9.47656 + 16.4139i 0.498766 + 0.863889i
\(362\) 1.61204 0.471779i 0.0847269 0.0247962i
\(363\) 8.97361 0.470993
\(364\) 0 0
\(365\) 7.61517 0.398596
\(366\) 10.5746 3.09476i 0.552742 0.161765i
\(367\) 8.64757 + 14.9780i 0.451399 + 0.781846i 0.998473 0.0552378i \(-0.0175917\pi\)
−0.547074 + 0.837084i \(0.684258\pi\)
\(368\) −21.4500 + 15.1596i −1.11816 + 0.790251i
\(369\) 12.7237 + 7.34606i 0.662372 + 0.382420i
\(370\) −7.87109 7.51846i −0.409199 0.390866i
\(371\) 0 0
\(372\) −0.0167026 0.364274i −0.000865990 0.0188867i
\(373\) −5.55483 + 9.62126i −0.287618 + 0.498170i −0.973241 0.229788i \(-0.926197\pi\)
0.685622 + 0.727957i \(0.259530\pi\)
\(374\) −14.6444 3.56649i −0.757242 0.184419i
\(375\) −0.963833 + 0.556469i −0.0497721 + 0.0287359i
\(376\) 31.3134 10.7441i 1.61486 0.554086i
\(377\) 6.07799i 0.313032i
\(378\) 0 0
\(379\) 14.3198i 0.735558i 0.929913 + 0.367779i \(0.119882\pi\)
−0.929913 + 0.367779i \(0.880118\pi\)
\(380\) 0.199108 0.384534i 0.0102141 0.0197262i
\(381\) −15.3063 + 8.83707i −0.784164 + 0.452737i
\(382\) 3.53409 14.5113i 0.180820 0.742465i
\(383\) −5.22693 + 9.05330i −0.267084 + 0.462602i −0.968107 0.250536i \(-0.919393\pi\)
0.701024 + 0.713138i \(0.252727\pi\)
\(384\) −10.2110 7.36753i −0.521077 0.375972i
\(385\) 0 0
\(386\) −5.28276 + 5.53054i −0.268886 + 0.281497i
\(387\) 2.88984 + 1.66845i 0.146899 + 0.0848121i
\(388\) 11.3549 + 17.7379i 0.576457 + 0.900506i
\(389\) 15.0629 + 26.0897i 0.763718 + 1.32280i 0.940922 + 0.338624i \(0.109962\pi\)
−0.177204 + 0.984174i \(0.556705\pi\)
\(390\) −1.08730 3.71524i −0.0550577 0.188129i
\(391\) −40.8369 −2.06521
\(392\) 0 0
\(393\) 3.56871 0.180018
\(394\) −7.13031 24.3638i −0.359220 1.22743i
\(395\) 7.97463 + 13.8125i 0.401247 + 0.694981i
\(396\) 3.25489 + 5.08459i 0.163564 + 0.255510i
\(397\) −11.6376 6.71896i −0.584073 0.337215i 0.178677 0.983908i \(-0.442818\pi\)
−0.762750 + 0.646693i \(0.776151\pi\)
\(398\) −7.47349 + 7.82401i −0.374612 + 0.392182i
\(399\) 0 0
\(400\) 3.98322 0.366045i 0.199161 0.0183022i
\(401\) 14.4423 25.0149i 0.721216 1.24918i −0.239297 0.970946i \(-0.576917\pi\)
0.960513 0.278236i \(-0.0897497\pi\)
\(402\) −1.92701 + 7.91250i −0.0961105 + 0.394639i
\(403\) −0.348948 + 0.201465i −0.0173823 + 0.0100357i
\(404\) −0.413616 + 0.798809i −0.0205782 + 0.0397422i
\(405\) 0.613471i 0.0304836i
\(406\) 0 0
\(407\) 13.1905i 0.653830i
\(408\) −6.35336 18.5167i −0.314538 0.916711i
\(409\) 22.4328 12.9516i 1.10923 0.640413i 0.170599 0.985341i \(-0.445430\pi\)
0.938629 + 0.344927i \(0.112096\pi\)
\(410\) −11.4614 2.79131i −0.566037 0.137853i
\(411\) −0.725398 + 1.25643i −0.0357813 + 0.0619749i
\(412\) 0.850295 + 18.5444i 0.0418910 + 0.913619i
\(413\) 0 0
\(414\) 11.8281 + 11.2982i 0.581318 + 0.555274i
\(415\) 4.74432 + 2.73913i 0.232889 + 0.134459i
\(416\) −2.04130 + 13.7624i −0.100083 + 0.674760i
\(417\) 11.6198 + 20.1260i 0.569023 + 0.985577i
\(418\) −0.503623 + 0.147390i −0.0246330 + 0.00720909i
\(419\) −28.1022 −1.37288 −0.686441 0.727185i \(-0.740828\pi\)
−0.686441 + 0.727185i \(0.740828\pi\)
\(420\) 0 0
\(421\) 15.6269 0.761608 0.380804 0.924656i \(-0.375647\pi\)
0.380804 + 0.924656i \(0.375647\pi\)
\(422\) −21.1342 + 6.18513i −1.02880 + 0.301087i
\(423\) −10.3080 17.8539i −0.501191 0.868088i
\(424\) 7.07007 36.1631i 0.343353 1.75624i
\(425\) 5.38574 + 3.10946i 0.261247 + 0.150831i
\(426\) −5.73851 5.48142i −0.278032 0.265576i
\(427\) 0 0
\(428\) −37.0092 + 1.69694i −1.78890 + 0.0820245i
\(429\) −2.34552 + 4.06256i −0.113243 + 0.196142i
\(430\) −2.60313 0.633967i −0.125534 0.0305726i
\(431\) 17.2771 9.97495i 0.832210 0.480477i −0.0223988 0.999749i \(-0.507130\pi\)
0.854609 + 0.519273i \(0.173797\pi\)
\(432\) −8.87391 + 19.2495i −0.426946 + 0.926141i
\(433\) 11.8294i 0.568487i −0.958752 0.284243i \(-0.908258\pi\)
0.958752 0.284243i \(-0.0917424\pi\)
\(434\) 0 0
\(435\) 2.75033i 0.131868i
\(436\) −12.3810 6.41077i −0.592942 0.307020i
\(437\) −1.23127 + 0.710872i −0.0588995 + 0.0340056i
\(438\) 2.83612 11.6454i 0.135515 0.556438i
\(439\) −13.9474 + 24.1577i −0.665675 + 1.15298i 0.313427 + 0.949612i \(0.398523\pi\)
−0.979102 + 0.203371i \(0.934810\pi\)
\(440\) −3.65483 3.18406i −0.174237 0.151794i
\(441\) 0 0
\(442\) −14.9410 + 15.6418i −0.710671 + 0.744003i
\(443\) 16.6269 + 9.59955i 0.789968 + 0.456088i 0.839951 0.542662i \(-0.182583\pi\)
−0.0499830 + 0.998750i \(0.515917\pi\)
\(444\) −14.4289 + 9.23665i −0.684766 + 0.438352i
\(445\) −0.891838 1.54471i −0.0422772 0.0732262i
\(446\) −4.55525 15.5650i −0.215697 0.737024i
\(447\) 10.8344 0.512449
\(448\) 0 0
\(449\) −4.94035 −0.233150 −0.116575 0.993182i \(-0.537191\pi\)
−0.116575 + 0.993182i \(0.537191\pi\)
\(450\) −0.699655 2.39067i −0.0329820 0.112697i
\(451\) 7.14753 + 12.3799i 0.336564 + 0.582946i
\(452\) −0.562003 + 0.359765i −0.0264344 + 0.0169219i
\(453\) −14.3969 8.31206i −0.676426 0.390535i
\(454\) 8.74688 9.15713i 0.410511 0.429765i
\(455\) 0 0
\(456\) −0.513889 0.447696i −0.0240651 0.0209653i
\(457\) 13.0622 22.6243i 0.611022 1.05832i −0.380046 0.924967i \(-0.624092\pi\)
0.991068 0.133354i \(-0.0425747\pi\)
\(458\) 0.805387 3.30700i 0.0376332 0.154526i
\(459\) −28.5396 + 16.4774i −1.33212 + 0.769097i
\(460\) −11.6625 6.03872i −0.543765 0.281557i
\(461\) 13.3894i 0.623609i −0.950146 0.311804i \(-0.899067\pi\)
0.950146 0.311804i \(-0.100933\pi\)
\(462\) 0 0
\(463\) 16.4019i 0.762259i 0.924522 + 0.381130i \(0.124465\pi\)
−0.924522 + 0.381130i \(0.875535\pi\)
\(464\) −4.13834 + 8.97697i −0.192117 + 0.416746i
\(465\) 0.157901 0.0911642i 0.00732248 0.00422764i
\(466\) −3.51861 0.856922i −0.162996 0.0396962i
\(467\) −5.96663 + 10.3345i −0.276103 + 0.478224i −0.970413 0.241452i \(-0.922376\pi\)
0.694310 + 0.719676i \(0.255710\pi\)
\(468\) 8.65507 0.396850i 0.400081 0.0183444i
\(469\) 0 0
\(470\) 11.9696 + 11.4333i 0.552115 + 0.527379i
\(471\) 7.92716 + 4.57675i 0.365264 + 0.210885i
\(472\) −2.32686 + 11.9018i −0.107102 + 0.547824i
\(473\) 1.62336 + 2.81175i 0.0746423 + 0.129284i
\(474\) 24.0925 7.05090i 1.10660 0.323859i
\(475\) 0.216513 0.00993428
\(476\) 0 0
\(477\) −22.9465 −1.05065
\(478\) −8.56716 + 2.50726i −0.391853 + 0.114680i
\(479\) 18.5889 + 32.1969i 0.849347 + 1.47111i 0.881792 + 0.471639i \(0.156337\pi\)
−0.0324444 + 0.999474i \(0.510329\pi\)
\(480\) 0.923701 6.22760i 0.0421610 0.284250i
\(481\) 16.3941 + 9.46512i 0.747505 + 0.431572i
\(482\) 9.84415 + 9.40312i 0.448389 + 0.428300i
\(483\) 0 0
\(484\) −0.738629 16.1091i −0.0335741 0.732230i
\(485\) −5.26526 + 9.11969i −0.239083 + 0.414104i
\(486\) 20.9056 + 5.09135i 0.948298 + 0.230948i
\(487\) 0.847298 0.489188i 0.0383948 0.0221672i −0.480680 0.876896i \(-0.659610\pi\)
0.519075 + 0.854729i \(0.326277\pi\)
\(488\) −6.42599 18.7283i −0.290891 0.847791i
\(489\) 13.3403i 0.603271i
\(490\) 0 0
\(491\) 18.4167i 0.831132i 0.909563 + 0.415566i \(0.136417\pi\)
−0.909563 + 0.415566i \(0.863583\pi\)
\(492\) −8.53712 + 16.4876i −0.384883 + 0.743317i
\(493\) −13.3094 + 7.68420i −0.599426 + 0.346079i
\(494\) −0.178198 + 0.731699i −0.00801751 + 0.0329207i
\(495\) −1.50929 + 2.61417i −0.0678376 + 0.117498i
\(496\) −0.652555 + 0.0599677i −0.0293006 + 0.00269263i
\(497\) 0 0
\(498\) 5.95570 6.23504i 0.266881 0.279399i
\(499\) −16.9167 9.76688i −0.757297 0.437226i 0.0710273 0.997474i \(-0.477372\pi\)
−0.828324 + 0.560249i \(0.810706\pi\)
\(500\) 1.07828 + 1.68443i 0.0482224 + 0.0753300i
\(501\) −8.24149 14.2747i −0.368203 0.637746i
\(502\) −9.91101 33.8653i −0.442350 1.51148i
\(503\) −11.7007 −0.521707 −0.260853 0.965378i \(-0.584004\pi\)
−0.260853 + 0.965378i \(0.584004\pi\)
\(504\) 0 0
\(505\) −0.449771 −0.0200145
\(506\) 4.47017 + 15.2743i 0.198723 + 0.679025i
\(507\) −3.86795 6.69948i −0.171782 0.297534i
\(508\) 17.1238 + 26.7498i 0.759747 + 1.18683i
\(509\) 1.85583 + 1.07147i 0.0822584 + 0.0474919i 0.540565 0.841302i \(-0.318211\pi\)
−0.458307 + 0.888794i \(0.651544\pi\)
\(510\) 6.76090 7.07800i 0.299378 0.313419i
\(511\) 0 0
\(512\) −12.3854 + 18.9368i −0.547363 + 0.836896i
\(513\) −0.573662 + 0.993611i −0.0253278 + 0.0438690i
\(514\) 5.68088 23.3263i 0.250573 1.02888i
\(515\) −8.03841 + 4.64098i −0.354215 + 0.204506i
\(516\) −1.93897 + 3.74469i −0.0853583 + 0.164851i
\(517\) 20.0588i 0.882186i
\(518\) 0 0
\(519\) 17.3851i 0.763120i
\(520\) −6.57996 + 2.25769i −0.288550 + 0.0990062i
\(521\) 11.8399 6.83576i 0.518714 0.299480i −0.217694 0.976017i \(-0.569854\pi\)
0.736408 + 0.676537i \(0.236520\pi\)
\(522\) 5.98091 + 1.45659i 0.261777 + 0.0637533i
\(523\) 18.7828 32.5328i 0.821316 1.42256i −0.0833873 0.996517i \(-0.526574\pi\)
0.904703 0.426043i \(-0.140093\pi\)
\(524\) −0.293745 6.40640i −0.0128323 0.279865i
\(525\) 0 0
\(526\) −15.3739 14.6852i −0.670336 0.640304i
\(527\) −0.882325 0.509411i −0.0384347 0.0221903i
\(528\) −6.23034 + 4.40326i −0.271141 + 0.191627i
\(529\) 10.0599 + 17.4242i 0.437386 + 0.757575i
\(530\) 17.6822 5.17487i 0.768065 0.224782i
\(531\) 7.55201 0.327729
\(532\) 0 0
\(533\) 20.5154 0.888621
\(534\) −2.69437 + 0.788534i −0.116597 + 0.0341232i
\(535\) −9.26201 16.0423i −0.400432 0.693568i
\(536\) 14.3628 + 2.80800i 0.620379 + 0.121287i
\(537\) 6.15795 + 3.55530i 0.265735 + 0.153422i
\(538\) −32.1431 30.7030i −1.38579 1.32370i
\(539\) 0 0
\(540\) −10.5871 + 0.485437i −0.455596 + 0.0208899i
\(541\) −13.3052 + 23.0452i −0.572034 + 0.990793i 0.424323 + 0.905511i \(0.360512\pi\)
−0.996357 + 0.0852815i \(0.972821\pi\)
\(542\) −4.55870 1.11023i −0.195813 0.0476883i
\(543\) 1.14474 0.660916i 0.0491255 0.0283626i
\(544\) −32.7174 + 12.9294i −1.40275 + 0.554344i
\(545\) 6.97114i 0.298611i
\(546\) 0 0
\(547\) 24.0582i 1.02865i 0.857594 + 0.514327i \(0.171958\pi\)
−0.857594 + 0.514327i \(0.828042\pi\)
\(548\) 2.31519 + 1.19879i 0.0989002 + 0.0512097i
\(549\) −10.6783 + 6.16513i −0.455740 + 0.263121i
\(550\) 0.573490 2.35481i 0.0244537 0.100409i
\(551\) −0.267527 + 0.463370i −0.0113970 + 0.0197402i
\(552\) −13.5781 + 15.5856i −0.577921 + 0.663369i
\(553\) 0 0
\(554\) −14.4042 + 15.0798i −0.611976 + 0.640679i
\(555\) −7.41842 4.28303i −0.314894 0.181804i
\(556\) 35.1730 22.5160i 1.49167 0.954889i
\(557\) −13.3710 23.1592i −0.566546 0.981286i −0.996904 0.0786280i \(-0.974946\pi\)
0.430358 0.902658i \(-0.358387\pi\)
\(558\) 0.114622 + 0.391655i 0.00485233 + 0.0165801i
\(559\) 4.65950 0.197076
\(560\) 0 0
\(561\) −11.8615 −0.500791
\(562\) −8.16043 27.8837i −0.344227 1.17620i
\(563\) 8.73567 + 15.1306i 0.368165 + 0.637680i 0.989279 0.146041i \(-0.0466530\pi\)
−0.621114 + 0.783720i \(0.713320\pi\)
\(564\) 21.9420 14.0462i 0.923926 0.591450i
\(565\) −0.288946 0.166823i −0.0121560 0.00701830i
\(566\) −27.1913 + 28.4666i −1.14293 + 1.19654i
\(567\) 0 0
\(568\) −9.36768 + 10.7527i −0.393059 + 0.451175i
\(569\) 10.1792 17.6309i 0.426734 0.739125i −0.569846 0.821751i \(-0.692997\pi\)
0.996581 + 0.0826258i \(0.0263306\pi\)
\(570\) 0.0806358 0.331098i 0.00337746 0.0138682i
\(571\) −19.2734 + 11.1275i −0.806565 + 0.465671i −0.845762 0.533561i \(-0.820854\pi\)
0.0391963 + 0.999232i \(0.487520\pi\)
\(572\) 7.48601 + 3.87619i 0.313006 + 0.162072i
\(573\) 11.7537i 0.491019i
\(574\) 0 0
\(575\) 6.56656i 0.273845i
\(576\) 13.0534 + 5.30687i 0.543893 + 0.221119i
\(577\) 0.841022 0.485564i 0.0350122 0.0202143i −0.482392 0.875956i \(-0.660232\pi\)
0.517404 + 0.855741i \(0.326898\pi\)
\(578\) −29.7825 7.25323i −1.23879 0.301694i
\(579\) −3.00942 + 5.21247i −0.125067 + 0.216623i
\(580\) −4.93728 + 0.226383i −0.205009 + 0.00940004i
\(581\) 0 0
\(582\) 11.9852 + 11.4483i 0.496803 + 0.474546i
\(583\) −19.3352 11.1632i −0.800783 0.462332i
\(584\) −21.1388 4.13274i −0.874728 0.171014i
\(585\) 2.16604 + 3.75169i 0.0895548 + 0.155113i
\(586\) −5.81497 + 1.70181i −0.240214 + 0.0703011i
\(587\) −17.6042 −0.726602 −0.363301 0.931672i \(-0.618350\pi\)
−0.363301 + 0.931672i \(0.618350\pi\)
\(588\) 0 0
\(589\) −0.0354704 −0.00146153
\(590\) −5.81946 + 1.70312i −0.239583 + 0.0701164i
\(591\) −9.98887 17.3012i −0.410887 0.711677i
\(592\) 17.7689 + 25.1419i 0.730298 + 1.03333i
\(593\) −19.3792 11.1886i −0.795810 0.459461i 0.0461938 0.998932i \(-0.485291\pi\)
−0.842004 + 0.539471i \(0.818624\pi\)
\(594\) 9.28710 + 8.87103i 0.381054 + 0.363983i
\(595\) 0 0
\(596\) −0.891792 19.4494i −0.0365292 0.796680i
\(597\) −4.25741 + 7.37405i −0.174244 + 0.301800i
\(598\) 22.1915 + 5.40453i 0.907480 + 0.221008i
\(599\) −15.9061 + 9.18338i −0.649905 + 0.375223i −0.788420 0.615137i \(-0.789100\pi\)
0.138515 + 0.990360i \(0.455767\pi\)
\(600\) 2.97747 1.02162i 0.121555 0.0417074i
\(601\) 11.9668i 0.488136i −0.969758 0.244068i \(-0.921518\pi\)
0.969758 0.244068i \(-0.0784820\pi\)
\(602\) 0 0
\(603\) 9.11360i 0.371134i
\(604\) −13.7365 + 26.5289i −0.558928 + 1.07945i
\(605\) 6.98276 4.03150i 0.283889 0.163904i
\(606\) −0.167508 + 0.687805i −0.00680455 + 0.0279402i
\(607\) −8.18629 + 14.1791i −0.332271 + 0.575511i −0.982957 0.183837i \(-0.941148\pi\)
0.650686 + 0.759347i \(0.274482\pi\)
\(608\) −0.761386 + 0.959363i −0.0308783 + 0.0389073i
\(609\) 0 0
\(610\) 6.83819 7.15891i 0.276870 0.289856i
\(611\) −24.9304 14.3936i −1.00858 0.582303i
\(612\) 11.8113 + 18.4509i 0.477445 + 0.745834i
\(613\) −22.8718 39.6151i −0.923783 1.60004i −0.793507 0.608561i \(-0.791747\pi\)
−0.130276 0.991478i \(-0.541586\pi\)
\(614\) −5.68705 19.4323i −0.229511 0.784223i
\(615\) −9.28335 −0.374341
\(616\) 0 0
\(617\) 3.88479 0.156396 0.0781979 0.996938i \(-0.475083\pi\)
0.0781979 + 0.996938i \(0.475083\pi\)
\(618\) 4.10340 + 14.0211i 0.165063 + 0.564010i
\(619\) 10.2165 + 17.6955i 0.410636 + 0.711242i 0.994959 0.100278i \(-0.0319734\pi\)
−0.584323 + 0.811521i \(0.698640\pi\)
\(620\) −0.176651 0.275954i −0.00709449 0.0110826i
\(621\) 30.1350 + 17.3985i 1.20928 + 0.698176i
\(622\) −25.0684 + 26.2442i −1.00515 + 1.05230i
\(623\) 0 0
\(624\) 1.00196 + 10.9031i 0.0401106 + 0.436474i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 10.8775 44.6640i 0.434752 1.78513i
\(627\) −0.357633 + 0.206479i −0.0142825 + 0.00824599i
\(628\) 7.56350 14.6072i 0.301816 0.582892i
\(629\) 47.8657i 1.90853i
\(630\) 0 0
\(631\) 23.7070i 0.943762i −0.881662 0.471881i \(-0.843575\pi\)
0.881662 0.471881i \(-0.156425\pi\)
\(632\) −14.6406 42.6695i −0.582371 1.69730i
\(633\) −15.0078 + 8.66476i −0.596507 + 0.344393i
\(634\) 4.01315 + 0.977362i 0.159382 + 0.0388160i
\(635\) −7.94031 + 13.7530i −0.315102 + 0.545772i
\(636\) −1.32821 28.9675i −0.0526670 1.14864i
\(637\) 0 0
\(638\) 4.33103 + 4.13700i 0.171467 + 0.163785i
\(639\) 7.69103 + 4.44042i 0.304252 + 0.175660i
\(640\) −11.2556 1.14559i −0.444915 0.0452834i
\(641\) −7.19683 12.4653i −0.284258 0.492349i 0.688171 0.725548i \(-0.258414\pi\)
−0.972429 + 0.233200i \(0.925080\pi\)
\(642\) −27.9818 + 8.18916i −1.10436 + 0.323200i
\(643\) 47.6127 1.87766 0.938830 0.344380i \(-0.111911\pi\)
0.938830 + 0.344380i \(0.111911\pi\)
\(644\) 0 0
\(645\) −2.10845 −0.0830202
\(646\) −1.82754 + 0.534849i −0.0719038 + 0.0210434i
\(647\) 0.00541429 + 0.00937783i 0.000212858 + 0.000368680i 0.866132 0.499816i \(-0.166599\pi\)
−0.865919 + 0.500184i \(0.833266\pi\)
\(648\) −0.332929 + 1.70292i −0.0130787 + 0.0668970i
\(649\) 6.36349 + 3.67396i 0.249789 + 0.144216i
\(650\) −2.51519 2.40251i −0.0986540 0.0942342i
\(651\) 0 0
\(652\) 23.9480 1.09806i 0.937877 0.0430033i
\(653\) 5.31113 9.19915i 0.207841 0.359990i −0.743193 0.669077i \(-0.766690\pi\)
0.951034 + 0.309086i \(0.100023\pi\)
\(654\) −10.6605 2.59626i −0.416859 0.101522i
\(655\) 2.77697 1.60328i 0.108505 0.0626455i
\(656\) 30.3005 + 13.9684i 1.18304 + 0.545374i
\(657\) 13.4131i 0.523296i
\(658\) 0 0
\(659\) 13.3688i 0.520773i 0.965505 + 0.260386i \(0.0838499\pi\)
−0.965505 + 0.260386i \(0.916150\pi\)
\(660\) −3.38747 1.75400i −0.131857 0.0682744i
\(661\) 6.49983 3.75268i 0.252814 0.145962i −0.368238 0.929732i \(-0.620039\pi\)
0.621052 + 0.783769i \(0.286706\pi\)
\(662\) −1.32137 + 5.42566i −0.0513563 + 0.210874i
\(663\) −8.51142 + 14.7422i −0.330556 + 0.572540i
\(664\) −11.6831 10.1782i −0.453393 0.394992i
\(665\) 0 0
\(666\) 13.2428 13.8639i 0.513147 0.537215i
\(667\) 14.0534 + 8.11376i 0.544151 + 0.314166i
\(668\) −24.9470 + 15.9698i −0.965227 + 0.617889i
\(669\) −6.38146 11.0530i −0.246721 0.427334i
\(670\) 2.05529 + 7.02279i 0.0794027 + 0.271314i
\(671\) −11.9970 −0.463141
\(672\) 0 0
\(673\) 19.9107 0.767501 0.383751 0.923437i \(-0.374632\pi\)
0.383751 + 0.923437i \(0.374632\pi\)
\(674\) 3.99078 + 13.6362i 0.153719 + 0.525249i
\(675\) −2.64955 4.58916i −0.101981 0.176637i
\(676\) −11.7083 + 7.49503i −0.450318 + 0.288270i
\(677\) −22.5213 13.0027i −0.865563 0.499733i 0.000308393 1.00000i \(-0.499902\pi\)
−0.865871 + 0.500267i \(0.833235\pi\)
\(678\) −0.362724 + 0.379736i −0.0139303 + 0.0145837i
\(679\) 0 0
\(680\) −13.2626 11.5543i −0.508599 0.443087i
\(681\) 4.98282 8.63049i 0.190942 0.330721i
\(682\) −0.0939527 + 0.385779i −0.00359763 + 0.0147722i
\(683\) 12.8345 7.41000i 0.491098 0.283536i −0.233932 0.972253i \(-0.575159\pi\)
0.725030 + 0.688717i \(0.241826\pi\)
\(684\) 0.677307 + 0.350704i 0.0258975 + 0.0134095i
\(685\) 1.30357i 0.0498070i
\(686\) 0 0
\(687\) 2.67856i 0.102194i
\(688\) 6.88191 + 3.17253i 0.262370 + 0.120951i
\(689\) −27.7487 + 16.0207i −1.05714 + 0.610341i
\(690\) −10.0418 2.44558i −0.382285 0.0931018i
\(691\) 13.2455 22.9418i 0.503882 0.872749i −0.496108 0.868261i \(-0.665238\pi\)
0.999990 0.00448815i \(-0.00142863\pi\)
\(692\) 31.2090 1.43099i 1.18639 0.0543980i
\(693\) 0 0
\(694\) −0.0205654 0.0196440i −0.000780651 0.000745677i
\(695\) 18.0837 + 10.4406i 0.685954 + 0.396036i
\(696\) −1.49260 + 7.63457i −0.0565768 + 0.289388i
\(697\) 25.9369 + 44.9241i 0.982432 + 1.70162i
\(698\) 7.60574 2.22590i 0.287882 0.0842514i
\(699\) −2.84996 −0.107795
\(700\) 0 0
\(701\) −0.713553 −0.0269505 −0.0134753 0.999909i \(-0.504289\pi\)
−0.0134753 + 0.999909i \(0.504289\pi\)
\(702\) 17.6896 5.17705i 0.667653 0.195395i
\(703\) 0.833226 + 1.44319i 0.0314257 + 0.0544310i
\(704\) 8.41738 + 10.8220i 0.317242 + 0.407870i
\(705\) 11.2812 + 6.51320i 0.424874 + 0.245301i
\(706\) 26.0615 + 24.8939i 0.980836 + 0.936893i
\(707\) 0 0
\(708\) 0.437133 + 9.53361i 0.0164285 + 0.358295i
\(709\) 9.56584 16.5685i 0.359253 0.622244i −0.628584 0.777742i \(-0.716365\pi\)
0.987836 + 0.155498i \(0.0496983\pi\)
\(710\) −6.92798 1.68724i −0.260002 0.0633210i
\(711\) −24.3288 + 14.0463i −0.912403 + 0.526776i
\(712\) 1.63732 + 4.77192i 0.0613612 + 0.178835i
\(713\) 1.07578i 0.0402881i
\(714\) 0 0
\(715\) 4.21501i 0.157632i
\(716\) 5.87545 11.3471i 0.219576 0.424063i
\(717\) −6.08371 + 3.51243i −0.227200 + 0.131174i
\(718\) 6.47470 26.5858i 0.241634 0.992172i
\(719\) 20.0286 34.6906i 0.746941 1.29374i −0.202341 0.979315i \(-0.564855\pi\)
0.949282 0.314425i \(-0.101812\pi\)
\(720\) 0.644740 + 7.01591i 0.0240280 + 0.261468i
\(721\) 0 0
\(722\) 18.5140 19.3823i 0.689019 0.721335i
\(723\) 9.27801 + 5.35666i 0.345053 + 0.199216i
\(724\) −1.28067 2.00059i −0.0475959 0.0743514i
\(725\) −1.23562 2.14015i −0.0458896 0.0794832i
\(726\) −3.56452 12.1797i −0.132292 0.452032i
\(727\) −14.4074 −0.534341 −0.267171 0.963649i \(-0.586089\pi\)
−0.267171 + 0.963649i \(0.586089\pi\)
\(728\) 0 0
\(729\) 18.7733 0.695307
\(730\) −3.02491 10.3359i −0.111957 0.382550i
\(731\) 5.89085 + 10.2032i 0.217881 + 0.377381i
\(732\) −8.40091 13.1234i −0.310507 0.485054i
\(733\) −0.670759 0.387263i −0.0247751 0.0143039i 0.487561 0.873089i \(-0.337887\pi\)
−0.512336 + 0.858785i \(0.671220\pi\)
\(734\) 16.8944 17.6868i 0.623584 0.652831i
\(735\) 0 0
\(736\) 29.0963 + 23.0919i 1.07250 + 0.851179i
\(737\) 4.43365 7.67931i 0.163316 0.282871i
\(738\) 4.91652 20.1877i 0.180980 0.743120i
\(739\) −7.09915 + 4.09870i −0.261147 + 0.150773i −0.624858 0.780739i \(-0.714843\pi\)
0.363711 + 0.931512i \(0.381510\pi\)
\(740\) −7.07810 + 13.6698i −0.260196 + 0.502511i
\(741\) 0.592653i 0.0217716i
\(742\) 0 0
\(743\) 8.66498i 0.317887i −0.987288 0.158944i \(-0.949191\pi\)
0.987288 0.158944i \(-0.0508088\pi\)
\(744\) −0.487788 + 0.167368i −0.0178832 + 0.00613600i
\(745\) 8.43071 4.86747i 0.308877 0.178330i
\(746\) 15.2653 + 3.71770i 0.558901 + 0.136115i
\(747\) −4.82462 + 8.35649i −0.176524 + 0.305748i
\(748\) 0.976331 + 21.2932i 0.0356982 + 0.778557i
\(749\) 0 0
\(750\) 1.13814 + 1.08715i 0.0415590 + 0.0396971i
\(751\) 6.73208 + 3.88677i 0.245657 + 0.141830i 0.617774 0.786356i \(-0.288035\pi\)
−0.372117 + 0.928186i \(0.621368\pi\)
\(752\) −27.0212 38.2333i −0.985361 1.39422i
\(753\) −13.8843 24.0484i −0.505974 0.876372i
\(754\) 8.24955 2.41431i 0.300431 0.0879240i
\(755\) −14.9372 −0.543619
\(756\) 0 0
\(757\) −5.10767 −0.185641 −0.0928206 0.995683i \(-0.529588\pi\)
−0.0928206 + 0.995683i \(0.529588\pi\)
\(758\) 19.4360 5.68813i 0.705946 0.206602i
\(759\) 6.26227 + 10.8466i 0.227306 + 0.393705i
\(760\) −0.601012 0.117501i −0.0218010 0.00426221i
\(761\) 4.16241 + 2.40317i 0.150887 + 0.0871149i 0.573543 0.819176i \(-0.305569\pi\)
−0.422655 + 0.906290i \(0.638902\pi\)
\(762\) 18.0744 + 17.2646i 0.654766 + 0.625432i
\(763\) 0 0
\(764\) −21.0998 + 0.967463i −0.763364 + 0.0350016i
\(765\) −5.47690 + 9.48628i −0.198018 + 0.342977i
\(766\) 14.3641 + 3.49824i 0.518997 + 0.126397i
\(767\) 9.13249 5.27264i 0.329755 0.190384i
\(768\) −5.94378 + 16.7857i −0.214478 + 0.605703i
\(769\) 24.7841i 0.893738i −0.894600 0.446869i \(-0.852539\pi\)
0.894600 0.446869i \(-0.147461\pi\)
\(770\) 0 0
\(771\) 18.8935i 0.680434i
\(772\) 9.60493 + 4.97335i 0.345689 + 0.178995i
\(773\) 21.9209 12.6560i 0.788438 0.455205i −0.0509742 0.998700i \(-0.516233\pi\)
0.839412 + 0.543495i \(0.182899\pi\)
\(774\) 1.11665 4.58507i 0.0401371 0.164807i
\(775\) 0.0819131 0.141878i 0.00294241 0.00509640i
\(776\) 19.5649 22.4577i 0.702340 0.806184i
\(777\) 0 0
\(778\) 29.4277 30.8080i 1.05504 1.10452i
\(779\) 1.56404 + 0.902999i 0.0560375 + 0.0323533i
\(780\) −4.61073 + 2.95155i −0.165091 + 0.105683i
\(781\) 4.32042 + 7.48318i 0.154597 + 0.267769i
\(782\) 16.2213 + 55.4272i 0.580073 + 1.98207i
\(783\) 13.0953 0.467989
\(784\) 0 0
\(785\) 8.22463 0.293549
\(786\) −1.41757 4.84375i −0.0505631 0.172771i
\(787\) −24.9493 43.2134i −0.889345 1.54039i −0.840651 0.541577i \(-0.817827\pi\)
−0.0486943 0.998814i \(-0.515506\pi\)
\(788\) −30.2363 + 19.3557i −1.07712 + 0.689518i
\(789\) −14.4898 8.36567i −0.515850 0.297826i
\(790\) 15.5797 16.3104i 0.554301 0.580299i
\(791\) 0 0
\(792\) 5.60830 6.43751i 0.199282 0.228747i
\(793\) −8.60871 + 14.9107i −0.305704 + 0.529495i
\(794\) −4.49682 + 18.4644i −0.159586 + 0.655277i
\(795\) 12.5565 7.24948i 0.445332 0.257113i
\(796\) 13.5880 + 7.03576i 0.481615 + 0.249376i
\(797\) 38.2770i 1.35584i −0.735135 0.677921i \(-0.762881\pi\)
0.735135 0.677921i \(-0.237119\pi\)
\(798\) 0 0
\(799\) 72.7894i 2.57510i
\(800\) −2.07905 5.26095i −0.0735054 0.186003i
\(801\) 2.72080 1.57086i 0.0961349 0.0555035i
\(802\) −39.6890 9.66587i −1.40147 0.341314i
\(803\) −6.52532 + 11.3022i −0.230274 + 0.398846i
\(804\) 11.5049 0.527522i 0.405748 0.0186043i
\(805\) 0 0
\(806\) 0.412054 + 0.393594i 0.0145140 + 0.0138638i
\(807\) −30.2945 17.4906i −1.06642 0.615697i
\(808\) 1.24851 + 0.244090i 0.0439223 + 0.00858704i
\(809\) −4.90151 8.48966i −0.172328 0.298480i 0.766906 0.641760i \(-0.221795\pi\)
−0.939233 + 0.343280i \(0.888462\pi\)
\(810\) −0.832654 + 0.243684i −0.0292565 + 0.00856219i
\(811\) 4.75188 0.166861 0.0834305 0.996514i \(-0.473412\pi\)
0.0834305 + 0.996514i \(0.473412\pi\)
\(812\) 0 0
\(813\) −3.69240 −0.129498
\(814\) 17.9033 5.23957i 0.627509 0.183647i
\(815\) 5.99330 + 10.3807i 0.209936 + 0.363620i
\(816\) −22.6086 + 15.9785i −0.791460 + 0.559360i
\(817\) 0.355228 + 0.205091i 0.0124278 + 0.00717522i
\(818\) −26.4897 25.3029i −0.926191 0.884696i
\(819\) 0 0
\(820\) 0.764124 + 16.6651i 0.0266844 + 0.581970i
\(821\) −7.82822 + 13.5589i −0.273207 + 0.473208i −0.969681 0.244374i \(-0.921418\pi\)
0.696474 + 0.717582i \(0.254751\pi\)
\(822\) 1.99347 + 0.485490i 0.0695302 + 0.0169334i
\(823\) 17.1447 9.89848i 0.597626 0.345039i −0.170481 0.985361i \(-0.554532\pi\)
0.768107 + 0.640322i \(0.221199\pi\)
\(824\) 24.8323 8.52035i 0.865073 0.296820i
\(825\) 1.90732i 0.0664043i
\(826\) 0 0
\(827\) 13.0808i 0.454863i 0.973794 + 0.227431i \(0.0730327\pi\)
−0.973794 + 0.227431i \(0.926967\pi\)
\(828\) 10.6364 20.5419i 0.369641 0.713880i
\(829\) 21.7092 12.5338i 0.753990 0.435316i −0.0731437 0.997321i \(-0.523303\pi\)
0.827134 + 0.562005i \(0.189970\pi\)
\(830\) 1.83323 7.52742i 0.0636323 0.261281i
\(831\) −8.20562 + 14.2126i −0.284650 + 0.493028i
\(832\) 19.4904 2.69613i 0.675707 0.0934715i
\(833\) 0 0
\(834\) 22.7011 23.7658i 0.786074 0.822943i
\(835\) −12.8261 7.40517i −0.443867 0.256266i
\(836\) 0.400100 + 0.625012i 0.0138378 + 0.0216165i
\(837\) 0.434066 + 0.751825i 0.0150035 + 0.0259869i
\(838\) 11.1628 + 38.1426i 0.385613 + 1.31761i
\(839\) 32.1347 1.10941 0.554707 0.832046i \(-0.312830\pi\)
0.554707 + 0.832046i \(0.312830\pi\)
\(840\) 0 0
\(841\) −22.8930 −0.789414
\(842\) −6.20735 21.2101i −0.213919 0.730948i
\(843\) −11.4320 19.8007i −0.393738 0.681974i
\(844\) 16.7899 + 26.2282i 0.577933 + 0.902811i
\(845\) −6.01964 3.47544i −0.207082 0.119559i
\(846\) −20.1383 + 21.0828i −0.692368 + 0.724842i
\(847\) 0 0
\(848\) −51.8919 + 4.76870i −1.78198 + 0.163758i
\(849\) −15.4900 + 26.8295i −0.531616 + 0.920785i
\(850\) 2.08108 8.54511i 0.0713804 0.293095i
\(851\) 43.7702 25.2707i 1.50042 0.866270i
\(852\) −5.16037 + 9.96612i −0.176791 + 0.341434i
\(853\) 45.8238i 1.56898i 0.620142 + 0.784489i \(0.287075\pi\)
−0.620142 + 0.784489i \(0.712925\pi\)
\(854\) 0 0
\(855\) 0.381359i 0.0130422i
\(856\) 17.0041 + 49.5578i 0.581187 + 1.69385i
\(857\) 32.3250 18.6629i 1.10420 0.637512i 0.166881 0.985977i \(-0.446630\pi\)
0.937322 + 0.348465i \(0.113297\pi\)
\(858\) 6.44574 + 1.56980i 0.220054 + 0.0535919i
\(859\) 6.62605 11.4767i 0.226078 0.391579i −0.730564 0.682844i \(-0.760743\pi\)
0.956642 + 0.291265i \(0.0940762\pi\)
\(860\) 0.173549 + 3.78501i 0.00591798 + 0.129068i
\(861\) 0 0
\(862\) −20.4017 19.4877i −0.694884 0.663752i
\(863\) 6.87116 + 3.96707i 0.233897 + 0.135041i 0.612369 0.790572i \(-0.290217\pi\)
−0.378471 + 0.925613i \(0.623550\pi\)
\(864\) 29.6519 + 4.39808i 1.00878 + 0.149626i
\(865\) 7.81044 + 13.5281i 0.265563 + 0.459968i
\(866\) −16.0559 + 4.69892i −0.545601 + 0.159676i
\(867\) −24.1229 −0.819255
\(868\) 0 0
\(869\) −27.3334 −0.927221
\(870\) −3.73297 + 1.09249i −0.126560 + 0.0370389i
\(871\) −6.36291 11.0209i −0.215599 0.373428i
\(872\) −3.78322 + 19.3510i −0.128116 + 0.655308i
\(873\) −16.0631 9.27406i −0.543655 0.313879i
\(874\) 1.45394 + 1.38880i 0.0491803 + 0.0469769i
\(875\) 0 0
\(876\) −16.9326 + 0.776391i −0.572101 + 0.0262318i
\(877\) −25.8770 + 44.8202i −0.873803 + 1.51347i −0.0157714 + 0.999876i \(0.505020\pi\)
−0.858032 + 0.513596i \(0.828313\pi\)
\(878\) 38.3290 + 9.33465i 1.29354 + 0.315029i
\(879\) −4.12932 + 2.38407i −0.139279 + 0.0804126i
\(880\) −2.86989 + 6.22542i −0.0967438 + 0.209859i
\(881\) 7.69261i 0.259171i −0.991568 0.129585i \(-0.958635\pi\)
0.991568 0.129585i \(-0.0413646\pi\)
\(882\) 0 0
\(883\) 35.2766i 1.18715i −0.804778 0.593575i \(-0.797716\pi\)
0.804778 0.593575i \(-0.202284\pi\)
\(884\) 27.1652 + 14.0659i 0.913665 + 0.473087i
\(885\) −4.13251 + 2.38591i −0.138913 + 0.0802013i
\(886\) 6.42472 26.3806i 0.215843 0.886272i
\(887\) −5.81304 + 10.0685i −0.195183 + 0.338067i −0.946960 0.321350i \(-0.895863\pi\)
0.751778 + 0.659417i \(0.229197\pi\)
\(888\) 18.2682 + 15.9151i 0.613041 + 0.534076i
\(889\) 0 0
\(890\) −1.74235 + 1.82407i −0.0584036 + 0.0611429i
\(891\) 0.910494 + 0.525674i 0.0305027 + 0.0176107i
\(892\) −19.3166 + 12.3655i −0.646769 + 0.414028i
\(893\) −1.26709 2.19466i −0.0424014 0.0734414i
\(894\) −4.30366 14.7053i −0.143936 0.491819i
\(895\) 6.38903 0.213562
\(896\) 0 0
\(897\) 17.9744 0.600149
\(898\) 1.96242 + 6.70545i 0.0654867 + 0.223764i
\(899\) 0.202426 + 0.350613i 0.00675130 + 0.0116936i
\(900\) −2.96690 + 1.89926i −0.0988967 + 0.0633086i
\(901\) −70.1635 40.5089i −2.33749 1.34955i
\(902\) 13.9638 14.6188i 0.464945 0.486752i
\(903\) 0 0
\(904\) 0.711543 + 0.619890i 0.0236656 + 0.0206172i
\(905\) 0.593848 1.02858i 0.0197402 0.0341910i
\(906\) −5.56304 + 22.8424i −0.184820 + 0.758888i
\(907\) 20.0723 11.5887i 0.666490 0.384798i −0.128256 0.991741i \(-0.540938\pi\)
0.794745 + 0.606943i \(0.207604\pi\)
\(908\) −15.9033 8.23457i −0.527768 0.273274i
\(909\) 0.792212i 0.0262760i
\(910\) 0 0
\(911\) 43.0818i 1.42737i 0.700469 + 0.713683i \(0.252974\pi\)
−0.700469 + 0.713683i \(0.747026\pi\)
\(912\) −0.403521 + 0.875327i −0.0133619 + 0.0289850i
\(913\) −8.13067 + 4.69424i −0.269086 + 0.155357i
\(914\) −35.8962 8.74216i −1.18734 0.289165i
\(915\) 3.89550 6.74720i 0.128781 0.223056i
\(916\) −4.80845 + 0.220476i −0.158876 + 0.00728473i
\(917\) 0 0
\(918\) 33.7010 + 32.1911i 1.11230 + 1.06247i
\(919\) 18.1455 + 10.4763i 0.598564 + 0.345581i 0.768476 0.639878i \(-0.221015\pi\)
−0.169912 + 0.985459i \(0.554348\pi\)
\(920\) −3.56366 + 18.2280i −0.117490 + 0.600958i
\(921\) −7.96699 13.7992i −0.262521 0.454700i
\(922\) −18.1733 + 5.31858i −0.598504 + 0.175158i
\(923\) 12.4008 0.408177
\(924\) 0 0
\(925\) −7.69679 −0.253069
\(926\) 22.2620 6.51518i 0.731573 0.214102i
\(927\) −8.17448 14.1586i −0.268485 0.465030i
\(928\) 13.8281 + 2.05104i 0.453930 + 0.0673287i
\(929\) 8.90058 + 5.13875i 0.292019 + 0.168597i 0.638852 0.769330i \(-0.279410\pi\)
−0.346833 + 0.937927i \(0.612743\pi\)
\(930\) −0.186457 0.178104i −0.00611418 0.00584025i
\(931\) 0 0
\(932\) 0.234584 + 5.11613i 0.00768405 + 0.167585i
\(933\) −14.2807 + 24.7349i −0.467529 + 0.809784i
\(934\) 16.3969 + 3.99331i 0.536524 + 0.130665i
\(935\) −9.22992 + 5.32890i −0.301851 + 0.174274i
\(936\) −3.97662 11.5897i −0.129980 0.378822i
\(937\) 38.3992i 1.25445i 0.778839 + 0.627224i \(0.215809\pi\)
−0.778839 + 0.627224i \(0.784191\pi\)
\(938\) 0 0
\(939\) 36.1764i 1.18057i
\(940\) 10.7637 20.7876i 0.351072 0.678018i
\(941\) 13.2891 7.67245i 0.433211 0.250115i −0.267502 0.963557i \(-0.586198\pi\)
0.700714 + 0.713443i \(0.252865\pi\)
\(942\) 3.06310 12.5774i 0.0998011 0.409793i
\(943\) 27.3869 47.4354i 0.891839 1.54471i
\(944\) 17.0784 1.56945i 0.555853 0.0510811i
\(945\) 0 0
\(946\) 3.17150 3.32025i 0.103114 0.107951i
\(947\) −23.0560 13.3114i −0.749219 0.432562i 0.0761928 0.997093i \(-0.475724\pi\)
−0.825412 + 0.564531i \(0.809057\pi\)
\(948\) −19.1401 29.8995i −0.621643 0.971091i
\(949\) 9.36474 + 16.2202i 0.303992 + 0.526530i
\(950\) −0.0860036 0.293869i −0.00279032 0.00953436i
\(951\) 3.25052 0.105405
\(952\) 0 0
\(953\) 5.39146 0.174646 0.0873232 0.996180i \(-0.472169\pi\)
0.0873232 + 0.996180i \(0.472169\pi\)
\(954\) 9.11485 + 31.1449i 0.295104 + 1.00835i
\(955\) −5.28049 9.14608i −0.170873 0.295960i
\(956\) 6.80613 + 10.6321i 0.220126 + 0.343867i
\(957\) 4.08195 + 2.35672i 0.131951 + 0.0761818i
\(958\) 36.3163 38.0197i 1.17333 1.22836i
\(959\) 0 0
\(960\) −8.81952 + 1.22002i −0.284649 + 0.0393759i
\(961\) 15.4866 26.8235i 0.499567 0.865276i
\(962\) 6.33475 26.0111i 0.204241 0.838632i
\(963\) 28.2564 16.3138i 0.910548 0.525705i
\(964\) 8.85237 17.0964i 0.285116 0.550638i
\(965\) 5.40807i 0.174092i
\(966\) 0 0
\(967\) 6.14901i 0.197739i 0.995100 + 0.0988694i \(0.0315226\pi\)
−0.995100 + 0.0988694i \(0.968477\pi\)
\(968\) −21.5711 + 7.40140i −0.693323 + 0.237890i
\(969\) −1.29778 + 0.749271i −0.0416906 + 0.0240701i
\(970\) 14.4695 + 3.52390i 0.464587 + 0.113146i
\(971\) 15.6816 27.1613i 0.503247 0.871649i −0.496746 0.867896i \(-0.665472\pi\)
0.999993 0.00375309i \(-0.00119465\pi\)
\(972\) −1.39377 30.3972i −0.0447051 0.974991i
\(973\) 0 0
\(974\) −1.00053 0.955707i −0.0320591 0.0306228i
\(975\) −2.37054 1.36863i −0.0759181 0.0438313i
\(976\) −22.8671 + 16.1612i −0.731957 + 0.517307i
\(977\) −19.6557 34.0446i −0.628841 1.08918i −0.987785 0.155825i \(-0.950196\pi\)
0.358944 0.933359i \(-0.383137\pi\)
\(978\) 18.1066 5.29908i 0.578985 0.169446i
\(979\) 3.05681 0.0976961
\(980\) 0 0
\(981\) 12.2787 0.392030
\(982\) 24.9966 7.31550i 0.797674 0.233447i
\(983\) 15.2428 + 26.4013i 0.486170 + 0.842072i 0.999874 0.0158960i \(-0.00506008\pi\)
−0.513703 + 0.857968i \(0.671727\pi\)
\(984\) 25.7694 + 5.03805i 0.821499 + 0.160607i
\(985\) −15.5455 8.97522i −0.495322 0.285974i
\(986\) 15.7164 + 15.0123i 0.500513 + 0.478089i
\(987\) 0 0
\(988\) 1.06391 0.0487820i 0.0338474 0.00155196i
\(989\) 6.22015 10.7736i 0.197789 0.342581i
\(990\) 4.14769 + 1.01013i 0.131822 + 0.0321040i
\(991\) 11.3870 6.57431i 0.361721 0.208840i −0.308114 0.951349i \(-0.599698\pi\)
0.669835 + 0.742510i \(0.266365\pi\)
\(992\) 0.340602 + 0.861881i 0.0108141 + 0.0273647i
\(993\) 4.39461i 0.139459i
\(994\) 0 0
\(995\) 7.65076i 0.242545i
\(996\) −10.8284 5.60687i −0.343112 0.177661i
\(997\) −9.80253 + 5.65950i −0.310449 + 0.179238i −0.647128 0.762382i \(-0.724030\pi\)
0.336678 + 0.941620i \(0.390697\pi\)
\(998\) −6.53671 + 26.8404i −0.206916 + 0.849618i
\(999\) 20.3931 35.3218i 0.645208 1.11753i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 980.2.o.f.411.7 32
4.3 odd 2 inner 980.2.o.f.411.15 32
7.2 even 3 980.2.g.a.391.12 32
7.3 odd 6 inner 980.2.o.f.31.15 32
7.4 even 3 140.2.o.a.31.15 yes 32
7.5 odd 6 980.2.g.a.391.11 32
7.6 odd 2 140.2.o.a.131.7 yes 32
28.3 even 6 inner 980.2.o.f.31.7 32
28.11 odd 6 140.2.o.a.31.7 32
28.19 even 6 980.2.g.a.391.10 32
28.23 odd 6 980.2.g.a.391.9 32
28.27 even 2 140.2.o.a.131.15 yes 32
35.4 even 6 700.2.p.c.451.2 32
35.13 even 4 700.2.t.d.299.2 32
35.18 odd 12 700.2.t.c.199.10 32
35.27 even 4 700.2.t.c.299.15 32
35.32 odd 12 700.2.t.d.199.7 32
35.34 odd 2 700.2.p.c.551.10 32
140.27 odd 4 700.2.t.c.299.10 32
140.39 odd 6 700.2.p.c.451.10 32
140.67 even 12 700.2.t.d.199.2 32
140.83 odd 4 700.2.t.d.299.7 32
140.123 even 12 700.2.t.c.199.15 32
140.139 even 2 700.2.p.c.551.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.o.a.31.7 32 28.11 odd 6
140.2.o.a.31.15 yes 32 7.4 even 3
140.2.o.a.131.7 yes 32 7.6 odd 2
140.2.o.a.131.15 yes 32 28.27 even 2
700.2.p.c.451.2 32 35.4 even 6
700.2.p.c.451.10 32 140.39 odd 6
700.2.p.c.551.2 32 140.139 even 2
700.2.p.c.551.10 32 35.34 odd 2
700.2.t.c.199.10 32 35.18 odd 12
700.2.t.c.199.15 32 140.123 even 12
700.2.t.c.299.10 32 140.27 odd 4
700.2.t.c.299.15 32 35.27 even 4
700.2.t.d.199.2 32 140.67 even 12
700.2.t.d.199.7 32 35.32 odd 12
700.2.t.d.299.2 32 35.13 even 4
700.2.t.d.299.7 32 140.83 odd 4
980.2.g.a.391.9 32 28.23 odd 6
980.2.g.a.391.10 32 28.19 even 6
980.2.g.a.391.11 32 7.5 odd 6
980.2.g.a.391.12 32 7.2 even 3
980.2.o.f.31.7 32 28.3 even 6 inner
980.2.o.f.31.15 32 7.3 odd 6 inner
980.2.o.f.411.7 32 1.1 even 1 trivial
980.2.o.f.411.15 32 4.3 odd 2 inner